101
|
Lallous N, Dalal K, Cherkasov A, Rennie PS. Targeting alternative sites on the androgen receptor to treat castration-resistant prostate cancer. Int J Mol Sci 2013; 14:12496-519. [PMID: 23771019 PMCID: PMC3709796 DOI: 10.3390/ijms140612496] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/29/2013] [Accepted: 06/03/2013] [Indexed: 01/22/2023] Open
Abstract
Recurrent, metastatic prostate cancer continues to be a leading cause of cancer-death in men. The androgen receptor (AR) is a modular, ligand-inducible transcription factor that regulates the expression of genes that can drive the progression of this disease, and as a consequence, this receptor is a key therapeutic target for controlling prostate cancer. The current drugs designed to directly inhibit the AR are called anti-androgens, and all act by competing with androgens for binding to the androgen/ligand binding site. Unfortunately, with the inevitable progression of the cancer to castration resistance, many of these drugs become ineffective. However, there are numerous other regulatory sites on this protein that have not been exploited therapeutically. The regulation of AR activity involves a cascade of complex interactions with numerous chaperones, co-factors and co-regulatory proteins, leading ultimately to direct binding of AR dimers to specific DNA androgen response elements within the promoter and enhancers of androgen-regulated genes. As part of the family of nuclear receptors, the AR is organized into modular structural and functional domains with specialized roles in facilitating their inter-molecular interactions. These regions of the AR present attractive, yet largely unexploited, drug target sites for reducing or eliminating androgen signaling in prostate cancers. The design of small molecule inhibitors targeting these specific AR domains is only now being realized and is the culmination of decades of work, including crystallographic and biochemistry approaches to map the shape and accessibility of the AR surfaces and cavities. Here, we review the structure of the AR protein and describe recent advancements in inhibiting its activity with small molecules specifically designed to target areas distinct from the receptor’s androgen binding site. It is anticipated that these new classes of anti-AR drugs will provide an additional arsenal to treat castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Nada Lallous
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| | | | | | | |
Collapse
|
102
|
Abstract
Androgenic steroids are important for male development in utero and secondary sexual characteristics at puberty. In addition, androgens play a role in non-reproductive tissues, such as bone and muscle in both sexes. The actions of the androgens testosterone and dihydrotestosterone are mediated by a single receptor protein, the androgen receptor. Over the last 60–70 years there has been considerable research interest in the development of inhibitors of androgen receptor for the management of diseases such as prostate cancer. However, more recently, there is also a growing appreciation of the need for selective androgen modulators that would demonstrate tissue-selective agonist or antagonist activity. The chemistry and biology of selective agonists, antagonists and selective androgen receptor modulators will be discussed in this review.
Collapse
|
103
|
Fiandalo MV, Wu W, Mohler JL. The role of intracrine androgen metabolism, androgen receptor and apoptosis in the survival and recurrence of prostate cancer during androgen deprivation therapy. Curr Drug Targets 2013; 14:420-40. [PMID: 23565755 PMCID: PMC3991464 DOI: 10.2174/1389450111314040004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 11/22/2022]
Abstract
Prostate cancer (CaP) is the most frequently diagnosed cancer and leading cause of cancer death in American men. Almost all men present with advanced CaP and some men who fail potentially curative therapy are treated with androgen deprivation therapy (ADT). ADT is not curative and CaP recurs as the lethal phenotype. The goal of this review is to apply our current understanding of CaP and castration-recurrent CaP (CR-CaP) to earlier studies that characterized ADT and the molecular mechanisms that facilitate the transition from androgen-stimulated CaP to CR-CaP. Reexamination of earlier studies also may provide a better understanding of how more newly recognized mechanisms, such as intracrine metabolism, may be involved with the early events that allow CaP survival after initiation of ADT and subsequent development of CR-CaP.
Collapse
Affiliation(s)
- Michael V. Fiandalo
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Wenjie Wu
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - James L. Mohler
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
104
|
Wang X, Li X, Shi W, Wei S, Giesy JP, Yu H, Wang Y. Docking and CoMSIA studies on steroids and non-steroidal chemicals as androgen receptor ligands. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 89:143-9. [PMID: 23260236 DOI: 10.1016/j.ecoenv.2012.11.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 11/25/2012] [Accepted: 11/26/2012] [Indexed: 05/23/2023]
Abstract
While some synthetic chemicals have been demonstrated to disrupt normal endocrine function by binding to the androgen receptor (AR), the mechanism by which ligands bind to the ligand binding domain (LBD) remained unclear. In this study, docking and comparative molecular similarity index analysis (CoMSIA) were performed to study the AR ligand binding mechanism of steroids and non-steroidal chemicals. The obtained docking conformations and predictive CoMSIA models (r(pred)(2)values as 0.842 and 0.554) indicated the primary interaction site and key residues in the binding process. The major factors influence the binding affinity of steroids and non-steroidal chemicals were electrostatic and hydrophobic interactions, respectively. The results indicated that besides amino-acid residues Gln711, Arg752 and Thr877 which have previously been reported to be important in binding ligands, Leu701 and Leu704 are also important. Residues Val746, Met749 and Phe764 are crucial only for steroids, while Met742 and Met787 are important only for non-steroidal chemicals. This knowledge of key interactions and important amino-acid residues governing ligands to the AR allow better prediction of potency of AR agonists so that their potential to disrupt AR-mediated pathways and to design less potent alternatives.
Collapse
Affiliation(s)
- Xiaoxiang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
105
|
Lonergan PE, Tindall DJ. Truncated Androgen Receptor Splice Variants in Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
106
|
Seoane MD, Petkau-Milroy K, Vaz B, Möcklinghoff S, Folkertsma S, Milroy LG, Brunsveld L. Structure–activity relationship studies of miniproteins targeting the androgen receptor–coactivator interaction. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20182h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Miniproteins featuring a stable α-helical motif allow exploring point mutations in and around FXXLF motifs to improve androgen receptor affinity.
Collapse
Affiliation(s)
| | - Katja Petkau-Milroy
- Laboratory of Chemical Biology
- Department of Biomedical Engineering
- Eindhoven University of Technology
- Eindhoven
- The Netherlands
| | - Belen Vaz
- Chemical Genomics Centre of the Max Planck Society
- 44227 Dortmund
- Germany
| | - Sabine Möcklinghoff
- Laboratory of Chemical Biology
- Department of Biomedical Engineering
- Eindhoven University of Technology
- Eindhoven
- The Netherlands
| | - Simon Folkertsma
- Computational Drug Discovery
- Centre for Molecular and Biomolecular Informatics
- Radboud University
- Nijmegen
- The Netherlands
| | - Lech-Gustav Milroy
- Laboratory of Chemical Biology
- Department of Biomedical Engineering
- Eindhoven University of Technology
- Eindhoven
- The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology
- Department of Biomedical Engineering
- Eindhoven University of Technology
- Eindhoven
- The Netherlands
| |
Collapse
|
107
|
Caboni L, Lloyd DG. Beyond the ligand-binding pocket: targeting alternate sites in nuclear receptors. Med Res Rev 2012; 33:1081-118. [PMID: 23344935 DOI: 10.1002/med.21275] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nuclear receptors (NRs) are a family of ligand-modulated transcription factors with significant therapeutic relevance from metabolic disorders and inflammation to cancer, neurodegenerative, and psychiatric disorders. Drug discovery efforts are typically concentrated on modulating the natural ligand action within the ligand-binding pocket (LBP) in the C-terminal ligand-binding domain (LBD). Drawbacks of LBP-based strategies include physiological alterations due to disruption of ligand binding and difficulties in achieving tissue specificity. Furthermore, the lack of a "pure" and predictable mechanism of action predisposes such intervention toward drug resistance. Recent outstanding progress in our understanding of NR biology has shifted the focus of drug discovery efforts from inside to outside the LBP, affording consideration to the interaction between NRs and coactivator proteins, the interaction between NRs and DNA and the NRs' ligand-independent functions. This review encompasses such currently available NR non-LBP-based interventions and their potential application in therapy or as specific tools to probe NR biology.
Collapse
Affiliation(s)
- Laura Caboni
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | | |
Collapse
|
108
|
Minges JT, Su S, Grossman G, Blackwelder AJ, Pop EA, Mohler JL, Wilson EM. Melanoma antigen-A11 (MAGE-A11) enhances transcriptional activity by linking androgen receptor dimers. J Biol Chem 2012; 288:1939-52. [PMID: 23172223 DOI: 10.1074/jbc.m112.428409] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer growth and progression depend on androgen receptor (AR) signaling through transcriptional mechanisms that require interactions with coregulatory proteins, one of which is the primate-specific steroid receptor coregulator melanoma antigen-A11 (MAGE-A11). In this report, we provide evidence how increased expression of MAGE-A11 during prostate cancer progression enhances AR signaling and prostate cancer growth. MAGE-A11 protein levels were highest in castration-recurrent prostate cancer. The cyclic AMP-induced increase in androgen-dependent and androgen-independent AR transcriptional activity correlated with an increase in MAGE-A11 and was inhibited by silencing MAGE-A11 expression. MAGE-A11 mediated synergistic AR transcriptional activity in LAPC-4 prostate cancer cells. The ability of MAGE-A11 to rescue transcriptional activity of complementary inactive AR mutants and promote coimmunoprecipitation between unlike forms of AR suggests that MAGE-A11 links transcriptionally active AR dimers. A model for the AR·MAGE-A11 multidimeric complex is proposed in which one AR FXXLF motif of the AR dimer engages in the androgen-dependent AR NH(2)- and carboxyl-terminal interaction, whereas the second FXXLF motif region of the AR dimer interacts with dimeric MAGE-A11. The AR·MAGE-A11 multidimeric complex accounts for the dual functions of the AR FXXLF motif in the androgen-dependent AR NH(2)- and carboxyl-terminal interaction and binding MAGE-A11 and for synergy between reported AR splice variants and full-length AR. We conclude that the increased expression of MAGE-A11 in castration-recurrent prostate cancer, which is enhanced by cyclic AMP signaling, increases AR-dependent growth of prostate cancer by MAGE-A11 forming a molecular bridge between transcriptionally active AR dimers.
Collapse
Affiliation(s)
- John T Minges
- Laboratories for Reproductive Biology, Department of Pediatrics, University of North Carolina, Chapel Hill, NC 27599-7500, USA
| | | | | | | | | | | | | |
Collapse
|
109
|
Matsumoto T, Sakari M, Okada M, Yokoyama A, Takahashi S, Kouzmenko A, Kato S. The androgen receptor in health and disease. Annu Rev Physiol 2012; 75:201-24. [PMID: 23157556 DOI: 10.1146/annurev-physiol-030212-183656] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Androgens play pivotal roles in the regulation of male development and physiological processes, particularly in the male reproductive system. Most biological effects of androgens are mediated by the action of nuclear androgen receptor (AR). AR acts as a master regulator of downstream androgen-dependent signaling pathway networks. This ligand-dependent transcriptional factor modulates gene expression through the recruitment of various coregulator complexes, the induction of chromatin reorganization, and epigenetic histone modifications at target genomic loci. Dysregulation of androgen/AR signaling perturbs normal reproductive development and accounts for a wide range of pathological conditions such as androgen-insensitive syndrome, prostate cancer, and spinal bulbar muscular atrophy. In this review we summarize recent advances in understanding of the epigenetic mechanisms of AR action as well as newly recognized aspects of AR-mediated androgen signaling in both men and women. In addition, we offer a perspective on the use of animal genetic model systems aimed at eventually developing novel therapeutic AR ligands.
Collapse
Affiliation(s)
- Takahiro Matsumoto
- Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan.
| | | | | | | | | | | | | |
Collapse
|
110
|
Zakharov MN, Bhasin S, Szafran AT, Mancini MA, Jasuja R. Numerical framework to model temporally resolved multi-stage dynamic systems. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2012; 108:750-759. [PMID: 22727632 DOI: 10.1016/j.cmpb.2012.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 01/05/2012] [Accepted: 04/24/2012] [Indexed: 06/01/2023]
Abstract
Numerical modeling of steroid hormone signaling presents an exciting challenge involving spatiotemporal coordination of multiple events. Ligand binding in cytoplasm triggers dissociation and/or association of coregulators which subsequently regulate DNA binding and transcriptional activity in nucleus. In order to develop a comprehensive multi-stage model, it is imperative to follow not only the transcriptional outcomes but also the intermediate protein complexes. Accordingly, we developed a software toolkit for simulating complex biochemical pathways as a set of non-linear differential equations in LabVIEW (Laboratory Virtual Instrumentation and Engineering Workbench, National Instruments, Austin, TX) environment. The toolkit is visual, highly modular, loosely coupled with the rest of LabVIEW, scalable and extensible. The toolkit can be used to develop and validate biochemical models and estimate model parameters from existing experimental data. We illustrate the application of the toolkit for simulation of steroid hormone response in cells, and demonstrate how the toolkit can be employed for other biological and chemical systems as well. The software module presented here can be used stand-alone as well as built into data collection and analysis applications.
Collapse
Affiliation(s)
- M N Zakharov
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
111
|
Nyrönen TH, Söderholm AA. Structural basis for computational screening of non-steroidal androgen receptor ligands. Expert Opin Drug Discov 2012; 5:5-20. [PMID: 22823968 DOI: 10.1517/17460440903468680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Deep structural and chemical understanding of the protein target and computational methods for detection of receptor-selective ligands are important for the early drug discovery in the steroid receptor field. AREAS COVERED IN THIS REVIEW This review focuses on the use of currently available structural information of the androgen receptor (AR) and known AR ligands to make computational strategies for the discovery of AR ligands in order to offer new chemical platforms for drug development. WHAT THE READER WILL GAIN AR is a challenging target for drug discovery and modeling even if there is a wealth of experimental data available. First, only the active structure of AR is currently known, which hampers the design of AR antagonists. Second, the structural similarity between the ligand-binding sites of AR and its mutated forms and closely related steroid receptors (SRs) such as progesterone receptors presents challenges for the development of drugs with receptor-selective function. TAKE HOME MESSAGE Research indicates that a very small chemical change in the structure of a non-steroidal ligand can cause a complete change in its activity. One source of this effect arises from binding to similar binding sites in related SRs and other proteins in the signaling pathway. Currently, computational methods are not able to predict the subtle differences between AR ligand activities but modeling does offer the possibility of generating new lead structures that might have the desired properties.
Collapse
Affiliation(s)
- Tommi H Nyrönen
- CSC - IT Center for Science Ltd., P.O. Box 405, Espoo, FI-02101, Finland +358 9 4572235 ; +358 9 4572302 ;
| | | |
Collapse
|
112
|
Gauthier S, Martel C, Labrie F. Steroid derivatives as pure antagonists of the androgen receptor. J Steroid Biochem Mol Biol 2012; 132:93-104. [PMID: 22449547 DOI: 10.1016/j.jsbmb.2012.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND While the androgens of testicular origin (representing about 50% of total androgens in men over 50 years) can be completely eliminated by surgical or medical castration with GnRH (gonadotropin-releasing hormone) agonists or antagonists, the antiandrogens currently available as blockers of androgen binding to the androgen receptor (AR), namely bicalutamide (BICA), flutamide (FLU) and nilutamide have too weak affinity to completely neutralize the other 50% of androgens made locally from dehydroepiandrosterone (DHEA) in the prostate cancer tissue by the mechanisms of intracrinology. MATERIALS AND METHODS Series of steroid derivatives having pure and potent antagonistic activity on the human and rodent AR were synthesized. Assays of AR binding and activity in carcinoma mouse Shionogi and human LNCaP cells as well as in vivo bioavailability measurements and in vivo prostate weight assays in the rat were used. RESULTS The chosen lead steroidal compound, namely EM-5854, has a 3.7-fold higher affinity than BICA for the human AR while EM-5855, an important metabolite of EM-5854, has a 94-fold higher affinity for the human AR compared to BICA. EM-5854 and EM-5855 are 14 times more potent than BICA in inhibiting androgen (R1881)-stimulated prostatic specific antigen (PSA) secretion in human prostatic carcinoma LNCaP cells in vitro. MDV3100 has a potency comparable to bicalutamide in these assays. Depending upon the oral formulation, EM-5854 is 5- to 10-times more potent than BICA to inhibit dihydrotestosterone (DHT)-stimulated ventral prostatic weight in vivo in the rat while MDV3100 has lower activity than BICA in this in vivo model. These data are supported by respective 40-fold and 105-fold higher potencies of EM-5854 and EM-5855 compared to BICA to inhibit cell proliferation in the androgen-sensitive Shionogi carcinoma cell model. CONCLUSIONS Although the present preclinical results data need evaluation in clinical trials in men, combination of the data obtained in vitro in human LNCaP cells as indicator of potency in the human prostate and the data on metabolism evaluated in vivo on ventral prostate weight in the rat, could suggest the possibility of a 70- to 140-fold higher potency of EM-5854 compared to bicalutamide (Casodex) for the treatment of prostate cancer in men.
Collapse
Affiliation(s)
- Sylvain Gauthier
- Endoresearch Inc., 2989, de la Promenade, Quebec City, QC, Canada
| | | | | |
Collapse
|
113
|
Gianti E, Zauhar RJ. Modeling androgen receptor flexibility: a binding mode hypothesis of CYP17 inhibitors/antiandrogens for prostate cancer therapy. J Chem Inf Model 2012; 52:2670-83. [PMID: 22924551 DOI: 10.1021/ci3002342] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Prostate Cancer (PCa), a leading cause of cancer death worldwide (www.cancer.gov), is a complex malignancy where a spectrum of targets leads to a diversity of PCa forms. A widely pursued therapeutic target is the Androgen Receptor (AR). As a Steroid Hormone Receptor, AR serves as activator of transcription upon binding to androgens and plays a central role in the development of PCa. AR is a structurally flexible protein, and conformational plasticity of residues in the binding-pocket is a key to its ability to accommodate ligands from various chemical classes. Besides direct modulation of AR activity by antagonists, inhibition of cytochrome CYP17 (17α-hydroxylase/17,20-lyase), essential in androgen biosynthesis, has widely been considered an effective strategy against PCa. Interestingly, Handratta et al. (2005) discovered new, potent inhibitors of CYP17 (C-17 steroid derivatives) with pure AR antagonistic properties. Although the antiandrogenic activity of their lead compound (VN/124-1) has been experimentally proven both in vitro and in vivo, no structural data are currently available to elucidate the molecular determinants responsible for these desirable dual inhibitory properties. We implemented a Structure-based Drug Design (SBDD) approach to generate a valuable hypothesis as to the binding modes of steroidal CYP17 inhibitors/antiandrogens against the AR. To deal with the plasticity of residues buried in the Ligand Binding Domain (LBD), we developed a flexible-receptor Docking protocol based on Induced-Fit (IFD) methodology (www.schrodinger.com/). Our results constitute an ideal starting point for the rational design of next-generation analogues of CYP17 inhibitors/antiandrogens as well as an attractive tool to suggest novel chemical classes of AR antagonists.
Collapse
Affiliation(s)
- Eleonora Gianti
- Department of Chemistry & Biochemistry, University of the Sciences, 600 S. 43rd Street, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
114
|
Shen HC, Shanmugasundaram K, Simon NI, Cai C, Wang H, Chen S, Balk SP, Rigby AC. In silico discovery of androgen receptor antagonists with activity in castration resistant prostate cancer. Mol Endocrinol 2012; 26:1836-46. [PMID: 23023563 DOI: 10.1210/me.2012-1222] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Previously available androgen receptor (AR) antagonists (bicalutamide, flutamide, and nilutamide) have limited activity against AR in prostate cancers that relapse after castration [castration resistant prostate cancer (CRPC)]. However, recent AR competitive antagonists such as MDV3100, generated through chemical modifications to the current AR ligands, appear to have increased activity in CRPC and have novel mechanisms of action. Using pharmacophore models and a refined homology model of the antagonist-liganded AR ligand binding domain, we carried out in silico screens of small molecule libraries and report here on the identification of a series of structurally distinct nonsteroidal small molecule competitive AR antagonists. Despite their unique chemical architectures, compounds representing each of six chemotypes functioned in vitro as pure AR antagonists. Moreover, similarly to MDV3100 and in contrast to previous AR antagonists, these compounds all prevented AR binding to chromatin, consistent with each of the six chemotypes stabilizing a similar AR antagonist conformation. Additional studies with the lead chemotype (chemotype A) showed enhanced AR protein degradation, which was dependent on helix 12 in the AR ligand binding domain. Significantly, chemotype A compounds functioned as AR antagonists in vivo in normal male mice and suppressed AR activity and tumor cell proliferation in human CRPC xenografts. These data indicate that certain ligand-induced structural alterations in the AR ligand binding domain may both impair AR chromatin binding and enhance AR degradation and support continued efforts to develop AR antagonists with unique mechanisms of action and efficacy in CRPC.
Collapse
Affiliation(s)
- Howard C Shen
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Su S, Blackwelder AJ, Grossman G, Minges JT, Yuan L, Young SL, Wilson EM. Primate-specific melanoma antigen-A11 regulates isoform-specific human progesterone receptor-B transactivation. J Biol Chem 2012; 287:34809-24. [PMID: 22891251 DOI: 10.1074/jbc.m112.372797] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Progesterone acting through the progesterone receptor (PR) and its coregulators prepares the human endometrium for receptivity to embryo implantation and maintains pregnancy. The menstrual cycle-dependent expression of melanoma antigen-A11 (MAGE-11) in the mid-secretory human endometrium suggested a novel function in human PR signaling. Here we show that MAGE-11 is an isoform-specific coregulator responsible for the greater transcriptional activity of human PR-B relative to PR-A. PR was recruited to progesterone response regions of progesterone-regulated FK506-binding protein 5 (FKBP5) immunophilin and small Ras family G protein cell growth inhibitor RASD1 genes. Expression of MAGE-11 lentivirus shRNA in human endometrial Ishikawa cells expressing PR-B showed that MAGE-11 is required for isoform-specific PR-B up-regulation of FKBP5. In contrast, MAGE-11 was not required for progesterone up-regulation of RASD1 in endometrial cells expressing the PR-A/B heterodimer. Target gene specificity of PR-B depended on the synergistic actions of MAGE-11 and p300 mediated by the unique PR-B NH(2)-terminal (110)LLXXVLXXLL(119) motif that interacts with the MAGE-11 F-box region in a phosphorylation- and ubiquitinylation-dependent manner. A progesterone-dependent mechanism is proposed in which MAGE-11 and p300 increase PR-B up-regulation of the FKBP5 gene. MAGE-11 down-regulates PR-B, similar to the effects of progesterone, and interacts with FKBP5 to stabilize a complex with PR-B. We conclude that the coregulator function of MAGE-11 extends to isoform-specific regulation of PR-B during the cyclic development of the human endometrium.
Collapse
Affiliation(s)
- Shifeng Su
- Laboratories for Reproductive Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
116
|
Clinckemalie L, Vanderschueren D, Boonen S, Claessens F. The hinge region in androgen receptor control. Mol Cell Endocrinol 2012; 358:1-8. [PMID: 22406839 DOI: 10.1016/j.mce.2012.02.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 01/19/2023]
Abstract
The region between the DNA-binding domain and the ligand-binding domain of nuclear receptors is termed the hinge region. Although this flexible linker is poorly conserved, diverse functions have been ascribed to it. For the androgen receptor (AR), the hinge region and in particular the (629)RKLKKL(634) motif, plays a central role in controlling AR activity, not only because it acts as the main part of the nuclear translocation signal, but also because it regulates the transactivation potential and intranuclear mobility of the receptor. It is also a target site for acetylation, ubiquitylation and methylation. The interplay between these different modifications as well as the phosphorylation at serine 650 will be discussed here. The hinge also has an important function in AR binding to classical versus selective androgen response elements. In addition, the number of coactivators/corepressors that might act via interaction with the hinge region is still growing. The importance of the hinge region is further illustrated by the different somatic mutations described in patients with androgen insensitivity syndrome and prostate cancer. In conclusion, the hinge region serves as an integrator for signals coming from different pathways that provide feedback to the control of AR activity.
Collapse
Affiliation(s)
- Liesbeth Clinckemalie
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O&N1, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | |
Collapse
|
117
|
Current status of treatment of spinal and bulbar muscular atrophy. Neural Plast 2012; 2012:369284. [PMID: 22720173 PMCID: PMC3376774 DOI: 10.1155/2012/369284] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 04/18/2012] [Indexed: 11/17/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is the first member identified among polyglutamine diseases characterized by slowly progressive muscle weakness and atrophy of the bulbar, facial, and limb muscles pathologically associated with motor neuron loss in the spinal cord and brainstem. Androgen receptor (AR), a disease-causing protein of SBMA, is a well-characterized ligand-activated transcription factor, and androgen binding induces nuclear translocation, conformational change and recruitment of coregulators for transactivation of AR target genes. Some therapeutic strategies for SBMA are based on these native functions of AR. Since ligand-induced nuclear translocation of mutant AR has been shown to be a critical step in motor neuron degeneration in SBMA, androgen deprivation therapies using leuprorelin and dutasteride have been developed and translated into clinical trials. Although the results of these trials are inconclusive, renewed clinical trials with more sophisticated design might prove the effectiveness of hormonal intervention in the near future. Furthermore, based on the normal function of AR, therapies targeted for conformational changes of AR including amino-terminal (N) and carboxy-terminal (C) (N/C) interaction and transcriptional coregulators might be promising. Other treatments targeted for mitochondrial function, ubiquitin-proteasome system (UPS), and autophagy could be applicable for all types of polyglutamine diseases.
Collapse
|
118
|
Haendler B, Cleve A. Recent developments in antiandrogens and selective androgen receptor modulators. Mol Cell Endocrinol 2012; 352:79-91. [PMID: 21704118 DOI: 10.1016/j.mce.2011.06.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/16/2011] [Accepted: 06/03/2011] [Indexed: 11/30/2022]
Abstract
The androgens testosterone and dihydrotestosterone play an essential role in the development and maintenance of primary and secondary male characteristics. Androgens bind to a specific androgen receptor (AR), a ligand-dependent transcription factor which controls the expression of a large number of downstream target genes. The AR is an essential player in early and late prostate cancer, and may also be involved in some forms of breast cancer. It also represents a drug target for the treatment of hypogonadism. Recent studies furthermore indicate that targeting the AR in pathologies such as frailty syndrome, cachexia or polycystic ovary syndrome may have clinical benefit. Numerous AR ligands with very different pharmacological properties have been identified in the last 40 years and helped to treat several of these diseases. However, progress still needs to be made in order to find compounds with an improved profile with regard to efficacy, differentiation and side-effects. This will only be achieved through a better understanding of the mechanisms involved in normal and aberrant AR signaling.
Collapse
Affiliation(s)
- Bernard Haendler
- TRG Oncology, Global Drug Discovery, Bayer HealthCare, D-13342 Berlin, Germany.
| | | |
Collapse
|
119
|
van de Wijngaart DJ, Dubbink HJ, van Royen ME, Trapman J, Jenster G. Androgen receptor coregulators: recruitment via the coactivator binding groove. Mol Cell Endocrinol 2012; 352:57-69. [PMID: 21871527 DOI: 10.1016/j.mce.2011.08.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 02/08/2023]
Abstract
Androgens are key regulators of male sexual differentiation and essential for development and maintenance of male reproductive tissues. The androgens testosterone and dihydrotestosterone mediate their effect by binding to, and activation of the androgen receptor (AR). Upon activation, the AR is able to recognize specific DNA sequences in gene promoters and enhancers from where it recruits coregulators to orchestrate chromatin remodeling and transcription regulation. The number of proteins that bind to the AR has surpassed 200 and many of them enhance (coactivator) or repress (corepressor) its transactivating capacity. For most of these coregulators, their AR binding interface and their exact mode of action still needs to be elucidated, but for some of the more classical coactivators and corepressors, we gained insight in their working mechanisms. Of particular interest are specific sequences (LxxLL and FxxLF-like motifs) in a subset of coactivators that interact with the AR via a coactivator binding groove in the ligand-binding domain. As compared to other steroid receptors, the conformation of the AR coactivator binding pocket is unique and preferentially binds FxxLF-like motifs. This predisposition is expected to contribute to the regulation of specific sets of target genes via recruitment of selected coregulators. This review provides an overview of these (inter)actions with a focus on the unique characteristics of the AR coactivator binding groove.
Collapse
|
120
|
Kumar R, McEwan IJ. Allosteric modulators of steroid hormone receptors: structural dynamics and gene regulation. Endocr Rev 2012; 33:271-99. [PMID: 22433123 PMCID: PMC3596562 DOI: 10.1210/er.2011-1033] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Steroid hormones are synthesized from cholesterol primarily in the adrenal gland and the gonads and play vital roles in normal physiology, the control of development, differentiation, metabolic homeostasis, and reproduction. The actions of these small lipophilic molecules are mediated by intracellular receptor proteins. It is just over 25 yr since the first cDNA for steroid receptors were cloned, a development that led to the birth of a superfamily of ligand-activated transcription factors: the nuclear receptors. The receptor proteins share structurally and functionally related ligand binding and DNA-binding domains but possess distinct N-terminal domains and hinge regions that are intrinsically disordered. Since the original cloning experiments, considerable progress has been made in our understanding of the structure, mechanisms of action, and biology of this important class of ligand-activated transcription factors. In recent years, there has been interest in the structural plasticity and function of the N-terminal domain of steroid hormone receptors and in the allosteric regulation of protein folding and function in response to hormone, DNA response element architecture, and coregulatory protein binding partners. The N-terminal domain can exist as an ensemble of conformers, having more or less structure, which prime this region of the receptor to rapidly respond to changes in the intracellular environment through hormone binding and posttranslation modifications. In this review, we address the question of receptor structure and function dynamics with particular emphasis on the structurally flexible N-terminal domain, intra- and interdomain communications, and the allosteric regulation of receptor action.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, Pennsylvania 18510, USA
| | | |
Collapse
|
121
|
Hay CW, McEwan IJ. The impact of point mutations in the human androgen receptor: classification of mutations on the basis of transcriptional activity. PLoS One 2012; 7:e32514. [PMID: 22403669 PMCID: PMC3293822 DOI: 10.1371/journal.pone.0032514] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/27/2012] [Indexed: 11/30/2022] Open
Abstract
Androgen receptor mediated signaling drives prostate cancer cell growth and survival. Mutations within the receptor occur infrequently in prostate cancer prior to hormonal therapy but become prevalent in incurable androgen independent and metastatic tumors. Despite the determining role played by the androgen receptor in all stages of prostate cancer progression, there is a conspicuous dearth of comparable data on the consequences of mutations. In order to remedy this omission, we have combined an expansive study of forty five mutations which are predominantly associated with high Gleason scores and metastatic tumors, and span the entire length of the receptor, with a literature review of the mutations under investigation. We report the discovery of a novel prevalent class of androgen receptor mutation that possesses loss of function at low levels of androgen yet transforms to a gain of function at physiological levels. Importantly, mutations introducing constitutive gain of function are uncommon, with the majority of mutations leading to either loss of function or no significant change from wild-type activity. Therefore, the widely accepted supposition that androgen receptor mutations in prostate cancer result in gain of function is appealing, but mistaken. In addition, the transcriptional outcome of some mutations is dependent upon the androgen receptor responsive element. We discuss the consequences of these findings and the role of androgen receptor mutations for prostate cancer progression and current treatment options.
Collapse
Affiliation(s)
- Colin W. Hay
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Iain J. McEwan
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
122
|
Lagarde WH, Blackwelder AJ, Minges JT, Hnat AT, French FS, Wilson EM. Androgen receptor exon 1 mutation causes androgen insensitivity by creating phosphorylation site and inhibiting melanoma antigen-A11 activation of NH2- and carboxyl-terminal interaction-dependent transactivation. J Biol Chem 2012; 287:10905-15. [PMID: 22334658 DOI: 10.1074/jbc.m111.336081] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Naturally occurring germ line mutations in the X-linked human androgen receptor (AR) gene cause incomplete masculinization of the external genitalia by disrupting AR function in males with androgen insensitivity syndrome. Almost all AR missense mutations that cause androgen insensitivity syndrome are located in the highly structured DNA and ligand binding domains. In this report we investigate the functional defect associated with an AR exon 1 missense mutation, R405S, that caused partial androgen insensitivity. The 46,XX heterozygous maternal carrier had a wild-type Arg-405 CGC allele but transmitted an AGC mutant allele coding for Ser-405. At birth, the 46,XY proband had a bifid scrotum, hypospadias, and micropenis consistent with clinical stage 3 partial androgen insensitivity. Androgen-dependent transcriptional activity of AR-R405S expressed in CV1 cells was less than wild-type AR and refractory in androgen-dependent AR NH(2)- and carboxyl interaction transcription assays that depend on the coregulator effects of melanoma antigen-A11. This mutation created a Ser-405 phosphorylation site evident by the gel migration of an AR-R405S NH(2)-terminal fragment as a double band that converted to the wild-type single band after treatment with λ-phosphatase. Detrimental effects of the R405S mutation were related to the proximity of the AR WXXLF motif (433)WHTLF(437) required for melanoma antigen-A11 and p300 to stimulate transcriptional activity associated with the AR NH(2)- and carboxyl-terminal interaction. We conclude that the coregulator effects of melanoma antigen-A11 on the AR NH(2)- and carboxyl-terminal interaction amplify the androgen-dependent transcriptional response to p300 required for normal human male sex development in utero.
Collapse
Affiliation(s)
- William H Lagarde
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina 27599-7500, USA
| | | | | | | | | | | |
Collapse
|
123
|
Rao S, Lyons LS, Fahrenholtz CD, Wu F, Farooq A, Balkan W, Burnstein KL. A novel nuclear role for the Vav3 nucleotide exchange factor in androgen receptor coactivation in prostate cancer. Oncogene 2012; 31:716-27. [PMID: 21765461 PMCID: PMC3203328 DOI: 10.1038/onc.2011.273] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/09/2011] [Accepted: 05/23/2011] [Indexed: 12/20/2022]
Abstract
Increased androgen receptor (AR) transcriptional activity mediated by coactivator proteins may drive castration-resistant prostate cancer (CRPC) growth. Vav3, a Rho GTPase guanine nucleotide exchange factor (GEF), is overexpressed in human prostate cancers, particularly in models of CRPC progression. Vav3 coactivates AR in a Vav3 pleckstrin homology (PH) domain-dependent but GEF-independent manner. Ectopic expression of Vav3 in androgen-dependent human prostate cancer cells conferred robust castration-resistant xenograft tumor growth. Vav3 but not a Vav3 PH mutant greatly stimulated interaction between the AR amino and carboxyl termini (N-C interaction), which is required for maximal receptor transcriptional activity. Vav3 was distributed between the cytoplasm and nucleus with nuclear localization-dependent on the Vav3 PH domain. Membrane targeting of Vav3 abolished Vav3 potentiation of AR activity, whereas nuclear targeting of a Vav3 PH mutant rescued AR coactivation, suggesting that nuclear localization is an important function of the Vav3 PH domain. A nuclear role for Vav3 was further demonstrated by sequential chromatin immunoprecipitation assays, which revealed that Vav3 and AR were recruited to the same transcriptional complexes of an AR target gene enhancer. These data demonstrate the importance of Vav3 in CRPC and define a novel nuclear function of Vav3 in regulating AR activity.
Collapse
Affiliation(s)
- Shuyun Rao
- Departments of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL
| | | | - Cale D. Fahrenholtz
- Departments of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL
| | - Fayi Wu
- Departments of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL
| | - Amjad Farooq
- Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL
| | - Wayne Balkan
- Medicine, University of Miami, Miller School of Medicine, Miami, FL
| | - Kerry L. Burnstein
- Departments of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL
| |
Collapse
|
124
|
Askew EB, Minges JT, Hnat AT, Wilson EM. Structural features discriminate androgen receptor N/C terminal and coactivator interactions. Mol Cell Endocrinol 2012; 348:403-10. [PMID: 21664945 PMCID: PMC3199032 DOI: 10.1016/j.mce.2011.03.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 03/25/2011] [Accepted: 03/31/2011] [Indexed: 11/20/2022]
Abstract
Human androgen receptor (AR) transcriptional activity involves interdomain and coactivator interactions with the agonist-bound AR ligand binding domain (LBD). Structural determinants of the AR NH(2)- and carboxyl-terminal interaction between the AR NH(2)-terminal FXXLF motif and activation function 2 (AF2) in the LBD were shown previously by crystallography. In this report, we provide evidence for a region in AR LBD helix 12 outside the AF2 binding cleft that facilitates interactions with the FXXLF and LXXLL motifs. Mutagenesis of glutamine 902 to alanine in AR LBD helix 12 (Q902A) disrupted AR FXXLF motif binding to AF2, but enhanced coactivator LXXLL motif binding. Functional compensation for defective FXXLF motif binding by AR-Q902A was suggested by the slower dissociation rate of bound androgen. Functional importance of glutamine 902 was indicated by the charged residue germline mutation Q902R that caused partial androgen insensitivity, and a similar somatic mutation Q902K reported in prostate cancer, both of which increased the androgen dissociation rate and decreased AR transcriptional activity. High affinity equilibrium androgen binding was retained by alanine substitution mutations at Tyr-739 in AR LBD helix 5 or Lys-905 in helix 12 structurally adjacent to AF2, whereas transcriptional activity decreased and the androgen dissociation increased. Deleterious effects of these loss of function mutations were rescued by the helix stabilizing AR prostate cancer somatic mutation H874Y. Sequence NH(2)-terminal to the AR FXXLF motif contributed to the AR NH(2)- and carboxyl-terminal interaction based on greater AR-2-30 FXXLF motif peptide binding to the agonist-bound AR LBD than a shorter AR-20-30 FXXLF motif peptide. We conclude that helix 12 residues outside the AF2 binding cleft modulate AR transcriptional activity by providing flexibility to accommodate FXXLF or LXXLL motif binding.
Collapse
Affiliation(s)
| | - John T. Minges
- Curriculum in Toxicology, Laboratories for Reproductive Biology, Lineberger Comprehensive Cancer Center, and the Departments of Pediatrics, and Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7500 USA
| | - Andrew T. Hnat
- Curriculum in Toxicology, Laboratories for Reproductive Biology, Lineberger Comprehensive Cancer Center, and the Departments of Pediatrics, and Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7500 USA
| | - Elizabeth M. Wilson
- Curriculum in Toxicology, Laboratories for Reproductive Biology, Lineberger Comprehensive Cancer Center, and the Departments of Pediatrics, and Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7500 USA
| |
Collapse
|
125
|
Buzón V, Carbó LR, Estruch SB, Fletterick RJ, Estébanez-Perpiñá E. A conserved surface on the ligand binding domain of nuclear receptors for allosteric control. Mol Cell Endocrinol 2012; 348:394-402. [PMID: 21878368 DOI: 10.1016/j.mce.2011.08.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/08/2011] [Accepted: 08/12/2011] [Indexed: 12/26/2022]
Abstract
Nuclear receptors (NRs) form a large superfamily of transcription factors that participate in virtually every key biological process. They control development, fertility, gametogenesis and are misregulated in many cancers. Their enormous functional plasticity as transcription factors relates in part to NR-mediated interactions with hundreds of coregulatory proteins upon ligand (e.g., hormone) binding to their ligand binding domains (LBD), or following covalent modification. Some coregulator association relates to the distinct residues that shape a coactivator binding pocket termed AF-2, a surface groove that primarily determines the preference and specificity of protein-protein interactions. However, the highly conserved AF-2 pocket in the NR superfamily appears to be insufficient to account for NR subtype specificity leading to fine transcriptional modulation in certain settings. Additional protein-protein interaction surfaces, most notably on their LBD, may contribute to modulating NR function. NR coregulators and chaperones, normally much larger than the NR itself, may also bind to such interfaces. In the case of the androgen receptor (AR) LBD surface, structural and functional data highlighted the presence of another site named BF-3, which lies at a distinct but topographically adjacent surface to AF-2. AR BF-3 is a hot spot for mutations involved in prostate cancer and androgen insensitivity syndromes, and some FDA-approved drugs bind at this site. Structural studies suggested an allosteric relationship between AF-2 and BF-3, as occupancy of the latter affected coactivator recruitment to AF-2. Physiological relevant partners of AR BF-3 have not been described as yet. The newly discovered site is highly conserved among the steroid receptors subclass, but is also present in other NRs. Several missense mutations in the BF-3 regions of these human NRs are implicated in pathology and affect their function in vitro. The fact that AR BF-3 pocket is a druggable site evidences its pharmacological potential. Compounds that may affect allosterically NR function by binding to BF-3 open promising avenues to develop type-specific NR modulators.
Collapse
Affiliation(s)
- Víctor Buzón
- Institut de Biomedicina, Universitat de Barcelona, Baldiri Reixac 15-21, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
126
|
Jin F, Claessens F, Fondell JD. Regulation of androgen receptor-dependent transcription by coactivator MED1 is mediated through a newly discovered noncanonical binding motif. J Biol Chem 2011; 287:858-70. [PMID: 22102282 DOI: 10.1074/jbc.m111.304519] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Nuclear receptor (NR) activation by cognate ligand generally involves allosteric realignment of C-terminal α-helices thus generating a binding surface for coactivators containing canonical LXXLL α-helical motifs. The androgen receptor (AR) is uncommon among NRs in that ligand triggers an intramolecular interaction between its N- and C-terminal domains (termed the N/C interaction) and that coactivators can alternatively bind to surfaces in the AR N-terminal or hinge regions. The evolutionary conserved Mediator complex plays a key coregulatory role in steroid hormone-dependent transcription and is chiefly targeted to NRs via the LXXLL-containing MED1 subunit. Whereas MED1 has been demonstrated to serve as a key transcriptional coactivator for AR, the mechanisms by which AR recruits MED1 have remained unclear. Here we show that MED1 binds to a distinct AR N-terminal region termed transactivation unit-1 (Tau-1) via two newly discovered noncanonical α-helical motifs located between MED1 residues 505 and 537. Neither of the two MED1 LXXLL motifs is required for AR binding, whereas loss of the intramolecular AR N/C interaction decreases MED1 binding. We further demonstrate that mitogen-activated protein kinase phosphorylation of MED1 enhances the AR-MED1 interaction in prostate cancer cells. In sum, our findings reveal a novel AR-coactivator binding mechanism that may have clinical implications for AR activity in prostate cancer.
Collapse
Affiliation(s)
- Feng Jin
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
127
|
Abstract
The androgen receptor (AR) is a key transcriptional regulator and therapeutic target in prostate cancer. During androgen deprivation therapy to treat metastatic prostate cancer, surviving cells acquire increased AR signaling through a variety of mechanisms, one of which is enhanced interactions with AR coactivators. One recently identified AR-specific coregulator expressed only in human and nonhuman primates is the melanoma antigen gene protein-A11 (MAGE-11). MAGE-11 increases AR transcriptional activity through direct interactions with AR and other coactivators, and its levels increase during prostate cancer progression to castration-recurrent growth. The MAGE-11 gene is located at Xq28 on the human X chromosome as part of an X-linked MAGE gene family of cancer-testis antigens. MAGE-11 stabilizes AR when androgen levels are low, and functions in a transcriptional hub to promote AR-mediated gene activation. The evolutionary development and organization of the MAGE-11 gene within the cancer-testis antigen family suggests that MAGE-11 provides a gain-of-function to AR among primates in both normal physiology and cancer, and may serve as a therapeutic target in the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Elizabeth M Wilson
- Laboratories for Reproductive Biology, Lineberger Comprehensive Cancer Center, and the Departments of Pediatrics, and Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
128
|
Abstract
Alternative splicing is an important mechanism for increasing functional diversity from a limited set of genes. Deregulation of this process is common in diverse pathologic conditions. The androgen receptor (AR) is a steroid receptor transcription factor with functions critical for normal male development as well as the growth and survival of normal and cancerous prostate tissue. Studies of AR function in androgen insensitivity syndrome (AIS) and prostate cancer (PCa) have demonstrated loss-of-function AR alterations in AIS and gain-of-function AR alterations in PCa. Over the past two decades, AR gene alterations have been identified in various individuals with AIS, which disrupt normal AR splicing patterns and yield dysfunctional AR protein variants. Recently, altered AR splicing patterns have been identified as a mechanism of PCa progression and resistance to androgen depletion therapy. Several studies have described the synthesis of alternatively spliced transcripts encoding truncated AR isoforms that lack the ligand-binding domain, which is the ultimate target of androgen depletion. Many of these truncated AR isoforms function as constitutively active, ligand-independent transcription factors that can support androgen-independent expression of AR target genes, as well as the androgen-independent growth of PCa cells. In this review, we will summarize the various alternatively spliced AR variants that have been discovered, with a focus on their role and origin in the pathologic conditions of AIS and PCa.
Collapse
Affiliation(s)
- Scott M Dehm
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
129
|
Kim SB, Takenaka Y, Torimura M. A bioluminescent probe for salivary cortisol. Bioconjug Chem 2011; 22:1835-41. [PMID: 21838298 DOI: 10.1021/bc200220k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cortisol is a classical biomarker for the stress levels of human beings. We fabricated highly sensitive bioluminescent probes for salivary cortisol. The following strategies were contrived in the molecular design. Gaussia princeps luciferase (GLuc) was dissected into two fragments, between which an N-terminal-extended ligand binding domain of glucocorticoid receptor (GR HLBD), named Simgr4, was inserted. First, this unique single-chain probe was then situated downstream of a glucocorticoid response element (GRE) promoter in a reporter-gene system for constructing two ON-OFF switches for cortisol. Second, a circularly permutated (CP) variant of Simgr4 was formulated. The reporter-gene system exerted an improved signal-to-background (S/B) ratio of 8.5 to cortisol. Furthermore, a circularly permutated (CP) variant of Simgr4 exerted a 10× enhanced detection limit to cortisol and a long dynamic range from 10(-9) to 10(-6) M cortisol, covering all of the normal clinical ranges of serum, urine, and saliva. This optimized probe successfully determined daily fluctuations of salivary cortisol and the correlations with those by ELISA. This study is the first to investigate the contribution of the HLBD of a nuclear receptor and multiple ON-OFF switches for molecular probes and salivary cortisols.
Collapse
Affiliation(s)
- Sung Bae Kim
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Japan.
| | | | | |
Collapse
|
130
|
Yap TA, Zivi A, Omlin A, de Bono JS. The changing therapeutic landscape of castration-resistant prostate cancer. Nat Rev Clin Oncol 2011; 8:597-610. [PMID: 21826082 DOI: 10.1038/nrclinonc.2011.117] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Castration-resistant prostate cancer (CRPC) has a poor prognosis and remains a significant therapeutic challenge. Before 2010, only docetaxel-based chemotherapy improved survival in patients with CRPC compared with mitoxantrone. Our improved understanding of the underlying biology of CRPC has heralded a new era in molecular anticancer drug development, with a myriad of novel anticancer drugs for CRPC entering the clinic. These include the novel taxane cabazitaxel, the vaccine sipuleucel-T, the CYP17 inhibitor abiraterone, the novel androgen-receptor antagonist MDV-3100 and the radioisotope alpharadin. With these developments, the management of patients with CRPC is changing. In this Review, we discuss these promising therapies along with other novel agents that are demonstrating early signs of activity in CRPC. We propose a treatment pathway for patients with CRPC and consider strategies to optimize the use of these agents, including the incorporation of predictive and intermediate end point biomarkers, such as circulating tumor cells.
Collapse
Affiliation(s)
- Timothy A Yap
- Drug Development Unit, The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Downs Road, Sutton, Surrey SM2 5PT, UK
| | | | | | | |
Collapse
|
131
|
McEwan IJ. Intrinsic disorder in the androgen receptor: identification, characterisation and drugability. MOLECULAR BIOSYSTEMS 2011; 8:82-90. [PMID: 21822504 DOI: 10.1039/c1mb05249g] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The androgen receptor (AR) regulates networks of genes in response to the steroid hormones testosterone and dihydrotestosterone. The receptor protein is made up of both stably folded globular domains, involved in hormone and DNA binding, and regions of intrinsic disorder, including the N-terminal domain (NTD). The AR-NTD has a modular activation function (termed AF1) and is important for gene regulation, participating in multiple protein-protein interactions. Biophysical studies have revealed that AR-NTD/AF1 has limited stable secondary structure and conforms to a 'collapsed disordered' conformation. The AR-NTD/AF1 has the propensity to adopt an α-helical conformation in response to a natural osmolyte or a co-regulatory binding partner. The AR is a key drug target in the management of advanced prostate cancer and recently a small molecule inhibitor was identified that interacts with the NTD/AF1 and impairs protein-protein interactions and recruitment of the receptor to target genes. In this review the role of intrinsic disorder in AR function is discussed along with the potential to develop new drugs that will target the structurally plastic NTD.
Collapse
Affiliation(s)
- Iain J McEwan
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK.
| |
Collapse
|
132
|
Liu Q, Su S, Blackwelder AJ, Minges JT, Wilson EM. Gain in transcriptional activity by primate-specific coevolution of melanoma antigen-A11 and its interaction site in androgen receptor. J Biol Chem 2011; 286:29951-63. [PMID: 21730049 DOI: 10.1074/jbc.m111.244715] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Male sex development and growth occur in response to high affinity androgen binding to the androgen receptor (AR). In contrast to complete amino acid sequence conservation in the AR DNA and ligand binding domains among mammals, a primate-specific difference in the AR NH(2)-terminal region that regulates the NH(2)- and carboxyl-terminal (N/C) interaction enables direct binding to melanoma antigen-A11 (MAGE-11), an AR coregulator that is also primate-specific. Human, mouse, and rat AR share the same NH(2)-terminal (23)FQNLF(27) sequence that mediates the androgen-dependent N/C interaction. However, the mouse and rat AR FXXLF motif is flanked by Ala(33) that evolved to Val(33) in primates. Human AR Val(33) was required to interact directly with MAGE-11 and for the inhibitory effect of the AR N/C interaction on activation function 2 that was relieved by MAGE-11. The functional importance of MAGE-11 was indicated by decreased human AR regulation of an androgen-dependent endogenous gene using lentivirus short hairpin RNAs and by the greater transcriptional strength of human compared with mouse AR. MAGE-11 increased progesterone and glucocorticoid receptor activity independently of binding an FXXLF motif by interacting with p300 and p160 coactivators. We conclude that the coevolution of the AR NH(2)-terminal sequence and MAGE-11 expression among primates provides increased regulatory control over activation domain dominance. Primate-specific expression of MAGE-11 results in greater steroid receptor transcriptional activity through direct interactions with the human AR FXXLF motif region and indirectly through steroid receptor-associated p300 and p160 coactivators.
Collapse
Affiliation(s)
- Qiang Liu
- Laboratories for Reproductive Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7500, USA
| | | | | | | | | |
Collapse
|
133
|
Kim SJ, Choi H, Park SS, Chang C, Kim E. Stearoyl CoA desaturase (SCD) facilitates proliferation of prostate cancer cells through enhancement of androgen receptor transactivation. Mol Cells 2011; 31:371-7. [PMID: 21331774 PMCID: PMC3933960 DOI: 10.1007/s10059-011-0043-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 01/07/2011] [Accepted: 01/10/2011] [Indexed: 11/27/2022] Open
Abstract
Stearoyl-CoA desaturase (SCD), the rate-limiting enzyme in the biosynthesis of monounsaturated fatty acids, is highly expressed in prostate cancer although the SCD protein has been known to be rapidly turned over by proteolytic cleavage. The present data demonstrate that SCD can promote proliferation of androgen receptor (AR)-positive LNCaP prostate cancer cells and enhance dihydrotestosterone (DHT)-induced AR transcriptional activity, resulting in increased expression of prostate-specific antigen (PSA) and kallikrein-related peptidase 2 (KLK2). Interestingly, among the previously reported SCD-derived peptides produced by proteolytic cleavage of SCD, a peptide spanning amino acids 130-162 of SCD (SCD-CoRNR) contained the CoRNR box motif (LFLII) and enhanced AR transcriptional activity. In contrast, a mutant SCD-CoRNR in which Leu136 was replaced by Ala had no effect on AR transcriptional activity. Moreover, SCD-CoRNR directly interacted with AR and inhibited RIP140 suppression of AR transactivation. Knockdown of the SCD gene by SCD microRNA suppressed AR transactivation with decreased cell proliferation, suggesting that SCD may regulate the proliferation of LNCaP cells via modulation of AR transcriptional activity. Moreover, ectopic expression of SCD in LNCaP cells facilitated LNCaP tumor formation and growth in nude mice. Together, the data indicate that SCD plays a key role in the regulation of AR transcriptional activity in prostate cancer cells.
Collapse
Affiliation(s)
| | | | | | - Chawnshang Chang
- George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
134
|
Abstract
Androgen ablation therapy remains the gold standard for the treatment of advanced prostate cancer, but unfortunately, it is not curative, and eventually the disease will return as lethal castration-resistant prostate cancer (CRPC). Mounting evidence supports the concept that development of CRPC is causally related to continued transactivation of androgen receptor (AR). All current therapies that target the AR are dependent on the presence of its C-terminal ligand-binding domain (LBD). However, it is the N-terminal domain (NTD) of the AR that is the "Achilles' heel" of AR activity, with AF-1 being essential for AR activity regardless of androgen. Recent efforts to develop drugs to the AR NTD have yielded EPI-001, a small molecule, sintokamide peptides, and decoys to the AR NTD with EPI-001, the best characterized and most promising for clinical development based upon specificity, low toxicity, and cytoreductive antitumor activity.
Collapse
Affiliation(s)
- Marianne D Sadar
- Department of Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada.
| |
Collapse
|
135
|
van de Wijngaart DJ, Dubbink HJ, Molier M, de Vos C, Jenster G, Trapman J. Inhibition of androgen receptor functions by gelsolin FxxFF peptide delivered by transfection, cell-penetrating peptides, and lentiviral infection. Prostate 2011; 71:241-53. [PMID: 20690138 DOI: 10.1002/pros.21238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Prostate cancer (PC) growth is dependent on the androgen-androgen receptor (AR) axis. Because current androgen ablation therapies of PC lead to resistance, novel approaches to block AR activity are urgently needed. METHODS We inhibited AR function beyond the level of hormone binding by blockade of the coactivator groove in the ligand-binding domain (LBD) using a high-affinity gelsolin FxxFF peptide. Following peptide selection, the effect of the gelsolin FxxFF peptide on AR functions was determined in Hep3B cells that were transiently transfected with pM-peptide expression vectors or were incubated with synthetic gelsolin FxxFF peptide coupled to the TAT cell-penetrating peptide. Lentiviruses expressing the gelsolin FxxFF peptide were used to study endogenous AR target gene expression in LNCaP cells. RESULTS pM-Gelsolin FxxFF efficiently interfered with AR N/C interaction and specifically inhibited AR-regulated reporter gene activity. The peptide did not inhibit progesterone receptor (PR) and glucocorticoid receptor (GR) activity, nor constitutively active gene promoters. The peptide also specifically blocked in vitro interactions of AR LBD with peptides. Like the gelsolin FxxFF peptide expressed by an expression vector, synthetic TAT-gelsolin FxxFF peptide efficiently blocked AR N/C interaction and inhibited full-length AR-regulated reporter gene activity. It hardly affected PR and GR activity, but the effect on constitutively active promoters was variable. Lentiviral gelsolin FxxFF peptide inhibited expression of KLK2 and NDRG1, but hardly affected PSA and TMPRSS2. CONCLUSIONS Our results show that the AR coactivator groove may function as a target to overcome therapeutic failure that arises during current androgen ablation therapies.
Collapse
|
136
|
Xu X, Yang W, Wang X, Li Y, Wang Y, Ai C. Dynamic communication between androgen and coactivator: Mutually induced conformational perturbations in androgen receptor ligand-binding domain. Proteins 2011; 79:1154-71. [DOI: 10.1002/prot.22951] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/09/2010] [Accepted: 11/16/2010] [Indexed: 11/10/2022]
|
137
|
Shapiro DJ, Mao C, Cherian MT. Small molecule inhibitors as probes for estrogen and androgen receptor action. J Biol Chem 2011; 286:4043-8. [PMID: 21149443 PMCID: PMC3039394 DOI: 10.1074/jbc.r110.203026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Because activated estrogen (ER) and androgen (AR) receptors stimulate cell proliferation in breast and prostate cancer, inhibiting their actions represents a major therapeutic goal. Most efforts to modulate ER and AR activity have focused on inhibiting the synthesis of estrogens or androgens or on the identification of small molecules that act by competing with agonist hormones for binding in the ligand-binding pocket of the receptor. An alternative approach is to implement screens for small molecule inhibitors that target other sites in the pathway of steroid receptor action. Many of these second-site inhibitors directly target ER or AR; others have still unknown sites of action. Small molecule inhibitors that target second sites represent new leads with clinical potential; they serve as novel modulators of receptor action; and they can reveal new and as yet unidentified interactions and pathways that modulate ER and AR action.
Collapse
Affiliation(s)
- David J Shapiro
- Department of Biochemistry and Molecular, University of Illinois, Urbana, Illinois 61801, USA.
| | | | | |
Collapse
|
138
|
Abstract
High-affinity binding of testosterone or dihydrotestosterone to the androgen receptor (AR) triggers the androgen-dependent AR NH2- and carboxyl-terminal (N/C) interaction between the AR NH2-terminal FXXLF motif and the activation function 2 (AF2) hydrophobic binding surface in the ligand-binding domain. The functional importance of the AR N/C interaction is supported by naturally occurring loss-of-function AR AF2 mutations where AR retains high-affinity androgen binding but is defective in AR FXXLF motif binding. Ligands with agonist activity in vivo such as testosterone, dihydrotestosterone, and the synthetic anabolic steroids induce the AR N/C interaction and increase AR transcriptional activity in part by slowing the dissociation rate of bound ligand and stabilizing AR against degradation. AR ligand-binding domain competitive antagonists inhibit the agonist-dependent AR N/C interaction. Although the human AR N/C interaction is important for transcriptional activity, it has an inhibitory effect on transcriptional activity from AF2 by competing for p160 coactivator LXXLL motif binding. The primate-specific AR coregulatory protein, melanoma antigen gene protein-A11 (MAGE-A11), modulates the AR N/C interaction through a direct interaction with the AR FXXLF motif. Inhibition of AF2 transcriptional activity by the AR N/C interaction is relieved by AR FXXLF motif binding to the F-box region of MAGE-11. Described here are methods to measure the androgen-dependent AR N/C interdomain interaction and the influence of transcriptional coregulators.
Collapse
Affiliation(s)
- Elizabeth M Wilson
- Laboratories for Reproductive Biology, Lineberger Comprehensive Cancer Center, Department of Pediatrics, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
139
|
Orr CR, Montie HL, Liu Y, Bolzoni E, Jenkins SC, Wilson EM, Joseph JD, McDonnell DP, Merry DE. An interdomain interaction of the androgen receptor is required for its aggregation and toxicity in spinal and bulbar muscular atrophy. J Biol Chem 2010; 285:35567-77. [PMID: 20826791 PMCID: PMC2975181 DOI: 10.1074/jbc.m110.146845] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 08/10/2010] [Indexed: 12/12/2022] Open
Abstract
Polyglutamine expansion within the androgen receptor (AR) causes spinal and bulbar muscular atrophy (SBMA) and is associated with misfolded and aggregated species of the mutant AR. We showed previously that nuclear localization of the mutant AR was necessary but not sufficient for SBMA. Here we show that an interdomain interaction of the AR that is central to its function within the nucleus is required for AR aggregation and toxicity. Ligands that prevent the interaction between the amino-terminal FXXLF motif and carboxyl-terminal AF-2 domain (N/C interaction) prevented toxicity and AR aggregation in an SBMA cell model and rescued primary SBMA motor neurons from 5α-dihydrotestosterone-induced toxicity. Moreover, genetic mutation of the FXXLF motif prevented AR aggregation and 5α-dihydrotestosterone toxicity. Finally, selective androgen receptor modulators, which prevent the N/C interaction, ameliorated AR aggregation and toxicity while maintaining AR function, highlighting a novel therapeutic strategy to prevent the SBMA phenotype while retaining AR transcriptional function.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Amino Acid Sequence
- Androgen Antagonists/pharmacology
- Androgens/pharmacology
- Anilides/pharmacology
- Animals
- Binding Sites/genetics
- Blotting, Western
- Bulbo-Spinal Atrophy, X-Linked/genetics
- Bulbo-Spinal Atrophy, X-Linked/metabolism
- Bulbo-Spinal Atrophy, X-Linked/pathology
- Cells, Cultured
- Dihydrotestosterone/pharmacology
- HEK293 Cells
- Humans
- Mice
- Mice, Transgenic
- Microscopy, Fluorescence
- Motor Neurons/cytology
- Motor Neurons/metabolism
- Mutation
- Nitriles/pharmacology
- PC12 Cells
- Protein Binding/drug effects
- Rats
- Receptors, Androgen/chemistry
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Testosterone/pharmacology
- Tosyl Compounds/pharmacology
- Trinucleotide Repeat Expansion/genetics
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Christopher R. Orr
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Heather L. Montie
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Yuhong Liu
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Elena Bolzoni
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Shannon C. Jenkins
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Elizabeth M. Wilson
- the Laboratories for Reproductive Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - James D. Joseph
- the Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| | - Donald P. McDonnell
- the Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| | - Diane E. Merry
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
140
|
Jin L, Li Y. Structural and functional insights into nuclear receptor signaling. Adv Drug Deliv Rev 2010; 62:1218-26. [PMID: 20723571 DOI: 10.1016/j.addr.2010.08.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 08/08/2010] [Accepted: 08/10/2010] [Indexed: 01/14/2023]
Abstract
Nuclear receptors are important transcriptional factors that share high sequence identity and conserved domains, including a DNA-binding domain (DBD) and a ligand-binding domain (LBD). The LBD plays a crucial role in ligand-mediated nuclear receptor activity. Hundreds of different crystal structures of nuclear receptors have revealed a general mechanism for the molecular basis of ligand binding and ligand-mediated regulation of nuclear receptors. Despite the conserved fold of nuclear receptor LBDs, the ligand-binding pocket is the least conserved region among different nuclear receptor LBDs. Structural comparison and analysis show that several features of the pocket, like the size and also the shape, have contributed to the ligand binding affinity and specificity. In addition, the plastic nature of the ligand-binding pockets in many nuclear receptors provides greater flexibility to further accommodate specific ligands with a variety of conformations. Nuclear receptor coactivators usually contain multiple LXXLL motifs that are used to interact with nuclear receptors. The nuclear receptors respond differently to distinct ligands and readily exchange their ligands in different environments. The conformational flexibility of the AF-2 helix allows the nuclear receptor to sense the presence of the bound ligands, either an agonist or an antagonist, and to recruit the coactivators or corepressors that ultimately determine the transcriptional activation or repression of nuclear receptors.
Collapse
|
141
|
Gao W. Androgen receptor as a therapeutic target. Adv Drug Deliv Rev 2010; 62:1277-84. [PMID: 20708648 DOI: 10.1016/j.addr.2010.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 08/04/2010] [Accepted: 08/05/2010] [Indexed: 11/19/2022]
Abstract
Androgens function as sex hormone primarily via activation of a single androgen receptor (AR, or NR3C4). AR is an important therapeutic target for the treatment of diseases such as hypogonadism and prostate cancer. AR ligands of different chemical structures and/or pharmacological properties are widely used for these therapeutic applications, and all of the AR ligands currently available for therapy modulate AR function via direct binding to the ligand-binding pocket (LBP) of the receptor. In the past ten years, our understanding of AR structure and molecular mechanism of action has progressed extensively, which has encouraged the rapid development of newer generation of AR ligands, particularly tissue-selective AR ligands. With improved tissue selectivity, future generations of AR ligands are expected to greatly expand the therapeutic applications of this class of drugs. This review will provide an overview of the common therapeutic applications of currently available AR ligands, and discussion of the major challenges as well as novel therapeutic strategies proposed for future drug development.
Collapse
Affiliation(s)
- Wenqing Gao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo SUNY, 543 Cooke Hall, Buffalo, NY 14260, USA.
| |
Collapse
|
142
|
Nedelsky NB, Pennuto M, Smith RB, Palazzolo I, Moore J, Nie Z, Neale G, Taylor JP. Native functions of the androgen receptor are essential to pathogenesis in a Drosophila model of spinobulbar muscular atrophy. Neuron 2010; 67:936-52. [PMID: 20869592 DOI: 10.1016/j.neuron.2010.08.034] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2010] [Indexed: 12/25/2022]
Abstract
Spinobulbar muscular atrophy (SBMA) is a neurodegenerative disease caused by expansion of a polyglutamine tract in the androgen receptor (AR). This mutation confers toxic function to AR through unknown mechanisms. Mutant AR toxicity requires binding of its hormone ligand, suggesting that pathogenesis involves ligand-induced changes in AR. However, whether toxicity is mediated by native AR function or a novel AR function is unknown. We systematically investigated events downstream of ligand-dependent AR activation in a Drosophila model of SBMA. We show that nuclear translocation of AR is necessary, but not sufficient, for toxicity and that DNA binding by AR is necessary for toxicity. Mutagenesis studies demonstrated that a functional AF-2 domain is essential for toxicity, a finding corroborated by a genetic screen that identified AF-2 interactors as dominant modifiers of degeneration. These findings indicate that SBMA pathogenesis is mediated by misappropriation of native protein function, a mechanism that may apply broadly to polyglutamine diseases.
Collapse
Affiliation(s)
- Natalia B Nedelsky
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Fischer K, Kelly SM, Watt K, Price NC, McEwan IJ. Conformation of the mineralocorticoid receptor N-terminal domain: evidence for induced and stable structure. Mol Endocrinol 2010; 24:1935-48. [PMID: 20685853 DOI: 10.1210/me.2010-0005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The mineralocorticoid receptor (MR) binds the steroid hormones aldosterone and cortisol and has an important physiological role in the control of salt homeostasis. Regions of the protein important for gene regulation have been mapped to the amino-terminal domain (NTD) and termed activation function (AF)1a, AF1b, and middle domain (MD). In the present study, we used a combination of biophysical and biochemical techniques to investigate the folding and function of the MR-NTD transactivation functions. We demonstrate that MR-AF1a and MR-MD have relatively little stable secondary structure but have the propensity to form α-helical conformation. Induced folding of the MR-MD enhanced protein-protein binding with a number of coregulatory proteins, including the coactivator cAMP response element-binding protein-binding protein and the corepressors SMRT and RIP140. By contrast, the MR-AF1b domain appeared to have a more stable conformation consisting predominantly of β-secondary structure. Furthermore, MR-AF1b specifically interacted with the TATA-binding protein, via an LxxLL-like motif, in the absence of induced folding. Together, these data suggest that the MR-NTD contains a complex transactivation system made up of distinct structural and functional domains. The results are discussed in the context of the induced folding paradigm for steroid receptor NTDs.
Collapse
Affiliation(s)
- Katharina Fischer
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
144
|
Askew EB, Bai S, Blackwelder AJ, Wilson EM. Transcriptional synergy between melanoma antigen gene protein-A11 (MAGE-11) and p300 in androgen receptor signaling. J Biol Chem 2010; 285:21824-36. [PMID: 20448036 DOI: 10.1074/jbc.m110.120600] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Androgen receptor (AR)-mediated gene regulation involves interactions with coregulatory proteins that include the melanoma antigen gene protein-A11 (MAGE-11). To understand the functional significance of sequence similarity between MAGE-11 and the adenovirus early protein E1A, we determined whether MAGE-11 contributes to AR transcriptional activity through an interaction with p300, a potent and ubiquitous transcriptional regulator. Here, we report that MAGE-11 interacts with the NH(2)-terminal region of p300 through the MAGE-11 MXXIF motif (185)MXXIF(189), with transcriptional activity depending on the MAGE-11 F-box and MAPK phosphorylation. The MAGE-11- and p300-dependent increase in AR transactivation required the NH(2)-terminal regions of AR and p300, p300 acetyltransferase activity, and the AR FXXLF motif (23)FQNLF(27) interaction with MAGE-11. MAGE-11 linked AR to p300 and the p160 coactivator, transcriptional intermediary protein 2 (TIF2). The p300 NH(2)-terminal FXXLF motif (33)FGSLF(37) was required for transcriptional activation by TIF2. Increased expression of p300 decreased the ubiquitinylation of MAGE-11 and transiently increased endogenous MAGE-11 levels. Autoacetylation of p300 and decreased acetylation of TIF2 were evident in the MAGE-11, p300, and TIF2 complex. The studies suggest that MAGE-11 links NH(2)-terminal domains of AR and p300 to promote transcriptional synergy through a cadre of FXXLF-related interacting motifs.
Collapse
Affiliation(s)
- Emily B Askew
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
145
|
Huang P, Chandra V, Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol 2010; 72:247-72. [PMID: 20148675 DOI: 10.1146/annurev-physiol-021909-135917] [Citation(s) in RCA: 371] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As ligand-regulated transcription factors, the nuclear hormone receptors are nearly ideal drug targets, with internal pockets that bind to hydrophobic, drug-like molecules and well-characterized ligand-induced conformational changes that recruit transcriptional coregulators to promoter elements. Yet, due to the multitude of genes under the control of a single receptor, the major challenge has been the identification of ligands with gene-selective actions, impacting disease outcomes through a narrow subset of target genes and not across their entire gene-regulatory repertoire. Here, we summarize the concepts and work to date underlying the development of steroidal and nonsteroidal receptor ligands, including the use of crystal structures, high-throughput screens, and rational design approaches for finding useful therapeutic molecules. Difficulties in finding selective receptor modulators require a more complete understanding of receptor interdomain communications, posttranslational modifications, and receptor-protein interactions that could be exploited for target gene selectivity.
Collapse
Affiliation(s)
- Pengxiang Huang
- Department of Pharmacology, and Center for Molecular Design, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
146
|
Werner R, Grötsch H, Hiort O. 46,XY disorders of sex development--the undermasculinised male with disorders of androgen action. Best Pract Res Clin Endocrinol Metab 2010; 24:263-77. [PMID: 20541151 DOI: 10.1016/j.beem.2009.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Insensitivity to the action of androgens is a common cause of undermasculinisation in 46,XY individuals. These disorders are a result of the failure of major androgens to act via the intracellular androgen receptor and, thus, the genomic effects of androgen signalling are disrupted. The phenotype of affected individuals can vary considerably, depending on the dysfunction of the receptor. In childhood, the diagnosis is often complicated due to the lack of sensitive biochemical determinants, whilst during adolescence and in adults, the diagnosis can be readily made because of the striking clinical feminisation and a conclusive laboratory analysis. A variety of mutations in the androgen receptor have been analysed, providing insight into the complex pathways of intracellular processing and signal transduction via the androgen receptor. Endocrine therapy in androgen-insensitivity syndrome is controversial, because till date the special hormonal profiles in androgen insensitivity have not been acknowledged in replacement strategies.
Collapse
Affiliation(s)
- Ralf Werner
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | | | | |
Collapse
|
147
|
Zhou XE, Suino-Powell KM, Li J, He Y, Mackeigan JP, Melcher K, Yong EL, Xu HE. Identification of SRC3/AIB1 as a preferred coactivator for hormone-activated androgen receptor. J Biol Chem 2010; 285:9161-71. [PMID: 20086010 DOI: 10.1074/jbc.m109.085779] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription activation by androgen receptor (AR), which depends on recruitment of coactivators, is required for the initiation and progression of prostate cancer, yet the mechanisms of how hormone-activated AR interacts with coactivators remain unclear. This is because AR, unlike any other nuclear receptor, prefers its own N-terminal FXXLF motif to the canonical LXXLL motifs of coactivators. Through biochemical and crystallographic studies, we identify that steroid receptor coactivator-3 (SRC3) (also named as amplified in breast cancer-1 or AIB1) interacts strongly with AR via synergistic binding of its first and third LXXLL motifs. Mutagenesis and functional studies confirm that SRC3 is a preferred coactivator for hormone-activated AR. Importantly, AR mutations found in prostate cancer patients correlate with their binding potency to SRC3, corroborating with the emerging role of SRC3 as a prostate cancer oncogene. These results provide a molecular mechanism for the selective utilization of SRC3 by hormone-activated AR, and they link the functional relationship between AR and SRC3 to the development and growth of prostate cancer.
Collapse
Affiliation(s)
- X Edward Zhou
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Abstract
Of all cancers, prostate cancer is the most sensitive to hormones: it is thus very important to take advantage of this unique property and to always use optimal androgen blockade when hormone therapy is the appropriate treatment. A fundamental observation is that the serum testosterone concentration only reflects the amount of testosterone of testicular origin which is released in the blood from which it reaches all tissues. Recent data show, however, that an approximately equal amount of testosterone is made from dehydroepiandrosterone (DHEA) directly in the peripheral tissues, including the prostate, and does not appear in the blood. Consequently, after castration, the 95-97% fall in serum testosterone does not reflect the 40-50% testosterone (testo) and dihydrotestosterone (DHT) made locally in the prostate from DHEA of adrenal origin. In fact, while elimination of testicular androgens by castration alone has never been shown to prolong life in metastatic prostate cancer, combination of castration (surgical or medical with a gonadotropin-releasing hormone (GnRH) agonist) with a pure anti-androgen has been the first treatment shown to prolong life. Most importantly, when applied at the localized stage, the same combined androgen blockade (CAB) can provide long-term control or cure of the disease in more than 90% of cases. Obviously, since prostate cancer usually grows and metastasizes without signs or symptoms, screening with prostate-specific antigen (PSA) is absolutely needed to diagnose prostate cancer at an 'early' stage before metastasis occurs and the cancer becomes non-curable. While the role of androgens was believed to have become non-significant in cancer progressing under any form of androgen blockade, recent data have shown increased expression of the androgen receptor (AR) in treatment-resistant disease with a benefit of further androgen blockade. Since the available anti-androgens have low affinity for AR and cannot block androgen action completely, especially in the presence of increased AR levels, it becomes important to discover more potent and purely antagonistic blockers of AR. The data obtained with compounds under development are promising. While waiting for this (these) new anti-androgen(s), combined treatment with castration and a pure anti-androgen (bicalutamide, flutamide or nilutamide) is the only available and the best scientifically based means of treating prostate cancer by hormone therapy at any stage of the disease with the optimal chance of success and even cure in localized disease.
Collapse
Affiliation(s)
- Fernand Labrie
- Research Center in Molecular Endocrinology, Oncology and Human Genomics, Laval University and Laval University Hospital Research Center (CRCHUL), Quebec, Canada.
| |
Collapse
|
149
|
van de Wijngaart DJ, Molier M, Lusher SJ, Hersmus R, Jenster G, Trapman J, Dubbink HJ. Systematic structure-function analysis of androgen receptor Leu701 mutants explains the properties of the prostate cancer mutant L701H. J Biol Chem 2009; 285:5097-105. [PMID: 20007693 DOI: 10.1074/jbc.m109.039958] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One mechanism of prostate tumors for escape from androgen ablation therapies is mutation of the androgen receptor (AR). We investigated the unique properties of the AR L701H mutant, which is strongly stimulated by cortisol, by a systematic structure-function analysis. Most amino acid substitutions at position 701 did not affect AR activation by 5alpha-dihydrotestosterone. Further analysis of the AR Leu(701) variants showed that AR L701M and AR L701Q, like AR L701H, had changed ligand responsiveness. AR L701M was strongly activated by progesterone but not by cortisol, whereas the opposite was observed for AR L701Q and AR L701H. Next, we analyzed a panel of structurally related steroids to study which of the OH groups at positions 11beta, 17alpha, and 21, which discriminate cortisol from progesterone, underlie the differential responses to both hormones. The results showed that the 17alpha-OH group was essential for activation of AR L701H and AR L701Q, whereas its absence was important for activation of AR L701M. Modeling indicated a conserved H-bonding network involving the steroidal 17alpha-OH group, His(701) or Gln(701), and the backbone of Ser(778). This network is absent in Leu(701) and in other mutants. A hydrophobic leucine or methionine at position 701 is unfavorable for the 17alpha-OH group. Our results indicate that the specific amino acid residue at position 701, its interaction with the backbone of Ser(778), and the steroidal 17alpha-hydroxyl group of the ligand are all important for the distinct transcriptional responses to progesterone and cortisol of AR mutants, including the prostate cancer mutant L701H.
Collapse
Affiliation(s)
- Dennis J van de Wijngaart
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
150
|
Zhou XE, Suino-Powell K, Ludidi PL, McDonnell DP, Xu HE. Expression, purification and primary crystallographic study of human androgen receptor in complex with DNA and coactivator motifs. Protein Expr Purif 2009; 71:21-7. [PMID: 19995608 DOI: 10.1016/j.pep.2009.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 11/19/2009] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
Abstract
The androgen receptor (AR) is a DNA-binding and hormone-activated transcription factor that plays critical roles in the development and progression of prostate cancer. The transcriptional function of AR is modulated by intermolecular interactions with DNA elements and coactivator proteins, as well as intramolecular interactions between AR domains; thus, the structural information from the full-length AR or a multi-domain fragment is essential for understanding the molecular basis of AR functions. Here we report the expression and purification of full-length AR protein and of a fragment containing its DNA-binding and ligand-binding domains connected by the hinge region in the presence of its natural ligand, dihydrotestosterone. Crystals of ligand-bound full-length AR and of the AR fragment in complex with DNA elements and coactivator motifs have been obtained and diffracted to low resolutions. These results help establish a foundation for pursuing further crystallographic studies of an AR/DNA complex.
Collapse
Affiliation(s)
- X Edward Zhou
- Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Avenue, NE Grand Rapids, MI 49503, USA.
| | | | | | | | | |
Collapse
|