101
|
Yu HC, Sloan JL, Scharer G, Brebner A, Quintana AM, Achilly NP, Manoli I, Coughlin CR, Geiger EA, Schneck U, Watkins D, Suormala T, Van Hove JLK, Fowler B, Baumgartner MR, Rosenblatt DS, Venditti CP, Shaikh TH. An X-linked cobalamin disorder caused by mutations in transcriptional coregulator HCFC1. Am J Hum Genet 2013; 93:506-14. [PMID: 24011988 DOI: 10.1016/j.ajhg.2013.07.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/09/2013] [Accepted: 07/26/2013] [Indexed: 12/31/2022] Open
Abstract
Derivatives of vitamin B12 (cobalamin) are essential cofactors for enzymes required in intermediary metabolism. Defects in cobalamin metabolism lead to disorders characterized by the accumulation of methylmalonic acid and/or homocysteine in blood and urine. The most common inborn error of cobalamin metabolism, combined methylmalonic acidemia and hyperhomocysteinemia, cblC type, is caused by mutations in MMACHC. However, several individuals with presumed cblC based on cellular and biochemical analysis do not have mutations in MMACHC. We used exome sequencing to identify the genetic basis of an X-linked form of combined methylmalonic acidemia and hyperhomocysteinemia, designated cblX. A missense mutation in a global transcriptional coregulator, HCFC1, was identified in the index case. Additional male subjects were ascertained through two international diagnostic laboratories, and 13/17 had one of five distinct missense mutations affecting three highly conserved amino acids within the HCFC1 kelch domain. A common phenotype of severe neurological symptoms including intractable epilepsy and profound neurocognitive impairment, along with variable biochemical manifestations, was observed in all affected subjects compared to individuals with early-onset cblC. The severe reduction in MMACHC mRNA and protein within subject fibroblast lines suggested a role for HCFC1 in transcriptional regulation of MMACHC, which was further supported by the identification of consensus HCFC1 binding sites in MMACHC. Furthermore, siRNA-mediated knockdown of HCFC1 expression resulted in the coordinate downregulation of MMACHC mRNA. This X-linked disorder demonstrates a distinct disease mechanism by which transcriptional dysregulation leads to an inborn error of metabolism with a complex clinical phenotype.
Collapse
Affiliation(s)
- Hung-Chun Yu
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells. Proc Natl Acad Sci U S A 2013; 110:E3388-97. [PMID: 23959860 DOI: 10.1073/pnas.1305275110] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heat shock factors (HSFs) are the master regulators of transcription under protein-damaging conditions, acting in an environment where the overall transcription is silenced. We determined the genomewide transcriptional program that is rapidly provoked by HSF1 and HSF2 under acute stress in human cells. Our results revealed the molecular mechanisms that maintain cellular homeostasis, including HSF1-driven induction of polyubiquitin genes, as well as HSF1- and HSF2-mediated expression patterns of cochaperones, transcriptional regulators, and signaling molecules. We characterized the genomewide transcriptional response to stress also in mitotic cells where the chromatin is tightly compacted. We found a radically limited binding and transactivating capacity of HSF1, leaving mitotic cells highly susceptible to proteotoxicity. In contrast, HSF2 occupied hundreds of loci in the mitotic cells and localized to the condensed chromatin also in meiosis. These results highlight the importance of the cell cycle phase in transcriptional responses and identify the specific mechanisms for HSF1 and HSF2 in transcriptional orchestration. Moreover, we propose that HSF2 is an epigenetic regulator directing transcription throughout cell cycle progression.
Collapse
|
103
|
Swarnalatha M, Singh AK, Kumar V. Promoter occupancy of MLL1 histone methyltransferase seems to specify the proliferative and apoptotic functions of E2F1 in a tumour microenvironment. J Cell Sci 2013; 126:4636-46. [PMID: 23868976 DOI: 10.1242/jcs.126235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The E2F family of transcription factors are considered versatile modulators, poised at biological crossroads to execute diverse cellular functions. Despite extensive studies on E2F, the molecular mechanisms that control specific biological functions of the E2F1 transcription factor are still not fully understood. Here we have addressed the molecular underpinnings of paradoxical functions of E2F1 in a tumour microenvironment using the 'X15-myc' oncomouse model of hepatocellular carcinoma. We observed that the HBx oncoprotein of hepatitis B virus regulates E2F1 functions by interfering with its binding to Skp2 E3 ubiquitin ligase. The HBx-Skp2 interaction led to the accumulation of transcriptionally active E2F1 and histone methyltransferase mixed lineage leukemia 1 (MLL1) protein. During early stages of hepatocarcinogenesis, the increased E2F1 activity promoted cellular proliferation by stimulating the genes involved in cell cycle control and replication. However, during the late stages, E2F1 triggered replication-stress-induced DNA damage and sensitized cells to apoptotic death in a p53-independent manner. Interestingly, the different promoter occupancy of MLL1 during the early and late stages of tumour development seemed to specify the proliferative and apoptotic functions of E2F1, through its dynamic interaction with the co-activator CBP or co-repressor Brg1. Thus, the temporally regulated promoter occupancy of histone methyltransferase could be a regulatory mechanism associated with the diverse cellular functions of the E2F family of transcription factors.
Collapse
Affiliation(s)
- Manickavinayaham Swarnalatha
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | |
Collapse
|
104
|
Abstract
BAP1 (BRCA1-Associated Protein 1) was initially identified as a protein that binds to BRCA1. BAP1 is a tumour suppressor that is believed to mediate its effects through chromatin modulation, transcriptional regulation, and possibly via the ubiquitin-proteasome system and the DNA damage response pathway. Germline mutations of BAP1 confer increased susceptibility for the development of several tumours, including uveal melanoma, epithelioid atypical Spitz tumours, cutaneous melanoma, and mesothelioma. However, the complete tumour spectrum associated with germline BAP1 mutations is not yet known. Somatic BAP1 mutations are seen in cutaneous melanocytic tumours (epithelioid atypical Spitz tumours and melanoma), uveal melanoma, mesothelioma, clear cell renal cell carcinoma, and other tumours. Here, we review the current state of knowledge about the functional roles of BAP1, and summarise data on tumours associated with BAP1 mutations. Awareness of these tumours will help pathologists and clinicians to identify patients with a high likelihood of harbouring germline or somatic BAP1 mutations. We recommend that pathologists consider testing for BAP1 mutations in epithelioid atypical Spitz tumours and uveal melanomas, or when other BAP1-associated tumours occur in individual patients. Tumour tissues may be screened for BAP1 mutations/loss/inactivation by immunohistochemistry (IHC) (demonstrated by loss of nuclear staining in tumour cells). Confirmatory sequencing may be considered in tumours that exhibit BAP1 loss by IHC and in those with equivocal IHC results. If a BAP1 mutation is confirmed in a tumour, the patient's treating physician should be informed of the possibility of a BAP1 germline mutation, so they can consider whether genetic counselling and further testing of the patient and investigation of their family is appropriate. Recognition and evaluation of larger numbers of BAP1-associated tumours will also be necessary to facilitate identification of additional distinct clinico-pathological characteristics or other genotype-phenotype correlations that may have prognostic and management implications.
Collapse
|
105
|
Eletr ZM, Wilkinson KD. Regulation of proteolysis by human deubiquitinating enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:114-28. [PMID: 23845989 DOI: 10.1016/j.bbamcr.2013.06.027] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/07/2013] [Accepted: 06/25/2013] [Indexed: 01/26/2023]
Abstract
The post-translational attachment of one or several ubiquitin molecules to a protein generates a variety of targeting signals that are used in many different ways in the cell. Ubiquitination can alter the activity, localization, protein-protein interactions or stability of the targeted protein. Further, a very large number of proteins are subject to regulation by ubiquitin-dependent processes, meaning that virtually all cellular functions are impacted by these pathways. Nearly a hundred enzymes from five different gene families (the deubiquitinating enzymes or DUBs), reverse this modification by hydrolyzing the (iso)peptide bond tethering ubiquitin to itself or the target protein. Four of these families are thiol proteases and one is a metalloprotease. DUBs of the Ubiquitin C-terminal Hydrolase (UCH) family act on small molecule adducts of ubiquitin, process the ubiquitin proprotein, and trim ubiquitin from the distal end of a polyubiquitin chain. Ubiquitin Specific Proteases (USPs) tend to recognize and encounter their substrates by interaction of the variable regions of their sequence with the substrate protein directly, or with scaffolds or substrate adapters in multiprotein complexes. Ovarian Tumor (OTU) domain DUBs show remarkable specificity for different Ub chain linkages and may have evolved to recognize substrates on the basis of those linkages. The Josephin family of DUBs may specialize in distinguishing between polyubiquitin chains of different lengths. Finally, the JAB1/MPN+/MOV34 (JAMM) domain metalloproteases cleave the isopeptide bond near the attachment point of polyubiquitin and substrate, as well as being highly specific for the K63 poly-Ub linkage. These DUBs regulate proteolysis by: directly interacting with and co-regulating E3 ligases; altering the level of substrate ubiquitination; hydrolyzing or remodeling ubiquitinated and poly-ubiquitinated substrates; acting in specific locations in the cell and altering the localization of the target protein; and acting on proteasome bound substrates to facilitate or inhibit proteolysis. Thus, the scope and regulation of the ubiquitin pathway is very similar to that of phosphorylation, with the DUBs serving the same functions as the phosphatase. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Ziad M Eletr
- Department of Biochemistry, Emory University, Atlanta GA 30322, USA
| | | |
Collapse
|
106
|
Takeda S, Liu H, Sasagawa S, Dong Y, Trainor PA, Cheng EH, Hsieh JJ. HGF-MET signals via the MLL-ETS2 complex in hepatocellular carcinoma. J Clin Invest 2013; 123:3154-65. [PMID: 23934123 DOI: 10.1172/jci65566] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 03/29/2013] [Indexed: 12/15/2022] Open
Abstract
HGF signals through its cognate receptor, MET, to orchestrate diverse biological processes, including cell proliferation, cell fate specification, organogenesis, and epithelial-mesenchymal transition. Mixed-lineage leukemia (MLL), an epigenetic regulator, plays critical roles in cell fate, stem cell, and cell cycle decisions. Here, we describe a role for MLL in the HGF-MET signaling pathway. We found a shared phenotype among Mll(-/-), Hgf(-/-), and Met(-/-) mice with common cranial nerve XII (CNXII) outgrowth and myoblast migration defects. Phenotypic analysis demonstrated that MLL was required for HGF-induced invasion and metastatic growth of hepatocellular carcinoma cell lines. HGF-MET signaling resulted in the accumulation of ETS2, which interacted with MLL to transactivate MMP1 and MMP3. ChIP assays demonstrated that activation of the HGF-MET pathway resulted in increased occupancy of the MLL-ETS2 complex on MMP1 and MMP3 promoters, where MLL trimethylated histone H3 lysine 4 (H3K4), activating transcription. Our results present an epigenetic link between MLL and the HGF-MET signaling pathway, which may suggest new strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Shugaku Takeda
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
107
|
The dynamics of HCF-1 modulation of herpes simplex virus chromatin during initiation of infection. Viruses 2013; 5:1272-91. [PMID: 23698399 PMCID: PMC3712308 DOI: 10.3390/v5051272] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 12/30/2022] Open
Abstract
Successful infection of herpes simplex virus is dependent upon chromatin modulation by the cellular coactivator host cell factor-1 (HCF-1). This review focuses on the multiple chromatin modulation components associated with HCF-1 and the chromatin-related dynamics mediated by this coactivator that lead to the initiation of herpes simplex virus (HSV) immediate early gene expression.
Collapse
|
108
|
Abstract
The cell cycle ensures genome maintenance by coordinating the processes of DNA replication and chromosome segregation. Of particular importance is the irreversible transition from the G1 phase of the cell cycle to S phase. This transition marks the switch from preparing chromosomes for replication ("origin licensing") to active DNA synthesis ("origin firing"). Ubiquitin-mediated proteolysis is essential for restricting DNA replication to only once per cell cycle and is the major mechanism regulating the G1 to S phase transition. Although some changes in protein levels are attributable to regulated mRNA abundance, protein degradation elicits very rapid changes in protein abundance and is critical for the sharp and irreversible transition from one cell cycle stage to the next. Not surprisingly, regulation of the G1-to-S phase transition is perturbed in most cancer cells, and deregulation of key molecular events in G1 and S phase drives not only cell proliferation but also genome instability. In this review we focus on the mechanisms by which E3 ubiquitin ligases control the irreversible transition from G1 to S phase in mammalian cells.
Collapse
Affiliation(s)
- Lindsay F Rizzardi
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
109
|
Zhou P, Wang Z, Yuan X, Zhou C, Liu L, Wan X, Zhang F, Ding X, Wang C, Xiong S, Wang Z, Yuan J, Li Q, Zhang Y. Mixed lineage leukemia 5 (MLL5) protein regulates cell cycle progression and E2F1-responsive gene expression via association with host cell factor-1 (HCF-1). J Biol Chem 2013; 288:17532-43. [PMID: 23629655 DOI: 10.1074/jbc.m112.439729] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trithorax group proteins methylate lysine 4 of histone 3 (H3K4) at active gene promoters. MLL5 protein, a member of the Trithorax protein family, has been implicated in the control of the cell cycle progression; however, the underlying molecular mechanism(s) have not been fully determined. In this study, we found that the MLL5 protein can associate with the cell cycle regulator "host cell factor" (HCF-1). The interaction between MLL5 and HCF-1 is mediated by the "HCF-1 binding motif" (HBM) of the MLL5 protein and the Kelch domain of the HCF-1 protein. Confocal microscopy showed that the MLL5 protein largely colocalized with HCF-1 in the nucleus. Knockdown of MLL5 resulted in reduced cell proliferation and cell cycle arrest in the G1 phase. Moreover, down-regulation of E2F1 target gene expression and decreased H3K4me3 levels at E2F1-responsive promoters were observed in MLL5 knockdown cells. Additionally, the core subunits, including ASH2L, RBBP5, and WDR5, that are necessary for effective H3K4 methyltransferase activities of the Trithorax protein complexes, were absent in the MLL5 complex, suggesting that a distinct mechanism may be used by MLL5 for exerting its H3K4 methyltransferase activity. Together, our findings demonstrate that MLL5 could associate with HCF-1 and then be recruited to E2F1-responsive promoters to stimulate H3K4 trimethylation and transcriptional activation, thereby facilitating the cell cycle G1 to S phase transition.
Collapse
Affiliation(s)
- Peipei Zhou
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Duan Z, Zou JX, Yang P, Wang Y, Borowsky AD, Gao AC, Chen HW. Developmental and androgenic regulation of chromatin regulators EZH2 and ANCCA/ATAD2 in the prostate Via MLL histone methylase complex. Prostate 2013; 73:455-66. [PMID: 23038103 DOI: 10.1002/pros.22587] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 08/16/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND Chromatin regulators ANCCA and EZH2 are overexpressed in prostate cancer and play crucial roles in androgen-stimulated and castration-refractory prostate tumor growth and survival. However, how their expression is regulated in the tumors and whether they play a role in prostate development remains unclear. METHODS Prostate tissue from different developmental stages of mouse and human were examined by IHC, qRT-PCR and Western for expression of ANCCA, EZH2, and Ki-67. Animals were castrated and T-implanted for the expression response in normal prostate and tumors. siRNA knockdown and ChIP were performed for the mechanism of ANCCA regulation of EZH2. RESULTS In contrast to their very low level expression in adult prostate, ANCCA and EZH2 are strongly expressed in the epithelium and mesenchyme of mouse and human UGS. Their expression becomes more restricted to epithelial cells during later development and displays a second peak during puberty, which correlates with the proliferative status of the epithelium. Importantly, their expression in normal prostate and tumors is strongly suppressed by castration and markedly induced by testosterone replacement. While androgen suppresses EZH2 in CRPC cells, in LNCaP cells, physiological concentrations of androgen stimulate expression of PRC2 genes (EZH2, SUZ12, and EED), which is mediated by androgen-induced ANCCA and involves E2F and histone H3K4me3 methylase MLL1 complex. CONCLUSION EZH2 and ANCCA are androgen regulated and strongly expressed in early prostate morphogenesis and during puberty, suggesting their important role in prostate development. Regulation of EZH2 by ANCCA emphasizes bromodomain protein ANCCA as a potential therapeutic target against prostate cancer.
Collapse
Affiliation(s)
- Zhijian Duan
- Cancer Center/Basic Sciences, University of California at Davis, Sacramento, California 95817, USA
| | | | | | | | | | | | | |
Collapse
|
111
|
Michaud J, Praz V, James Faresse N, Jnbaptiste CK, Tyagi S, Schütz F, Herr W. HCFC1 is a common component of active human CpG-island promoters and coincides with ZNF143, THAP11, YY1, and GABP transcription factor occupancy. Genome Res 2013; 23:907-16. [PMID: 23539139 PMCID: PMC3668359 DOI: 10.1101/gr.150078.112] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In human transcriptional regulation, DNA-sequence-specific factors can associate with intermediaries that orchestrate interactions with a diverse set of chromatin-modifying enzymes. One such intermediary is HCFC1 (also known as HCF-1). HCFC1, first identified in herpes simplex virus transcription, has a poorly defined role in cellular transcriptional regulation. We show here that, in HeLa cells, HCFC1 is observed bound to 5400 generally active CpG-island promoters. Examination of the DNA sequences underlying the HCFC1-binding sites revealed three sequence motifs associated with the binding of (1) ZNF143 and THAP11 (also known as Ronin), (2) GABP, and (3) YY1 sequence-specific transcription factors. Subsequent analysis revealed colocalization of HCFC1 with these four transcription factors at ∼90% of the 5400 HCFC1-bound promoters. These studies suggest that a relatively small number of transcription factors play a major role in HeLa-cell transcriptional regulation in association with HCFC1.
Collapse
Affiliation(s)
- Joëlle Michaud
- Center for Integrative Genomics, University of Lausanne, Génopode, 1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
112
|
Abstract
BAP1 is a deubiquitylase that is found associated with multiprotein complexes that regulate key cellular pathways, including the cell cycle, cellular differentiation, cell death, gluconeogenesis and the DNA damage response (DDR). Recent findings indicate that germline BAP1 mutations cause a novel cancer syndrome that is characterized, at least in the affected families that have been studied so far, by the onset at an early age of benign melanocytic skin tumours with mutated BAP1, and later in life by a high incidence of mesothelioma, uveal melanoma, cutaneous melanoma and possibly additional cancers.
Collapse
Affiliation(s)
- Michele Carbone
- University of Hawaii Cancer Center, BSB200, 701 Ilalo Street, Honolulu, Hawaii 96813, USA.
| | | | | | | | | | | |
Collapse
|
113
|
Kokorina NA, Granier CJ, Zakharkin SO, Davis S, Rabson AB, Sabaawy HE. PDCD2 knockdown inhibits erythroid but not megakaryocytic lineage differentiation of human hematopoietic stem/progenitor cells. Exp Hematol 2012; 40:1028-1042.e3. [PMID: 22922207 PMCID: PMC5218995 DOI: 10.1016/j.exphem.2012.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 07/19/2012] [Accepted: 08/01/2012] [Indexed: 11/27/2022]
Abstract
Programmed cell death-2 (PDCD2) protein is enriched in embryonic, hematopoietic, and neural stem cells, however, its function in stem/progenitor cell differentiation is unclear. We investigated the effects of PDCD2 knockdown on the development and differentiation of hematopoietic progenitor cells (HPC). CD34(+) cells derived from normal human bone marrow and K562 leukemic cells were effectively transduced with short-hairpin RNA to knockdown PDCD2. Colony-forming assays were used to investigate the effects of PDCD2 loss on HPC clonogenic potential and on 12-O-tetradecanoyl-phorbol-13-acetate-and arabinofuranosylcytosine-induced terminal differentiation. In CD34(+) clonogenic progenitors, PDCD2 knockdown decreased the total number of colony-forming units, increased the number of colony-forming units-granulocyte-erythroid-macrophage-megakaryocyte and burst-forming unit-erythroid primitive colonies, and decreased the number of burst-forming unit-erythroid mature colonies. Similar results were observed in K562 cells, suggesting that PDCD2 is important for HPC differentiation and/or survival, and for erythroid lineage commitment. Furthermore, 12-O-tetradecanoyl-phorbol-13-acetate-induced megakaryocytic differentiation and proliferation of K562 cells was not affected by PDCD2 knockdown. In contrast, arabinofuranosylcytosine-induced erythroid differentiation of K562 cells was significantly reduced with PDCD2 knockdown, with no effect on cell proliferation. The effects of PDCD2 knockdown were attributed to a cell cycle arrest at G(0)/G(1), along with increased messenger RNA expression of early progenitor factors c-MYB and GATA-2, and decreased expression of erythroid factors GATA-1, EpoR, and γ-globin. We conclude that PDCD2 loss of function(s) impedes erythroid differentiation by inducing cell cycle arrest and increasing expression of early hematopoietic progenitor factors. These findings suggest that PDCD2 has a novel regulatory role in human hematopoiesis and is essential for erythroid development.
Collapse
Affiliation(s)
| | | | | | - Stephani Davis
- The Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Arnold B. Rabson
- Child Health Institute of New Jersey, New Brunswick, NJ, USA
- Department of Pediatrics, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ, USA
- Department of Molecular Genetics, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ, USA
- Department of Microbiology and Immunology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ, USA
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ, USA
| | - Hatem E. Sabaawy
- The Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ, USA
- Department of Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
114
|
Transcription Factors and Gene Expression. Mol Pharmacol 2012. [DOI: 10.1002/9781118451908.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
115
|
Nemoto H, Tate G, Kishimoto K, Saito M, Shirahata A, Umemoto T, Matsubara T, Goto T, Mizukami H, Kigawa G, Mitsuya T, Hibi K. Heterozygous loss of NF2 is an early molecular alteration in well-differentiated papillary mesothelioma of the peritoneum. Cancer Genet 2012; 205:594-8. [DOI: 10.1016/j.cancergen.2012.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 08/24/2012] [Accepted: 08/29/2012] [Indexed: 11/27/2022]
|
116
|
|
117
|
HCF-1 self-association via an interdigitated Fn3 structure facilitates transcriptional regulatory complex formation. Proc Natl Acad Sci U S A 2012; 109:17430-5. [PMID: 23045687 DOI: 10.1073/pnas.1208378109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Host-cell factor 1 (HCF-1) is an unusual transcriptional regulator that undergoes a process of proteolytic maturation to generate N- (HCF-1(N)) and C- (HCF-1(C)) terminal subunits noncovalently associated via self-association sequence elements. Here, we present the crystal structure of the self-association sequence 1 (SAS1) including the adjacent C-terminal HCF-1 nuclear localization signal (NLS). SAS1 elements from each of the HCF-1(N) and HCF-1(C) subunits form an interdigitated fibronectin type 3 (Fn3) tandem repeat structure. We show that the C-terminal NLS recruited by the interdigitated SAS1 structure is required for effective formation of a transcriptional regulatory complex: the herpes simplex virus VP16-induced complex. Thus, HCF-1(N)-HCF-1(C) association via an integrated Fn3 structure permits an NLS to facilitate formation of a transcriptional regulatory complex.
Collapse
|
118
|
Huang L, Jolly LA, Willis-Owen S, Gardner A, Kumar R, Douglas E, Shoubridge C, Wieczorek D, Tzschach A, Cohen M, Hackett A, Field M, Froyen G, Hu H, Haas SA, Ropers HH, Kalscheuer VM, Corbett MA, Gecz J. A noncoding, regulatory mutation implicates HCFC1 in nonsyndromic intellectual disability. Am J Hum Genet 2012; 91:694-702. [PMID: 23000143 DOI: 10.1016/j.ajhg.2012.08.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/26/2012] [Accepted: 08/13/2012] [Indexed: 11/28/2022] Open
Abstract
The discovery of mutations causing human disease has so far been biased toward protein-coding regions. Having excluded all annotated coding regions, we performed targeted massively parallel resequencing of the nonrepetitive genomic linkage interval at Xq28 of family MRX3. We identified in the binding site of transcription factor YY1 a regulatory mutation that leads to overexpression of the chromatin-associated transcriptional regulator HCFC1. When tested on embryonic murine neural stem cells and embryonic hippocampal neurons, HCFC1 overexpression led to a significant increase of the production of astrocytes and a considerable reduction in neurite growth. Two other nonsynonymous, potentially deleterious changes have been identified by X-exome sequencing in individuals with intellectual disability, implicating HCFC1 in normal brain function.
Collapse
Affiliation(s)
- Lingli Huang
- Genetics and Molecular Pathology, SA Pathology, North Adelaide, SA 5006, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Disordered epigenetic regulation in MLL-related leukemia. Int J Hematol 2012; 96:428-37. [DOI: 10.1007/s12185-012-1180-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/07/2012] [Accepted: 09/12/2012] [Indexed: 12/16/2022]
|
120
|
Rizki G, Picard CL, Pereyra C, Lee SS. Host cell factor 1 inhibits SKN-1 to modulate oxidative stress responses in Caenorhabditis elegans. Aging Cell 2012; 11:717-21. [PMID: 22568582 DOI: 10.1111/j.1474-9726.2012.00831.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Host cell factor-1 (HCF-1) is a conserved regulator of the longevity and stress response functions of DAF-16/FOXO. SKN-1 transcription factor is an evolutionarily conserved xenobiotic stress regulator and a pro-longevity factor. Here, we demonstrate that SKN-1 contributes to the enhanced oxidative stress resistance incurred by hcf-1 mutation in C. elegans. HCF-1 prevents the nuclear accumulation of SKN-1 and represses the transcriptional activation of SKN-1 specifically at target genes involved in cellular detoxification pathways. Our findings reveal a novel and context-specific regulatory relationship between two highly conserved longevity and stress response factors HCF-1 and SKN-1.
Collapse
Affiliation(s)
- Gizem Rizki
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
121
|
David G. Regulation of oncogene-induced cell cycle exit and senescence by chromatin modifiers. Cancer Biol Ther 2012; 13:992-1000. [PMID: 22825329 DOI: 10.4161/cbt.21116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Oncogene activation leads to dramatic changes in numerous biological pathways controlling cellular division, and results in the initiation of a transcriptional program that promotes transformation. Conversely, it also triggers an irreversible cell cycle exit called cellular senescence, which allows the organism to counteract the potentially detrimental uncontrolled proliferation of damaged cells. Therefore, a tight transcriptional control is required at the onset of oncogenic signal, coordinating both positive and negative regulation of gene expression. Not surprisingly, numerous chromatin modifiers contribute to the cellular response to oncogenic stress. While these chromatin modifiers were initially thought of as mere mediators of the cellular response to oncogenic stress, recent studies have uncovered a direct and specific regulation of chromatin modifiers by oncogenic signals. We review here the diverse functions of chromatin modifiers in the cellular response to oncogenic stress, and discuss the implications of these findings on the regulation of cell cycle progression and proliferation by activated oncogenes.
Collapse
Affiliation(s)
- Gregory David
- Department of Pharmacology and NYU Cancer Institute, NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
122
|
Wu M, Shu HB. MLL1/WDR5 complex in leukemogenesis and epigenetic regulation. CHINESE JOURNAL OF CANCER 2012; 30:240-6. [PMID: 21439245 PMCID: PMC4013350 DOI: 10.5732/cjc.011.10055] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MLL1 is a histone H3Lys4 methyltransferase and forms a complex with WDR5 and other components. It plays important roles in developmental events, transcriptional regulation, and leukemogenesis. MLL1 -fusion proteins resulting from chromosomal translocations are molecular hallmarks of a special type of leukemia, which occurs in over 70% infant leukemia patients and often accompanies poor prognosis. Investigations in the past years on leukemogenesis and the MLL1-WDR5 histone H3Lys4 methyltransferase complex demonstrate that epigenetic regulation is one of the key steps in development and human diseases.
Collapse
Affiliation(s)
- Min Wu
- College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | | |
Collapse
|
123
|
Abstract
Host cell factor-1(HCF-1) was first discovered as a cellular cofactor in the VP16-induced complex, a multi-protein DNA complex that forms on immediate early gene promoters of herpes simplex virus (HSV) to activate viral gene transcription. Subsequent research has revealed HCF-1 to be an abundant chromatin-associated protein that regulates various stages of the cell cycle. Recent reports show that HCF-1 interacts with diverse E2F proteins to induce cell-cycle-specific transcription. HCF-1 can act as a scaffold to a variety of histone-modifying proteins and these HCF-1-E2F-containing multi-protein complexes can bring about context-dependent activation or repression of transcription. In this review we examine the diversity of HCF-E2F interactions and the variety of multi-protein complexes it occurs in, to influence the local chromatin landscape at the E2F-promoters.
Collapse
Affiliation(s)
- Zaffer Zargar
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad , India
| | | |
Collapse
|
124
|
BAP1 loss defines a new class of renal cell carcinoma. Nat Genet 2012; 44:751-9. [PMID: 22683710 PMCID: PMC3788680 DOI: 10.1038/ng.2323] [Citation(s) in RCA: 744] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 05/11/2012] [Indexed: 11/16/2022]
Abstract
The molecular pathogenesis of renal cell carcinoma (RCC) is poorly
understood. Whole-genome and exome sequencing followed by innovative tumorgraft
analyses (to accurately determine mutant allele ratios) identified several
putative two-hit tumor suppressor genes including BAP1. BAP1, a
nuclear deubiquitinase, is inactivated in 15% of clear-cell RCCs. BAP1
cofractionates with and binds to HCF-1 in tumorgrafts. Mutations disrupting the
HCF-1 binding motif impair BAP1-mediated suppression of cell proliferation, but
not H2AK119ub1 deubiquitination. BAP1 loss sensitizes RCC cells in
vitro to genotoxic stress. Interestingly, BAP1 and
PBRM1 mutations anticorrelate in tumors
(P=3×10−5), and combined loss of
BAP1 and PBRM1 in a few RCCs was associated with rhabdoid features
(q=0.0007). BAP1 and PBRM1 regulate seemingly different
gene expression programs, and BAP1 loss was associated with high tumor grade
(q=0.0005). Our results establish the foundation for an
integrated pathological and molecular genetic classification of RCC, paving the
way for subtype-specific treatments exploiting genetic vulnerabilities.
Collapse
|
125
|
Abstract
The Caenorhabditis elegans pRb ortholog, LIN-35, functions in a wide range of cellular and developmental processes. This includes a role of LIN-35 in nutrient utilization by the intestine, which it carries out redundantly with SLR-2, a zinc-finger protein. This and other redundant functions of LIN-35 were identified in genetic screens for mutations that display synthetic phenotypes in conjunction with loss of lin-35. To explore the intestinal role of LIN-35, we conducted a genome-wide RNA-interference-feeding screen for suppressors of lin-35; slr-2 early larval arrest. Of the 26 suppressors identified, 17 fall into three functional classes: (1) ribosome biogenesis genes, (2) mitochondrial prohibitins, and (3) chromatin regulators. Further characterization indicates that different categories of suppressors act through distinct molecular mechanisms. We also tested lin-35; slr-2 suppressors, as well as suppressors of the synthetic multivulval phenotype, to determine the spectrum of lin-35-synthetic phenotypes that could be suppressed following inhibition of these genes. We identified 19 genes, most of which are evolutionarily conserved, that can suppress multiple unrelated lin-35-synthetic phenotypes. Our study reveals a network of genes broadly antagonistic to LIN-35 as well as genes specific to the role of LIN-35 in intestinal and vulval development. Suppressors of multiple lin-35 phenotypes may be candidate targets for anticancer therapies. Moreover, screening for suppressors of phenotypically distinct synthetic interactions, which share a common altered gene, may prove to be a novel and effective approach for identifying genes whose activities are most directly relevant to the core functions of the shared gene.
Collapse
|
126
|
Srivastava S, Mishra RK, Dhawan J. Regulation of cellular chromatin state: insights from quiescence and differentiation. Organogenesis 2012; 6:37-47. [PMID: 20592864 DOI: 10.4161/org.6.1.11337] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Revised: 01/19/2010] [Accepted: 01/29/2010] [Indexed: 11/19/2022] Open
Abstract
The identity and functionality of eukaryotic cells is defined not just by their genomic sequence which remains constant between cell types, but by their gene expression profiles governed by epigenetic mechanisms. Epigenetic controls maintain and change the chromatin state throughout development, as exemplified by the setting up of cellular memory for the regulation and maintenance of homeotic genes in proliferating progenitors during embryonic development. Higher order chromatin structure in reversibly arrested adult stem cells also involves epigenetic regulation and in this review we highlight common trends governing chromatin states, focusing on quiescence and differentiation during myogenesis. Together, these diverse developmental modules reveal the dynamic nature of chromatin regulation providing fresh insights into the role of epigenetic mechanisms in potentiating development and differentiation.
Collapse
Affiliation(s)
- Surabhi Srivastava
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India.
| | | | | |
Collapse
|
127
|
Vermeulen M, Timmers HTM. Grasping trimethylation of histone H3 at lysine 4. Epigenomics 2012; 2:395-406. [PMID: 22121900 DOI: 10.2217/epi.10.11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Post-translational modifications of chromatin have become a 'booming' area of biomedical research. One particularly interesting modification that is important for eukaryotic gene expression is trimethylation of histone H3 lysine 4 (H3K4me3), which is almost exclusively associated with active promoters of RNA polymerase II. In this article, we highlight the recent progress related to the biochemistry and biology of this histone mark, including its relevant 'writers' and 'readers'. We also outline the complex regulatory mechanisms that are involved in establishing H3K4me3 in health and disease. Further understanding of H3K4me3 regulation will offer both more insight into chromatin-based mechanisms of gene regulation and provide opportunities for epigenetic intervention of the diseased state.
Collapse
Affiliation(s)
- Michiel Vermeulen
- Department of Physiological Chemistry, University Medical Centre Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | |
Collapse
|
128
|
A transcriptional regulatory role of the THAP11-HCF-1 complex in colon cancer cell function. Mol Cell Biol 2012; 32:1654-70. [PMID: 22371484 DOI: 10.1128/mcb.06033-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The recently identified Thanatos-associated protein (THAP) domain is an atypical zinc finger motif with sequence-specific DNA-binding activity. Emerging data suggest that THAP proteins may function in chromatin-dependent processes, including transcriptional regulation, but the roles of most THAP proteins in normal and aberrant cellular processes remain largely unknown. In this work, we identify THAP11 as a transcriptional regulator differentially expressed in human colon cancer. Immunohistochemical analysis of human colon cancers revealed increased THAP11 expression in both primary tumors and metastases. Knockdown of THAP11 in SW620 colon cancer cells resulted in a significant decrease in cell proliferation, and profiling of gene expression in these cells identified a novel gene set composed of 80 differentially expressed genes, 70% of which were derepressed by THAP11 knockdown. THAP11 was found to associate physically with the transcriptional coregulator HCF-1 (host cell factor 1) and recruit HCF-1 to target promoters. Importantly, THAP11-mediated gene regulation and its chromatin association require HCF-1, while HCF-1 recruitment at these genes requires THAP11. Collectively, these data provide the first characterization of THAP11-dependent gene expression in human colon cancer cells and suggest that the THAP11-HCF-1 complex may be an important transcriptional and cell growth regulator in human colon cancer.
Collapse
|
129
|
Harbour JW. The genetics of uveal melanoma: an emerging framework for targeted therapy. Pigment Cell Melanoma Res 2012; 25:171-81. [PMID: 22268848 DOI: 10.1111/j.1755-148x.2012.00979.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Uveal melanoma is the second most common form of melanoma and the most common primary intraocular malignancy. Until recently, very little was known about the genetics of this aggressive cancer. Mutations in oncogenes and tumor suppressors that are common in other cancers are conspicuously absent in uveal melanoma. In recent years, however, uveal melanoma has begun to yield its secrets, and a fascinating picture is emerging of how it develops and progresses. Mutations in the G(q) alpha subunits, encoded by GNAQ and GNA11, appear to be early or perhaps initiating events that require further mutations for malignant transformation. On the other hand, mutations in the BRCA1-associated protein-1 (BAP1) appear to occur later and demarcate a molecular brink beyond which metastasis becomes highly likely. BAP1 mutations can also occur in the germline, leading to a distinctive cancer predisposition syndrome. These mutations appear to be key events that provide the potential for targeted therapy. This article will review the genetic findings in uveal melanoma over the past two decades and suggest important areas for future work.
Collapse
Affiliation(s)
- J William Harbour
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
130
|
The SNF2-like helicase HELLS mediates E2F3-dependent transcription and cellular transformation. EMBO J 2011; 31:972-85. [PMID: 22157815 DOI: 10.1038/emboj.2011.451] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 11/21/2011] [Indexed: 11/09/2022] Open
Abstract
The activating E2F-transcription factors are best known for their dependence on the Retinoblastoma protein and their role in cellular proliferation. E2F3 is uniquely amplified in specific human tumours where its expression is inversely correlated with the survival of patients. Here, E2F3B interaction partners were identified by mass spectrometric analysis. We show that the SNF2-like helicase HELLS interacts with E2F3A in vivo and cooperates with its oncogenic functions. Depletion of HELLS severely perturbs the induction of E2F-target genes, hinders cell-cycle re-entry and growth. Using chromatin immmunoprecipitation coupled to sequencing, we identified genome-wide targets of HELLS and E2F3A/B. HELLS binds promoters of active genes, including the trithorax-related MLL1, and co-regulates E2F3-dependent genes. Strikingly, just as E2F3, HELLS is overexpressed in human tumours including prostate cancer, indicating that either factor may contribute to the malignant progression of tumours. Our work reveals that HELLS is important for E2F3 in tumour cell proliferation.
Collapse
|
131
|
Drosophila melanogaster dHCF interacts with both PcG and TrxG epigenetic regulators. PLoS One 2011; 6:e27479. [PMID: 22174740 PMCID: PMC3234250 DOI: 10.1371/journal.pone.0027479] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 10/18/2011] [Indexed: 11/19/2022] Open
Abstract
Repression and activation of gene transcription involves multiprotein complexes that modify chromatin structure. The integration of these complexes at regulatory sites can be assisted by co-factors that link them to DNA-bound transcriptional regulators. In humans, one such co-factor is the herpes simplex virus host-cell factor 1 (HCF-1), which is implicated in both activation and repression of transcription. We show here that disruption of the gene encoding the Drosophila melanogaster homolog of HCF-1, dHCF, leads to a pleiotropic phenotype involving lethality, sterility, small size, apoptosis, and morphological defects. In Drosophila, repressed and activated transcriptional states of cell fate-determining genes are maintained throughout development by Polycomb Group (PcG) and Trithorax Group (TrxG) genes, respectively. dHCF mutant flies display morphological phenotypes typical of TrxG mutants and dHCF interacts genetically with both PcG and TrxG genes. Thus, dHCF inactivation enhances the mutant phenotypes of the Pc PcG as well as brm and mor TrxG genes, suggesting that dHCF possesses Enhancer of TrxG and PcG (ETP) properties. Additionally, dHCF interacts with the previously established ETP gene skd. These pleiotropic phenotypes are consistent with broad roles for dHCF in both activation and repression of transcription during fly development.
Collapse
|
132
|
Abstract
Cellular memory is provided by two counteracting groups of chromatin proteins termed Trithorax group (TrxG) and Polycomb group (PcG) proteins. TrxG proteins activate transcription and are perhaps best known because of the involvement of the TrxG protein MLL in leukaemia. However, in terms of molecular analysis, they have lived in the shadow of their more famous counterparts, the PcG proteins. Recent advances have improved our understanding of TrxG protein function and demonstrated that the heterogeneous group of TrxG proteins is of critical importance in the epigenetic regulation of the cell cycle, senescence, DNA damage and stem cell biology.
Collapse
|
133
|
Yeo HC, Beh TT, Quek JJL, Koh G, Chan KKK, Lee DY. Integrated transcriptome and binding sites analysis implicates E2F in the regulation of self-renewal in human pluripotent stem cells. PLoS One 2011; 6:e27231. [PMID: 22076139 PMCID: PMC3208628 DOI: 10.1371/journal.pone.0027231] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 10/12/2011] [Indexed: 11/18/2022] Open
Abstract
Rapid cellular growth and multiplication, limited replicative senescence, calibrated sensitivity to apoptosis, and a capacity to differentiate into almost any cell type are major properties that underline the self-renewal capabilities of human pluripotent stem cells (hPSCs). We developed an integrated bioinformatics pipeline to understand the gene regulation and functions involved in maintaining such self-renewal properties of hPSCs compared to matched fibroblasts. An initial genome-wide screening of transcription factor activity using in silico binding-site and gene expression microarray data newly identified E2F as one of major candidate factors, revealing their significant regulation of the transcriptome. This is underscored by an elevated level of its transcription factor activity and expression in all tested pluripotent stem cell lines. Subsequent analysis of functional gene groups demonstrated the importance of the TFs to self-renewal in the pluripotency-coupled context; E2F directly targets the global signaling (e.g. self-renewal associated WNT and FGF pathways) and metabolic network (e.g. energy generation pathways, molecular transports and fatty acid metabolism) to promote its canonical functions that are driving the self-renewal of hPSCs. In addition, we proposed a core self-renewal module of regulatory interplay between E2F and, WNT and FGF pathways in these cells. Thus, we conclude that E2F plays a significant role in influencing the self-renewal capabilities of hPSCs.
Collapse
Affiliation(s)
- Hock Chuan Yeo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Thian Thian Beh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jovina Jia Ling Quek
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Geoffrey Koh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ken Kwok Keung Chan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- * E-mail: (KKKC); (DYL)
| | - Dong-Yup Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- * E-mail: (KKKC); (DYL)
| |
Collapse
|
134
|
Abstract
The 'histone code' hypothesis states that chromatin-based regulation of nuclear processes such as transcription is brought about by the combination of distinct modifications (histone marks) at specific loci. Its correct establishment involves chromatin cross-talks, ensuring an ordered and concerted deposition/removal of a particular set of modifications that act together to give the correct transcriptional outcome. Histone methylation on lysine residues can negatively or positively impact on gene transcription, depending on the residue and on its degree of methylation. Thanks to this complexity and given the number of chromatin 'readers' that can recognize methylated lysine residues, histone methylation plays a very special role in specifying the various chromatin states. The recent discovery of histone demethylases, which represent a large family of enzymes often containing histone modification binding modules, sheds new light on cross-talk mechanisms involving methylated residues. In the present review, after a brief overview of the various families of histone demethylases, we describe the different mechanisms by which they participate in chromatin cross-talks and how these mechanisms are integrated to achieve the mutual exclusion or the link between chromatin marks, leading to the establishment of the correct histone code.
Collapse
|
135
|
The ability of MLL to bind RUNX1 and methylate H3K4 at PU.1 regulatory regions is impaired by MDS/AML-associated RUNX1/AML1 mutations. Blood 2011; 118:6544-52. [PMID: 22012064 DOI: 10.1182/blood-2010-11-317909] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The mixed-lineage leukemia (MLL) H3K4 methyltransferase protein, and the heterodimeric RUNX1/CBFβ transcription factor complex, are critical for definitive and adult hematopoiesis, and both are frequently targeted in human acute leukemia. We identified a physical and functional interaction between RUNX1 (AML1) and MLL and show that both are required to maintain the histone lysine 4 trimethyl mark (H3K4me3) at 2 critical regulatory regions of the AML1 target gene PU.1. Similar to CBFβ, we show that MLL binds to AML1 abrogating its proteasome-dependent degradation. Furthermore, a subset of previously uncharacterized frame-shift and missense mutations at the N terminus of AML1, found in MDS and AML patients, impairs its interaction with MLL, resulting in loss of the H3K4me3 mark within PU.1 regulatory regions, and decreased PU.1 expression. The interaction between MLL and AML1 provides a mechanism for the sequence-specific binding of MLL to DNA, and identifies RUNX1 target genes as potential effectors of MLL function.
Collapse
|
136
|
Hammond-Martel I, Yu H, Affar EB. Roles of ubiquitin signaling in transcription regulation. Cell Signal 2011; 24:410-421. [PMID: 22033037 DOI: 10.1016/j.cellsig.2011.10.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/10/2011] [Indexed: 10/16/2022]
Abstract
Rivaling or cooperating with other post-translational modifications, ubiquitination plays central roles in regulating numerous cellular processes. Not surprisingly, gain- or loss-of-function mutations in several components of the ubiquitin system are causally linked to human pathologies including cancer. The covalent attachment of ubiquitin to target proteins occurs in sequential steps and involves ubiquitin ligases (E3s) which are the most abundant enzymes of the ubiquitin system. Although often associated with proteasomal degradation, ubiquitination is also involved in regulatory events in a proteasome-independent manner. Moreover, ubiquitination is reversible and specific proteases, termed deubiquitinases (DUBs), remove ubiquitin from protein substrates. While we now appreciate the importance of ubiquitin signaling in coordinating a plethora of physio-pathological processes, the molecular mechanisms are not fully understood. This review summarizes current findings on the critical functions exerted by E3s and DUBs in transcriptional control, particularly chromatin remodeling and transcription initiation/elongation.
Collapse
Affiliation(s)
- Ian Hammond-Martel
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine and Department of Biochemistry, University of Montréal, Montréal, Canada
| | - Helen Yu
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine and Department of Biochemistry, University of Montréal, Montréal, Canada
| | - El Bachir Affar
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine and Department of Biochemistry, University of Montréal, Montréal, Canada.
| |
Collapse
|
137
|
Muntean AG, Hess JL. The pathogenesis of mixed-lineage leukemia. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 7:283-301. [PMID: 22017583 DOI: 10.1146/annurev-pathol-011811-132434] [Citation(s) in RCA: 267] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aggressive leukemias arise in both children and adults as a result of rearrangements to the mixed-lineage leukemia gene (MLL) located on chromosome 11q23. MLL encodes a large histone methyltransferase that directly binds DNA and positively regulates gene transcription, including homeobox (HOX) genes. MLL is involved in chromosomal translocations, partial tandem duplications, and amplifications, all of which result in hematopoietic malignancies due to sustained HOX expression and stalled differentiation. MLL lesions are associated with both acute myeloid leukemia and acute lymphoid leukemia and are usually associated with a relatively poor prognosis despite improved treatment options such as allogeneic hematopoietic stem cell transplantation, which underscores the need for new treatment regimens. Recent advances have begun to reveal the molecular mechanisms that drive MLL-associated leukemias, which, in turn, have provided opportunities for therapeutic development. Here, we discuss the etiology of MLL leukemias and potential directions for future therapy.
Collapse
Affiliation(s)
- Andrew G Muntean
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
138
|
Rizki G, Iwata TN, Li J, Riedel CG, Picard CL, Jan M, Murphy CT, Lee SS. The evolutionarily conserved longevity determinants HCF-1 and SIR-2.1/SIRT1 collaborate to regulate DAF-16/FOXO. PLoS Genet 2011; 7:e1002235. [PMID: 21909281 PMCID: PMC3164695 DOI: 10.1371/journal.pgen.1002235] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 06/28/2011] [Indexed: 01/18/2023] Open
Abstract
The conserved DAF-16/FOXO transcription factors and SIR-2.1/SIRT1 deacetylases are critical for diverse biological processes, particularly longevity and stress response; and complex regulation of DAF-16/FOXO by SIR-2.1/SIRT1 is central to appropriate biological outcomes. Caenorhabditis elegans Host Cell Factor 1 (HCF-1) is a longevity determinant previously shown to act as a co-repressor of DAF-16. We report here that HCF-1 represents an integral player in the regulatory loop linking SIR-2.1/SIRT1 and DAF-16/FOXO in both worms and mammals. Genetic analyses showed that hcf-1 acts downstream of sir-2.1 to influence lifespan and oxidative stress response in C. elegans. Gene expression profiling revealed a striking 80% overlap between the DAF-16 target genes responsive to hcf-1 mutation and sir-2.1 overexpression. Subsequent GO-term analyses of HCF-1 and SIR-2.1-coregulated DAF-16 targets suggested that HCF-1 and SIR-2.1 together regulate specific aspects of DAF-16-mediated transcription particularly important for aging and stress responses. Analogous to its role in regulating DAF-16/SIR-2.1 target genes in C. elegans, the mammalian HCF-1 also repressed the expression of several FOXO/SIRT1 target genes. Protein–protein association studies demonstrated that SIR-2.1/SIRT1 and HCF-1 form protein complexes in worms and mammalian cells, highlighting the conservation of their regulatory relationship. Our findings uncover a conserved interaction between the key longevity determinants SIR-2.1/SIRT1 and HCF-1, and they provide new insights into the complex regulation of FOXO proteins. The nematode C. elegans has been instrumental in identifying and characterizing genetic components that influence aging. Studies in worms have been successfully extended to complex mammalian organisms allowing for the identification of genetic factors that impact longevity in mammals. DAF-16/FOXO transcription factors are among the best characterized longevity factors, and their increased activity leads to a longer lifespan and improved stress resistance in many organisms. Elucidating how the activities of DAF-16/FOXO are regulated will provide new insights into the basic biology of aging and will aid future therapeutic developments aiming to improve healthy aging and alleviate age-related diseases in humans. We utilized both C. elegans and mammalian cell culture systems to dissect the functional and molecular interactions between two important DAF-16 regulators, HCF-1 and SIR-2.1/SIRT1. We demonstrated that HCF-1 and SIR-2.1/SIRT1 physically associate and antagonize each other to properly regulate DAF-16/FOXO-mediated expression of genes important for longevity and stress response. We further showed that the functional relationships among these three proteins are conserved in mammals. Our work implicates HCF-1 as an important player in the regulation of FOXO by SIRT1, and thereby a potential longevity determinant in humans, and prompts further characterization of HCF-1's functions in aging and age-related pathologies.
Collapse
Affiliation(s)
- Gizem Rizki
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Terri Naoko Iwata
- Department of Molecular Biology and Genetics, Field of Comparative Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| | - Ji Li
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Christian G. Riedel
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Simches Research Center, Boston, Massachusetts, United States of America
| | - Colette Lafontaine Picard
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Max Jan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Coleen T. Murphy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Field of Comparative Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
139
|
Cartier J, Berthelet J, Marivin A, Gemble S, Edmond V, Plenchette S, Lagrange B, Hammann A, Dupoux A, Delva L, Eymin B, Solary E, Dubrez L. Cellular inhibitor of apoptosis protein-1 (cIAP1) can regulate E2F1 transcription factor-mediated control of cyclin transcription. J Biol Chem 2011; 286:26406-17. [PMID: 21653699 PMCID: PMC3143604 DOI: 10.1074/jbc.m110.191239] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 06/06/2011] [Indexed: 11/06/2022] Open
Abstract
The inhibitor of apoptosis protein cIAP1 (cellular inhibitor of apoptosis protein-1) is a potent regulator of the tumor necrosis factor (TNF) receptor family and NF-κB signaling pathways in the cytoplasm. However, in some primary cells and tumor cell lines, cIAP1 is expressed in the nucleus, and its nuclear function remains poorly understood. Here, we show that the N-terminal part of cIAP1 directly interacts with the DNA binding domain of the E2F1 transcription factor. cIAP1 dramatically increases the transcriptional activity of E2F1 on synthetic and CCNE promoters. This function is not conserved for cIAP2 and XIAP, which are cytoplasmic proteins. Chromatin immunoprecipitation experiments demonstrate that cIAP1 is recruited on E2F binding sites of the CCNE and CCNA promoters in a cell cycle- and differentiation-dependent manner. cIAP1 silencing inhibits E2F1 DNA binding and E2F1-mediated transcriptional activation of the CCNE gene. In cells that express a nuclear cIAP1 such as HeLa, THP1 cells and primary human mammary epithelial cells, down-regulation of cIAP1 inhibits cyclin E and A expression and cell proliferation. We conclude that one of the functions of cIAP1 when localized in the nucleus is to regulate E2F1 transcriptional activity.
Collapse
Affiliation(s)
- Jessy Cartier
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) UMR866, Dijon, F-21079, France
- the Faculty of Medicine, University of Burgundy, Institut Fédératif de Recherche (IFR) 100, Dijon, F-21079, France
| | - Jean Berthelet
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) UMR866, Dijon, F-21079, France
- the Faculty of Medicine, University of Burgundy, Institut Fédératif de Recherche (IFR) 100, Dijon, F-21079, France
| | - Arthur Marivin
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) UMR866, Dijon, F-21079, France
- the Faculty of Medicine, University of Burgundy, Institut Fédératif de Recherche (IFR) 100, Dijon, F-21079, France
| | - Simon Gemble
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) UMR866, Dijon, F-21079, France
- the Faculty of Medicine, University of Burgundy, Institut Fédératif de Recherche (IFR) 100, Dijon, F-21079, France
| | - Valérie Edmond
- Inserm U823, Equipe Bases Moléculaires de la Progression des Cancers du Poumon, Institut Albert Bonniot, Grenoble F-38042, France
- the Université Joseph Fourier, Grenoble, F-38041, France, and
| | - Stéphanie Plenchette
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) UMR866, Dijon, F-21079, France
- the Faculty of Medicine, University of Burgundy, Institut Fédératif de Recherche (IFR) 100, Dijon, F-21079, France
| | - Brice Lagrange
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) UMR866, Dijon, F-21079, France
- the Faculty of Medicine, University of Burgundy, Institut Fédératif de Recherche (IFR) 100, Dijon, F-21079, France
| | - Arlette Hammann
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) UMR866, Dijon, F-21079, France
- the Faculty of Medicine, University of Burgundy, Institut Fédératif de Recherche (IFR) 100, Dijon, F-21079, France
| | - Alban Dupoux
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) UMR866, Dijon, F-21079, France
- the Faculty of Medicine, University of Burgundy, Institut Fédératif de Recherche (IFR) 100, Dijon, F-21079, France
| | - Laurent Delva
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) UMR866, Dijon, F-21079, France
- the Faculty of Medicine, University of Burgundy, Institut Fédératif de Recherche (IFR) 100, Dijon, F-21079, France
| | - Béatrice Eymin
- Inserm U823, Equipe Bases Moléculaires de la Progression des Cancers du Poumon, Institut Albert Bonniot, Grenoble F-38042, France
- the Université Joseph Fourier, Grenoble, F-38041, France, and
| | - Eric Solary
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) UMR866, Dijon, F-21079, France
- the Faculty of Medicine, University of Burgundy, Institut Fédératif de Recherche (IFR) 100, Dijon, F-21079, France
- Inserm UMR1009, Institut Gustave Roussy, Villejuif, F-94805, France
| | - Laurence Dubrez
- From the Institut National de la Santé et de la Recherche Médicale (Inserm) UMR866, Dijon, F-21079, France
- the Faculty of Medicine, University of Burgundy, Institut Fédératif de Recherche (IFR) 100, Dijon, F-21079, France
| |
Collapse
|
140
|
Bott M, Brevet M, Taylor BS, Shimizu S, Ito T, Wang L, Creaney J, Lake RA, Zakowski MF, Reva B, Sander C, Delsite R, Powell S, Zhou Q, Shen R, Olshen A, Rusch V, Ladanyi M. The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet 2011; 43:668-72. [PMID: 21642991 PMCID: PMC4643098 DOI: 10.1038/ng.855] [Citation(s) in RCA: 532] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 05/16/2011] [Indexed: 12/24/2022]
Abstract
Malignant pleural mesotheliomas (MPMs) often show CDKN2A and NF2 inactivation, but other highly recurrent mutations have not been described. To identify additional driver genes, we used an integrated genomic analysis of 53 MPM tumor samples to guide a focused sequencing effort that uncovered somatic inactivating mutations in BAP1 in 23% of MPMs. The BAP1 nuclear deubiquitinase is known to target histones (together with ASXL1 as a Polycomb repressor subunit) and the HCF1 transcriptional co-factor, and we show that BAP1 knockdown in MPM cell lines affects E2F and Polycomb target genes. These findings implicate transcriptional deregulation in the pathogenesis of MPM.
Collapse
Affiliation(s)
- Matthew Bott
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Abstract
BRCA1-associated protein-1 (BAP1) is a 729 residue, nuclear-localized deubiquitinating enzyme (DUB) that displays tumor suppressor properties in the BAP1-null NCI-H226 lung carcinoma cell line. Studies that have altered BAP1 cellular levels or enzymatic activity have reported defects in cell cycle progression, notably at the G1/S transition. Recently BAP1 was shown to associate with the transcriptional regulator host cell factor 1 (HCF-1). The BAP1/HCF-1 interaction is mediated by the HCF-1 Kelch domain and an HCF-1 binding motif (HBM) within BAP1. HCF-1 is modified with ubiquitin in vivo, and ectopic studies suggest BAP1 deubiquitinates HCF-1. HCF-1 is a chromatin-associated protein thought to both activate and repress transcription by linking appropriate histone-modifying enzymes to a subset of transcription factors. One known role of HCF-1 is to promote cell cycle progression at the G1/S boundary by recruiting H3K4 histone methyltransferases to the E2F1 transcription factor so that genes required for S-phase can be transcribed. Given the robust associations between BAP1/HCF-1 and HCF-1/E2Fs, it is reasonable to speculate that BAP1 influences cell proliferation at G1/S by co-regulating transcription from HCF-1/E2F-governed promoters.
Collapse
Affiliation(s)
- Ziad M. Eletr
- Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
142
|
Daou S, Mashtalir N, Hammond-Martel I, Pak H, Yu H, Sui G, Vogel JL, Kristie TM, Affar EB. Crosstalk between O-GlcNAcylation and proteolytic cleavage regulates the host cell factor-1 maturation pathway. Proc Natl Acad Sci U S A 2011; 108:2747-52. [PMID: 21285374 PMCID: PMC3041071 DOI: 10.1073/pnas.1013822108] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Host Cell Factor 1 (HCF-1) plays critical roles in regulating gene expression in a plethora of physiological processes. HCF-1 is first synthesized as a precursor, and subsequently specifically proteolytically cleaved within a large middle region termed the proteolytic processing domain (PPD). Although the underlying mechanism remains enigmatic, proteolysis of HCF-1 regulates its transcriptional activity and is important for cell cycle progression. Here we report that HCF-1 proteolysis is a regulated process. We demonstrate that a large proportion of the signaling enzyme O-linked-N-acetylglucosaminyl transferase (OGT) is complexed with HCF-1 and this interaction is essential for HCF-1 cleavage. Moreover, HCF-1 is, in turn, required for stabilizing OGT in the nucleus. We provide evidence indicating that OGT regulates HCF-1 cleavage via interaction with and O-GlcNAcylation of the HCF-1 PPD. In contrast, although OGT also interacts with the basic domain in the HCF-1 amino-terminal subunit, neither the interaction nor the O-GlcNAcylation of this region are required for proteolysis. Moreover, we show that OGT-mediated modulation of HCF-1 impacts the expression of the herpes simplex virus immediate-early genes, targets of HCF-1 during the initiation of viral infection. Together the data indicate that O-GlcNAcylation of HCF-1 is a signal for its proteolytic processing and reveal a unique crosstalk between these posttranslational modifications. Additionally, interactions of OGT with multiple HCF-1 domains may indicate that OGT has several functions in association with HCF-1.
Collapse
Affiliation(s)
- Salima Daou
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine, University of Montréal, Montréal, QC, Canada H1T 2M4
| | - Nazar Mashtalir
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine, University of Montréal, Montréal, QC, Canada H1T 2M4
| | - Ian Hammond-Martel
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine, University of Montréal, Montréal, QC, Canada H1T 2M4
| | - Helen Pak
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine, University of Montréal, Montréal, QC, Canada H1T 2M4
| | - Helen Yu
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine, University of Montréal, Montréal, QC, Canada H1T 2M4
| | - Guangchao Sui
- Wake Forest University School of Medicine, Winston-Salem, NC 27157; and
| | - Jodi L. Vogel
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Thomas M. Kristie
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - El Bachir Affar
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine, University of Montréal, Montréal, QC, Canada H1T 2M4
| |
Collapse
|
143
|
Abstract
Reactive oxygen species (ROS) and cellular oxidative stress are involved in many physiological and pathophysiological processes, including cellular and organismal aging, migration, proliferation, senescence or death of normal and cancer cells, and stress resistance of stem cells. The forkhead homeobox type O (FOXO) transcription factors FOXO1, FOXO3a, and FOXO4 are critical mediators of the cellular responses to oxidative stress and have been implicated in many of the above ROS-regulated processes. In cancer cells they converge oxidative stress signaling to cell cycle arrest and cell death or promote a motile phenotype. Dependent on their posttranslational modifications FOXOs can also actively regulate the detoxification of cells from ROS and promote stress resistance. Thus, FOXO transcription factors are of vital importance in processes regulating tumor survival or progression, stem cell maintenance, age-related pathological processes, and lifespan extension.
Collapse
Affiliation(s)
- Peter Storz
- Department for Cancer Biology, Mayo Clinic, Jacksonville, Florida 32224, USA.
| |
Collapse
|
144
|
Pérez-Lluch S, Blanco E, Carbonell A, Raha D, Snyder M, Serras F, Corominas M. Genome-wide chromatin occupancy analysis reveals a role for ASH2 in transcriptional pausing. Nucleic Acids Res 2011; 39:4628-39. [PMID: 21310711 PMCID: PMC3113561 DOI: 10.1093/nar/gkq1322] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
An important mechanism for gene regulation involves chromatin changes via histone modification. One such modification is histone H3 lysine 4 trimethylation (H3K4me3), which requires histone methyltranferase complexes (HMT) containing the trithorax-group (trxG) protein ASH2. Mutations in ash2 cause a variety of pattern formation defects in the Drosophila wing. We have identified genome-wide binding of ASH2 in wing imaginal discs using chromatin immunoprecipitation combined with sequencing (ChIP-Seq). Our results show that genes with functions in development and transcriptional regulation are activated by ASH2 via H3K4 trimethylation in nearby nucleosomes. We have characterized the occupancy of phosphorylated forms of RNA Polymerase II and histone marks associated with activation and repression of transcription. ASH2 occupancy correlates with phosphorylated forms of RNA Polymerase II and histone activating marks in expressed genes. Additionally, RNA Polymerase II phosphorylation on serine 5 and H3K4me3 are reduced in ash2 mutants in comparison to wild-type flies. Finally, we have identified specific motifs associated with ASH2 binding in genes that are differentially expressed in ash2 mutants. Our data suggest that recruitment of the ASH2-containing HMT complexes is context specific and points to a function of ASH2 and H3K4me3 in transcriptional pausing control.
Collapse
Affiliation(s)
- Sílvia Pérez-Lluch
- Departament de Genètica i Institut de Biomedicina (IBUB), Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
145
|
Furrer M, Balbi M, Albarca-Aguilera M, Gallant M, Herr W, Gallant P. Drosophila Myc interacts with host cell factor (dHCF) to activate transcription and control growth. J Biol Chem 2010; 285:39623-36. [PMID: 20937797 PMCID: PMC3000943 DOI: 10.1074/jbc.m110.140467] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 09/08/2010] [Indexed: 01/14/2023] Open
Abstract
The Myc proto-oncoproteins are transcription factors that recognize numerous target genes through hexameric DNA sequences called E-boxes. The mechanism by which they then activate the expression of these targets is still under debate. Here, we use an RNAi screen in Drosophila S2 cells to identify Drosophila host cell factor (dHCF) as a novel co-factor for Myc that is functionally required for the activation of a Myc-dependent reporter construct. dHCF is also essential for the full activation of endogenous Myc target genes in S2 cells, and for the ability of Myc to promote growth in vivo. Myc and dHCF physically interact, and they colocalize on common target genes. Furthermore, down-regulation of dHCF-associated histone acetyltransferase and histone methyltransferase complexes in vivo interferes with the Myc biological activities. We therefore propose that dHCF recruits such chromatin-modifying complexes and thereby contributes to the expression of Myc targets and hence to the execution of Myc biological activities.
Collapse
Affiliation(s)
- Michael Furrer
- From the Zoologisches Institut, Universität Zürich, 8057 Zürich, Switzerland and
| | - Mirjam Balbi
- From the Zoologisches Institut, Universität Zürich, 8057 Zürich, Switzerland and
| | - Monica Albarca-Aguilera
- the Center for Integrative Genomics (CIG), University of Lausanne, 1015 Lausanne, Switzerland
| | - Maria Gallant
- From the Zoologisches Institut, Universität Zürich, 8057 Zürich, Switzerland and
| | - Winship Herr
- the Center for Integrative Genomics (CIG), University of Lausanne, 1015 Lausanne, Switzerland
| | - Peter Gallant
- From the Zoologisches Institut, Universität Zürich, 8057 Zürich, Switzerland and
| |
Collapse
|
146
|
Harbour JW, Onken MD, Roberson ED, Duan S, Cao L, Worley LA, Council ML, Matatall KA, Helms C, Bowcock AM. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 2010; 330:1410-3. [PMID: 21051595 PMCID: PMC3087380 DOI: 10.1126/science.1194472] [Citation(s) in RCA: 1059] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metastasis is a defining feature of malignant tumors and is the most common cause of cancer-related death, yet the genetics of metastasis are poorly understood. We used exome capture coupled with massively parallel sequencing to search for metastasis-related mutations in highly metastatic uveal melanomas of the eye. Inactivating somatic mutations were identified in the gene encoding BRCA1-associated protein 1 (BAP1) on chromosome 3p21.1 in 26 of 31 (84%) metastasizing tumors, including 15 mutations causing premature protein termination and 5 affecting its ubiquitin carboxyl-terminal hydrolase domain. One tumor harbored a frameshift mutation that was germline in origin, thus representing a susceptibility allele. These findings implicate loss of BAP1 in uveal melanoma metastasis and suggest that the BAP1 pathway may be a valuable therapeutic target.
Collapse
MESH Headings
- Cell Line, Tumor
- Chromosome Deletion
- Chromosomes, Human, Pair 3/genetics
- Frameshift Mutation
- Germ-Line Mutation
- Humans
- Melanoma/genetics
- Melanoma/secondary
- Mutation
- Mutation, Missense
- Neoplasm Metastasis
- Protein Structure, Tertiary
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Sequence Analysis, DNA
- Tumor Suppressor Proteins/chemistry
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Ubiquitin Thiolesterase/chemistry
- Ubiquitin Thiolesterase/genetics
- Ubiquitin Thiolesterase/metabolism
- Uveal Neoplasms/genetics
Collapse
Affiliation(s)
- J. William Harbour
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Michael D. Onken
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Elisha D.O. Roberson
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Shenghui Duan
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Li Cao
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Lori A. Worley
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - M. Laurin Council
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Katie A. Matatall
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Cynthia Helms
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Anne M. Bowcock
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| |
Collapse
|
147
|
Mu W, Munroe RJ, Barker AK, Schimenti JC. PDCD2 is essential for inner cell mass development and embryonic stem cell maintenance. Dev Biol 2010; 347:279-88. [PMID: 20813103 PMCID: PMC2957520 DOI: 10.1016/j.ydbio.2010.08.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 08/06/2010] [Accepted: 08/24/2010] [Indexed: 01/15/2023]
Abstract
PDCD2 is a conserved eukaryotic protein implicated in cell cycle regulation by virtue of its interactions with HCFC1 and the NCOR1/SIN3A corepressor complex. Pdcd2 transcripts are enriched in ES cells and other somatic stem cells, and its ortholog is essential for hematopoietic stem cell maintenance in Drosophila. To characterize the physiological role(s) of mammalian PDCD2, we created a disruption allele in mice. Pdcd2(-/-) embryos underwent implantation but did not undergo further development. Inner cell masses (ICMs) from Pdcd2(-/-) blastocysts failed to outgrow in vitro. Furthermore, embryonic stem cells (ESCs) require PDCD2 as demonstrated by the inability to generate Pdcd2(-/-) ESCs in the absence of an ectopic transgene. Upon differentiation of ESCs by retinoic acid treatment or LIF deprivation, PDCD2 levels declined. In conjunction with prior studies, these results indicate that in vivo, PDCD2 is critical for blastomere and ESC maintenance by contributing to the regulation of genes in a manner essential to the undifferentiated state of these cells.
Collapse
Affiliation(s)
| | - Robert J. Munroe
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | - Anna K. Barker
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | - John C. Schimenti
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
148
|
Maqbool SB, Mehrotra S, Kolpakas A, Durden C, Zhang B, Zhong H, Calvi BR. Dampened activity of E2F1-DP and Myb-MuvB transcription factors in Drosophila endocycling cells. J Cell Sci 2010; 123:4095-106. [PMID: 21045111 DOI: 10.1242/jcs.064519] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The endocycle is a variant cell cycle comprised of alternating gap (G) and DNA synthesis (S) phases (endoreplication) without mitosis (M), which results in DNA polyploidy and large cell size. Endocycles occur widely in nature, but much remains to be learned about the regulation of this modified cell cycle. Here, we compared gene expression profiles of mitotic cycling larval brain and disc cells with the endocycling cells of fat body and salivary gland of the Drosophila larva. The results indicated that many genes that are positively regulated by the heterodimeric E2F1-DP or Myb-MuvB complex transcription factors are expressed at lower levels in endocycling cells. Many of these target genes have functions in M phase, suggesting that dampened E2F1 and Myb activity promote endocycles. Many other E2F1 target genes that are required for DNA replication were also repressed in endocycling cells, an unexpected result given that these cells must duplicate up to thousands of genome copies during each S phase. For some EF2-regulated genes, the lower level of mRNA in endocycling cells resulted in lower protein concentration, whereas for other genes it did not, suggesting a contribution of post-transcriptional regulation. Both knockdown and overexpression of E2F1-DP and Myb-MuvB impaired endocycles, indicating that transcriptional activation and repression must be balanced. Our data suggest that dampened transcriptional activation by E2F1-DP and Myb-MuvB is important to repress mitosis and coordinate the endocycle transcriptional and protein stability oscillators.
Collapse
|
149
|
Benedikt A, Baltruschat S, Scholz B, Bursen A, Arrey TN, Meyer B, Varagnolo L, Müller AM, Karas M, Dingermann T, Marschalek R. The leukemogenic AF4-MLL fusion protein causes P-TEFb kinase activation and altered epigenetic signatures. Leukemia 2010; 25:135-44. [PMID: 21030982 DOI: 10.1038/leu.2010.249] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Expression of the AF4-MLL fusion protein in murine hematopoietic progenitor/stem cells results in the development of proB acute lymphoblastic leukemia. In this study, we affinity purified the AF4-MLL and AF4 protein complexes to elucidate their function. We observed that the AF4 complex consists of 11 binding partners and exhibits positive transcription elongation factor b (P-TEFb)-mediated activation of promoter-arrested RNA polymerase (pol) II in conjunction with several chromatin-modifying activities. In contrast, the AF4-MLL complex consists of at least 16 constituents including P-TEFb kinase, H3K4(me3) and H3K79(me3) histone methyltransferases (HMT), a protein arginine N-methyltransferase and a histone acetyltransferase. These findings suggest that the AF4-MLL protein disturbs the fine-tuned activation cycle of promoter-arrested RNA Pol II and causes altered histone methylation signatures. Thus, we propose that these two processes are key to trigger cellular reprogramming that leads to the onset of acute leukemia.
Collapse
Affiliation(s)
- A Benedikt
- Institute of Pharmaceutical Biology/ZAFES, Goethe-University of Frankfurt, Biocenter, Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Abstract
The discovery that cancer can be governed above and beyond the level of our DNA presents a new era for designing therapies that reverse the epigenetic state of a tumour cell. Understanding how altered chromatin dynamics leads to malignancy is essential for controlling tumour cells while sparing normal cells. Polycomb and trithorax group proteins are evolutionarily conserved and maintain chromatin in the 'off' or 'on' states, thereby preventing or promoting gene expression, respectively. Recent work highlights the dynamic interplay between these opposing classes of proteins, providing new avenues for understanding how these epigenetic regulators function in tumorigenesis.
Collapse
Affiliation(s)
- Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.
| |
Collapse
|