101
|
Abstract
Telomerase activity is responsible for the maintenance of chromosome end structures (telomeres) and cancer cell immortality in most human malignancies, making telomerase an attractive therapeutic target. The rationale for targeting components of the telomerase holoenzyme has been strengthened by accumulating evidence indicating that these molecules have extra-telomeric functions in tumour cell survival and proliferation. This Review discusses current knowledge of the biogenesis, structure and multiple functions of telomerase-associated molecules intertwined with recent advances in drug discovery approaches. We also describe the fertile ground available for the pursuit of next-generation small-molecule inhibitors of telomerase.
Collapse
Affiliation(s)
- Greg M Arndt
- Australian Cancer Research Foundation (ACRF) Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Karen L MacKenzie
- Personalised Medicine Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| |
Collapse
|
102
|
Wu G, Radwan MK, Xiao M, Adachi H, Fan J, Yu YT. The TOR signaling pathway regulates starvation-induced pseudouridylation of yeast U2 snRNA. RNA (NEW YORK, N.Y.) 2016; 22:1146-52. [PMID: 27268497 PMCID: PMC4931107 DOI: 10.1261/rna.056796.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/05/2016] [Indexed: 05/28/2023]
Abstract
Pseudouridine (Ψ) has been identified in various types of RNAs, including mRNA, rRNA, tRNA, snRNA, and many other noncoding RNAs. We have previously shown that RNA pseudouridylation, like DNA and protein modifications, can be induced by stress. For instance, growing yeast cells to saturation induces the formation of Ψ93 in U2 snRNA. Here, we further investigate this inducible RNA modification. We show that switching yeast cells from nutrient-rich medium to different nutrient-deprived media (including water) results in the formation of Ψ93 in U2 snRNA. Using gene deletion/conditional depletion as well as rapamycin treatment, we further show that the TOR signaling pathway, which controls cell entry into stationary phase, regulates Ψ93 formation. The RAS/cAMP signaling pathway, which parallels the TOR pathway, plays no role in this inducible modification.
Collapse
Affiliation(s)
- Guowei Wu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Mohamed K Radwan
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Mu Xiao
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Jason Fan
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, New York 14642, USA
| |
Collapse
|
103
|
Chen Y, Zhang Y. Functional and mechanistic analysis of telomerase: An antitumor drug target. Pharmacol Ther 2016; 163:24-47. [PMID: 27118336 DOI: 10.1016/j.pharmthera.2016.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/29/2016] [Indexed: 01/26/2023]
|
104
|
Nguyen TC, Cao X, Yu P, Xiao S, Lu J, Biase FH, Sridhar B, Huang N, Zhang K, Zhong S. Mapping RNA-RNA interactome and RNA structure in vivo by MARIO. Nat Commun 2016; 7:12023. [PMID: 27338251 PMCID: PMC4931010 DOI: 10.1038/ncomms12023] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/19/2016] [Indexed: 12/29/2022] Open
Abstract
The pervasive transcription of our genome presents a possibility of revealing new genomic functions by investigating RNA interactions. Current methods for mapping RNA–RNA interactions have to rely on an ‘anchor' protein or RNA and often require molecular perturbations. Here we present the MARIO (Mapping RNA interactome in vivo) technology to massively reveal RNA–RNA interactions from unperturbed cells. We mapped tens of thousands of endogenous RNA–RNA interactions from mouse embryonic stem cells and brain. We validated seven interactions by RNA antisense purification and one interaction using single-molecule RNA–FISH. The experimentally derived RNA interactome is a scale-free network, which is not expected from currently perceived promiscuity in RNA–RNA interactions. Base pairing is observed at the interacting regions between long RNAs, including transposon transcripts, suggesting a class of regulatory sequences acting in trans. In addition, MARIO data reveal thousands of intra-molecule interactions, providing in vivo data on high-order RNA structures. Current methods for mapping RNA-RNA interactions have to rely on an ‘anchor' protein or RNA. Here, the authors report the MARIO (Mapping RNA interactome in vivo) technology that can massively reveal RNA-RNA interactions and RNA structure from unperturbed cells.
Collapse
Affiliation(s)
- Tri C Nguyen
- Department of Bioengineering, University of California, San Diego, Powell-Focht Bioengineering Hall 384, 9500 Gilman Drive, MC 0412, La Jolla, California 92093, USA
| | - Xiaoyi Cao
- Department of Bioengineering, University of California, San Diego, Powell-Focht Bioengineering Hall 384, 9500 Gilman Drive, MC 0412, La Jolla, California 92093, USA
| | - Pengfei Yu
- Department of Bioengineering, University of California, San Diego, Powell-Focht Bioengineering Hall 384, 9500 Gilman Drive, MC 0412, La Jolla, California 92093, USA
| | - Shu Xiao
- Department of Bioengineering, University of California, San Diego, Powell-Focht Bioengineering Hall 384, 9500 Gilman Drive, MC 0412, La Jolla, California 92093, USA
| | - Jia Lu
- Department of Bioengineering, University of California, San Diego, Powell-Focht Bioengineering Hall 384, 9500 Gilman Drive, MC 0412, La Jolla, California 92093, USA
| | - Fernando H Biase
- Department of Bioengineering, University of California, San Diego, Powell-Focht Bioengineering Hall 384, 9500 Gilman Drive, MC 0412, La Jolla, California 92093, USA
| | - Bharat Sridhar
- Department of Bioengineering, University of California, San Diego, Powell-Focht Bioengineering Hall 384, 9500 Gilman Drive, MC 0412, La Jolla, California 92093, USA
| | - Norman Huang
- Department of Bioengineering, University of California, San Diego, Powell-Focht Bioengineering Hall 384, 9500 Gilman Drive, MC 0412, La Jolla, California 92093, USA
| | - Kang Zhang
- Department of Ophthalmology, University of California, San Diego, La Jolla, California 92093, USA
| | - Sheng Zhong
- Department of Bioengineering, University of California, San Diego, Powell-Focht Bioengineering Hall 384, 9500 Gilman Drive, MC 0412, La Jolla, California 92093, USA
| |
Collapse
|
105
|
Ding YH, Fan SB, Li S, Feng BY, Gao N, Ye K, He SM, Dong MQ. Increasing the Depth of Mass-Spectrometry-Based Structural Analysis of Protein Complexes through the Use of Multiple Cross-Linkers. Anal Chem 2016; 88:4461-9. [DOI: 10.1021/acs.analchem.6b00281] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yue-He Ding
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
- Graduate Program
in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Sheng-Bo Fan
- Key
Lab of Intelligent Information Processing of Chinese Academy of Sciences
(CAS), Institute of Computing Technology of CAS, University of CAS, Beijing 100049, China
| | - Shuang Li
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Bo-Ya Feng
- Ministry
of Education Protein Science Laboratory, Center for Structural Biology,
School of Life Sciences, and Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ning Gao
- Ministry
of Education Protein Science Laboratory, Center for Structural Biology,
School of Life Sciences, and Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Keqiong Ye
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Si-Min He
- Key
Lab of Intelligent Information Processing of Chinese Academy of Sciences
(CAS), Institute of Computing Technology of CAS, University of CAS, Beijing 100049, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
- Graduate Program
in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
106
|
Control of telomerase action at human telomeres. Nat Struct Mol Biol 2016; 22:848-52. [PMID: 26581518 DOI: 10.1038/nsmb.3083] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/04/2015] [Indexed: 12/19/2022]
Abstract
Recent progress has greatly increased the understanding of telomere-bound shelterin proteins and the telomerase holoenzyme, predominantly as separate complexes. Pioneering studies have begun to investigate the requirements for shelterin-telomerase interaction. From this vantage point, focusing on human cells, we review and discuss models for how telomerase and shelterin subunits coordinate to achieve balanced telomere-length homeostasis.
Collapse
|
107
|
Procházková Schrumpfová P, Schořová Š, Fajkus J. Telomere- and Telomerase-Associated Proteins and Their Functions in the Plant Cell. FRONTIERS IN PLANT SCIENCE 2016; 7:851. [PMID: 27446102 PMCID: PMC4924339 DOI: 10.3389/fpls.2016.00851] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/31/2016] [Indexed: 05/20/2023]
Abstract
Telomeres, as physical ends of linear chromosomes, are targets of a number of specific proteins, including primarily telomerase reverse transcriptase. Access of proteins to the telomere may be affected by a number of diverse factors, e.g., protein interaction partners, local DNA or chromatin structures, subcellular localization/trafficking, or simply protein modification. Knowledge of composition of the functional nucleoprotein complex of plant telomeres is only fragmentary. Moreover, the plant telomeric repeat binding proteins that were characterized recently appear to also be involved in non-telomeric processes, e.g., ribosome biogenesis. This interesting finding was not totally unexpected since non-telomeric functions of yeast or animal telomeric proteins, as well as of telomerase subunits, have been reported for almost a decade. Here we summarize known facts about the architecture of plant telomeres and compare them with the well-described composition of telomeres in other organisms.
Collapse
Affiliation(s)
- Petra Procházková Schrumpfová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk UniversityBrno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityBrno, Czech Republic
- *Correspondence: Petra Procházková Schrumpfová,
| | - Šárka Schořová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityBrno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk UniversityBrno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityBrno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.Brno, Czech Republic
| |
Collapse
|
108
|
Tseng CK, Wang HF, Burns A, Schroeder M, Gaspari M, Baumann P. Human Telomerase RNA Processing and Quality Control. Cell Rep 2015; 13:2232-43. [DOI: 10.1016/j.celrep.2015.10.075] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/02/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022] Open
|
109
|
Nguyen D, Grenier St-Sauveur V, Bergeron D, Dupuis-Sandoval F, Scott MS, Bachand F. A Polyadenylation-Dependent 3' End Maturation Pathway Is Required for the Synthesis of the Human Telomerase RNA. Cell Rep 2015; 13:2244-57. [PMID: 26628368 DOI: 10.1016/j.celrep.2015.11.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/02/2015] [Accepted: 10/29/2015] [Indexed: 12/19/2022] Open
Abstract
Telomere maintenance by the telomerase reverse transcriptase requires a noncoding RNA subunit that acts as a template for the synthesis of telomeric repeats. In humans, the telomerase RNA (hTR) is a non-polyadenylated transcript produced from an independent transcriptional unit. As yet, the mechanism and factors responsible for hTR 3' end processing have remained largely unknown. Here, we show that hTR is matured via a polyadenylation-dependent pathway that relies on the nuclear poly(A)-binding protein PABPN1 and the poly(A)-specific RNase PARN. Depletion of PABPN1 and PARN results in telomerase RNA deficiency and the accumulation of polyadenylated precursors. Accordingly, a deficiency in PABPN1 leads to impaired telomerase activity and telomere shortening. In contrast, we find that hTRAMP-dependent polyadenylation and exosome-mediated degradation function antagonistically to hTR maturation, thereby limiting telomerase RNA accumulation. Our findings unveil a critical requirement for RNA polyadenylation in telomerase RNA biogenesis, providing alternative approaches for telomerase inhibition in cancer.
Collapse
Affiliation(s)
- Duy Nguyen
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | | | - Danny Bergeron
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Fabien Dupuis-Sandoval
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Michelle S Scott
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - François Bachand
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
110
|
Tong J, Xie J, Ren H, Liu J, Zhang W, Wei C, Xu J, Zhang W, Li X, Wang W, Lv D, He JC, Chen N. Comparison of Glomerular Transcriptome Profiles of Adult-Onset Steroid Sensitive Focal Segmental Glomerulosclerosis and Minimal Change Disease. PLoS One 2015; 10:e0140453. [PMID: 26536600 PMCID: PMC4633097 DOI: 10.1371/journal.pone.0140453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 09/25/2015] [Indexed: 01/17/2023] Open
Abstract
Objective To search for biomarkers to differentiate primary focal segmental glomerulosclerosis (FSGS) and minimal change disease (MCD). Methods We isolated glomeruli from kidney biopsies of 6 patients with adult-onset steroid sensitiveFSGS and 5 patients with MCD, and compared the profiles of glomerular transcriptomes between the two groups of patients using microarray analysis. Results Analysis of differential expressed genes (DEGs) revealed that up-regulated DEGs in FSGS patients compared with MCD patients were primarily involved in spermatogenesis, gamete generation, regulation of muscle contraction, response to unfolded protein, cell proliferation and skeletal system development. The down-regulated DEGs were primarily related to metabolic process, intracellular transport, oxidation/reduction andestablishment of intracellular localization. We validated the expression of the top 6 up-regulated and top 6 down-regulated DEGs using real-time PCR. Membrane metallo-endopeptidase (MME) is a down-regulated gene that was previously identified as a key gene for kidney development. Immunostaining confirmed that the protein expression of MME decreased significantly in FSGS kidneys compared with MCD kidneys. Conclusions This report was the first study to examine transcriptomes in Chinese patients with various glomerular diseases. Expressions of MME both in RNA and protein level decreased significantly in glomeruli of FSGS kidneys compared with MCD kidneys. Our data suggested that MME might play a role in the normal physiological function of podocytes and a decrease in MME expression might be related to podocyte injury. We also identified genes and pathways specific for FSGS versus MCD, and our data could help identify potential new biomarkers for the differential diagnosis between these two diseases.
Collapse
Affiliation(s)
- Jun Tong
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Jingyuan Xie
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Hong Ren
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Jian Liu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Weijia Zhang
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Chengguo Wei
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jing Xu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Wen Zhang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Xiao Li
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Weiming Wang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Danfeng Lv
- National Center for Gene Research and Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, P. R. China
| | - John Cijiang He
- Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Nan Chen
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
111
|
Moon DH, Segal M, Boyraz B, Guinan E, Hofmann I, Cahan P, Tai AK, Agarwal S. Poly(A)-specific ribonuclease (PARN) mediates 3'-end maturation of the telomerase RNA component. Nat Genet 2015; 47:1482-8. [PMID: 26482878 DOI: 10.1038/ng.3423] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/25/2015] [Indexed: 12/18/2022]
Abstract
Mutations in the PARN gene (encoding poly(A)-specific ribonuclease) cause telomere diseases including familial idiopathic pulmonary fibrosis (IPF) and dyskeratosis congenita, but how PARN deficiency impairs telomere maintenance is unclear. Here, using somatic cells and induced pluripotent stem cells (iPSCs) from patients with dyskeratosis congenita with PARN mutations, we show that PARN is required for the 3'-end maturation of the telomerase RNA component (TERC). Patient-derived cells as well as immortalized cells in which PARN is disrupted show decreased levels of TERC. Deep sequencing of TERC RNA 3' termini shows that PARN is required for removal of post-transcriptionally acquired oligo(A) tails that target nuclear RNAs for degradation. Diminished TERC levels and the increased proportion of oligo(A) forms of TERC are normalized by restoring PARN, which is limiting for TERC maturation in cells. Our results demonstrate a new role for PARN in the biogenesis of TERC and provide a mechanism linking PARN mutations to telomere diseases.
Collapse
Affiliation(s)
- Diane H Moon
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew Segal
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Baris Boyraz
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Eva Guinan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Inga Hofmann
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick Cahan
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Albert K Tai
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Suneet Agarwal
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
112
|
Abstract
In this review, Schmidt and Cech cover human telomerase biogenesis, trafficking, and activation, comparing key aspects with the analogous events in other species. Telomerase is the ribonucleoprotein enzyme that catalyzes the extension of telomeric DNA in eukaryotes. Recent work has begun to reveal key aspects of the assembly of the human telomerase complex, its intracellular trafficking involving Cajal bodies, and its recruitment to telomeres. Once telomerase has been recruited to the telomere, it appears to undergo a separate activation step, which may include an increase in its repeat addition processivity. This review covers human telomerase biogenesis, trafficking, and activation, comparing key aspects with the analogous events in other species.
Collapse
Affiliation(s)
- Jens C Schmidt
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Thomas R Cech
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
113
|
Wang P, Yang L, Gao YQ, Zhao XS. Accurate placement of substrate RNA by Gar1 in H/ACA RNA-guided pseudouridylation. Nucleic Acids Res 2015. [PMID: 26206671 PMCID: PMC4551948 DOI: 10.1093/nar/gkv757] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
H/ACA RNA-guided ribonucleoprotein particle (RNP), the most complicated RNA pseudouridylase so far known, uses H/ACA guide RNA for substrate capture and four proteins (Cbf5, Nop10, L7Ae and Gar1) for pseudouridylation. Although it was shown that Gar1 not only facilitates the product release, but also enhances the catalytic activity, the chemical role that Gar1 plays in this complicated machinery is largely unknown. Kinetics measurement on Pyrococcus furiosus RNPs at different temperatures making use of fluorescence anisotropy showed that Gar1 reduces the catalytic barrier through affecting the activation entropy instead of enthalpy. Site-directed mutagenesis combined with molecular dynamics simulations demonstrated that V149 in the thumb loop of Cbf5 is critical in placing the target uridine to the right position toward catalytic D85 of Cbf5. The enzyme elegantly aligns the position of uridine in the catalytic site with the help of Gar1. In addition, conversion of uridine to pseudouridine results in a rigid syn configuration of the target nucleotide in the active site and causes Gar1 to pull out the thumb. Both factors guarantee the efficient release of the product.
Collapse
Affiliation(s)
- Peng Wang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Lijiang Yang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Yi Qin Gao
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Xin Sheng Zhao
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| |
Collapse
|
114
|
Tillault AS, Fourmann JB, Loegler C, Wieden HJ, Kothe U, Charpentier B. Contribution of two conserved histidines to the dual activity of archaeal RNA guide-dependent and -independent pseudouridine synthase Cbf5. RNA (NEW YORK, N.Y.) 2015; 21:1233-1239. [PMID: 25990001 PMCID: PMC4478342 DOI: 10.1261/rna.051425.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/09/2015] [Indexed: 06/01/2023]
Abstract
In all organisms, several distinct stand-alone pseudouridine synthase (PUS) family enzymes are expressed to isomerize uridine into pseudouridine (Ψ) by specific recognition of RNAs. In addition, Ψs are generated in Archaea and Eukaryotes by PUS enzymes which are organized as ribonucleoprotein particles (RNP)--the box H/ACA s/snoRNPs. For this modification system, a unique TruB-like catalytic PUS subunit is associated with various RNA guides which specifically target and secure substrate RNAs by base-pairing. The archaeal Cbf5 PUS displays the special feature of exhibiting both RNA guide-dependent and -independent activities. Structures of substrate-bound TruB and H/ACA sRNP revealed the importance of histidines in positioning the target uridine in the active site. To analyze the respective role of H60 and H77, we have generated variants carrying alanine substitutions at these positions. The impact of the mutations was analyzed for unguided modifications U(55) in tRNA and U2603 in 23S rRNA, and for activity of the box H/ACA Pab91 sRNP enzyme. H77 (H43 in TruB), but not H60, appeared to be crucial for the RNA guide-independent activity. In contrast to earlier suggestions, H60 was found to be noncritical for the activity of the H/ACA sRNP, but contributes together with H77 to the full activity of H/ACA sRNPs. The data suggest that a similar catalytic process was conserved in the two divergent pseudouridylation systems.
Collapse
Affiliation(s)
- Anne-Sophie Tillault
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS Université de Lorraine, Biopôle de l'Université de Lorraine, Campus Biologie Santé, 54505 Vandœuvre-lès-Nancy, France
| | - Jean-Baptiste Fourmann
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS Université de Lorraine, Biopôle de l'Université de Lorraine, Campus Biologie Santé, 54505 Vandœuvre-lès-Nancy, France
| | - Christine Loegler
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS Université de Lorraine, Biopôle de l'Université de Lorraine, Campus Biologie Santé, 54505 Vandœuvre-lès-Nancy, France
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Ute Kothe
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Bruno Charpentier
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS Université de Lorraine, Biopôle de l'Université de Lorraine, Campus Biologie Santé, 54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
115
|
Li X, Zhu P, Ma S, Song J, Bai J, Sun F, Yi C. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol 2015; 11:592-7. [DOI: 10.1038/nchembio.1836] [Citation(s) in RCA: 331] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/29/2015] [Indexed: 01/10/2023]
|
116
|
Jinn S, Brandis KA, Ren A, Chacko A, Dudley-Rucker N, Gale SE, Sidhu R, Fujiwara H, Jiang H, Olsen BN, Schaffer JE, Ory DS. snoRNA U17 regulates cellular cholesterol trafficking. Cell Metab 2015; 21:855-67. [PMID: 25980348 PMCID: PMC4456254 DOI: 10.1016/j.cmet.2015.04.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 02/19/2015] [Accepted: 04/05/2015] [Indexed: 12/31/2022]
Abstract
Cholesterol is required for the growth and viability of mammalian cells and is an obligate precursor for steroid hormone synthesis. Using a loss-of-function screen for mutants with defects in intracellular cholesterol trafficking, a Chinese hamster ovary cell mutant with haploinsufficiency of the U17 snoRNA was isolated. U17 is an H/ACA orphan snoRNA, for which a function other than ribosomal processing has not previously been identified. Through expression profiling, we identified hypoxia-upregulated mitochondrial movement regulator (HUMMR) mRNA as a target that is negatively regulated by U17 snoRNA. Upregulation of HUMMR in U17 snoRNA-deficient cells promoted the formation of ER-mitochondrial contacts, decreasing esterification of cholesterol and facilitating cholesterol trafficking to mitochondria. U17 snoRNA and HUMMR regulate mitochondrial synthesis of steroids in vivo and are developmentally regulated in steroidogenic tissues, suggesting that the U17 snoRNA-HUMMR pathway may serve a previously unrecognized, physiological role in gonadal tissue maturation.
Collapse
Affiliation(s)
- Sarah Jinn
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Katrina A Brandis
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Aileen Ren
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Anita Chacko
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Nicole Dudley-Rucker
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Sarah E Gale
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Rohini Sidhu
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Hideji Fujiwara
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Hui Jiang
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Brett N Olsen
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Jean E Schaffer
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
117
|
Angrisani A, Tafer H, Stadler PF, Furia M. Developmentally regulated expression and expression strategies of Drosophila snoRNAs. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 61:69-78. [PMID: 25641266 DOI: 10.1016/j.ibmb.2015.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 06/04/2023]
Abstract
Small nucleolar RNAs constitute a significant portion of the eukaryotic small ncRNA transcriptome and guide site-specific methylation or pseudouridylation of target RNAs. In addition, they can play diverse regulatory roles on gene expression, acting as precursors of smaller fragments able to modulate alternative splicing or operate as microRNAs. Defining their expression strategies and the full repertory of their biological functions is a critical, but still ongoing, process in most organisms. Considering that Drosophila melanogaster is one of the most advantageous model organism for genetic, functional and developmental studies, we analysed the whole genomic organization of its annotated snoRNAs - whose vast majority is known to be embedded in an intronic context - and show by GO term enrichment analysis that protein-coding genes involved in cell division and cytoskeleton organization are those mostly preferred as hosts. This finding was unexpected, and delineates an unpredicted link between snoRNA host genes and cell proliferation that might be of general relevance. We also defined by quantitative RT-PCR the expression of a representative subset of annotated specimens throughout the life cycle, providing a first overview on developmental profiling of the fly snoRNA transcriptome. We found that most of the tested specimens, rather than acting as housekeeping genes with uniform expression, exhibit dynamic developmental expression patterns; moreover, intronic snoRNAs harboured by the same host gene often exhibit distinct temporal profiles, indicating that they can be expressed uncoordinatedly. In addition to provide an updated outline of the fly snoRNA transcriptome, our data highlight that expression of these versatile ncRNAs can be finely regulated.
Collapse
Affiliation(s)
- Alberto Angrisani
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo, via Cinthia, 80126 Napoli, Italy
| | - Hakim Tafer
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | - Maria Furia
- Department of Biology, University of Naples "Federico II", Complesso Universitario Monte Santangelo, via Cinthia, 80126 Napoli, Italy.
| |
Collapse
|
118
|
Impaired Telomere Maintenance and Decreased Canonical WNT Signaling but Normal Ribosome Biogenesis in Induced Pluripotent Stem Cells from X-Linked Dyskeratosis Congenita Patients. PLoS One 2015; 10:e0127414. [PMID: 25992652 PMCID: PMC4436374 DOI: 10.1371/journal.pone.0127414] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/14/2015] [Indexed: 11/19/2022] Open
Abstract
Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome characterized by the presence of short telomeres at presentation. Mutations in ten different genes, whose products are involved in the telomere maintenance pathway, have been shown to cause DC. The X-linked form is the most common form of the disease and is caused by mutations in the gene DKC1, encoding the protein dyskerin. Dyskerin is required for the assembly and stability of telomerase and is also involved in ribosomal RNA (rRNA) processing where it converts specific uridines to pseudouridine. DC is thought to result from failure to maintain tissues, like blood, that are renewed by stem cell activity, but research into pathogenic mechanisms has been hampered by the difficulty of obtaining stem cells from patients. We reasoned that induced pluripotent stem (iPS) cells from X-linked DC patients may provide information about the mechanisms involved. Here we describe the production of iPS cells from DC patients with DKC1 mutations Q31E, A353V and ΔL37. In addition we constructed “corrected” lines with a copy of the wild type dyskerin cDNA expressed from the AAVS1 safe harbor locus. We show that in iPS cells with DKC1 mutations telomere maintenance is compromised with short telomere lengths and decreased telomerase activity. The degree to which telomere lengths are affected by expression of telomerase during reprograming, or with ectopic expression of wild type dyskerin, is variable. The recurrent mutation A353V shows the most severe effect on telomere maintenance. A353V cells but not Q31E or ΔL37 cells, are refractory to correction by expression of wild type DKC1 cDNA. Because dyskerin is involved in both telomere maintenance and ribosome biogenesis it has been postulated that defective ribosome biogenesis and translation may contribute to the disease phenotype. Evidence from mouse and zebra fish models has supported the involvement of ribosome biogenesis but primary cells from human patients have so far not shown defects in pseudouridylation or ribosomal RNA processing. None of the mutant iPS cells presented here show decreased pseudouridine levels in rRNA or defective rRNA processing suggesting telomere maintenance defects account for most of the phenotype of X-linked DC. Finally gene expression analysis of the iPS cells shows that WNT signaling is significantly decreased in all mutant cells, raising the possibility that defective WNT signaling may contribute to disease pathogenesis.
Collapse
|
119
|
Glousker G, Touzot F, Revy P, Tzfati Y, Savage SA. Unraveling the pathogenesis of Hoyeraal-Hreidarsson syndrome, a complex telomere biology disorder. Br J Haematol 2015; 170:457-71. [PMID: 25940403 DOI: 10.1111/bjh.13442] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hoyeraal-Hreidarsson (HH) syndrome is a multisystem genetic disorder characterized by very short telomeres and considered a clinically severe variant of dyskeratosis congenita. The main cause of mortality, usually in early childhood, is bone marrow failure. Mutations in several telomere biology genes have been reported to cause HH in about 60% of the HH patients, but the genetic defects in the rest of the patients are still unknown. Understanding the aetiology of HH and its diverse manifestations is challenging because of the complexity of telomere biology and the multiple telomeric and non-telomeric functions played by telomere-associated proteins in processes such as telomere replication, telomere protection, DNA damage response and ribosome and spliceosome assembly. Here we review the known clinical complications, molecular defects and germline mutations associated with HH, and elucidate possible mechanistic explanations and remaining questions in our understanding of the disease.
Collapse
Affiliation(s)
- Galina Glousker
- Department of Genetics, The Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Fabien Touzot
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
120
|
Saliou JM, Manival X, Tillault AS, Atmanene C, Bobo C, Branlant C, Van Dorsselaer A, Charpentier B, Cianférani S. Combining native MS approaches to decipher archaeal box H/ACA ribonucleoprotein particle structure and activity. Proteomics 2015; 15:2851-61. [DOI: 10.1002/pmic.201400529] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 02/06/2015] [Accepted: 02/24/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Jean-Michel Saliou
- BioOrganic Mass Spectrometry Laboratory (LSMBO); IPHC; Université de Strasbourg; Strasbourg France
- IPHC; CNRS UMR 7178; Strasbourg France
| | - Xavier Manival
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA); UMR 7365 CNRS Université de Lorraine; Biopôle Vandœuvre-lès-Nancy France
| | - Anne-Sophie Tillault
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA); UMR 7365 CNRS Université de Lorraine; Biopôle Vandœuvre-lès-Nancy France
| | - Cédric Atmanene
- BioOrganic Mass Spectrometry Laboratory (LSMBO); IPHC; Université de Strasbourg; Strasbourg France
- IPHC; CNRS UMR 7178; Strasbourg France
| | - Claude Bobo
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA); UMR 7365 CNRS Université de Lorraine; Biopôle Vandœuvre-lès-Nancy France
| | - Christiane Branlant
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA); UMR 7365 CNRS Université de Lorraine; Biopôle Vandœuvre-lès-Nancy France
| | - Alain Van Dorsselaer
- BioOrganic Mass Spectrometry Laboratory (LSMBO); IPHC; Université de Strasbourg; Strasbourg France
- IPHC; CNRS UMR 7178; Strasbourg France
| | - Bruno Charpentier
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA); UMR 7365 CNRS Université de Lorraine; Biopôle Vandœuvre-lès-Nancy France
| | - Sarah Cianférani
- BioOrganic Mass Spectrometry Laboratory (LSMBO); IPHC; Université de Strasbourg; Strasbourg France
- IPHC; CNRS UMR 7178; Strasbourg France
| |
Collapse
|
121
|
RNA size is a critical factor for U-containing substrate selectivity and permanent pseudouridylated product release during the RNA:Ψ-synthase reaction catalyzed by box H/ACA sRNP enzyme at high temperature. Biochimie 2015; 113:134-42. [PMID: 25896443 DOI: 10.1016/j.biochi.2015.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/09/2015] [Indexed: 11/22/2022]
Abstract
The box H/ACA small ribonucleoprotein particles (H/ACA sRNPs) are RNP enzymes that isomerize uridines (U) into pseudouridines (Ψ) in archaeal RNAs. The RNA component acts as a guide by forming base-pair interactions with the substrate RNA to specify the target nucleotide of the modification to the catalytic subunit Cbf5. Here, we have analyzed association of an H/ACA sRNP enzyme from the hyperthermophilic archaeon Pyrococcus abyssi with synthetic substrate RNAs of different length and with target nucleotide variants, and estimated their turnover at high temperature. In these conditions, we found that a short substrate, which length is restricted to the interaction with RNA guide sequence, has higher turnover rate. However, the longer substrate with additional 5' and 3' sequences non-complementary to the guide RNA is better discriminated by the U to Ψ conversion allowing the RNP enzyme to distinguish the modified product from the substrate. In addition, we identified that the conserved residue Y179 in the catalytic center of Cbf5 is crucial for substrate selectivity.
Collapse
|
122
|
Singh M, Wang Z, Cascio D, Feigon J. Structure and interactions of the CS domain of human H/ACA RNP assembly protein Shq1. J Mol Biol 2015; 427:807-823. [PMID: 25553844 PMCID: PMC4323627 DOI: 10.1016/j.jmb.2014.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/13/2014] [Accepted: 12/16/2014] [Indexed: 12/27/2022]
Abstract
Shq1 is an essential protein involved in the early steps of biogenesis and assembly of H/ACA ribonucleoprotein particles (RNPs). Shq1 binds to dyskerin (Cbf5 in yeast) at an early step of H/ACA RNP assembly and is subsequently displaced by the H/ACA RNA. Shq1 contains an N-terminal CS and a C-terminal Shq1-specific domain (SSD). Dyskerin harbors many mutations associated with dyskeratosis congenita. Structures of yeast Shq1 SSD bound to Cbf5 revealed that only a subset of these mutations is in the SSD binding site, implicating another subset in the putative CS binding site. Here, we present the crystal structure of human Shq1 CS (hCS) and the nuclear magnetic resonance (NMR) and crystal structures of hCS containing a serine substitution for proline 22 that is associated with some prostate cancers. The structure of hCS is similar to yeast Shq1 CS domain (yCS) and consists of two β-sheets that form an immunoglobulin-like β-sandwich fold. The N-terminal affinity tag sequence AHHHHHH associates with a neighboring protein in the crystal lattice to form an extra β-strand. Deletion of this tag was required to get spectra suitable for NMR structure determination, while the tag was required for crystallization. NMR chemical shift perturbation (CSP) experiments with peptides derived from putative CS binding sites on dyskerin and Cbf5 revealed a conserved surface on CS important for Cbf5/dyskerin binding. A HADDOCK (high-ambiguity-driven protein-protein docking) model of a Shq1-Cbf5 complex that defines the position of CS domain in the pre-H/ACA RNP was calculated using the CSP data.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Zhonghua Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Duilio Cascio
- University of California Los Angeles-Department of Energy (UCLA-DOE) Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; University of California Los Angeles-Department of Energy (UCLA-DOE) Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
123
|
Cerrudo CS, Mengual Gómez DL, Gómez DE, Ghiringhelli PD. Novel insights into the evolution and structural characterization of dyskerin using comprehensive bioinformatics analysis. J Proteome Res 2015; 14:874-87. [PMID: 25540932 DOI: 10.1021/pr500956k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dyskerin is a conserved nucleolar protein. Several related genetic diseases are caused by defects in dyskerin. We hypothesized that having a comprehensive bioinformatic analysis of dyskerin will help to develop new drugs for this diseases. We predicted protein domains and compared sequences and structures to detect the universe of dyskerin-like proteins. We identified conserved features of shared domains in the three superkingdoms. We analyzed the phylogenetic diversity, confirming that there is a strong structural conservation. Also, we studied the relationship of dyskerin-like proteins with other proteins through an integrative protein-protein interaction approach. Most of them are conserved among homologous eukaryotic and archaeal proteins. Our results highlighted the preservation of proteins interacting with dyskerin. We identified conserved dyskerin interactor proteins between the different eukaryotes organisms. Furthermore, we studied the existence of dyskerin-like proteins in different species. Also, we compared and analyzed the secondary structure with the hydrophobic profile, confirming that all have hydrophilic properties highly conserved among proteins. The greatest difference was observed in the NTE and CTE regions. Another aspect studied was the comparison and analysis of tertiary structures. In our knowledge, this is the first time that these analyses were performed in such a comprehensive manner.
Collapse
Affiliation(s)
- Carolina Susana Cerrudo
- Laboratory of Genetic Engineering and Cellular and Molecular Biology, Department of Science and Technology, Quilmes National University , Roque Saenz Peña 352, 1876 Bernal, Buenos Aires, Argentine
| | | | | | | |
Collapse
|
124
|
|
125
|
Zhu X. Current insights into the diagnosis and treatment of inherited bone marrow failure syndromes in China. Stem Cell Investig 2015; 2:15. [PMID: 27358883 DOI: 10.3978/j.issn.2306-9759.2015.07.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 07/16/2015] [Indexed: 11/14/2022]
Abstract
Inherited bone marrow failure syndromes (IBMFs) account for 20% of pediatric BMFs. Although recommendations for the diagnosis and treatment of IBMFs in China have been published recently, improvements are still needed in making precise diagnoses and properly treating pediatric patients with IBMFs. This review provides current insights into IBMFs in China. The data of our single institution data showed that pediatric patients with IBMFs accounted for 7.4% of BMFs. However, the number of reported cases with IBMFs may be underestimated than the actual morbidity in China because of limitations in the detection approaches and lacking of awareness of these diseases in local hospitals. Although patients with IBMFs are candidates for bone marrow transplantation or gene therapy, their phenotypic heterogeneity can delay or incompetent diagnosis. The golden standard test for Fanconi anemia is the chromosome breakage test, but it can be completed by few hospital and diagnostic companies in China. In addition, there are still no consistent standardized testing methods for other rare IBMFs. Recently, the combined application of targeted capture and next-generation sequencing (NGS) provides and accurate and efficient diagnostic method for IBMFs.
Collapse
Affiliation(s)
- Xiaofan Zhu
- Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
126
|
Fong YW, Ho JJ, Inouye C, Tjian R. The dyskerin ribonucleoprotein complex as an OCT4/SOX2 coactivator in embryonic stem cells. eLife 2014; 3. [PMID: 25407680 PMCID: PMC4270071 DOI: 10.7554/elife.03573] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 11/19/2014] [Indexed: 01/06/2023] Open
Abstract
Acquisition of pluripotency is driven largely at the transcriptional level by activators OCT4, SOX2, and NANOG that must in turn cooperate with diverse coactivators to execute stem cell-specific gene expression programs. Using a biochemically defined in vitro transcription system that mediates OCT4/SOX2 and coactivator-dependent transcription of the Nanog gene, we report the purification and identification of the dyskerin (DKC1) ribonucleoprotein complex as an OCT4/SOX2 coactivator whose activity appears to be modulated by a subset of associated small nucleolar RNAs (snoRNAs). The DKC1 complex occupies enhancers and regulates the expression of key pluripotency genes critical for self-renewal in embryonic stem (ES) cells. Depletion of DKC1 in fibroblasts significantly decreased the efficiency of induced pluripotent stem (iPS) cell generation. This study thus reveals an unanticipated transcriptional role of the DKC1 complex in stem cell maintenance and somatic cell reprogramming. DOI:http://dx.doi.org/10.7554/eLife.03573.001 The stem cells found in an embryo are able to develop into any of the cell types found in the body of the animal: an ability called pluripotency. When a cell becomes a specialized cell type, such as a nerve cell or a muscle cell, it loses this ability. However, mature cells can be reprogrammed back to a pluripotent state by artificially introducing certain proteins (known as ‘reprogramming factors’) into the mature cells. A core group of reprogramming factors are known to activate networks of genes that are normally only expressed in stem cells, and by doing so trigger and maintain a pluripotent state. Other proteins help these core factors to regulate these networks of genes. In 2011, researchers discovered that a protein complex called XPC—which is normally involved in DNA repair—also helps two core reprogramming factors to activate an important gene related to pluripotency. Now, Fong et al., including several of the researchers involved in the 2011 work, have identified another unexpected partner for the same two core reprogramming factors. The protein complex, called DKC1, has a number of known functions related to the processing of RNA molecules. This complex has also been linked to a fatal, rare human disorder called dyskeratosis congenita—a condition that affects many parts of the body, including the skin and bone marrow. Fong et al. found that when embryonic stems cells from mice are depleted of the DKC1 complex, the activation of important pluripotency-related genes by two of the core reprogramming factors is markedly reduced. The XPC and DKC1 protein complexes were found to interact in pluripotent cells, and together they can activate a pluripotency-related gene to a greater extent than either can individually. Fong et al. propose that DKC1 binds to XPC, which in turn binds to two of the core reprogramming factors. The DKC1 complex also binds to RNA molecules, and Fong et al. found that when the DKC1 complex binds to certain RNAs it is more able to help reprogramming factors activate pluripotency-related genes. On the other hand, other RNA molecules seem to inhibit the complex's ability to activate these genes. Mutations identified in people with dyskeratosis congenita can prevent the DKC1 complex from binding to a subset of human RNA molecules. Moreover, the activity of stem cells is impaired in people with this developmental condition. As such, one of the next challenges will be to investigate if these mutations and RNA binding could be linked to problems with the activation of genes related to pluripotency in stem cells. DOI:http://dx.doi.org/10.7554/eLife.03573.002
Collapse
Affiliation(s)
- Yick W Fong
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Jaclyn J Ho
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Carla Inouye
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Robert Tjian
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
127
|
Bizarro J, Charron C, Boulon S, Westman B, Pradet-Balade B, Vandermoere F, Chagot ME, Hallais M, Ahmad Y, Leonhardt H, Lamond A, Manival X, Branlant C, Charpentier B, Verheggen C, Bertrand E. Proteomic and 3D structure analyses highlight the C/D box snoRNP assembly mechanism and its control. ACTA ACUST UNITED AC 2014; 207:463-80. [PMID: 25404746 PMCID: PMC4242836 DOI: 10.1083/jcb.201404160] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
During small nucleolar ribonucleoprotein complex assembly, a pre-snoRNP complex consisting only of protein components forms first, followed by displacement of the ZNHIT3 subunit when C/D snoRNAs bind and dynamic loading and unloading of RuvBL AAA+ ATPases. In vitro, assembly of box C/D small nucleolar ribonucleoproteins (snoRNPs) involves the sequential recruitment of core proteins to snoRNAs. In vivo, however, assembly factors are required (NUFIP, BCD1, and the HSP90–R2TP complex), and it is unknown whether a similar sequential scheme applies. In this paper, we describe systematic quantitative stable isotope labeling by amino acids in cell culture proteomic experiments and the crystal structure of the core protein Snu13p/15.5K bound to a fragment of the assembly factor Rsa1p/NUFIP. This revealed several unexpected features: (a) the existence of a protein-only pre-snoRNP complex containing five assembly factors and two core proteins, 15.5K and Nop58; (b) the characterization of ZNHIT3, which is present in the protein-only complex but gets released upon binding to C/D snoRNAs; (c) the dynamics of the R2TP complex, which appears to load/unload RuvBL AAA+ adenosine triphosphatase from pre-snoRNPs; and (d) a potential mechanism for preventing premature activation of snoRNP catalytic activity. These data provide a framework for understanding the assembly of box C/D snoRNPs.
Collapse
Affiliation(s)
- Jonathan Bizarro
- Equipe labellisée Ligue contre le Cancer, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5535, Institut de Génétique Moléculaire de Montpellier, 34293 Montpellier, Cedex 5, France
| | - Christophe Charron
- Ingénierie Moléculaire et Physiopathologie Articulaire, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7365, Université de Lorraine, Biopôle de l'Université de Lorraine, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Séverine Boulon
- Centre de Recherches de Biochimie Macromoléculaire, Unité Mixte de Recherche 5237, 34293 Montpellier, Cedex 5, France
| | - Belinda Westman
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Bérengère Pradet-Balade
- Equipe labellisée Ligue contre le Cancer, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5535, Institut de Génétique Moléculaire de Montpellier, 34293 Montpellier, Cedex 5, France
| | - Franck Vandermoere
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France Institut National de la Santé et de la Recherche Médicale, U661, F-34000 Montpellier, France Unité Mixte de Recherche 5203, Université de Montpellier 1 and Université de Montpellier 2, F-34000 Montpellier, France
| | - Marie-Eve Chagot
- Ingénierie Moléculaire et Physiopathologie Articulaire, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7365, Université de Lorraine, Biopôle de l'Université de Lorraine, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Marie Hallais
- Equipe labellisée Ligue contre le Cancer, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5535, Institut de Génétique Moléculaire de Montpellier, 34293 Montpellier, Cedex 5, France
| | - Yasmeen Ahmad
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Heinrich Leonhardt
- Munich Center for Integrated Protein Science (CiPS) and Department of Biology, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany Munich Center for Integrated Protein Science (CiPS) and Department of Biology, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Angus Lamond
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Xavier Manival
- Ingénierie Moléculaire et Physiopathologie Articulaire, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7365, Université de Lorraine, Biopôle de l'Université de Lorraine, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Christiane Branlant
- Ingénierie Moléculaire et Physiopathologie Articulaire, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7365, Université de Lorraine, Biopôle de l'Université de Lorraine, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Bruno Charpentier
- Ingénierie Moléculaire et Physiopathologie Articulaire, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7365, Université de Lorraine, Biopôle de l'Université de Lorraine, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Céline Verheggen
- Equipe labellisée Ligue contre le Cancer, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5535, Institut de Génétique Moléculaire de Montpellier, 34293 Montpellier, Cedex 5, France
| | - Edouard Bertrand
- Equipe labellisée Ligue contre le Cancer, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5535, Institut de Génétique Moléculaire de Montpellier, 34293 Montpellier, Cedex 5, France
| |
Collapse
|
128
|
Ruggero D, Shimamura A. Marrow failure: a window into ribosome biology. Blood 2014; 124:2784-92. [PMID: 25237201 PMCID: PMC4215310 DOI: 10.1182/blood-2014-04-526301] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/27/2014] [Indexed: 12/16/2022] Open
Abstract
Diamond-Blackfan anemia, Shwachman-Diamond syndrome, and dyskeratosis congenita are inherited syndromes characterized by marrow failure, congenital anomalies, and cancer predisposition. Genetic and molecular studies have uncovered distinct abnormalities in ribosome biogenesis underlying each of these 3 disorders. How defects in ribosomes, the essential organelles required for protein biosynthesis in all cells, cause tissue-specific abnormalities in human disease remains a question of fundamental scientific and medical importance. Here we review the overlapping and distinct clinical features of these 3 syndromes and discuss current knowledge regarding the ribosomal pathways disrupted in each of these disorders. We also explore the increasing complexity of ribosome biology and how this informs our understanding of developmental biology and human disease.
Collapse
Affiliation(s)
- Davide Ruggero
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Akiko Shimamura
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; Pediatric Hematology/Oncology, Seattle Children's Hospital, Seattle, WA; and Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
129
|
Bai B, Yegnasubramanian S, Wheelan SJ, Laiho M. RNA-Seq of the nucleolus reveals abundant SNORD44-derived small RNAs. PLoS One 2014; 9:e107519. [PMID: 25203660 PMCID: PMC4159348 DOI: 10.1371/journal.pone.0107519] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/18/2014] [Indexed: 01/21/2023] Open
Abstract
Small non-coding RNAs represent RNA species that are not translated to proteins, but which have diverse and broad functional activities in physiological and pathophysiological states. The knowledge of these small RNAs is rapidly expanding in part through the use of massive parallel (deep) sequencing efforts. We present here the first deep sequencing of small RNomes in subcellular compartments with particular emphasis on small RNAs (sRNA) associated with the nucleolus. The vast majority of the cellular, cytoplasmic and nuclear sRNAs were identified as miRNAs. In contrast, the nucleolar sRNAs had a unique size distribution consisting of 19-20 and 25 nt RNAs, which were predominantly composed of small snoRNA-derived box C/D RNAs (termed as sdRNA). Sequences from 47 sdRNAs were identified, which mapped to both 5' and 3' ends of the snoRNAs, and retained conserved box C or D motifs. SdRNA reads mapping to SNORD44 comprised 74% of all nucleolar sdRNAs, and were confirmed by Northern blotting as comprising both 20 and 25 nt RNAs. A novel 120 nt SNORD44 form was also identified. The expression of the SNORD44 sdRNA and 120 nt form was independent of Dicer/Drosha-mediated processing pathways but was dependent on the box C/D snoRNP proteins/sno-ribonucleoproteins fibrillarin and NOP58. The 120 nt SNORD44-derived RNA bound to fibrillarin suggesting that C/D sno-ribonucleoproteins are involved in regulating the stability or processing of SNORD44. This study reveals sRNA cell-compartment specific expression and the distinctive unique composition of the nucleolar sRNAs.
Collapse
Affiliation(s)
- Baoyan Bai
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sarah J. Wheelan
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Marikki Laiho
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
130
|
Rothé B, Saliou JM, Quinternet M, Back R, Tiotiu D, Jacquemin C, Loegler C, Schlotter F, Peña V, Eckert K, Moréra S, Dorsselaer AV, Branlant C, Massenet S, Sanglier-Cianférani S, Manival X, Charpentier B. Protein Hit1, a novel box C/D snoRNP assembly factor, controls cellular concentration of the scaffolding protein Rsa1 by direct interaction. Nucleic Acids Res 2014; 42:10731-47. [PMID: 25170085 PMCID: PMC4176330 DOI: 10.1093/nar/gku612] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 01/09/2023] Open
Abstract
Biogenesis of eukaryotic box C/D small nucleolar ribonucleoprotein particles (C/D snoRNPs) involves conserved trans-acting factors, which are proposed to facilitate the assembly of the core proteins Snu13p/15.5K, Nop58p/NOP58, Nop56p/NOP56 and Nop1p/Fibrillarin on box C/D small nucleolar RNAs (C/D snoRNAs). In yeast, protein Rsa1 acts as a platform, interacting with both the RNA-binding core protein Snu13 and protein Pih1 of the Hsp82-R2TP chaperone complex. In this work, a proteomic approach coupled with functional and structural studies identifies protein Hit1 as a novel Rsa1p-interacting partner involved in C/D snoRNP assembly. Hit1p contributes to in vivo C/D snoRNA stability and pre-RNA maturation kinetics. It associates with U3 snoRNA precursors and influences its 3'-end processing. Remarkably, Hit1p is required to maintain steady-state levels of Rsa1p. This stabilizing activity is likely to be general across eukaryotic species, as the human protein ZNHIT3(TRIP3) showing sequence homology with Hit1p regulates the abundance of NUFIP1, the Rsa1p functional homolog. The nuclear magnetic resonance solution structure of the Rsa1p317-352-Hit1p70-164 complex reveals a novel mode of protein-protein association explaining the strong stability of the Rsa1p-Hit1p complex. Our biochemical data show that C/D snoRNAs and the core protein Nop58 can interact with the purified Snu13p-Rsa1p-Hit1p heterotrimer.
Collapse
Affiliation(s)
- Benjamin Rothé
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Jean-Michel Saliou
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg. CNRS, UMR 7178, 25 rue Becquerel, 67087 Strasbourg, France
| | - Marc Quinternet
- FR CNRS-3209 Bioingénierie Moléculaire, Cellulaire et Thérapeutique (BMCT), CNRS, Université de Lorraine, Biopôle, Campus Biologie Santé, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Régis Back
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Decebal Tiotiu
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Clémence Jacquemin
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Christine Loegler
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Florence Schlotter
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Vlad Peña
- Max-Planck-Institut für biophysikalische Chemie, Abtl. Röntgenkristallographie, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kelvin Eckert
- Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), CNRS, 1 Avenue de Terrasse, 91198 Gif-sur Yvette, France
| | - Solange Moréra
- Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), CNRS, 1 Avenue de Terrasse, 91198 Gif-sur Yvette, France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg. CNRS, UMR 7178, 25 rue Becquerel, 67087 Strasbourg, France
| | - Christiane Branlant
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Séverine Massenet
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Sarah Sanglier-Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg. CNRS, UMR 7178, 25 rue Becquerel, 67087 Strasbourg, France
| | - Xavier Manival
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Bruno Charpentier
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
131
|
McErlean P, Favoreto S, Costa FF, Shen J, Quraishi J, Biyasheva A, Cooper JJ, Scholtens DM, Vanin EF, de Bonaldo MF, Xie H, Soares MB, Avila PC. Human rhinovirus infection causes different DNA methylation changes in nasal epithelial cells from healthy and asthmatic subjects. BMC Med Genomics 2014; 7:37. [PMID: 24947756 PMCID: PMC4080608 DOI: 10.1186/1755-8794-7-37] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/18/2014] [Indexed: 01/15/2023] Open
Abstract
Background Mechanisms underlying the development of virus-induced asthma exacerbations remain unclear. To investigate if epigenetic mechanisms could be involved in virus-induced asthma exacerbations, we undertook DNA methylation profiling in asthmatic and healthy nasal epithelial cells (NECs) during Human Rhinovirus (HRV) infection in vitro. Methods Global and loci-specific methylation profiles were determined via Alu element and Infinium Human Methylation 450 K microarray, respectively. Principal components analysis identified the genomic loci influenced the most by disease-status and infection. Real-time PCR and pyrosequencing were used to confirm gene expression and DNA methylation, respectively. Results HRV infection significantly increased global DNA methylation in cells from asthmatic subjects only (43.6% to 44.1%, p = 0.04). Microarray analysis revealed 389 differentially methylated loci either based on disease status, or caused by virus infection. There were disease-associated DNA methylation patterns that were not affected by HRV infection as well as HRV-induced DNA methylation changes that were unique to each group. A common methylation locus stood out in response to HRV infection in both groups, where the small nucleolar RNA, H/ACA box 12 (SNORA12) is located. Further analysis indicated that a relationship existed between SNORA12 DNA methylation and gene expression in response to HRV infection. Conclusions We describe for the first time that Human rhinovirus infection causes DNA methylation changes in airway epithelial cells that differ between asthmatic and healthy subjects. These epigenetic differences may possibly explain the mechanism by which respiratory viruses cause asthma exacerbations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Pedro C Avila
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
132
|
Marnef A, Richard P, Pinzón N, Kiss T. Targeting vertebrate intron-encoded box C/D 2'-O-methylation guide RNAs into the Cajal body. Nucleic Acids Res 2014; 42:6616-29. [PMID: 24753405 PMCID: PMC4041459 DOI: 10.1093/nar/gku287] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 03/26/2014] [Accepted: 03/26/2014] [Indexed: 02/03/2023] Open
Abstract
Post-transcriptional pseudouridylation and 2'-O-methylation of splicesomal small nuclear ribonucleic acids (snRNAs) is mediated by box H/ACA and box C/D small Cajal body (CB)-specific ribonucleoproteins (scaRNPs), respectively. The WD-repeat protein 79 (WDR79) has been proposed to interact with both classes of modification scaRNPs and target them into the CB. The box H/ACA scaRNAs carry the common CAB box motif (consensus, ugAG) that is required for both WDR79 binding and CB-specific accumulation. Thus far, no cis-acting CB-localization element has been reported for vertebrate box C/D scaRNAs. In this study, systematic mutational analysis of the human U90 and another newly identified box C/D scaRNA, mgU2-47, demonstrated that the CB-specific accumulation of vertebrate intron-encoded box C/D scaRNAs relies on GU- or UG-dominated dinucleotide repeat sequences which are predicted to form the terminal stem-loop of the RNA apical hairpin. While the loop nucleotides are unimportant, the adjacent terminal helix that is composed mostly of consecutive G.U and U.G wobble base-pairs is essential for CB-specific localization of box C/D scaRNAs. Co-immunoprecipitation experiments confirmed that the newly identified CB localization element, called the G.U/U.G wobble stem, is crucial for in vivo association of box C/D scaRNPs with WDR79.
Collapse
Affiliation(s)
- Aline Marnef
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Patrica Richard
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Natalia Pinzón
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Tamás Kiss
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
133
|
Chen YL, Capeyrou R, Humbert O, Mouffok S, Kadri YA, Lebaron S, Henras AK, Henry Y. The telomerase inhibitor Gno1p/PINX1 activates the helicase Prp43p during ribosome biogenesis. Nucleic Acids Res 2014; 42:7330-45. [PMID: 24823796 PMCID: PMC4066782 DOI: 10.1093/nar/gku357] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We provide evidence that a central player in ribosome synthesis, the ribonucleic acid helicase Prp43p, can be activated by yeast Gno1p and its human ortholog, the telomerase inhibitor PINX1. Gno1p and PINX1 expressed in yeast interact with Prp43p and the integrity of their G-patch domain is required for this interaction. Moreover, PINX1 interacts with human PRP43 (DHX15) in HeLa cells. PINX1 directly binds to yeast Prp43p and stimulates its adenosine triphosphatase activity, while alterations of the G patch abolish formation of the PINX1/Prp43p complex and the stimulation of Prp43p. In yeast, lack of Gno1p leads to a decrease in the levels of pre-40S and intermediate pre-60S pre-ribosomal particles, defects that can be corrected by PINX1 expression. We show that Gno1p associates with 90S and early pre-60S pre-ribosomal particles and is released from intermediate pre-60S particles. G-patch alterations in Gno1p or PINX1 that inhibit their interactions with Prp43p completely abolish their function in yeast ribosome biogenesis. Altogether, our results suggest that activation of Prp43p by Gno1p/PINX1 within early pre-ribosomal particles is crucial for their subsequent maturation.
Collapse
Affiliation(s)
- Yan-Ling Chen
- Equipe labellisée Ligue Contre le Cancer, LBME, CNRS and Toulouse University, Toulouse 31062, France
| | - Régine Capeyrou
- Equipe labellisée Ligue Contre le Cancer, LBME, CNRS and Toulouse University, Toulouse 31062, France
| | - Odile Humbert
- Equipe labellisée Ligue Contre le Cancer, LBME, CNRS and Toulouse University, Toulouse 31062, France
| | - Saïda Mouffok
- Equipe labellisée Ligue Contre le Cancer, LBME, CNRS and Toulouse University, Toulouse 31062, France
| | - Yasmine Al Kadri
- Equipe labellisée Ligue Contre le Cancer, LBME, CNRS and Toulouse University, Toulouse 31062, France
| | - Simon Lebaron
- Equipe labellisée Ligue Contre le Cancer, LBME, CNRS and Toulouse University, Toulouse 31062, France
| | - Anthony K Henras
- Equipe labellisée Ligue Contre le Cancer, LBME, CNRS and Toulouse University, Toulouse 31062, France
| | - Yves Henry
- Equipe labellisée Ligue Contre le Cancer, LBME, CNRS and Toulouse University, Toulouse 31062, France
| |
Collapse
|
134
|
Small RNA expression and deep sequencing analyses of the nucleolus reveal the presence of nucleolus-associated microRNAs. FEBS Open Bio 2014; 4:441-9. [PMID: 24918059 PMCID: PMC4050192 DOI: 10.1016/j.fob.2014.04.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/04/2014] [Accepted: 04/24/2014] [Indexed: 12/04/2022] Open
Abstract
miRNA expression arrays and RNA Seq were employed for unbiased spatial analyses of miRNAs. Small RNomics of subcellular compartments revealed the presence of miRNAs in the nucleolus. Several miRNAs were detected at low abundance in cancer cell nucleoli. The nucleolar abundance of miR-31 was dependent on CRM1 export factor.
Micro RNAs (miRNA) are non-coding RNAs expressed in the cytoplasm as their mature, 21–22-nucleotide short forms. More recently, mature miRNAs have also been detected in the nucleus, raising the possibility that their spatial distribution may be more complex than anticipated. Here we undertook comprehensive systematic analyses of miRNA distribution in several subcellular compartments of human cancer cells. In particular, we focused on the potential presence of miRNAs in the nucleolus, which contains an abundance of small non-coding RNAs. We employed two miRNA expression array platforms and small RNA deep sequencing of small RNAs isolated from cells, nuclei, cytoplasm and the nucleoli. We developed an assay to compare RNAs of isolated nucleoli before and after denaturation and used Northern hybridization to verify the presence of miRNAs in the subcellular compartments. Consistently, we found more than 10 miRNAs associated with the nucleolar preparations. Several miRNAs had greater relative abundance in the nucleolus compared to the other compartments. The nucleolar presence of miRNAs was independent of Dicer and the main activity of the nucleolus, RNA polymerase I transcription, but was dependent on CRM1 previously associated with nucleolar trafficking of small nucleolar RNAs. These results highlight the complexity of miRNA spatial arrangement and regulation.
Collapse
|
135
|
Abstract
snoRNAs (small nucleolar RNAs) constitute one of the largest and best-studied classes of non-coding RNAs that confer enzymatic specificity. With associated proteins, these snoRNAs form ribonucleoprotein complexes that can direct 2'-O-methylation or pseudouridylation of target non-coding RNAs. Aided by computational methods and high-throughput sequencing, new studies have expanded the diversity of known snoRNA functions. Complexes incorporating snoRNAs have dynamic specificity, and include diverse roles in RNA silencing, telomerase maintenance and regulation of alternative splicing. Evidence that dysregulation of snoRNAs can cause human disease, including cancer, indicates that the full scope of snoRNA roles remains an unfinished story. The diversity in structure, genomic origin and function between snoRNAs found in different complexes and among different phyla illustrates the surprising plasticity of snoRNAs in evolution. The ability of snoRNAs to direct highly specific interactions with other RNAs is a consistent thread in their newly discovered functions. Because they are ubiquitous throughout Eukarya and Archaea, it is likely they were a feature of the last common ancestor of these two domains, placing their origin over two billion years ago. In the present chapter, we focus on recent advances in our understanding of these ancient, but functionally dynamic RNA-processing machines.
Collapse
|
136
|
Rappe U, Schlechter T, Aschoff M, Hotz-Wagenblatt A, Hofmann I. Nuclear ARVCF protein binds splicing factors and contributes to the regulation of alternative splicing. J Biol Chem 2014; 289:12421-34. [PMID: 24644279 DOI: 10.1074/jbc.m113.530717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The armadillo repeat protein ARVCF is a component of adherens junctions. Similar to related proteins, such as p120-catenin and β-catenin, with known signaling functions, localization studies indicate a cytoplasmic and a nuclear pool of ARVCF. We find that ARVCF interacts with different proteins involved in mRNA-processing: the splicing factor SRSF1 (SF2/ASF), the RNA helicase p68 (DDX5), and the heterogeneous nuclear ribonucleoprotein hnRNP H2. All three proteins bind to ARVCF in an RNA-independent manner. Furthermore, ARVCF occurs in large RNA-containing complexes that contain both spliced and unspliced mRNAs of housekeeping genes. By domain analysis, we show that interactions occur via the ARVCF C terminus. Overexpression of ARVCF, p68, SRSF1, and hnRNP H2 induces a significant increase in splicing activity of a reporter mRNA. Upon depletion of ARVCF followed by RNA sequence analysis, several alternatively spliced transcripts are significantly changed. Therefore, we conclude that nuclear ARVCF influences splicing of pre-mRNAs. We hypothesize that ARVCF is involved in alternative splicing, generating proteomic diversity, and its deregulation may contribute to diseased states, such as cancer and neurological disorders.
Collapse
Affiliation(s)
- Ulrike Rappe
- From the Division of Vascular Oncology and Metastasis, German Cancer Research Center, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
137
|
Progress in structural studies of telomerase. Curr Opin Struct Biol 2014; 24:115-24. [PMID: 24508601 DOI: 10.1016/j.sbi.2014.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/01/2014] [Accepted: 01/08/2014] [Indexed: 02/01/2023]
Abstract
Telomerase is the ribonucleoprotein (RNP) reverse transcriptase responsible for synthesizing the 3' ends of linear chromosomes. It plays critical roles in tumorigenesis, cellular aging, and stem cell renewal. The past two years have seen exciting progress in determining telomerase holoenzyme architecture and the structural basis of telomerase activity. Notably, the first electron microscopy structures of telomerase were reported, of the Tetrahymena thermophila telomerase holoenzyme and a human telomerase dimer. In addition to new structures of TERT and TER domains, the first structures of telomerase protein domains beyond TERT, and their complexes with TER or telomeric single-stranded DNA, were reported. Together these studies provide the first glimpse into the organization of the proteins and RNA in the telomerase RNP.
Collapse
|
138
|
Paiva RMA, Calado RT. Telomere dysfunction and hematologic disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 125:133-57. [PMID: 24993701 DOI: 10.1016/b978-0-12-397898-1.00006-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aplastic anemia is a disease in which the hematopoietic stem cell fails to adequately produce peripheral blood cells, causing pancytopenia. In some cases of acquired aplastic anemia and in inherited type of aplastic anemia, dyskeratosis congenita, telomere biology gene mutations and telomere shortening are etiologic. Telomere erosion hampers the ability of hematopoietic stem and progenitor cells to adequately replicate, clinically resulting in bone marrow failure. Additionally, telomerase mutations and short telomeres are genetic risk factors for the development of some hematologic cancers, including myelodysplastic syndrome, acute myeloid leukemia, and chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Raquel M A Paiva
- Department of Internal Medicine, University of São Paulo at Ribeirão Preto School of Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo T Calado
- Department of Internal Medicine, University of São Paulo at Ribeirão Preto School of Medicine, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
139
|
Yu YT, Meier UT. RNA-guided isomerization of uridine to pseudouridine--pseudouridylation. RNA Biol 2014; 11:1483-94. [PMID: 25590339 PMCID: PMC4615163 DOI: 10.4161/15476286.2014.972855] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 09/12/2014] [Indexed: 01/13/2023] Open
Abstract
Box H/ACA ribonucleoproteins (RNPs), each consisting of one unique guide RNA and 4 common core proteins, constitute a family of complex enzymes that catalyze, in an RNA-guided manner, the isomerization of uridines to pseudouridines (Ψs) in RNAs, a reaction known as pseudouridylation. Over the years, box H/ACA RNPs have been extensively studied revealing many important aspects of these RNA modifying machines. In this review, we focus on the composition, structure, and biogenesis of H/ACA RNPs. We explain the mechanism of how this enzyme family recognizes and specifies its target uridine in a substrate RNA. We discuss the substrates of box H/ACA RNPs, focusing on rRNA (rRNA) and spliceosomal small nuclear RNA (snRNA). We describe the modification product Ψ and its contribution to RNA function. Finally, we consider possible mechanisms of the bone marrow failure syndrome dyskeratosis congenita and of prostate and other cancers linked to mutations in H/ACA RNPs.
Collapse
Key Words
- DC, dyskeratosis congenita
- H/ACA
- HH, hoyeraal-hreidarsson syndrome
- PIKK, phosphatidylinositol 3-kinase-related kinase
- PUA, pseudouridylase and archaeosine transglycosylase
- RNA modification
- RNA-guided
- RNP, ribonucleoprotein
- SMN, survival of motor neuron protein
- SSD, SHQ1 specific domain
- U, uridine
- X-DC, X-linked dyskeratosis congenita
- dyskeratosis congenita
- prostate cancer
- pseudouridine
- rRNA
- rRNA, ribosomal RNA
- ribonucleoproteins
- sca, small Cajal body
- snRNA, small nuclear RNA
- sno, small nucleolar
- snoRNA
- snoRNA, small nucleolar RNA
- spliceosomal small nuclear RNA
- tRNA, transfer RNA
- ψ, pseudouridine, 5-ribosyluracil
Collapse
MESH Headings
- Dyskeratosis Congenita/genetics
- Dyskeratosis Congenita/metabolism
- Dyskeratosis Congenita/pathology
- Humans
- Isomerism
- Male
- Mutation
- Nucleic Acid Conformation
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Pseudouridine/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Transfer, Amino Acid-Specific/genetics
- RNA, Transfer, Amino Acid-Specific/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Uridine/metabolism
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Yi-Tao Yu
- University of Rochester Medical Center; Department of Biochemistry and Biophysics; Center for RNA Biology; Rochester, NY USA
| | - U Thomas Meier
- Albert Einstein College of Medicine; Department of Anatomy and Structural Biology; Bronx, NY USA
| |
Collapse
|
140
|
Catalytically active telomerase holoenzyme is assembled in the dense fibrillar component of the nucleolus during S phase. Histochem Cell Biol 2013; 141:137-52. [PMID: 24318571 DOI: 10.1007/s00418-013-1166-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2013] [Indexed: 01/10/2023]
Abstract
The maintenance of human telomeres requires the ribonucleoprotein enzyme telomerase, which is composed of telomerase reverse transcriptase (TERT), telomerase RNA component, and several additional proteins for assembly and activity. Telomere elongation by telomerase in human cancer cells involves multiple steps including telomerase RNA biogenesis, holoenzyme assembly, intranuclear trafficking, and telomerase recruitment to telomeres. Although telomerase has been shown to accumulate in Cajal bodies for association with telomeric chromatin, it is unclear where and how the assembly and trafficking of catalytically active telomerase is regulated in the context of nuclear architecture. Here, we show that the catalytically active holoenzyme is initially assembled in the dense fibrillar component of the nucleolus during S phase. The telomerase RNP is retained in nucleoli through the interaction of hTERT with nucleolin, a major nucleolar phosphoprotein. Upon association with TCAB1 in S phase, the telomerase RNP is transported from nucleoli to Cajal bodies, suggesting that TCAB1 acts as an S-phase-specific holoenzyme component. Furthermore, depletion of TCAB1 caused an increase in the amount of telomerase RNP associated with nucleolin. These results suggest that the TCAB1-dependent trafficking of telomerase to Cajal bodies occurs in a step separate from the holoenzyme assembly in nucleoli. Thus, we propose that the dense fibrillar component is the provider of active telomerase RNP for supporting the continued proliferation of cancer and stem cells.
Collapse
|
141
|
Lu J, Sun M, Ye K. Structural and functional analysis of Utp23, a yeast ribosome synthesis factor with degenerate PIN domain. RNA (NEW YORK, N.Y.) 2013; 19:1815-1824. [PMID: 24152547 PMCID: PMC3860261 DOI: 10.1261/rna.040808.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 09/24/2013] [Indexed: 06/02/2023]
Abstract
During synthesis of yeast ribosome, a large complex, called the 90S pre-ribosome or the small subunit processome, is assembled on the nascent precursor rRNA and mediates early processing of 18S rRNA. The Utp23 protein and snR30 H/ACA snoRNA are two conserved components of 90S pre-ribosomes. Utp23 contains a degenerate PIN nuclease domain followed by a long C-terminal tail and associates specifically with snR30. Here, we report the crystal structure of the Utp23 PIN domain at 2.5-Å resolution. The structure reveals a conserved core fold of PIN domain with degenerate active site residues, a unique CCHC Zn-finger motif, and two terminal extension elements. Functional sites of Utp23 have been examined with conservation analysis, mutagenesis, and in vivo and in vitro assays. Mutations in each of three cysteine ligands of zinc, although not the histidine ligand, were lethal or strongly inhibitory to yeast growth, indicating that the Zn-finger motif is required for Utp23 structure or function. The N-terminal helix extension harbors many highly conserved basic residues that mostly are critical for growth and in vitro RNA-binding activity of Utp23. Deletion of the C-terminal tail, which contains a short functionally important sequence motif, disrupted the interaction of Utp23 with snR30 and perturbed the pre-ribosomal association of Utp23. Our data establish a structural framework for dissecting Utp23 function in the assembly and dynamics of 90S pre-ribosomes.
Collapse
Affiliation(s)
- Jing Lu
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mengyi Sun
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Keqiong Ye
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
142
|
Turano M, Angrisani A, Di Maio N, Furia M. Intron retention: a human DKC1 gene common splicing event. Biochem Cell Biol 2013; 91:506-12. [DOI: 10.1139/bcb-2013-0047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Identification of alternatively spliced transcripts produced by a gene is a crucial step in deciphering the bulk of its biological roles and the overall processes that regulate its activity. By using a combination of bioinformatic and molecular approaches we identified, cloned, and characterized 3 novel alternative splice isoforms derived from human dyskeratosis congenita 1 (hDKC1), an essential human gene causative of the X-linked dyskeratosis congenita disease and involved in multiple functions related to cell growth, proliferation, and telomere maintenance. Expression of the new isoforms, all characterized by intron retention, was confirmed by RT-PCR in a panel of diverse cell lines and normal human tissues, and despite the presence of premature termination codons, was not down-regulated by the mechanism of nonsense-mediated decay. Accumulation of these transcripts fluctuated distinctly in the diverse tissues and during in vitro differentiation of Caco2 cells, suggesting that their ratio may contribute to the gene functional diversity across different cell types. Intriguingly, the structure of one isoform leads to exonize an intronically encoded small nucleolar RNA (snoRNA), highlighting an additional layer of complexity that can contribute to overall gene regulation.
Collapse
Affiliation(s)
- Mimmo Turano
- Dipartimento di Biologia, Complesso Universitario di Monte S. Angelo, Università di Napoli “Federico II”, via Cinthia, 80126 Napoli, Italia
| | - Alberto Angrisani
- Dipartimento di Biologia, Complesso Universitario di Monte S. Angelo, Università di Napoli “Federico II”, via Cinthia, 80126 Napoli, Italia
| | - Nunzia Di Maio
- Dipartimento di Biologia, Complesso Universitario di Monte S. Angelo, Università di Napoli “Federico II”, via Cinthia, 80126 Napoli, Italia
| | - Maria Furia
- Dipartimento di Biologia, Complesso Universitario di Monte S. Angelo, Università di Napoli “Federico II”, via Cinthia, 80126 Napoli, Italia
| |
Collapse
|
143
|
Cerrudo CS, Ghiringhelli PD, Gomez DE. Protein universe containing a PUA RNA-binding domain. FEBS J 2013; 281:74-87. [PMID: 24393395 DOI: 10.1111/febs.12602] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/22/2013] [Accepted: 11/11/2013] [Indexed: 01/18/2023]
Abstract
Here, we review current knowledge about pseudouridine synthase and archaeosine transglycosylase (PUA)-domain-containing proteins to illustrate progress in this field. A methodological analysis of the literature about the topic was carried out, together with a 'qualitative comparative analysis' to give a more comprehensive review. Bioinformatics methods for whole-protein or protein-domain identification are commonly based on pairwise protein sequence comparisons; we added comparison of structures to detect the whole universe of proteins containing the PUA domain. We present an update of proteins having this domain, focusing on the specific proteins present in Homo sapiens (dyskerin, MCT1, Nip7, eIF2D and Nsun6), and explore the existence of these in other species. We also analyze the phylogenetic distribution of the PUA domain in different species and proteins. Finally, we performed a structural comparison of the PUA domain through data mining of structural databases, determining a conserved structural motif, despite the differences in the sequence, even among eukaryotes, archaea and bacteria. All data discussed in this review, both bibliographic and analytical, corroborate the functional importance of the PUA domain in RNA-binding proteins.
Collapse
Affiliation(s)
- Carolina S Cerrudo
- Laboratory of Genetic Engineering and Cellular and Molecular Biology, Quilmes National University, Bernal, Buenos Aires, Argentina
| | | | | |
Collapse
|
144
|
Rothé B, Back R, Quinternet M, Bizarro J, Robert MC, Blaud M, Romier C, Manival X, Charpentier B, Bertrand E, Branlant C. Characterization of the interaction between protein Snu13p/15.5K and the Rsa1p/NUFIP factor and demonstration of its functional importance for snoRNP assembly. Nucleic Acids Res 2013; 42:2015-36. [PMID: 24234454 PMCID: PMC3919607 DOI: 10.1093/nar/gkt1091] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The yeast Snu13p protein and its 15.5K human homolog both bind U4 snRNA and box C/D snoRNAs. They also bind the Rsa1p/NUFIP assembly factor, proposed to scaffold immature snoRNPs and to recruit the Hsp90-R2TP chaperone complex. However, the nature of the Snu13p/15.5K–Rsa1p/NUFIP interaction and its exact role in snoRNP assembly remained to be elucidated. By using biophysical, molecular and imaging approaches, here, we identify residues needed for Snu13p/15.5K–Rsa1p/NUFIP interaction. By NMR structure determination and docking approaches, we built a 3D model of the Snup13p–Rsa1p interface, suggesting that residues R249, R246 and K250 in Rsa1p and E72 and D73 in Snu13p form a network of electrostatic interactions shielded from the solvent by hydrophobic residues from both proteins and that residue W253 of Rsa1p is inserted in a hydrophobic cavity of Snu13p. Individual mutations of residues in yeast demonstrate the functional importance of the predicted interactions for both cell growth and snoRNP formation. Using archaeal box C/D sRNP 3D structures as templates, the association of Snu13p with Rsa1p is predicted to be exclusive of interactions in active snoRNPs. Rsa1p and NUFIP may thus prevent premature activity of pre-snoRNPs, and their removal may be a key step for active snoRNP production.
Collapse
Affiliation(s)
- Benjamin Rothé
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle de l'Université de Lorraine, Campus Biologie Santé, 9 avenue de la forêt de Haye, BP 184, 54505 Vandœuvre-lès-Nancy, France, FR CNRS-3209 (Ingénierie Moléculaire et Thérapeutique), CNRS, Université de Lorraine, Faculté de Médecine, Bâtiment Biopôle, BP 184, 54505 Vandœuvre-lès-Nancy Cedex, France, Equipe labellisée Ligue contre le Cancer, IGMM (Institut de Génétique Moléculaire de Montpellier), Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5535, Montpellier Cedex 5, France and IGBMC (Institut de Génétique et Biologie Moléculaire et Cellulaire), Département de Biologie et Génomique Structurales, Université de Strasbourg, CNRS, INSERM, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Woolford JL, Baserga SJ. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 2013; 195:643-81. [PMID: 24190922 PMCID: PMC3813855 DOI: 10.1534/genetics.113.153197] [Citation(s) in RCA: 588] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/26/2013] [Indexed: 01/09/2023] Open
Abstract
Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes.
Collapse
Affiliation(s)
- John L. Woolford
- Department of Biological Sciences, Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Susan J. Baserga
- Molecular Biophysics and Biochemistry, Genetics and Therapeutic Radiology, Yale University, New Haven, Connecticut 06520-8024
| |
Collapse
|
146
|
snoRNPs Regulate Telomerase Activity in Neuroblastoma and Are Associated with Poor Prognosis. Transl Oncol 2013; 6:447-57. [PMID: 23908688 DOI: 10.1593/tlo.13112] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/03/2013] [Accepted: 04/12/2013] [Indexed: 12/31/2022] Open
Abstract
Amplification of the MYCN oncogene is strongly associated with poor prognosis in neuroblastoma (NB). In addition to MYCN amplification, many studies have focused on identifying patients with a poor prognosis based on gene expression profiling. The majority of prognostic signatures today are comprised of large gene lists limiting their clinical application. In addition, although of prognostic significance, most of these signatures fail to identify cellular processes that can explain their relation to prognosis. Here, we determined prognostically predictive genes in a data set containing 251 NBs. Gene Ontology analysis was performed on significant genes with a positive hazard ratio to search for cellular processes associated with poor prognosis. An enrichment in ribonucleoproteins (RNPs) was found. Genes involved in the stabilization and formation of the central small nucleolar RNP (snoRNP) complex were scrutinized using a backward conditional Cox regression resulting in an snoRNP signature consisting of three genes: DKC1, NHP2, and GAR1. The snoRNP signature significantly and independently predicted prognosis when compared to the established clinical risk factors. Association of snoRNP protein expression and prognosis was confirmed using tissue micro-arrays. Knockdown of snoRNP expression in NB cell lines resulted in reduced telomerase activity and an increase in anaphase bridge frequency. In addition, in patient material, expression of the snoRNP complex was significantly associated with telomerase activity, occurrence of segmental aberrations, and expression-based measurements of chromosomal instability. Together, these results underscore the prognostic value of snoRNP complex expression in NB and suggest a role for snoRNPs in telomere maintenance and genomic stability.
Collapse
|
147
|
Makarova JA, Ivanova SM, Tonevitsky AG, Grigoriev AI. New functions of small nucleolar RNAs. BIOCHEMISTRY (MOSCOW) 2013; 78:638-50. [DOI: 10.1134/s0006297913060096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
148
|
Coy S, Volanakis A, Shah S, Vasiljeva L. The Sm complex is required for the processing of non-coding RNAs by the exosome. PLoS One 2013; 8:e65606. [PMID: 23755256 PMCID: PMC3675052 DOI: 10.1371/journal.pone.0065606] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/27/2013] [Indexed: 12/25/2022] Open
Abstract
A key question in the field of RNA regulation is how some exosome substrates, such as spliceosomal snRNAs and telomerase RNA, evade degradation and are processed into stable, functional RNA molecules. Typical feature of these non-coding RNAs is presence of the Sm complex at the 3′end of the mature RNA molecule. Here, we report that in Saccharomyces cerevisiae presence of intact Sm binding site is required for the exosome-mediated processing of telomerase RNA from a polyadenylated precursor into its mature form and is essential for its function in elongating telomeres. Additionally, we demonstrate that the same pathway is involved in the maturation of snRNAs. Furthermore, the insertion of an Sm binding site into an unstable RNA that is normally completely destroyed by the exosome, leads to its partial stabilization. We also show that telomerase RNA accumulates in Schizosaccharomyces pombe exosome mutants, suggesting a conserved role for the exosome in processing and degradation of telomerase RNA. In summary, our data provide important mechanistic insight into the regulation of exosome dependent RNA processing as well as telomerase RNA biogenesis.
Collapse
Affiliation(s)
- Sarah Coy
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Adam Volanakis
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Sneha Shah
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Lidia Vasiljeva
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
149
|
Kishore S, Gruber AR, Jedlinski DJ, Syed AP, Jorjani H, Zavolan M. Insights into snoRNA biogenesis and processing from PAR-CLIP of snoRNA core proteins and small RNA sequencing. Genome Biol 2013; 14:R45. [PMID: 23706177 PMCID: PMC4053766 DOI: 10.1186/gb-2013-14-5-r45] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/15/2013] [Accepted: 05/26/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent years, a variety of small RNAs derived from other RNAs with well-known functions such as tRNAs and snoRNAs, have been identified. The functional relevance of these RNAs is largely unknown. To gain insight into the complexity of snoRNA processing and the functional relevance of snoRNA-derived small RNAs, we sequence long and short RNAs, small RNAs that co-precipitate with the Argonaute 2 protein and RNA fragments obtained in photoreactive nucleotide-enhanced crosslinking and immunoprecipitation (PAR-CLIP) of core snoRNA-associated proteins. RESULTS Analysis of these data sets reveals that many loci in the human genome reproducibly give rise to C/D box-like snoRNAs, whose expression and evolutionary conservation are typically less pronounced relative to the snoRNAs that are currently cataloged. We further find that virtually all C/D box snoRNAs are specifically processed inside the regions of terminal complementarity, retaining in the mature form only 4-5 nucleotides upstream of the C box and 2-5 nucleotides downstream of the D box. Sequencing of the total and Argonaute 2-associated populations of small RNAs reveals that despite their cellular abundance, C/D box-derived small RNAs are not efficiently incorporated into the Ago2 protein. CONCLUSIONS We conclude that the human genome encodes a large number of snoRNAs that are processed along the canonical pathway and expressed at relatively low levels. Generation of snoRNA-derived processing products with alternative, particularly miRNA-like, functions appears to be uncommon.
Collapse
Affiliation(s)
- Shivendra Kishore
- Computational and Systems Biology, Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | - Andreas R Gruber
- Computational and Systems Biology, Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | - Dominik J Jedlinski
- Computational and Systems Biology, Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | - Afzal P Syed
- Computational and Systems Biology, Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | - Hadi Jorjani
- Computational and Systems Biology, Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| |
Collapse
|
150
|
Ishikawa F. Portrait of replication stress viewed from telomeres. Cancer Sci 2013; 104:790-4. [PMID: 23557232 PMCID: PMC3881512 DOI: 10.1111/cas.12165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/16/2013] [Accepted: 03/19/2013] [Indexed: 01/23/2023] Open
Abstract
Genetic instability is the driving force of the malignant progression of cancer cells. Recently, replication stress has attracted much attention as a source of genetic instability that gives rise to an accumulation of mutations during the lifespan of individuals. However, the molecular details of the process are not fully understood. Here, recent progress in understanding how genetic alterations accumulate at telomeres will be reviewed. In particular, two aspects of telomere replication will be discussed in this context, covering conventional semi-conservative replication, and DNA synthesis by telomerase plus the C-strand fill-in reactions. Although these processes are seemingly telomere-specific, I will emphasize the possibility that the molecular understanding of the telomere events may shed light on genetic instability at other genetic loci in general.
Collapse
Affiliation(s)
- Fuyuki Ishikawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|