101
|
Arteaga MF, Mikesch JH, Fung TK, So CWE. Epigenetics in acute promyelocytic leukaemia pathogenesis and treatment response: a TRAnsition to targeted therapies. Br J Cancer 2015; 112:413-8. [PMID: 25247321 PMCID: PMC4453638 DOI: 10.1038/bjc.2014.374] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 05/06/2014] [Accepted: 06/03/2014] [Indexed: 01/09/2023] Open
Abstract
Transcriptional deregulation plays a key role in a large array of cancers, and successful targeting of oncogenic transcription factors that sustain diseases has been a holy grail in the field. Acute promyelocytic leukaemia (APL) driven by chimeric transcription factors encoding retinoic acid receptor alpha fusions is the paradigm of targeted cancer therapy, in which the application of all-trans retinoic acid (ATRA) treatments have markedly transformed this highly fatal cancer to a highly manageable disease. The extremely high complete remission rate resulted from targeted therapies using ATRA in combination with arsenic trioxide will likely be able to minimise or even totally eliminate the use of highly toxic chemotherapeutic agents in APL. In this article, we will review the molecular basis and the upcoming challenges of these targeted therapies in APL, and discuss the recent advance in our understanding of epigenetics underlying ATRA response and their potential use to further improve treatment response and overcome resistance.
Collapse
Affiliation(s)
- M F Arteaga
- Leukaemia and Stem Cell Biology Group, Department of Haematological Medicine, King's College London, Denmark Hill, London SE5 9NU, UK
| | - J-H Mikesch
- Leukaemia and Stem Cell Biology Group, Department of Haematological Medicine, King's College London, Denmark Hill, London SE5 9NU, UK
| | - T-K Fung
- Leukaemia and Stem Cell Biology Group, Department of Haematological Medicine, King's College London, Denmark Hill, London SE5 9NU, UK
| | - C W E So
- Leukaemia and Stem Cell Biology Group, Department of Haematological Medicine, King's College London, Denmark Hill, London SE5 9NU, UK
| |
Collapse
|
102
|
di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P, Nervi C. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med 2015; 41:1-115. [PMID: 25543955 DOI: 10.1016/j.mam.2014.12.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Loris Leboffe
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Francesca Pagano
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Laura Cicconi
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS UMR 7104 - Inserm U 964, University of Strasbourg, 1 rue Laurent Fries, BP10142, Illkirch Cedex F-67404, France.
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy.
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, Roma I-00146, Italy.
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100.
| |
Collapse
|
103
|
Kokura K, Sun L, Fang J. In vitro histone demethylase assays. Methods Mol Biol 2015; 1288:109-122. [PMID: 25827878 DOI: 10.1007/978-1-4939-2474-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Histone methylation plays pivotal roles in modulating chromatin structure and dynamics and in turn regulates genomic processes that require access to the DNA template. The methylation status at different sites is dynamically regulated by histone methyltransferases and demethylases. During the past decade, two classes of proteins have been characterized to actively remove methyl groups from lysine residues through different mechanisms. The LSD1/KDM1 family of amine oxidases require flavin adenine dinucleotide (FAD) for reaction, while the larger Jumonji C (JmjC) family of hydroxylases utilize Fe(II) and α-ketoglutarate as cofactors to demethylate histones. Since their discoveries, histone demethylases have been implicated in the precise control of gene expression program during development, cell identity, and fate decision. Several demethylases have also been linked to various human diseases such as neurological disorders and cancer. This chapter describes several in vitro assay conditions and detection methods for two classes of histone demethylases. We also discuss the protocols to prepare various substrates for different histone demethylase assays.
Collapse
Affiliation(s)
- Kenji Kokura
- Tumor Biology Department, H Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | | | | |
Collapse
|
104
|
Sun L, Huang Y, Wei Q, Tong X, Cai R, Nalepa G, Ye X. Cyclin E-CDK2 protein phosphorylates plant homeodomain finger protein 8 (PHF8) and regulates its function in the cell cycle. J Biol Chem 2014; 290:4075-85. [PMID: 25548279 DOI: 10.1074/jbc.m114.602532] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin E-CDK2 is a key regulator in G1/S transition. Previously, we identified a number of CDK2-interacting proteins, including PHF8 (plant homeodomain finger protein 8). In this report, we confirmed that PHF8 is a novel cyclin E-CDK2 substrate. By taking the approach of mass spectrometry, we identified that PHF8 Ser-844 is phosphorylated by cyclin E-CDK2. Immunoblotting analysis indicated that WT PHF8 demethylates histone H3K9me2 more efficiently than the cyclin E-CDK2 phosphorylation-deficient PHF8-S844A mutant. Furthermore, flow cytometry analysis showed that WT PHF8 promotes S phase progression more robustly than PHF8-S844A. Real-time PCR results demonstrated that PHF8 increases transcription of cyclin E, E2F3, and E2F7 to significantly higher levels compared with PHF8-S844A. Further analysis by ChIP assay indicated that PHF8 binds to the cyclin E promoter stronger than PHF8-S844A and reduces the H3K9me2 level at the cyclin E promoter more efficiently than PHF8-S844A. In addition, we found that cyclin E-CDK2-mediated phosphorylation of PHF8 Ser-844 promotes PHF8-dependent rRNA transcription in luciferase reporter assays and real-time PCR. Taken together, these results indicate that cyclin E-CDK2 phosphorylates PHF8 to stimulate its demethylase activity to promote rRNA transcription and cell cycle progression.
Collapse
Affiliation(s)
- Liping Sun
- From the Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100101, China, and
| | - Yan Huang
- From the Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100101, China, and
| | - Qian Wei
- From the Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100101, China, and
| | - Xiaomei Tong
- From the Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong Cai
- From the Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100101, China, and
| | - Grzegorz Nalepa
- the Department of Pediatrics and Division of Pediatric Hematology-Oncology, Herman B. Wells Center for Pediatric Research, and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xin Ye
- From the Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,
| |
Collapse
|
105
|
Van Rechem C, Whetstine JR. Examining the impact of gene variants on histone lysine methylation. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:1463-76. [PMID: 24859469 PMCID: PMC4752941 DOI: 10.1016/j.bbagrm.2014.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 02/09/2023]
Abstract
In recent years, there has been a boom in the amount of genome-wide sequencing data that has uncovered important and unappreciated links between certain genes, families of genes and enzymatic processes and diseases such as cancer. Such studies have highlighted the impact that chromatin modifying enzymes could have in cancer and other genetic diseases. In this review, we summarize characterized mutations and single nucleotide polymorphisms (SNPs) in histone lysine methyltransferases (KMTs), histone lysine demethylases (KDMs) and histones. We primarily focus on variants with strong disease correlations and discuss how they could impact histone lysine methylation dynamics and gene regulation.
Collapse
Affiliation(s)
- Capucine Van Rechem
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13th Street, Charlestown, MA 02129, USA
| | - Johnathan R Whetstine
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
106
|
Shmakova A, Batie M, Druker J, Rocha S. Chromatin and oxygen sensing in the context of JmjC histone demethylases. Biochem J 2014; 462:385-95. [PMID: 25145438 PMCID: PMC4147966 DOI: 10.1042/bj20140754] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 01/22/2023]
Abstract
Responding appropriately to changes in oxygen availability is essential for multicellular organism survival. Molecularly, cells have evolved intricate gene expression programmes to handle this stressful condition. Although it is appreciated that gene expression is co-ordinated by changes in transcription and translation in hypoxia, much less is known about how chromatin changes allow for transcription to take place. The missing link between co-ordinating chromatin structure and the hypoxia-induced transcriptional programme could be in the form of a class of dioxygenases called JmjC (Jumonji C) enzymes, the majority of which are histone demethylases. In the present review, we will focus on the function of JmjC histone demethylases, and how these could act as oxygen sensors for chromatin in hypoxia. The current knowledge concerning the role of JmjC histone demethylases in the process of organism development and human disease will also be reviewed.
Collapse
Key Words
- chromatin
- chromatin remodeller
- histone methylation
- hypoxia
- hypoxia-inducible factor (hif)
- jumonji c (jmjc)
- transcription
- cd, chromodomain
- chd, chromodomain helicase dna binding
- crc, chromatin-remodelling complex
- fih, factor inhibiting hif
- hif, hypoxia-inducible factor
- iswi, imitation-swi protein
- jmjc, jumonji c
- kdm, lysine-specific demethylase
- lsd, lysine-specific demethylase
- nurd, nucleosome-remodelling deacetylase
- phd, plant homeodomain
- phf, phd finger protein
- rest, repressor element 1-silencing transcription factor
- vhl, von hippel–lindau protein
Collapse
Affiliation(s)
- Alena Shmakova
- *Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Michael Batie
- *Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Jimena Druker
- *Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Sonia Rocha
- *Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| |
Collapse
|
107
|
Shi G, Wu M, Fang L, Yu F, Cheng S, Li J, Du JX, Wong J. PHD finger protein 2 (PHF2) represses ribosomal RNA gene transcription by antagonizing PHF finger protein 8 (PHF8) and recruiting methyltransferase SUV39H1. J Biol Chem 2014; 289:29691-700. [PMID: 25204660 DOI: 10.1074/jbc.m114.571653] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of rDNA transcription is central to cell growth and proliferation. PHF2 and PHF8 belong to a subfamily of histone demethylases that also possess a PHD domain-dependent di-/trimethylated histone 3 lysine 4 (H3K4me2/3) binding activity and are known to be enriched in the nucleolus. In this study, we show that, unlike PHF8 that activates rDNA transcription, PHF2 inhibits rDNA transcription. Depletion of PHF2 by RNA interference increases and overexpression of PHF2 decreases rDNA transcription, respectively, whereas simultaneous depletion of PHF8 and PHF2 restores the level of rDNA transcription. The inhibition of rDNA transcription by PHF2 depends on its H3K4me2/3 binding activity that is also required for PHF2 association with the promoter of rDNA genes but not its demethylase activity. We provide evidence that PHF2 is likely to repress rDNA transcription by competing with PHF8 for binding of rDNA promoter and by recruiting H3K9me2/3 methyltransferase SUV39H1. We also provide evidence that, whereas PHF8 promotes, PHF2 represses the transcriptional activity of RARα, Oct4, and KLF4 and a few PHF8 target genes tested. Taken together, our study demonstrates a repressive role for PHF2 in transcription by RNA polymerase I and II.
Collapse
Affiliation(s)
- Guang Shi
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Meng Wu
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lan Fang
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Fang Yu
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shimeng Cheng
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiwen Li
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - James X Du
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiemin Wong
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
108
|
Cheng X. Structural and functional coordination of DNA and histone methylation. Cold Spring Harb Perspect Biol 2014; 6:6/8/a018747. [PMID: 25085914 DOI: 10.1101/cshperspect.a018747] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
One of the most fundamental questions in the control of gene expression in mammals is how epigenetic methylation patterns of DNA and histones are established, erased, and recognized. This central process in controlling gene expression includes coordinated covalent modifications of DNA and its associated histones. This article focuses on structural aspects of enzymatic activities of histone (arginine and lysine) methylation and demethylation and functional links between the methylation status of the DNA and histones. An interconnected network of methyltransferases, demethylases, and accessory proteins is responsible for changing or maintaining the modification status of specific regions of chromatin.
Collapse
Affiliation(s)
- Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
109
|
The histone demethylase PHF8 is an oncogenic protein in human non-small cell lung cancer. Biochem Biophys Res Commun 2014; 451:119-25. [PMID: 25065740 DOI: 10.1016/j.bbrc.2014.07.076] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 07/16/2014] [Indexed: 11/20/2022]
Abstract
PHF8 is a JmjC domain-containing protein and erases repressive histone marks including H4K20me1 and H3K9me1/2. It binds to H3K4me3, an active histone mark usually located at transcription start sites (TSSs), through its plant homeo-domain, and is thus recruited and enriched in gene promoters. PHF8 is involved in the development of several types of cancer, including leukemia, prostate cancer, and esophageal squamous cell carcinoma. Herein we report that PHF8 is an oncogenic protein in human non-small cell lung cancer (NSCLC). PHF8 is up-regulated in human NSCLC tissues, and high PHF8 expression predicts poor survival. Our in vitro and in vivo evidence demonstrate that PHF8 regulates lung cancer cell proliferation and cellular transformation. We found that PHF8 knockdown induces DNA damage and apoptosis in lung cancer cells. PHF8 promotes miR-21 expression in human lung cancer, and miR-21 knockdown blocks the effects of PHF8 on proliferation and apoptosis of lung cancer cells. In summary, PHF8 promotes lung cancer cell growth and survival by regulating miR-21.
Collapse
|
110
|
Lee KH, Park JW, Sung HS, Choi YJ, Kim WH, Lee HS, Chung HJ, Shin HW, Cho CH, Kim TY, Li SH, Youn HD, Kim SJ, Chun YS. PHF2 histone demethylase acts as a tumor suppressor in association with p53 in cancer. Oncogene 2014; 34:2897-909. [PMID: 25043306 DOI: 10.1038/onc.2014.219] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/05/2014] [Accepted: 06/15/2014] [Indexed: 12/14/2022]
Abstract
Plant homeodomain finger 2 (PHF2) has a role in epigenetic regulation of gene expression by demethylating H3K9-Me2. Several genome-wide studies have demonstrated that the chromosomal region including the PHF2 gene is often deleted in some cancers including colorectal cancer, and this finding encouraged us to investigate the tumor suppressive role of PHF2. As p53 is a critical tumor suppressor in colon cancer, we tested the possibility that PHF2 is an epigenetic regulator of p53. PHF2 was associated with p53, and thereby, promoted p53-driven gene expression in cancer cells under genotoxic stress. PHF2 converted the chromatin that is favorable for transcription by demethylating the repressive H3K9-Me2 mark. In an HCT116 xenograft model, PHF2 was found to be required for the anticancer effects of oxaliplatin and doxorubicin. In PHF2-deficient xenografts, p53 expression was profoundly induced by both drugs, but its downstream product p21 was not, suggesting that p53 cannot be activated in the absence of PHF2. To find clinical evidence about the role of PHF2, we analyzed the expressions of PHF2, p53 and p21 in human colon cancer tissues and adjacent normal tissues from patients. PHF2 was downregulated in cancer tissues and PHF2 correlated with p21 in cancers expressing functional p53. Colon and stomach cancer tissue arrays showed a positive correlation between PHF2 and p21 expressions. Informatics analyses using the Oncomine database also supported our notion that PHF2 is downregulated in colon and stomach cancers. On the basis of these findings, we propose that PHF2 acts as a tumor suppressor in association with p53 in cancer development and ensures p53-mediated cell death in response to chemotherapy.
Collapse
Affiliation(s)
- K-H Lee
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - J-W Park
- 1] Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea [2] Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - H-S Sung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Y-J Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - W H Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - H S Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - H-J Chung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - H-W Shin
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - C-H Cho
- 1] Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea [2] Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - T-Y Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - S-H Li
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - H-D Youn
- 1] Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea [2] Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - S J Kim
- 1] Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea [2] Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea [3] Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Y-S Chun
- 1] Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea [2] Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea [3] Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
111
|
Fueyo R, García MA, Martínez-Balbás MA. Jumonji family histone demethylases in neural development. Cell Tissue Res 2014; 359:87-98. [PMID: 24950624 DOI: 10.1007/s00441-014-1924-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
Abstract
Central nervous system (CNS) development is driven by coordinated actions of developmental signals and chromatin regulators that precisely regulate gene expression patterns. Histone methylation is a regulatory mechanism that controls transcriptional programs. In the last 10 years, several histone demethylases (HDM) have been identified as important players in neural development, and their implication in cell fate decisions is beginning to be recognized. Identification of the physiological roles of these enzymes and their molecular mechanisms of action will be necessary for completely understanding the process that ultimately generates different neural cells in the CNS. In this review, we provide an overview of the Jumonji family of HDMs involved in neurodevelopment, and we discuss their roles during neural fate establishment and neuronal differentiation.
Collapse
Affiliation(s)
- Raquel Fueyo
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Parc Científic de Barcelona (PCB), Barcelona, 08028, Spain
| | | | | |
Collapse
|
112
|
Cell-type-specific Jumonji histone demethylase gene expression in the healthy rat CNS: detection by a novel flow cytometry method. ASN Neuro 2014; 6:193-207. [PMID: 24735454 PMCID: PMC4034710 DOI: 10.1042/an20130050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Our understanding of how histone demethylation contributes to the regulation of basal gene expression in the brain is largely unknown in any injury model, and especially in the healthy adult brain. Although Jumonji genes are often regulated transcriptionally, cell-specific gene expression of Jumonji histone demethylases in the brain remains poorly understood. Thus, in the present study we profiled the mRNA levels of 26 Jumonji genes in microglia (CD11b+), neurons (NeuN+) and astrocytes (GFAP+) from the healthy adult rat brain. We optimized a method combining a mZBF (modified zinc-based fixative) and FCM (flow cytometry) to simultaneously sort cells from non-transgenic animals. We evaluated cell-surface, intracellular and nuclear proteins, including histones, as well as messenger- and micro-RNAs in different cell types simultaneously from a single-sorted sample. We found that 12 Jumonji genes were differentially expressed between adult microglia, neurons and astrocytes. While JMJD2D was neuron-restricted, PHF8 and JMJD1C were expressed in all three cell types although the expression was highest in neurons. JMJD3 and JMJD5 were expressed in all cell types, but were highly enriched in microglia; astrocytes had the lowest expression of UTX and JHDM1D. Levels of global H3K27 (H3 lysine 27) methylation varied among cell types and appeared to be lowest in microglia, indicating that differences in basal gene expression of specific Jumonji histone demethylases may contribute to cell-specific gene expression in the CNS (central nervous system). This multiparametric technique will be valuable for simultaneously assaying chromatin modifications and gene regulation in the adult CNS.
Collapse
|
113
|
Wang J, Lin X, Wang S, Wang C, Wang Q, Duan X, Lu P, Wang Q, Wang C, Liu XS, Huang J. PHF8 and REST/NRSF co-occupy gene promoters to regulate proximal gene expression. Sci Rep 2014; 4:5008. [PMID: 24852203 PMCID: PMC4031473 DOI: 10.1038/srep05008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 04/17/2014] [Indexed: 12/31/2022] Open
Abstract
Chromatin regulators play an important role in the development of human diseases. In this study, we focused on Plant Homeo Domain Finger protein 8 (PHF8), a chromatin regulator that has attracted special concern recently. PHF8 is a histone lysine demethylase ubiquitously expressed in nuclei. Mutations of PHF8 are associated with X-linked mental retardation. It usually functions as a transcriptional co-activator by associating with H3K4me3 and RNA polymerase II. We found that PHF8 may associate with another regulator, REST/NRSF, predominately at promoter regions via studying several published PHF8 chromatin immunoprecipitation-sequencing (ChIP-Seq) datasets. Our analysis suggested that PHF8 not only activates but may also repress gene expression.
Collapse
Affiliation(s)
- Juan Wang
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xueqiu Lin
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Su Wang
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Chenfei Wang
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Qixuan Wang
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xikun Duan
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Peng Lu
- Fudan University, Shanghai Medical School, Department of Environmental Health
| | - Qian Wang
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Chengyang Wang
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - X Shirley Liu
- 1] Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA [2] Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02215, USA
| | - Jinyan Huang
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
114
|
The histone lysine demethylase JMJD3/KDM6B is recruited to p53 bound promoters and enhancer elements in a p53 dependent manner. PLoS One 2014; 9:e96545. [PMID: 24797517 PMCID: PMC4010471 DOI: 10.1371/journal.pone.0096545] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/09/2014] [Indexed: 11/19/2022] Open
Abstract
The JmjC domain-containing protein JMJD3/KDM6B catalyses the demethylation of H3K27me3 and H3K27me2. JMJD3 appears to be highly regulated at the transcriptional level and is upregulated in response to diverse stimuli such as differentiation inducers and stress signals. Accordingly, JMJD3 has been linked to the regulation of different biological processes such as differentiation of embryonic stem cells, inflammatory responses in macrophages, and induction of cellular senescence via regulation of the INK4A-ARF locus. Here we show here that JMJD3 interacts with the tumour suppressor protein p53. We find that the interaction is dependent on the p53 tetramerization domain. Following DNA damage, JMJD3 is transcriptionally upregulated and by performing genome-wide mapping of JMJD3, we demonstrate that it binds genes involved in basic cellular processes, as well as genes regulating cell cycle, response to stress and apoptosis. Moreover, we find that JMJD3 binding sites show significant overlap with p53 bound promoters and enhancer elements. The binding of JMJD3 to p53 target sites is increased in response to DNA damage, and we demonstrate that the recruitment of JMJD3 to these sites is dependent on p53 expression. Therefore, we propose a model in which JMJD3 is recruited to p53 responsive elements via its interaction with p53 and speculate that JMJD3 could act as a fail-safe mechanism to remove low levels of H3K27me3 and H3K27me2 to allow for efficient acetylation of H3K27.
Collapse
|
115
|
Johansson C, Tumber A, Che K, Cain P, Nowak R, Gileadi C, Oppermann U. The roles of Jumonji-type oxygenases in human disease. Epigenomics 2014; 6:89-120. [PMID: 24579949 PMCID: PMC4233403 DOI: 10.2217/epi.13.79] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The iron- and 2-oxoglutarate-dependent oxygenases constitute a phylogenetically conserved class of enzymes that catalyze hydroxylation reactions in humans by acting on various types of substrates, including metabolic intermediates, amino acid residues in different proteins and various types of nucleic acids. The discovery of jumonji (Jmj), the founding member of a class of Jmj-type chromatin modifying enzymes and transcriptional regulators, has culminated in the discovery of several branches of histone lysine demethylases, with essential functions in regulating the epigenetic landscape of the chromatin environment. This work has now been considerably expanded into other aspects of epigenetic biology and includes the discovery of enzymatic steps required for methyl-cytosine demethylation as well as modification of RNA and ribosomal proteins. This overview aims to summarize the current knowledge on the human Jmj-type enzymes and their involvement in human pathological processes, including development, cancer, inflammation and metabolic diseases.
Collapse
Affiliation(s)
- Catrine Johansson
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Anthony Tumber
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - KaHing Che
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
- Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Oxford, OX3 7LD, UK
| | - Peter Cain
- Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Oxford, OX3 7LD, UK
| | - Radoslaw Nowak
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
- Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Oxford, OX3 7LD, UK
- Systems Approaches to Biomedical Sciences, Industrial Doctorate Center (SABS IDC) Oxford, UK
| | - Carina Gileadi
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Udo Oppermann
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
- Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Oxford, OX3 7LD, UK
- Systems Approaches to Biomedical Sciences, Industrial Doctorate Center (SABS IDC) Oxford, UK
| |
Collapse
|
116
|
The demethylase JMJD2C localizes to H3K4me3-positive transcription start sites and is dispensable for embryonic development. Mol Cell Biol 2014; 34:1031-45. [PMID: 24396064 DOI: 10.1128/mcb.00864-13] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The histone demethylase JMJD2C, also known as KDM4C/GASC1, has activity against methylated H3K9 and H3K36 and is amplified and/or overexpressed in human cancers. By the generation of Jmjd2c knockout mice, we demonstrate that loss of Jmjd2c is compatible with cellular proliferation, embryonic stem cell (ESC) self-renewal, and embryonic development. Moreover, we report that JMJD2C localizes to H3K4me3-positive transcription start sites in both primary cells and in the human carcinoma KYSE150 cell line containing an amplification of the JMJD2C locus. Binding is dependent on the double Tudor domain of JMJD2C, which recognizes H3K4me3 but not H4K20me2/me3 in vitro, showing a binding specificity different from that of the double Tudor domains of JMJD2A and JMJD2B. Depletion of JMJD2C in KYSE150 cells has a modest effect on H3K9me3 and H3K36me3 levels but impairs proliferation and leads to deregulated expression of a subset of target genes involved in cell cycle progression. Taking these findings together, we show that JMJD2C is targeted to H3K4me3-positive transcription start sites, where it can contribute to transcriptional regulation, and report that the putative oncogene JMJD2C generally is not required for cellular proliferation or embryonic development.
Collapse
|
117
|
Zheng W, Huang Y. The chemistry and biology of the α-ketoglutarate-dependent histone Nε-methyl-lysine demethylases. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00325f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This review describes the current knowledge of the chemistry and biology of the physiologically and therapeutically important histone/protein Nε-methyl-lysine demethylation reactions catalyzed by the JMJD2 and JARID1 families of the α-ketoglutarate-dependent demethylases.
Collapse
Affiliation(s)
- Weiping Zheng
- School of Pharmacy
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Yajun Huang
- School of Pharmacy
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|
118
|
Liu L, Kim H, Casta A, Kobayashi Y, Shapiro LS, Christiano AM. Hairless is a histone H3K9 demethylase. FASEB J 2013; 28:1534-42. [PMID: 24334705 DOI: 10.1096/fj.13-237677] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The hairless (HR) protein contains a Jumonji C (JmjC) domain that is conserved among a family of proteins with histone demethylase (HDM) activity. To test whether HR possesses HDM activity, we performed a series of in vitro demethylation assays, which demonstrated that HR can demethylate monomethylated or dimethylated histone H3 lysine 9 (H3K9me1 or me2). Moreover, ectopic expression of wild-type HR, but not JmjC-mutant HR, led to pronounced demethylation of H3K9 in cultured human HeLa cells. We also show that two missense mutations in HR, which we and others described in patients with atrichia with papular lesions, abolished the demethylase activity of HR, demonstrating the role of HR demethylase activity in human disease. By ChIP-Seq analysis, we identified multiple new HR target genes, many of which play important roles in epidermal development, neural function, and transcriptional regulation, consistent with the predicted biological functions of HR. Our findings demonstrate for the first time that HR is a H3K9 demethylase that regulates epidermal homeostasis via direct control of its target genes.
Collapse
Affiliation(s)
- Liang Liu
- 2Department of Dermatology, Columbia University, College of Physicians and Surgeons, Russ Berrie Medical Science Pavilion, 1150 St. Nicholas Ave., Rm. 307, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
119
|
Wang J, Yu JT, Tan MS, Jiang T, Tan L. Epigenetic mechanisms in Alzheimer's disease: implications for pathogenesis and therapy. Ageing Res Rev 2013; 12:1024-41. [PMID: 23688931 DOI: 10.1016/j.arr.2013.05.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/08/2013] [Indexed: 12/14/2022]
Abstract
The vast majority of Alzheimer's disease (AD) are late-onset forms (LOAD) likely due to the interplay of environmental influences and individual genetic susceptibility. Epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNAs, constitute dynamic intracellular processes for translating environmental stimuli into modifications in gene expression. Over the past decade it has become increasingly clear that epigenetic mechanisms play a pivotal role in aging the pathogenesis of AD. Here, we provide a review of the major mechanisms for epigenetic modification and how they are reportedly altered in aging and AD. Moreover, we also consider how aberrant epigenetic modifications may lead to AD pathogenesis, and we review the therapeutic potential of epigenetic treatments for AD.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, China
| | | | | | | | | |
Collapse
|
120
|
The G2/M regulator histone demethylase PHF8 is targeted for degradation by the anaphase-promoting complex containing CDC20. Mol Cell Biol 2013; 33:4166-80. [PMID: 23979597 DOI: 10.1128/mcb.00689-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Monomethylated histone H4 lysine 20 (H4K20me1) is tightly regulated during the cell cycle. The H4K20me1 demethylase PHF8 transcriptionally regulates many cell cycle genes and is therefore predicted to play key roles in the cell cycle. Here, we show that PHF8 protein levels are the highest during G2 phase and mitosis, and we found PHF8 protein stability to be regulated by the ubiquitin-proteasome system. Purification of the PHF8 complex led to the identification of many subunits of the anaphase-promoting complex (APC) associated with PHF8. We showed that PHF8 interacts with the CDC20-containing APC (APC(cdc20)) primarily during mitosis. In addition, we defined a novel, KEN- and D-box-independent, LXPKXLF motif on PHF8 that is required for binding to CDC20. Through various in vivo and in vitro assays, we demonstrate that mutations of the LXPKXLF motif abrogate polyubiquitylation of PHF8 by the APC. APC substrates are typically cell cycle regulators, and consistent with this, the loss of PHF8 leads to prolonged G2 phase and defective mitosis. Furthermore, we provide evidence that PHF8 plays an important role in transcriptional activation of key G2/M genes during G2 phase. Taken together, these findings suggest that PHF8 is regulated by APC(cdc20) and plays an important role in the G2/M transition.
Collapse
|
121
|
Kofink D, Boks MP, Timmers HM, Kas MJ. Epigenetic dynamics in psychiatric disorders: Environmental programming of neurodevelopmental processes. Neurosci Biobehav Rev 2013; 37:831-45. [DOI: 10.1016/j.neubiorev.2013.03.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/19/2013] [Accepted: 03/27/2013] [Indexed: 12/13/2022]
|
122
|
Arteaga MF, Mikesch JH, Qiu J, Christensen J, Helin K, Kogan SC, Dong S, So CWE. The histone demethylase PHF8 governs retinoic acid response in acute promyelocytic leukemia. Cancer Cell 2013; 23:376-89. [PMID: 23518351 PMCID: PMC6812572 DOI: 10.1016/j.ccr.2013.02.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 11/26/2012] [Accepted: 02/15/2013] [Indexed: 10/27/2022]
Abstract
While all-trans retinoic acid (ATRA) treatment in acute promyelocytic leukemia (APL) has been the paradigm of targeted therapy for oncogenic transcription factors, the underlying mechanisms remain largely unknown, and a significant number of patients still relapse and become ATRA resistant. We identified the histone demethylase PHF8 as a coactivator that is specifically recruited by RARα fusions to activate expression of their downstream targets upon ATRA treatment. Forced expression of PHF8 resensitizes ATRA-resistant APL cells, whereas its downregulation confers resistance. ATRA sensitivity depends on the enzymatic activity and phosphorylation status of PHF8, which can be pharmacologically manipulated to resurrect ATRA sensitivity to resistant cells. These findings provide important molecular insights into ATRA response and a promising avenue for overcoming ATRA resistance.
Collapse
MESH Headings
- Animals
- Drug Resistance, Neoplasm
- Histone Demethylases/genetics
- Histone Demethylases/metabolism
- Histones
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Proteins/metabolism
- Okadaic Acid/pharmacology
- Oncogene Proteins, Fusion/metabolism
- Phosphorylation
- RNA Interference
- RNA, Small Interfering
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Tretinoin/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Maria Francisca Arteaga
- Leukaemia and Stem Cell Biology Group, Department of Haematological Medicine, King’s College London, Denmark Hill, London SE5 9NU, UK
| | - Jan-Henrik Mikesch
- Leukaemia and Stem Cell Biology Group, Department of Haematological Medicine, King’s College London, Denmark Hill, London SE5 9NU, UK
| | - Jihui Qiu
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC)
- Centre for Epigenetics
- The Danish Stem Cell Center (Danstem), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Scott C. Kogan
- Helen Diller Family Comprehensive Cancer Center and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shuo Dong
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chi Wai Eric So
- Leukaemia and Stem Cell Biology Group, Department of Haematological Medicine, King’s College London, Denmark Hill, London SE5 9NU, UK
- Correspondence:
| |
Collapse
|
123
|
Using C. elegans to Decipher the Cellular and Molecular Mechanisms Underlying Neurodevelopmental Disorders. Mol Neurobiol 2013; 48:465-89. [DOI: 10.1007/s12035-013-8434-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
|
124
|
Berdasco M, Esteller M. Genetic syndromes caused by mutations in epigenetic genes. Hum Genet 2013; 132:359-83. [PMID: 23370504 DOI: 10.1007/s00439-013-1271-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/18/2013] [Indexed: 12/21/2022]
Abstract
The orchestrated organization of epigenetic factors that control chromatin dynamism, including DNA methylation, histone marks, non-coding RNAs (ncRNAs) and chromatin-remodeling proteins, is essential for the proper function of tissue homeostasis, cell identity and development. Indeed, deregulation of epigenetic profiles has been described in several human pathologies, including complex diseases (such as cancer, cardiovascular and neurological diseases), metabolic pathologies (type 2 diabetes and obesity) and imprinting disorders. Over the last decade it has become increasingly clear that mutations of genes involved in epigenetic mechanism, such as DNA methyltransferases, methyl-binding domain proteins, histone deacetylases, histone methylases and members of the SWI/SNF family of chromatin remodelers are linked to human disorders, including Immunodeficiency Centromeric instability Facial syndrome 1, Rett syndrome, Rubinstein-Taybi syndrome, Sotos syndrome or alpha-thalassemia/mental retardation X-linked syndrome, among others. As new members of the epigenetic machinery are described, the number of human syndromes associated with epigenetic alterations increases. As recent examples, mutations of histone demethylases and members of the non-coding RNA machinery have recently been associated with Kabuki syndrome, Claes-Jensen X-linked mental retardation syndrome and Goiter syndrome. In this review, we describe the variety of germline mutations of epigenetic modifiers that are known to be associated with human disorders, and discuss the therapeutic potential of epigenetic drugs as palliative care strategies in the treatment of such disorders.
Collapse
Affiliation(s)
- María Berdasco
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 3rd Floor, Hospital Duran i Reynals, Av. Gran Via 199-203, 08908 L'Hospitalet de LLobregat, Barcelona, Catalonia, Spain
| | | |
Collapse
|
125
|
Paul S, Kuo A, Schalch T, Vogel H, Joshua-Tor L, McCombie WR, Gozani O, Hammell M, Mills AA. Chd5 requires PHD-mediated histone 3 binding for tumor suppression. Cell Rep 2013; 3:92-102. [PMID: 23318260 DOI: 10.1016/j.celrep.2012.12.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 11/06/2012] [Accepted: 12/13/2012] [Indexed: 12/11/2022] Open
Abstract
Chromodomain Helicase DNA binding protein 5 (CHD5) is a tumor suppressor mapping to 1p36, a genomic region that is frequently deleted in human cancer. Although CHD5 belongs to the CHD family of chromatin-remodeling proteins, whether its tumor-suppressive role involves an interaction with chromatin is unknown. Here we report that Chd5 binds the unmodified N terminus of H3 through its tandem plant homeodomains (PHDs). Genome-wide chromatin immunoprecipitation studies reveal preferential binding of Chd5 to loci lacking the active mark H3K4me3 and also identify Chd5 targets implicated in cancer. Chd5 mutations that abrogate H3 binding are unable to inhibit proliferation or transcriptionally modulate target genes, which leads to tumorigenesis in vivo. Unlike wild-type Chd5, Chd5-PHD mutants are unable to induce differentiation or efficiently suppress the growth of human neuroblastoma in vivo. Our work defines Chd5 as an N-terminally unmodified H3-binding protein and provides functional evidence that this interaction orchestrates chromatin-mediated transcriptional programs critical for tumor suppression.
Collapse
Affiliation(s)
- Shilpi Paul
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Wu M, Wang L, Li Q, Li J, Qin J, Wong J. The MTA family proteins as novel histone H3 binding proteins. Cell Biosci 2013; 3:1. [PMID: 23286669 PMCID: PMC3562248 DOI: 10.1186/2045-3701-3-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 09/22/2012] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED BACKGROUND The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD) has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s) responsible for specific binding of H3 by NURD has not been defined. RESULTS In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. CONCLUSIONS Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail.
Collapse
Affiliation(s)
- Meng Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | | | | | | | | | | |
Collapse
|
127
|
Millan MJ. An epigenetic framework for neurodevelopmental disorders: from pathogenesis to potential therapy. Neuropharmacology 2012; 68:2-82. [PMID: 23246909 DOI: 10.1016/j.neuropharm.2012.11.015] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 11/11/2012] [Accepted: 11/22/2012] [Indexed: 12/12/2022]
Abstract
Neurodevelopmental disorders (NDDs) are characterized by aberrant and delayed early-life development of the brain, leading to deficits in language, cognition, motor behaviour and other functional domains, often accompanied by somatic symptoms. Environmental factors like perinatal infection, malnutrition and trauma can increase the risk of the heterogeneous, multifactorial and polygenic disorders, autism and schizophrenia. Conversely, discrete genetic anomalies are involved in Down, Rett and Fragile X syndromes, tuberous sclerosis and neurofibromatosis, the less familiar Phelan-McDermid, Sotos, Kleefstra, Coffin-Lowry and "ATRX" syndromes, and the disorders of imprinting, Angelman and Prader-Willi syndromes. NDDs have been termed "synaptopathies" in reference to structural and functional disturbance of synaptic plasticity, several involve abnormal Ras-Kinase signalling ("rasopathies"), and many are characterized by disrupted cerebral connectivity and an imbalance between excitatory and inhibitory transmission. However, at a different level of integration, NDDs are accompanied by aberrant "epigenetic" regulation of processes critical for normal and orderly development of the brain. Epigenetics refers to potentially-heritable (by mitosis and/or meiosis) mechanisms controlling gene expression without changes in DNA sequence. In certain NDDs, prototypical epigenetic processes of DNA methylation and covalent histone marking are impacted. Conversely, others involve anomalies in chromatin-modelling, mRNA splicing/editing, mRNA translation, ribosome biogenesis and/or the regulatory actions of small nucleolar RNAs and micro-RNAs. Since epigenetic mechanisms are modifiable, this raises the hope of novel therapy, though questions remain concerning efficacy and safety. The above issues are critically surveyed in this review, which advocates a broad-based epigenetic framework for understanding and ultimately treating a diverse assemblage of NDDs ("epigenopathies") lying at the interface of genetic, developmental and environmental processes. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Mark J Millan
- Unit for Research and Discovery in Neuroscience, IDR Servier, 125 chemin de ronde, 78290 Croissy sur Seine, Paris, France.
| |
Collapse
|
128
|
Wang J, Leung JWC, Gong Z, Feng L, Shi X, Chen J. PHF6 regulates cell cycle progression by suppressing ribosomal RNA synthesis. J Biol Chem 2012; 288:3174-83. [PMID: 23229552 DOI: 10.1074/jbc.m112.414839] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mutation of PHF6, which results in the X-linked mental retardation disorder Börjeson-Forssman-Lehmann syndrome, is also present in about 38% of adult T-cell acute lymphoblastic leukemias and 3% of adult acute myeloid leukemias. However, it remains to be determined exactly how PHF6 acts in vivo and what functions of PHF6 may be associated with its putative tumor suppressor function. Here, we demonstrate that PHF6 is a nucleolus, ribosomal RNA promoter-associated protein. PHF6 directly interacts with upstream binding factor (UBF) through its PHD1 domain and suppresses ribosomal RNA (rRNA) transcription by affecting the protein level of UBF. Knockdown of PHF6 impairs cell proliferation and arrests cells at G(2)/M phase, which is accompanied by an increased level of phosphorylated H2AX, indicating that PHF6 deficiency leads to the accumulation of DNA damage in the cell. We found that increased DNA damage occurs at the ribosomal DNA (rDNA) locus in PHF6-deficient cells. This effect could be reversed by knocking down UBF or overexpressing RNASE1, which removes RNA-DNA hybrids, suggesting that there is a functional link between rRNA synthesis and genomic stability at the rDNA locus. Together, these results reveal that the key function of PHF6 is involved in regulating rRNA synthesis, which may contribute to its roles in cell cycle control, genomic maintenance, and tumor suppression.
Collapse
Affiliation(s)
- Jiadong Wang
- Department of Experimental Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
129
|
Yang JH, Li JH, Jiang S, Zhou H, Qu LH. ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data. Nucleic Acids Res 2012; 41:D177-87. [PMID: 23161675 PMCID: PMC3531181 DOI: 10.1093/nar/gks1060] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) represent two classes of important non-coding RNAs in eukaryotes. Although these non-coding RNAs have been implicated in organismal development and in various human diseases, surprisingly little is known about their transcriptional regulation. Recent advances in chromatin immunoprecipitation with next-generation DNA sequencing (ChIP-Seq) have provided methods of detecting transcription factor binding sites (TFBSs) with unprecedented sensitivity. In this study, we describe ChIPBase (http://deepbase.sysu.edu.cn/chipbase/), a novel database that we have developed to facilitate the comprehensive annotation and discovery of transcription factor binding maps and transcriptional regulatory relationships of lncRNAs and miRNAs from ChIP-Seq data. The current release of ChIPBase includes high-throughput sequencing data that were generated by 543 ChIP-Seq experiments in diverse tissues and cell lines from six organisms. By analysing millions of TFBSs, we identified tens of thousands of TF-lncRNA and TF-miRNA regulatory relationships. Furthermore, two web-based servers were developed to annotate and discover transcriptional regulatory relationships of lncRNAs and miRNAs from ChIP-Seq data. In addition, we developed two genome browsers, deepView and genomeView, to provide integrated views of multidimensional data. Moreover, our web implementation supports diverse query types and the exploration of TFs, lncRNAs, miRNAs, gene ontologies and pathways.
Collapse
Affiliation(s)
- Jian-Hua Yang
- RNA Information Center, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | | | | | | | | |
Collapse
|
130
|
Hannan KM, Sanij E, Rothblum LI, Hannan RD, Pearson RB. Dysregulation of RNA polymerase I transcription during disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:342-60. [PMID: 23153826 DOI: 10.1016/j.bbagrm.2012.10.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 12/13/2022]
Abstract
Transcription of the ribosomal RNA genes by the dedicated RNA polymerase I enzyme and subsequent processing of the ribosomal RNA are fundamental control steps in the synthesis of functional ribosomes. Dysregulation of Pol I transcription and ribosome biogenesis is linked to the etiology of a broad range of human diseases. Diseases caused by loss of function mutations in the molecular constituents of the ribosome, or factors intimately associated with RNA polymerase I transcription and processing are collectively termed ribosomopathies. Ribosomopathies are generally rare and treatment options are extremely limited tending to be more palliative than curative. Other more common diseases are associated with profound changes in cellular growth such as cardiac hypertrophy, atrophy or cancer. In contrast to ribosomopathies, altered RNA polymerase I transcriptional activity in these diseases largely results from dysregulated upstream oncogenic pathways or by direct modulation by oncogenes or tumor suppressors at the level of the RNA polymerase I transcription apparatus itself. Ribosomopathies associated with mutations in ribosomal proteins and ribosomal RNA processing or assembly factors have been covered by recent excellent reviews. In contrast, here we review our current knowledge of human diseases specifically associated with dysregulation of RNA polymerase I transcription and its associated regulatory apparatus, including some cases where this dysregulation is directly causative in disease. We will also provide insight into and discussion of possible therapeutic approaches to treat patients with dysregulated RNA polymerase I transcription. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- K M Hannan
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett St, Melbourne, Victoria 8006, Australia
| | | | | | | | | |
Collapse
|
131
|
Abstract
The exploration of brain epigenomes, which consist of various types of DNA methylation and covalent histone modifications, is providing new and unprecedented insights into the mechanisms of neural development, neurological disease and aging. Traditionally, chromatin defects in the brain were considered static lesions of early development that occurred in the context of rare genetic syndromes, but it is now clear that mutations and maladaptations of the epigenetic machinery cover a much wider continuum that includes adult-onset neurodegenerative disease. Here, we describe how recent advances in neuroepigenetics have contributed to an improved mechanistic understanding of developmental and degenerative brain disorders, and we discuss how they could influence the development of future therapies for these conditions.
Collapse
|
132
|
Huang L, Jolly LA, Willis-Owen S, Gardner A, Kumar R, Douglas E, Shoubridge C, Wieczorek D, Tzschach A, Cohen M, Hackett A, Field M, Froyen G, Hu H, Haas SA, Ropers HH, Kalscheuer VM, Corbett MA, Gecz J. A noncoding, regulatory mutation implicates HCFC1 in nonsyndromic intellectual disability. Am J Hum Genet 2012; 91:694-702. [PMID: 23000143 DOI: 10.1016/j.ajhg.2012.08.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/26/2012] [Accepted: 08/13/2012] [Indexed: 11/28/2022] Open
Abstract
The discovery of mutations causing human disease has so far been biased toward protein-coding regions. Having excluded all annotated coding regions, we performed targeted massively parallel resequencing of the nonrepetitive genomic linkage interval at Xq28 of family MRX3. We identified in the binding site of transcription factor YY1 a regulatory mutation that leads to overexpression of the chromatin-associated transcriptional regulator HCFC1. When tested on embryonic murine neural stem cells and embryonic hippocampal neurons, HCFC1 overexpression led to a significant increase of the production of astrocytes and a considerable reduction in neurite growth. Two other nonsynonymous, potentially deleterious changes have been identified by X-exome sequencing in individuals with intellectual disability, implicating HCFC1 in normal brain function.
Collapse
Affiliation(s)
- Lingli Huang
- Genetics and Molecular Pathology, SA Pathology, North Adelaide, SA 5006, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Asensio-Juan E, Gallego C, Martínez-Balbás MA. The histone demethylase PHF8 is essential for cytoskeleton dynamics. Nucleic Acids Res 2012; 40:9429-40. [PMID: 22850744 PMCID: PMC3479184 DOI: 10.1093/nar/gks716] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
PHF8 is a histone demethylase associated with X-linked mental retardation. It has been described as a transcriptional co-activator involved in cell cycle progression, but its physiological role is still poorly understood. Here we show that PHF8 controls the expression of genes involved in cell adhesion and cytoskeleton organization such as RhoA, Rac1 and GSK3β. A lack of PHF8 not only results in a cell cycle delay but also in a disorganized actin cytoskeleton and impaired cell adhesion. Our data demonstrate that PHF8 directly regulates the expression of these genes by demethylating H4K20me1 at promoters. Moreover, c-Myc transcription factor cooperates with PHF8 to regulate the analysed promoters. Further analysis in neurons shows that depletion of PHF8 results in down-regulation of cytoskeleton genes and leads to a deficient neurite outgrowth. Overall, our results suggest that the mental retardation phenotype associated with loss of function of PHF8 could be due to abnormal neuronal connections as a result of alterations in cytoskeleton function.
Collapse
Affiliation(s)
- Elena Asensio-Juan
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona, Spanish Research Council (CSIC), Barcelona Science Park, Barcelona 08028, Spain
| | | | | |
Collapse
|
134
|
Butler JS, Koutelou E, Schibler AC, Dent SYR. Histone-modifying enzymes: regulators of developmental decisions and drivers of human disease. Epigenomics 2012; 4:163-77. [PMID: 22449188 DOI: 10.2217/epi.12.3] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Precise transcriptional networks drive the orchestration and execution of complex developmental processes. Transcription factors possessing sequence-specific DNA binding properties activate or repress target genes in a step-wise manner to control most cell lineage decisions. This regulation often requires the interaction between transcription factors and subunits of massive protein complexes that bear enzymatic activities towards histones. The functional coupling of transcription proteins and histone modifiers underscores the importance of transcriptional regulation through chromatin modification in developmental cell fate decisions and in disease pathogenesis.
Collapse
Affiliation(s)
- Jill S Butler
- Department of Molecular Carcinogenesis at The Virginia Harris Cockrell Cancer Research Center, University of Texas MD Anderson Cancer Center Science Park, PO Box 389, Smithville, TX 78957, USA
| | | | | | | |
Collapse
|
135
|
Wu J, Cui N, Wang R, Li J, Wong J. A role for CARM1-mediated histone H3 arginine methylation in protecting histone acetylation by releasing corepressors from chromatin. PLoS One 2012; 7:e34692. [PMID: 22723830 PMCID: PMC3377634 DOI: 10.1371/journal.pone.0034692] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/05/2012] [Indexed: 12/21/2022] Open
Abstract
Arginine methylation broadly occurs in histones and has been linked to transcriptional regulation, cell cycle regulation and DNA repair. While numerous proteins (histone code effectors) that specifically recognize or read the methylated lysine residues in core histones have been identified, little is known for effectors specific for methylated arginines in histones. In this study, we attempted to identify effector(s) recognizing asymmetrically methylated R17 and R26 in H3, which are catalyzed by CARM1/PRMT4, through an unbiased biochemical approach. Although we have yet to identify such effector using this approach, we find that these modifications function cooperatively with histone acetylation to inhibit the binding of the nucleosome remodeling and deacetylase complex (NuRD) and TIF1 family corepressors to H3 tail in vitro. In support of this finding, we show that overexpression of CARM1 in 293 T cells leads to reduced association of NuRD with chromatin, whereas knockdown of CARM1 in HeLa cells leads to increased association of NuRD with chromatin and decreased level of histone acetylation. Furthermore, in the Carm1−/− MEF cells there is an increased association of NuRD and TIF1β with chromatin and a global decrease in histone acetylation. By chromatin immunoprecipitation assay, we show that overexpression of CARM1 results in reduced association of NuRD complex and TIF1β with an episomal reporter and that CARM1 is required in MEF cells for LPS-induced dissociation of NuRD from a NF-κb target gene. Taking together, our study provides evidence for a role of CARM1-mediated arginine methylation in regulation of histone acetylation and transcription: facilitating transcription by discharging corepressors from chromatin.
Collapse
Affiliation(s)
- Jing Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Nan Cui
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Rui Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
136
|
Abstract
Epigenetic regulation of gene expression is a dynamic and reversible process that establishes normal cellular phenotypes but also contributes to human diseases. At the molecular level, epigenetic regulation involves hierarchical covalent modification of DNA and the proteins that package DNA, such as histones. Here, we review the key protein families that mediate epigenetic signalling through the acetylation and methylation of histones, including histone deacetylases, protein methyltransferases, lysine demethylases, bromodomain-containing proteins and proteins that bind to methylated histones. These protein families are emerging as druggable classes of enzymes and druggable classes of protein-protein interaction domains. In this article, we discuss the known links with disease, basic molecular mechanisms of action and recent progress in the pharmacological modulation of each class of proteins.
Collapse
|
137
|
Kooistra SM, Helin K. Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol 2012; 13:297-311. [PMID: 22473470 DOI: 10.1038/nrm3327] [Citation(s) in RCA: 653] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone modifications are thought to regulate chromatin structure, transcription and other nuclear processes. Histone methylation was originally believed to be an irreversible modification that could only be removed by histone eviction or by dilution during DNA replication. However, the isolation of two families of enzymes that can demethylate histones has changed this notion. The biochemical activities of these histone demethylases towards specific Lys residues on histones, and in some cases non-histone substrates, have highlighted their importance in developmental control, cell-fate decisions and disease. Their ability to be regulated through protein-targeting complexes and post-translational modifications is also beginning to shed light on how they provide dynamic control during transcription.
Collapse
Affiliation(s)
- Susanne Marije Kooistra
- Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | | |
Collapse
|
138
|
Abstract
Organisms require an appropriate balance of stability and reversibility in gene expression programmes to maintain cell identity or to enable responses to stimuli; epigenetic regulation is integral to this dynamic control. Post-translational modification of histones by methylation is an important and widespread type of chromatin modification that is known to influence biological processes in the context of development and cellular responses. To evaluate how histone methylation contributes to stable or reversible control, we provide a broad overview of how histone methylation is regulated and leads to biological outcomes. The importance of appropriately maintaining or reprogramming histone methylation is illustrated by its links to disease and ageing and possibly to transmission of traits across generations.
Collapse
Affiliation(s)
- Eric L Greer
- Cell Biology Department, Harvard Medical School and Division of Newborn Medicine, Children's Hospital Boston, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
139
|
Ram O, Goren A, Amit I, Shoresh N, Yosef N, Ernst J, Kellis M, Gymrek M, Issner R, Coyne M, Durham T, Zhang X, Donaghey J, Epstein CB, Regev A, Bernstein BE. Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells. Cell 2012; 147:1628-39. [PMID: 22196736 DOI: 10.1016/j.cell.2011.09.057] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 07/12/2011] [Accepted: 09/30/2011] [Indexed: 12/17/2022]
Abstract
Hundreds of chromatin regulators (CRs) control chromatin structure and function by catalyzing and binding histone modifications, yet the rules governing these key processes remain obscure. Here, we present a systematic approach to infer CR function. We developed ChIP-string, a meso-scale assay that combines chromatin immunoprecipitation with a signature readout of 487 representative loci. We applied ChIP-string to screen 145 antibodies, thereby identifying effective reagents, which we used to map the genome-wide binding of 29 CRs in two cell types. We found that specific combinations of CRs colocalize in characteristic patterns at distinct chromatin environments, at genes of coherent functions, and at distal regulatory elements. When comparing between cell types, CRs redistribute to different loci but maintain their modular and combinatorial associations. Our work provides a multiplex method that substantially enhances the ability to monitor CR binding, presents a large resource of CR maps, and reveals common principles for combinatorial CR function.
Collapse
Affiliation(s)
- Oren Ram
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Li J, Chu M, Wang S, Chan D, Qi S, Wu M, Zhou Z, Li J, Nishi E, Qin J, Wong J. Identification and characterization of nardilysin as a novel dimethyl H3K4-binding protein involved in transcriptional regulation. J Biol Chem 2012; 287:10089-10098. [PMID: 22294699 DOI: 10.1074/jbc.m111.313965] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone methylation on lysine residues is believed to function primarily as docking sites to recruit specific proteins termed as histone code "readers" or "effectors." Each lysine residue can be mono-, di, and tri-methylated and different methylation states can have different effect on chromatin function. While an increasing number of proteins have been identified and characterized as specific effectors for methylated histones, very few of the proteins are known to recognize a particular state of methylation. In this study, we identified nardilysin (NRDc), a member of M16 family metalloendopeptidases, as a novel dimethyl-H3K4 (H3K4me2)-binding protein. Among three methylated states, NRDc binds preferentially H3K4me2 both in vitro and in vivo. Biochemical purification demonstrated that NRDc interacts with the NCoR/SMRT corepressor complex. We identified target genes repressed by NRDc through microarray. We showed that NRDc is physically associated with and recruits the NCoR complex to some of the repressed genes and this association correlates with binding of H3K4me2. Thus, our study has identified a novel H3K4me2-binding protein and revealed a role of NRDc in transcriptional regulation.
Collapse
Affiliation(s)
- Jing Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyue Chu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shanshan Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Doug Chan
- Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, and
| | - Shankang Qi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Meng Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhongliang Zhou
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Eiichiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Jun Qin
- Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, and
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China,.
| |
Collapse
|
141
|
Pfeiffer JR, Brooks SA. Cullin 4B is recruited to tristetraprolin-containing messenger ribonucleoproteins and regulates TNF-α mRNA polysome loading. THE JOURNAL OF IMMUNOLOGY 2012; 188:1828-39. [PMID: 22262661 DOI: 10.4049/jimmunol.1102837] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
TNF-α is a central mediator of inflammation and critical for host response to infection and injury. TNF-α biosynthesis is controlled by transcriptional and posttranscriptional mechanisms allowing for rapid, transient production. Tristetraprolin (TTP) is an AU-rich element binding protein that regulates the stability of the TNF-α mRNA. Using a screen to identify TTP-interacting proteins, we identified Cullin 4B (Cul4B), a scaffolding component of the Cullin ring finger ligase family of ubiquitin E3 ligases. Short hairpin RNA knockdown of Cul4B results in a significant reduction in TNF-α protein and mRNA in LPS-stimulated mouse macrophage RAW264.7 cells as well as a reduction in TTP protein. TNF-α message t(1/2) was reduced from 69 to 33 min in LPS-stimulated cells. TNF-3' untranslated region luciferase assays utilizing wild-type and mutant TTP-AA (S52A, S178A) indicate that TTP function is enhanced in Cul4B short hairpin RNA cells. Importantly, the fold induction of TNF-α mRNA polysome loading in response to LPS stimulation is reduced by Cul4B knockdown. Cul4B is present on the polysomes and colocalizes with TTP to exosomes and processing bodies, which are sites of mRNA decay. We conclude that Cul4B licenses the TTP-containing TNF-α messenger ribonucleoprotein for loading onto polysomes, and reduction of Cul4B expression shunts the messenger ribonucleoproteins into the degradative pathway.
Collapse
Affiliation(s)
- Jason R Pfeiffer
- Veterans Administration Medical Center, White River Junction, VT 05009, USA
| | | |
Collapse
|
142
|
Abstract
Posttranslational modifications (PTMs) of histone proteins, such as acetylation, methylation, phosphorylation, and ubiquitylation, play essential roles in regulating chromatin dynamics. Combinations of different modifications on the histone proteins, termed 'histone code' in many cases, extend the information potential of the genetic code by regulating DNA at the epigenetic level. Many PTMs occur on non-histone proteins as well as histones, regulating protein-protein interactions, stability, localization, and/or enzymatic activities of proteins involved in diverse cellular processes. Although protein phosphorylation, ubiquitylation, and acetylation have been extensively studied, only a few proteins other than histones have been reported that can be modified by lysine methylation. This review summarizes the current progress on lysine methylation of non-histone proteins, and we propose that lysine methylation, like phosphorylation and acetylation, is a common PTM that regulates proteins in diverse cellular processes.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Biochemistry & Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, 77030, USA
| | | | | |
Collapse
|
143
|
Melvin A, Rocha S. Chromatin as an oxygen sensor and active player in the hypoxia response. Cell Signal 2012; 24:35-43. [PMID: 21924352 PMCID: PMC3476533 DOI: 10.1016/j.cellsig.2011.08.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 08/29/2011] [Indexed: 12/28/2022]
Abstract
Changes in the availability or demand for oxygen induce dramatic changes at the cellular level. Primarily, activation of a family of oxygen labile transcription factors, Hypoxia Inducible Factor (HIF), initiates a variety of cellular processes required to re-instate oxygen homeostasis. Oxygen is sensed by molecular dioxygenases in cells, such as the prolyl-hydroxylases (PHDs), enzymes which are responsible for the oxygen-dependent regulation of HIF. As HIF is a transcription factor it must bind DNA sequences of its target genes possibly in the context of a complex chromatin structure. How chromatin structure changes in response to hypoxia is currently unknown. However, the identification of a novel class of histone demethylases as true dioxygenases suggests that chromatin can act as an oxygen sensor and plays an active role in the coordination of the cellular response to hypoxia. This review will discuss the current knowledge on how hypoxia engages with different proteins involved in chromatin organisation and dynamics.
Collapse
Key Words
- hif, hypoxia inducible factor
- arnt, aryl hydrocarbon nuclear translocator
- vhl, von hippel lindau
- phd, prolyl-hydroxylase
- fih, factor inhibiting hif
- chip, chromatin immunoprecipitation
- swi/snf, switch/sucrose nonfermentable
- iswi, imitation switch
- chd, chromodomain helicase dna-binding
- nurf, nucleosome remodelling factor
- chrac, chromatin remodelling and assembly complex
- acf, atp-utilising chromatin remodelling and assembly factor
- norc, nucleolar remodelling complex
- rsf, remodelling and spacing factor
- wich, wstf–iswi chromatin remodelling complex
- nurd, nucleosome remodelling and histone deacetylase
- srcap, snf2-related cbp activator protein
- trrap, transformation/transcription domain-associated protein/tip60
- hat, histone acetyl transferase
- hdac, histone deacetylase
- lsd1, lysine-specific demethylase-1
- jmjc, jumonji c domain
- hypoxia
- chromatin
- hif
- transcription
- chromatin remodellers
- jmjc demethylases
Collapse
Affiliation(s)
| | - Sonia Rocha
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee, DD1 5EH, Scotland, United Kingdom
| |
Collapse
|
144
|
Nakagawa T, Xiong Y. Chromatin regulation by CRL4 E3 ubiquitin ligases: CUL4B targets WDR5 ubiquitylation in the nucleus. Cell Cycle 2011; 10:4197-8. [PMID: 22107965 DOI: 10.4161/cc.10.24.18407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
145
|
Hillringhaus L, Yue WW, Rose NR, Ng SS, Gileadi C, Loenarz C, Bello SH, Bray JE, Schofield CJ, Oppermann U. Structural and evolutionary basis for the dual substrate selectivity of human KDM4 histone demethylase family. J Biol Chem 2011; 286:41616-41625. [PMID: 21914792 PMCID: PMC3308871 DOI: 10.1074/jbc.m111.283689] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/09/2011] [Indexed: 12/13/2022] Open
Abstract
N(ε)-Methylations of histone lysine residues play critical roles in cell biology by "marking" chromatin for transcriptional activation or repression. Lysine demethylases reverse N(ε)-methylation in a sequence- and methylation-selective manner. The determinants of sequence selectivity for histone demethylases have been unclear. The human JMJD2 (KDM4) H3K9 and H3K36 demethylases can be divided into members that act on both H3K9 and H3K36 and H3K9 alone. Kinetic, crystallographic, and mutagenetic studies in vitro and in cells on KDM4A-E reveal that selectivity is determined by multiple interactions within the catalytic domain but outside the active site. Structurally informed phylogenetic analyses reveal that KDM4A-C orthologues exist in all genome-sequenced vertebrates with earlier animals containing only a single KDM4 enzyme. KDM4D orthologues only exist in eutherians (placental mammals) where they are conserved, including proposed substrate sequence-determining residues. The results will be useful for the identification of inhibitors for specific histone demethylases.
Collapse
Affiliation(s)
- Lars Hillringhaus
- Department of Chemistry and the Oxford Centre for Integrative Systems Biology, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Wyatt W Yue
- Structural Genomics Consortium, University of Oxford, Old Road Campus Roosevelt Drive, Headington, OX3 7DQ, United Kingdom
| | - Nathan R Rose
- Department of Chemistry and the Oxford Centre for Integrative Systems Biology, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Stanley S Ng
- Structural Genomics Consortium, University of Oxford, Old Road Campus Roosevelt Drive, Headington, OX3 7DQ, United Kingdom
| | - Carina Gileadi
- Structural Genomics Consortium, University of Oxford, Old Road Campus Roosevelt Drive, Headington, OX3 7DQ, United Kingdom
| | - Christoph Loenarz
- Department of Chemistry and the Oxford Centre for Integrative Systems Biology, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Simon H Bello
- Department of Chemistry and the Oxford Centre for Integrative Systems Biology, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - James E Bray
- Structural Genomics Consortium, University of Oxford, Old Road Campus Roosevelt Drive, Headington, OX3 7DQ, United Kingdom
| | - Christopher J Schofield
- Department of Chemistry and the Oxford Centre for Integrative Systems Biology, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom.
| | - Udo Oppermann
- Structural Genomics Consortium, University of Oxford, Old Road Campus Roosevelt Drive, Headington, OX3 7DQ, United Kingdom; Botnar Research Centre, National Institute for Health Research Oxford Biomedical Research Unit, Nuffield Department of Orthopedics, Rheumatology, and Musculoskeletal Sciences, Oxford, OX3 7LD, United Kingdom.
| |
Collapse
|
146
|
Maures TJ, Greer EL, Hauswirth AG, Brunet A. The H3K27 demethylase UTX-1 regulates C. elegans lifespan in a germline-independent, insulin-dependent manner. Aging Cell 2011; 10:980-90. [PMID: 21834846 PMCID: PMC3215905 DOI: 10.1111/j.1474-9726.2011.00738.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aging is accompanied by alterations in epigenetic marks that control chromatin states, including histone acetylation and methylation. Enzymes that reversibly affect histone marks associated with active chromatin have recently been found to regulate aging in Caenorhabditis elegans. However, relatively little is known about the importance for aging of histone marks associated with repressed chromatin. Here, we use a targeted RNAi screen in C. elegans to identify four histone demethylases that significantly regulate worm lifespan, UTX-1, RBR-2, LSD-1, and T26A5.5. Interestingly, UTX-1 belongs to a conserved family of histone demethylases specific for lysine 27 of histone H3 (H3K27me3), a mark associated with repressed chromatin. Both utx-1 knockdown and heterozygous mutation of utx-1 extend lifespan and increase the global levels of the H3K27me3 mark in worms. The H3K27me3 mark significantly drops in somatic cells during the normal aging process. UTX-1 regulates lifespan independently of the presence of the germline, but in a manner that depends on the insulin-FoxO signaling pathway. These findings identify the H3K27me3 histone demethylase UTX-1 as a novel regulator of worm lifespan in somatic cells.
Collapse
Affiliation(s)
- Travis J. Maures
- Department of Genetics, Stanford University, 300 Pasteur Drive, Stanford CA 94305, USA
| | - Eric L. Greer
- Department of Genetics, Stanford University, 300 Pasteur Drive, Stanford CA 94305, USA
- Cancer Biology Graduate Program, Stanford University, Stanford CA 94305, USA
| | - Anna G. Hauswirth
- Department of Genetics, Stanford University, 300 Pasteur Drive, Stanford CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, 300 Pasteur Drive, Stanford CA 94305, USA
- Cancer Biology Graduate Program, Stanford University, Stanford CA 94305, USA
| |
Collapse
|
147
|
Abstract
The 'histone code' hypothesis states that chromatin-based regulation of nuclear processes such as transcription is brought about by the combination of distinct modifications (histone marks) at specific loci. Its correct establishment involves chromatin cross-talks, ensuring an ordered and concerted deposition/removal of a particular set of modifications that act together to give the correct transcriptional outcome. Histone methylation on lysine residues can negatively or positively impact on gene transcription, depending on the residue and on its degree of methylation. Thanks to this complexity and given the number of chromatin 'readers' that can recognize methylated lysine residues, histone methylation plays a very special role in specifying the various chromatin states. The recent discovery of histone demethylases, which represent a large family of enzymes often containing histone modification binding modules, sheds new light on cross-talk mechanisms involving methylated residues. In the present review, after a brief overview of the various families of histone demethylases, we describe the different mechanisms by which they participate in chromatin cross-talks and how these mechanisms are integrated to achieve the mutual exclusion or the link between chromatin marks, leading to the establishment of the correct histone code.
Collapse
|
148
|
Nakagawa T, Xiong Y. X-linked mental retardation gene CUL4B targets ubiquitylation of H3K4 methyltransferase component WDR5 and regulates neuronal gene expression. Mol Cell 2011; 43:381-91. [PMID: 21816345 DOI: 10.1016/j.molcel.2011.05.033] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/15/2011] [Accepted: 05/20/2011] [Indexed: 01/28/2023]
Abstract
CUL4B, encoding a scaffold protein for the assembly of Cullin4B-Ring ubiquitin ligase (CRL4B) complexes, is frequently mutated in X-linked mental retardation (XLMR) patients. Here, we show that CUL4B, but not its paralog, CUL4A, targets WDR5, a core subunit of histone H3 lysine 4 (H3K4) methyltransferase complexes, for ubiquitylation and degradation in the nucleus. Knocking down CUL4B increases WDR5 and trimethylated H3K4 (H3K4me3) on the neuronal gene promoters and induces their expression. Furthermore, CUL4B depletion suppresses neurite outgrowth of PC12 neuroendocrine cells, which can be rescued by codepletion of WDR5. XLMR-linked mutations destabilize CUL4B and impair its ability to support neurite outgrowth of PC12 cells. Our results identify WDR5 as a critical substrate of CUL4B in regulating neuronal gene expression and suggest epigenetic change as a common pathogenic mechanism for CUL4B-associated XLMR.
Collapse
Affiliation(s)
- Tadashi Nakagawa
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
149
|
Affiliation(s)
- Takayoshi Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 13 Taishogun Nishitakatsukasa-Cho, Kita-ku, Kyoto 403-8334, Japan.
| | | |
Collapse
|
150
|
Upadhyay AK, Horton JR, Zhang X, Cheng X. Coordinated methyl-lysine erasure: structural and functional linkage of a Jumonji demethylase domain and a reader domain. Curr Opin Struct Biol 2011; 21:750-60. [PMID: 21872465 DOI: 10.1016/j.sbi.2011.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/02/2011] [Indexed: 12/31/2022]
Abstract
Both components of chromatin (DNA and histones) are subjected to dynamic postsynthetic covalent modifications. Dynamic histone lysine methylation involves the activities of modifying enzymes (writers), enzymes removing modifications (erasers), and readers of the epigenetic code. Known histone lysine demethylases include flavin-dependent monoamine oxidase lysine-specific demethylase 1 and α-ketoglutarate-Fe(II)-dependent dioxygenases containing Jumonji domains. Importantly, the Jumonji domain often associates with at least one additional recognizable domain (reader) within the same polypeptide that detects the methylation status of histones and/or DNA. Here, we summarize recent developments in characterizing structural and functional properties of various histone lysine demethylases, with emphasis on a mechanism of crosstalk between a Jumonji domain and its associated reader module(s). We further discuss the role of recently identified Tet1 enzyme in oxidizing 5-methylcytosine to 5-hydroxymethylcytosine in DNA.
Collapse
Affiliation(s)
- Anup K Upadhyay
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|