101
|
Zhang J, Xu C. Gene product diversity: adaptive or not? Trends Genet 2022; 38:1112-1122. [PMID: 35641344 PMCID: PMC9560964 DOI: 10.1016/j.tig.2022.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 01/24/2023]
Abstract
One gene does not equal one RNA or protein. The genomic revolution has revealed numerous different RNA and protein molecules that can be produced from one gene, such as circular RNAs generated by back-splicing, proteins with residues mismatching the genomic encoding because of RNA editing, and proteins extended in the C terminus via stop codon readthrough in translation. Are these diverse products results of exquisite gene regulations or imprecise biological processes? While there are cases where the gene product diversity appears beneficial, genome-scale patterns suggest that much of this diversity arises from nonadaptive, molecular errors. This finding has important implications for studying the functions of diverse gene products and for understanding the fundamental properties and evolution of cellular life.
Collapse
Affiliation(s)
- Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Chuan Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
102
|
Meyer E, Chaung K, Dehghannasiri R, Salzman J. ReadZS detects cell type-specific and developmentally regulated RNA processing programs in single-cell RNA-seq. Genome Biol 2022; 23:226. [PMID: 36284317 PMCID: PMC9594907 DOI: 10.1186/s13059-022-02795-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
RNA processing, including splicing and alternative polyadenylation, is crucial to gene function and regulation, but methods to detect RNA processing from single-cell RNA sequencing data are limited by reliance on pre-existing annotations, peak calling heuristics, and collapsing measurements by cell type. We introduce ReadZS, an annotation-free statistical approach to identify regulated RNA processing in single cells. ReadZS discovers cell type-specific RNA processing in human lung and conserved, developmentally regulated RNA processing in mammalian spermatogenesis-including global 3' UTR shortening in human spermatogenesis. ReadZS also discovers global 3' UTR lengthening in Arabidopsis development, highlighting the usefulness of this method in under-annotated transcriptomes.
Collapse
Affiliation(s)
- Elisabeth Meyer
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Kaitlin Chaung
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Roozbeh Dehghannasiri
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Julia Salzman
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA.
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA.
- Department of Statistics (by courtesy), Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
103
|
Vasu K, Khan D, Ramachandiran I, Blankenberg D, Fox P. Analysis of nested alternate open reading frames and their encoded proteins. NAR Genom Bioinform 2022; 4:lqac076. [PMID: 36267124 PMCID: PMC9580016 DOI: 10.1093/nargab/lqac076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/14/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
Transcriptional and post-transcriptional mechanisms diversify the proteome beyond gene number, while maintaining a sequence relationship between original and altered proteins. A new mechanism breaks this paradigm, generating novel proteins by translating alternative open reading frames (Alt-ORFs) within canonical host mRNAs. Uniquely, ‘alt-proteins’ lack sequence homology with host ORF-derived proteins. We show global amino acid frequencies, and consequent biochemical characteristics of Alt-ORFs nested within host ORFs (nAlt-ORFs), are genetically-driven, and predicted by summation of frequencies of hundreds of encompassing host codon-pairs. Analysis of 101 human nAlt-ORFs of length ≥150 codons confirms the theoretical predictions, revealing an extraordinarily high median isoelectric point (pI) of 11.68, due to anomalous charged amino acid levels. Also, nAlt-ORF proteins exhibit a >2-fold preference for reading frame 2 versus 3, predicted mitochondrial and nuclear localization, and elevated codon adaptation index indicative of natural selection. Our results provide a theoretical and conceptual framework for exploration of these largely unannotated, but potentially significant, alternative ORFs and their encoded proteins.
Collapse
Affiliation(s)
- Kommireddy Vasu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Iyappan Ramachandiran
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel Blankenberg
- Correspondence may also be addressed to Daniel Blankenberg. Tel: +1 216 444 4336;
| | - Paul L Fox
- To whom correspondence should be addressed. Tel: +1 216 444 8053; Fax: +1 216 444 9404;
| |
Collapse
|
104
|
Kang W, Yang Y, Chen C, Yu C. CPSF1 positively regulates NSDHL by alternative polyadenylation and promotes gastric cancer progression. Am J Cancer Res 2022; 12:4566-4583. [PMID: 36381317 PMCID: PMC9641403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023] Open
Abstract
Gastric cancer (GC) is a common malignancies with unfavourable prognosis. As one of the most common RNA modifications in nature, alternative polyadenylation (APA) plays a critical role in the progression of carcinomas. CPSF1 is a critical APA-related factor and is involved in many cancers. Nevertheless, the roles and underlying mechanisms of CPSF1 remain unclear in GC. In this work, we identified that CPSF1 is significantly upregulated in GC and that high CPSF1 expression indicates an unfavourable prognosis in GC patients. Moreover, CPSF1 expression levels were closely associated with tumour size, TNM stage and lymph node metastasis. CPSF1 depletion dramatically weakened GC cell proliferation and metastasis. We then performed RNA sequencing and found numerous downstream genes involved the regulation of CPSF1 with remarkable changes in 3'UTR length, among which NSDHL was positively regulated by CPSF1 and promoted GC progression. In addition, rescue assays demonstrated that NSDHL mediated the carcinogenic effect of CPSF1, and this process potentially involved APA. Therefore, this study showed that CPSF1 promotes GC progression, at least in part, by enhancing NSDHL and offered new insights into therapeutic targets for GC.
Collapse
|
105
|
Zhou B, Bie F, Zang R, Zhang M, Song P, Liu L, Peng Y, Bai G, Zhao J, Gao S. RNA modification writer expression profiles predict clinical outcomes and guide neoadjuvant immunotherapy in non-small cell lung cancer. EBioMedicine 2022; 84:104268. [PMID: 36116215 PMCID: PMC9486036 DOI: 10.1016/j.ebiom.2022.104268] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 12/05/2022] Open
Abstract
Background RNA modifications, including adenosine-to-inosine RNA editing, alternative polyadenylation, m1A and m6A, play a significant role in tumorigenesis and tumor immunity. However, the functions of RNA modification enzymes (writers) in immunotherapy and tumor microenvironment (TME) remain unknown. Methods Nonnegative matrix factorization clustering was applied to identify RNA modification clusters in lung adenocarcinoma, one of the most prevalent subtypes of non-small cell lung cancer (NSCLC). CIBERSORT and ESTIMATE algorithms were performed to depict TME characteristics. Additionally, a scoring system called Writer-Score was established to quantify RNA modification patterns and subsequently predict clinical outcomes. We subsequently used RNA sequencing, targeted DNA sequencing and multiplex immunofluorescence to further evaluate the efficacy of Writer-Score in NSCLC patients receiving neoadjuvant immunotherapy. Findings We identified three distinct RNA modification clusters and two DEGclusters, which were shown to be strongly associated with a variety of TME features and biological processes. Additionally, the Writer-Score served as an important factor in post-transcriptional events and immunotherapy. The Writer-Score was capable of properly predicting the prognosis of NSCLC patients receiving neoadjuvant PD-1 inhibitor therapy. Interpretation Our work systematically analyzed four types of RNA modifications and constructed a scoring system to guide neoadjuvant immunotherapy in NSCLC, which highlighted the writers’ roles in post-transcriptional events, TME and neoadjuvant immunotherapy. Funding A full list of funding bodies that supported this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Bolun Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fenglong Bie
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruochuan Zang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Moyan Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Song
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Peng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangyu Bai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Zhao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
106
|
Ye W, Lian Q, Ye C, Wu X. A Survey on Methods for Predicting Polyadenylation Sites from DNA Sequences, Bulk RNA-seq, and Single-cell RNA-seq. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022:S1672-0229(22)00121-8. [PMID: 36167284 PMCID: PMC10372920 DOI: 10.1016/j.gpb.2022.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/17/2022] [Accepted: 09/19/2022] [Indexed: 05/08/2023]
Abstract
Alternative polyadenylation (APA) plays important roles in modulating mRNA stability, translation, and subcellular localization, and contributes extensively to shaping eukaryotic transcriptome complexity and proteome diversity. Identification of poly(A) sites (pAs) on a genome-wide scale is a critical step toward understanding the underlying mechanism of APA-mediated gene regulation. A number of established computational tools have been proposed to predict pAs from diverse genomic data. Here we provided an exhaustive overview of computational approaches for predicting pAs from DNA sequences, bulk RNA sequencing (RNA-seq) data, and single-cell RNA sequencing (scRNA-seq) data. Particularly, we examined several representative tools using bulk RNA-seq and scRNA-seq data from peripheral blood mononuclear cells and put forward operable suggestions on how to assess the reliability of pAs predicted by different tools. We also proposed practical guidelines on choosing appropriate methods applicable to diverse scenarios. Moreover, we discussed in depth the challenges in improving the performance of pA prediction and benchmarking different methods. Additionally, we highlighted outstanding challenges and opportunities using new machine learning and integrative multi-omics techniques, and provided our perspective on how computational methodologies might evolve in the future for non-3' untranslated region, tissue-specific, cross-species, and single-cell pA prediction.
Collapse
Affiliation(s)
- Wenbin Ye
- Pasteurien College, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215000, China
| | - Qiwei Lian
- Pasteurien College, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215000, China; Department of Automation, Xiamen University, Xiamen 361005, China
| | - Congting Ye
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Xiaohui Wu
- Pasteurien College, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215000, China.
| |
Collapse
|
107
|
Muckenfuss LM, Migenda Herranz AC, Boneberg FM, Clerici M, Jinek M. Fip1 is a multivalent interaction scaffold for processing factors in human mRNA 3' end biogenesis. eLife 2022; 11:80332. [PMID: 36073787 PMCID: PMC9512404 DOI: 10.7554/elife.80332] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
3′ end formation of most eukaryotic mRNAs is dependent on the assembly of a ~1.5 MDa multiprotein complex, that catalyzes the coupled reaction of pre-mRNA cleavage and polyadenylation. In mammals, the cleavage and polyadenylation specificity factor (CPSF) constitutes the core of the 3′ end processing machinery onto which the remaining factors, including cleavage stimulation factor (CstF) and poly(A) polymerase (PAP), assemble. These interactions are mediated by Fip1, a CPSF subunit characterized by high degree of intrinsic disorder. Here, we report two crystal structures revealing the interactions of human Fip1 (hFip1) with CPSF30 and CstF77. We demonstrate that CPSF contains two copies of hFip1, each binding to the zinc finger (ZF) domains 4 and 5 of CPSF30. Using polyadenylation assays we show that the two hFip1 copies are functionally redundant in recruiting one copy of PAP, thereby increasing the processivity of RNA polyadenylation. We further show that the interaction between hFip1 and CstF77 is mediated via a short motif in the N-terminal ‘acidic’ region of hFip1. In turn, CstF77 competitively inhibits CPSF-dependent PAP recruitment and 3′ polyadenylation. Taken together, these results provide a structural basis for the multivalent scaffolding and regulatory functions of hFip1 in 3′ end processing.
Collapse
Affiliation(s)
| | | | | | - Marcello Clerici
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
108
|
Caggiano C, Pieraccioli M, Pitolli C, Babini G, Zheng D, Tian B, Bielli P, Sette C. The androgen receptor couples promoter recruitment of RNA processing factors to regulation of alternative polyadenylation at the 3' end of transcripts. Nucleic Acids Res 2022; 50:9780-9796. [PMID: 36043441 PMCID: PMC9508809 DOI: 10.1093/nar/gkac737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer (PC) relies on androgen receptor (AR) signaling. While hormonal therapy (HT) is efficacious, most patients evolve to an incurable castration-resistant stage (CRPC). To date, most proposed mechanisms of acquired resistance to HT have focused on AR transcriptional activity. Herein, we uncover a new role for the AR in alternative cleavage and polyadenylation (APA). Inhibition of the AR by Enzalutamide globally regulates APA in PC cells, with specific enrichment in genes related to transcription and DNA topology, suggesting their involvement in transcriptome reprogramming. AR inhibition selects promoter-distal polyadenylation sites (pAs) enriched in cis-elements recognized by the cleavage and polyadenylation specificity factor (CPSF) complex. Conversely, promoter-proximal intronic pAs relying on the cleavage stimulation factor (CSTF) complex are repressed. Mechanistically, Enzalutamide induces rearrangement of APA subcomplexes and impairs the interaction between CPSF and CSTF. AR inhibition also induces co-transcriptional CPSF recruitment to gene promoters, predisposing the selection of pAs depending on this complex. Importantly, the scaffold CPSF160 protein is up-regulated in CRPC cells and its depletion represses HT-induced APA patterns. These findings uncover an unexpected role for the AR in APA regulation and suggest that APA-mediated transcriptome reprogramming represents an adaptive response of PC cells to HT.
Collapse
Affiliation(s)
- Cinzia Caggiano
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome 00168, Italy.,IRCCS Fondazione Policlinico A. Gemelli, Rome 00168, Italy
| | - Marco Pieraccioli
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome 00168, Italy.,IRCCS Fondazione Policlinico A. Gemelli, Rome 00168, Italy
| | - Consuelo Pitolli
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome 00168, Italy.,IRCCS Fondazione Policlinico A. Gemelli, Rome 00168, Italy
| | | | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Bin Tian
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Pamela Bielli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy.,IRCCS Fondazione Santa Lucia, Rome 00143, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome 00168, Italy.,IRCCS Fondazione Policlinico A. Gemelli, Rome 00168, Italy
| |
Collapse
|
109
|
Govindan G, Sharma B, Li Y, Armstrong CD, Merum P, Rohila JS, Gregory BD, Sunkar R. mRNA N 6 -methyladenosine is critical for cold tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1052-1068. [PMID: 35710867 PMCID: PMC9543165 DOI: 10.1111/tpj.15872] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 05/28/2022] [Accepted: 06/13/2022] [Indexed: 05/16/2023]
Abstract
Plants respond to low temperatures by altering the mRNA abundance of thousands of genes contributing to numerous physiological and metabolic processes that allow them to adapt. At the post-transcriptional level, these cold stress-responsive transcripts undergo alternative splicing, microRNA-mediated regulation and alternative polyadenylation, amongst others. Recently, m6 A, m5 C and other mRNA modifications that can affect the regulation and stability of RNA were discovered, thus revealing another layer of post-transcriptional regulation that plays an important role in modulating gene expression. The importance of m6 A in plant growth and development has been appreciated, although its significance under stress conditions is still underexplored. To assess the role of m6 A modifications during cold stress responses, methylated RNA immunoprecipitation sequencing was performed in Arabidopsis seedlings esposed to low temperature stress (4°C) for 24 h. This transcriptome-wide m6 A analysis revealed large-scale shifts in this modification in response to low temperature stress. Because m6 A is known to affect transcript stability/degradation and translation, we investigated these possibilities. Interestingly, we found that cold-enriched m6 A-containing transcripts demonstrated the largest increases in transcript abundance coupled with increased ribosome occupancy under cold stress. The significance of the m6 A epitranscriptome on plant cold tolerance was further assessed using the mta mutant in which the major m6 A methyltransferase gene was mutated. Compared to the wild-type, along with the differences in CBFs and COR gene expression levels, the mta mutant exhibited hypersensitivity to cold treatment as determined by primary root growth, biomass, and reactive oxygen species accumulation. Furthermore, and most importantly, both non-acclimated and cold-acclimated mta mutant demonstrated hypersensitivity to freezing tolerance. Taken together, these findings suggest a critical role for the epitranscriptome in cold tolerance of Arabidopsis.
Collapse
Affiliation(s)
- Ganesan Govindan
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| | - Bishwas Sharma
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Yong‐Fang Li
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| | | | - Pandrangaiah Merum
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| | - Jai S. Rohila
- Dale Bumpers National Rice Research CenterUnited States Department of Agriculture‐Agricultural Research ServicesStuttgartAR72160USA
| | - Brian D. Gregory
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| |
Collapse
|
110
|
Berry CW, Olivares GH, Gallicchio L, Ramaswami G, Glavic A, Olguín P, Li JB, Fuller MT. Developmentally regulated alternate 3' end cleavage of nascent transcripts controls dynamic changes in protein expression in an adult stem cell lineage. Genes Dev 2022; 36:916-935. [PMID: 36175033 PMCID: PMC9575692 DOI: 10.1101/gad.349689.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/12/2022] [Indexed: 02/03/2023]
Abstract
Alternative polyadenylation (APA) generates transcript isoforms that differ in the position of the 3' cleavage site, resulting in the production of mRNA isoforms with different length 3' UTRs. Although widespread, the role of APA in the biology of cells, tissues, and organisms has been controversial. We identified >500 Drosophila genes that express mRNA isoforms with a long 3' UTR in proliferating spermatogonia but a short 3' UTR in differentiating spermatocytes due to APA. We show that the stage-specific choice of the 3' end cleavage site can be regulated by the arrangement of a canonical polyadenylation signal (PAS) near the distal cleavage site but a variant or no recognizable PAS near the proximal cleavage site. The emergence of transcripts with shorter 3' UTRs in differentiating cells correlated with changes in expression of the encoded proteins, either from off in spermatogonia to on in spermatocytes or vice versa. Polysome gradient fractionation revealed >250 genes where the long 3' UTR versus short 3' UTR mRNA isoforms migrated differently, consistent with dramatic stage-specific changes in translation state. Thus, the developmentally regulated choice of an alternative site at which to make the 3' end cut that terminates nascent transcripts can profoundly affect the suite of proteins expressed as cells advance through sequential steps in a differentiation lineage.
Collapse
Affiliation(s)
- Cameron W Berry
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Gonzalo H Olivares
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Center for Genome Regulation (CRG), Universidad de Chile, Santiago 7810000, Chile
- Drosophila Ring in Developmental Adaptations to Nutritional Stress (DRiDANS), Universidad de Chile, Santiago 7810000, Chile
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago 7810000, Chile
- Program of Human Genetics, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Escuela de Kinesiología, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Huechuraba 8580745, Chile
- Center of Integrative Biology (CIB), Universidad Mayor, Huechuraba 8580745, Chile
| | - Lorenzo Gallicchio
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Gokul Ramaswami
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Alvaro Glavic
- Center for Genome Regulation (CRG), Universidad de Chile, Santiago 7810000, Chile
- Drosophila Ring in Developmental Adaptations to Nutritional Stress (DRiDANS), Universidad de Chile, Santiago 7810000, Chile
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago 7810000, Chile
| | - Patricio Olguín
- Drosophila Ring in Developmental Adaptations to Nutritional Stress (DRiDANS), Universidad de Chile, Santiago 7810000, Chile
- Program of Human Genetics, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Jin Billy Li
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Margaret T Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
111
|
Song J, Nabeel-Shah S, Pu S, Lee H, Braunschweig U, Ni Z, Ahmed N, Marcon E, Zhong G, Ray D, Ha KCH, Guo X, Zhang Z, Hughes TR, Blencowe BJ, Greenblatt JF. Regulation of alternative polyadenylation by the C2H2-zinc-finger protein Sp1. Mol Cell 2022; 82:3135-3150.e9. [PMID: 35914531 DOI: 10.1016/j.molcel.2022.06.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/09/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022]
Abstract
Alternative polyadenylation (APA) enhances gene regulatory potential by increasing the diversity of mRNA transcripts. 3' UTR shortening through APA correlates with enhanced cellular proliferation and is a widespread phenomenon in tumor cells. Here, we show that the ubiquitously expressed transcription factor Sp1 binds RNA in vivo and is a common repressor of distal poly(A) site usage. RNA sequencing identified 2,344 genes (36% of the total mapped mRNA transcripts) with lengthened 3' UTRs upon Sp1 depletion. Sp1 preferentially binds the 3' UTRs of such lengthened transcripts and inhibits cleavage at distal sites by interacting with the subunits of the core cleavage and polyadenylation (CPA) machinery. The 3' UTR lengths of Sp1 target genes in breast cancer patient RNA-seq data correlate with Sp1 expression levels, implicating Sp1-mediated APA regulation in modulating tumorigenic properties. Taken together, our findings provide insights into the mechanism for dynamic APA regulation by unraveling a previously unknown function of the DNA-binding transcription factor Sp1.
Collapse
Affiliation(s)
- Jingwen Song
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Syed Nabeel-Shah
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Shuye Pu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Hyunmin Lee
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, 10 King's College Road, Toronto, ON M5S 3G4, Canada
| | - Ulrich Braunschweig
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Zuyao Ni
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Nujhat Ahmed
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Edyta Marcon
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Guoqing Zhong
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Debashish Ray
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Kevin C H Ha
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Xinghua Guo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Zhaolei Zhang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada; Department of Computer Science, University of Toronto, 10 King's College Road, Toronto, ON M5S 3G4, Canada
| | - Timothy R Hughes
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Benjamin J Blencowe
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Jack F Greenblatt
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada.
| |
Collapse
|
112
|
Ni X, Chen C, Cui G, Ding W, Liu J. Crosstalk of RNA Adenosine Modification-Related Subtypes, Establishment of a Prognostic Model, and Immune Infiltration Characteristics in Ovarian Cancer. Front Immunol 2022; 13:932876. [PMID: 35837397 PMCID: PMC9274011 DOI: 10.3389/fimmu.2022.932876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/30/2022] [Indexed: 12/14/2022] Open
Abstract
Background Four RNA adenosine modifications, including m6A, m1A, alternative polyadenylation, and adenosine-to-inosine RNA editing, have been identified as potentially valuable in influencing colorectal carcinogenesis, immune infiltration, and response to drug therapy. However, the regulatory mechanisms and clinical significance of these four RNA modifications in ovarian cancer (OC) remain unknown. Methods We comprehensively described the transcriptional and genetic modifications of 26 RNA modification "writers" in OC and assessed the expression patterns. We identified two RNA modification subtypes using an unsupervised clustering approach. Subsequently, using differentially expressed genes (DEGs) in both subtypes, we calculated RNA modification "writer" scores (RMW scores) to characterize the RNA modifications of single OC patients. RMW score-related gene expression was investigated by qRT-PCR. We explored the correlation between RMW score and clinical features, immune infiltration, and drug sensitivity. We drew a nomogram to more intuitively and accurately describe the application value of the RMW score. Results We found that molecular alterations in "writers" are strongly related to prognostic and immune-infiltrating features in OC patients. We identified two different clusters of RNA modifications. According to the immune infiltration characteristics in the two RNA modification isoforms, cluster A and cluster B can correspond to "hot" and "cold" tumors, respectively. With the median RMW score, we classified the patients into high- and low-score subgroups. A low RMW score was associated with good patient prognosis and lower immune infiltration. In addition, a low RMW score equated with a higher cancer stem cell index and a lower tumor mutation burden, which to some extent affected the sensitivity of patients to therapeutic drugs. Seven RMW score-related gene expressions were investigated by qRT-PCR in three OC cell lines. Compared to previously known models, our established RMW score has higher accuracy in predicting patient survival. Conclusion A comprehensive analysis of four RNA modification patterns in OC reveals their potential value in OC prognosis, immune microenvironment, and drug sensitivity. These results could deepen our knowledge of RNA modification and yield fresh insights for new personalized therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoge Ni
- Department of Obstetrics and Gynecology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Can Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoliang Cui
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Ding
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
113
|
Karginov TA, Ménoret A, Vella AT. Optimal CD8 + T cell effector function requires costimulation-induced RNA-binding proteins that reprogram the transcript isoform landscape. Nat Commun 2022; 13:3540. [PMID: 35725727 PMCID: PMC9209503 DOI: 10.1038/s41467-022-31228-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/25/2022] [Indexed: 11/11/2022] Open
Abstract
Boosting T cell activation through costimulation directs defense against cancer and viral infections. Despite multiple studies targeting costimulation in clinical trials, the increased potency and reprogramming of T cells endowed by costimulation is poorly understood. Canonical dogma states that transcription mediates T cell activation. Here, we show that the spliceosome, controlling post-transcriptional alternative splicing and alternative polyadenylation, is the most enriched pathway in T cells after CD134/CD137 costimulation. Costimulation of CD8+ T cells significantly increases expression of 29 RNA-binding proteins while RNA-seq uncovers over 1000 differential alternative splicing and polyadenylation events. Using in vivo mouse and in vitro human models, we demonstrate that RNA-binding protein Tardbp is required for effector cytokine production, CD8+ T cell clonal expansion, and isoform regulation after costimulation. The prospect of immune response optimization through reprogramming of mRNA isoform production offered herein opens new avenues for experimentally and therapeutically tuning the activities of T cells.
Collapse
Affiliation(s)
- Timofey A Karginov
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Antoine Ménoret
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Anthony T Vella
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| |
Collapse
|
114
|
Guo M, Luo C, Wang Z, Chen S, Morris D, Ruan F, Chen Z, Yang L, Wei X, Wu C, Luo B, Lv Z, Huang J, Zhang D, Yu C, Gao Q, Wang H, Zhang Y, Sun F, Yan W, Tang C. Uncoupling transcription and translation through miRNA-dependent poly(A) length control in haploid male germ cells. Development 2022; 149:275470. [PMID: 35588208 PMCID: PMC9270972 DOI: 10.1242/dev.199573] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/05/2022] [Indexed: 01/31/2023]
Abstract
As one of the post-transcriptional regulatory mechanisms, uncoupling of transcription and translation plays an essential role in development and adulthood physiology. However, it remains elusive how thousands of mRNAs get translationally silenced while stability is maintained for hours or even days before translation. In addition to oocytes and neurons, developing spermatids display significant uncoupling of transcription and translation for delayed translation. Therefore, spermiogenesis represents an excellent in vivo model for investigating the mechanism underlying uncoupled transcription and translation. Through full-length poly(A) deep sequencing, we discovered dynamic changes in poly(A) length through deadenylation and re-polyadenylation. Deadenylation appeared to be mediated by microRNAs (miRNAs), and transcripts with shorter poly(A) tails tend to be sequestered into ribonucleoprotein (RNP) granules for translational repression and stabilization. In contrast, re-polyadenylation might allow for translocation of the translationally repressed transcripts from RNP granules to polysomes. Overall, our data suggest that miRNA-dependent poly(A) length control represents a previously unreported mechanism underlying uncoupled translation and transcription in haploid male mouse germ cells.
Collapse
Affiliation(s)
- Mei Guo
- R&D Department, BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Chunhai Luo
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Zhuqing Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, MS575, Reno, NV 89557, USA,Department of Endocrinology and Metabolism, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Sheng Chen
- Department of Endocrinology and Metabolism, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA,China Medical University, Department of Laboratory Animal Science, Shenyang 110122, China
| | - Dayton Morris
- Department of Endocrinology and Metabolism, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Fengying Ruan
- R&D Department, BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Zhichao Chen
- R&D Department, BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Linfeng Yang
- R&D Department, BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Xiongyi Wei
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Chuanwen Wu
- R&D Department, BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Bei Luo
- R&D Department, BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Zhou Lv
- R&D Department, BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Jin Huang
- R&D Department, BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Dong Zhang
- R&D Department, BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Cong Yu
- R&D Department, BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Qiang Gao
- R&D Department, BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Hongqi Wang
- R&D Department, BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Ying Zhang
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong University, Nantong 226001, Jiangsu, China,Authors for correspondence (; ; ; )
| | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong University, Nantong 226001, Jiangsu, China,Authors for correspondence (; ; ; )
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, MS575, Reno, NV 89557, USA,Department of Endocrinology and Metabolism, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA,Authors for correspondence (; ; ; )
| | - Chong Tang
- R&D Department, BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong University, Nantong 226001, Jiangsu, China,Authors for correspondence (; ; ; )
| |
Collapse
|
115
|
Chen J, Chen L, Zeng F, Wu S. Aminopeptidase N Activatable Nanoprobe for Tracking Lymphatic Metastasis and Guiding Tumor Resection Surgery via Optoacoustic/NIR-II Fluorescence Dual-Mode Imaging. Anal Chem 2022; 94:8449-8457. [DOI: 10.1021/acs.analchem.2c01241] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Junjie Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Longqi Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| |
Collapse
|
116
|
Puno MR, Lima CD. Structural basis for RNA surveillance by the human nuclear exosome targeting (NEXT) complex. Cell 2022; 185:2132-2147.e26. [PMID: 35688134 PMCID: PMC9210550 DOI: 10.1016/j.cell.2022.04.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/04/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023]
Abstract
RNA quality control relies on co-factors and adaptors to identify and prepare substrates for degradation by ribonucleases such as the 3' to 5' ribonucleolytic RNA exosome. Here, we determined cryogenic electron microscopy structures of human nuclear exosome targeting (NEXT) complexes bound to RNA that reveal mechanistic insights to substrate recognition and early steps that precede RNA handover to the exosome. The structures illuminate ZCCHC8 as a scaffold, mediating homodimerization while embracing the MTR4 helicase and flexibly anchoring RBM7 to the helicase core. All three subunits collaborate to bind the RNA, with RBM7 and ZCCHC8 surveying sequences upstream of the 3' end to facilitate RNA capture by MTR4. ZCCHC8 obscures MTR4 surfaces important for RNA binding and extrusion as well as MPP6-dependent recruitment and docking onto the RNA exosome core, interactions that contribute to RNA surveillance by coordinating RNA capture, translocation, and extrusion from the helicase to the exosome for decay.
Collapse
Affiliation(s)
- M Rhyan Puno
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
117
|
Li S, Wang J, Li J, Yue M, Liu C, Ma L, Liu Y. Integrative analysis of transcriptome complexity in pig granulosa cells by long-read isoform sequencing. PeerJ 2022; 10:e13446. [PMID: 35637716 PMCID: PMC9147391 DOI: 10.7717/peerj.13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/26/2022] [Indexed: 01/14/2023] Open
Abstract
Background In intensive and large-scale farms, abnormal estradiol levels in sows can cause reproductive disorders. The high incidence rate of reproductive disturbance will induce the elimination of productive sows in large quantities, and the poor management will bring great losses to the pig farms. The change in estradiol level has an important effect on follicular development and estrus of sows. To solve this practical problem and improve the productive capacity of sows, it is significant to further clarify the regulatory mechanism of estradiol synthesis in porcine granulosa cells (GCs). The most important function of granulosa cells is to synthesize estradiol. Thus, the studies about the complex transcriptome in porcine GCs are significant. As for precursor-messenger RNAs (pre-mRNAs), their post-transcriptional modification, such as alternative polyadenylation (APA) and alternative splicing (AS), together with long non-coding RNAs (lncRNAs), may regulate the functions of granulosa cells. However, the above modification events and their function are unclear within pig granulosa cells. Methods Combined PacBio long-read isoform sequencing (Iso-Seq) was conducted in this work for generating porcine granulosa cells' transcriptomic data. We discovered new transcripts and possible gene loci via comparison against reference genome. Later, combined Iso-Seq data were adopted to uncover those post-transcriptional modifications such as APA or AS, together with lncRNA within porcine granulosa cells. For confirming that the Iso-Seq data were reliable, we chose four AS genes and analyzed them through RT-PCR. Results The present article illustrated that pig GCs had a complex transcriptome, which gave rise to 8,793 APA, 3,465 AS events, 703 candidate new gene loci, as well as 92 lncRNAs. The results of this study revealed the complex transcriptome in pig GCs. It provided a basis for the interpretation of the molecular mechanism in GCs.
Collapse
Affiliation(s)
- Shuxin Li
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| | - Jiarui Wang
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| | - Jiale Li
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| | - Meihong Yue
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| | - Chuncheng Liu
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| | - Libing Ma
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| | - Ying Liu
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| |
Collapse
|
118
|
Leveraging omic features with F3UTER enables identification of unannotated 3'UTRs for synaptic genes. Nat Commun 2022; 13:2270. [PMID: 35477703 PMCID: PMC9046390 DOI: 10.1038/s41467-022-30017-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/18/2022] [Indexed: 11/08/2022] Open
Abstract
There is growing evidence for the importance of 3' untranslated region (3'UTR) dependent regulatory processes. However, our current human 3'UTR catalogue is incomplete. Here, we develop a machine learning-based framework, leveraging both genomic and tissue-specific transcriptomic features to predict previously unannotated 3'UTRs. We identify unannotated 3'UTRs associated with 1,563 genes across 39 human tissues, with the greatest abundance found in the brain. These unannotated 3'UTRs are significantly enriched for RNA binding protein (RBP) motifs and exhibit high human lineage-specificity. We find that brain-specific unannotated 3'UTRs are enriched for the binding motifs of important neuronal RBPs such as TARDBP and RBFOX1, and their associated genes are involved in synaptic function. Our data is shared through an online resource F3UTER ( https://astx.shinyapps.io/F3UTER/ ). Overall, our data improves 3'UTR annotation and provides additional insights into the mRNA-RBP interactome in the human brain, with implications for our understanding of neurological and neurodevelopmental diseases.
Collapse
|
119
|
Xu SM, Curry-Hyde A, Sytnyk V, Janitz M. RNA polyadenylation patterns in the human transcriptome. Gene 2022; 816:146133. [PMID: 34998928 DOI: 10.1016/j.gene.2021.146133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/03/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022]
Abstract
The eukaryotic transcriptome undergoes various post-transcriptional modifications which assists gene expression. Polyadenylation is a molecular process occurring at the 3'-end of the RNA molecule which involves the poly(A) polymerase attaching adenine monophosphate molecules in a chain-like fashion to assemble a poly(A) tail. Multiple RNA isoforms are produced with differing 3'-UTR and exonic compositions through alternative polyadenylation (APA) which enhances the diversification of alternatively spliced mRNA transcripts. To study polyadenylation patterns, novel methods have been developed using short-read and long-read sequencing technologies to analyse the 3'-ends of the transcript. Recent studies have identified unique polyadenylation patterns in different cellular functions, including oncogenic activity, which could prove valuable in the understanding of medical genetics, particularly in the discovery of biomarkers in diseased states. We present a review of current literature reporting on polyadenylation and the biological relevance in the mammalian transcriptome, with a focus on the human transcriptome. Additionally, we have explored the various methods available to detect polyadenylation patterns using second and third generation sequencing technologies.
Collapse
Affiliation(s)
- Si-Mei Xu
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Australia
| | - Ashton Curry-Hyde
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Australia; Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
120
|
Neupane R, Youker K, Yalamanchili HK, Cieslik KA, Karmouty-Quintana H, Guha A, Thandavarayan RA. Cleavage stimulating factor 64 depletion mitigates cardiac fibrosis through alternative polyadenylation. Biochem Biophys Res Commun 2022; 597:109-114. [PMID: 35134608 PMCID: PMC9334457 DOI: 10.1016/j.bbrc.2022.01.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022]
Abstract
Alternative polyadenylation (APA) regulates gene expression by cleavage and addition of poly(A) sequence at different polyadenylation sites (PAS) in 3'UTR, thus, generating transcript isoforms with different lengths. Cleavage stimulating factor 64 (CstF64) is an APA regulator which plays a role in PAS selection and determines the length of 3'UTR. CstF64 favors the use of proximal PAS, resulting in 3'UTR shortening, which enhances the protein expression by increasing the stability of the target genes. The aim of this study is to investigate the role of CstF64 in cardiac fibrosis, a key event leading to heart failure (HF). We determined the expression of CstF64, key profibrotic genes, and their 3'UTR changes by calculating distal PAS (dPAS) usage in left ventricular (LV) tissues and cardiac fibroblasts from HF patients. CstF64 was upregulated in HF LV tissues and cardiac fibroblasts along with increased deposition of fibrosis genes such as COL1A and FN1 and significant shortening in their 3'UTR. In addition, HF cardiac fibroblasts showed increased transforming growth factor receptor β1 (TGFβR1) expression consistent with significant shortening in 3'UTR of TGFβR1. Upon knockdown of CstF64 from HF fibroblasts, downregulation in pro-fibrotic genes corresponding to lengthening in their 3'UTR was observed. Our finding suggests an important role of CstF64 in myofibroblast activation and promotion of cardiac fibrosis during HF through APA. Therefore, targeting CstF64 mediated RNA processing approach in human HF could provide a new therapeutic treatment strategy for limiting fibrotic remodeling.
Collapse
Affiliation(s)
- Rahul Neupane
- DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Keith Youker
- DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Hari Krishna Yalamanchili
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA; USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Katarzyna A Cieslik
- Division of Cardiovascular Sciences Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Ashrith Guha
- DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | | |
Collapse
|
121
|
Lusk R, Hoffman PL, Mahaffey S, Rosean S, Smith H, Silhavy J, Pravenec M, Tabakoff B, Saba LM. Beyond Genes: Inclusion of Alternative Splicing and Alternative Polyadenylation to Assess the Genetic Architecture of Predisposition to Voluntary Alcohol Consumption in Brain of the HXB/BXH Recombinant Inbred Rat Panel. Front Genet 2022; 13:821026. [PMID: 35368676 PMCID: PMC8965255 DOI: 10.3389/fgene.2022.821026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/10/2022] [Indexed: 12/02/2022] Open
Abstract
Post transcriptional modifications of RNA are powerful mechanisms by which eukaryotes expand their genetic diversity. For instance, researchers estimate that most transcripts in humans undergo alternative splicing and alternative polyadenylation. These splicing events produce distinct RNA molecules, which in turn yield distinct protein isoforms and/or influence RNA stability, translation, nuclear export, and RNA/protein cellular localization. Due to their pervasiveness and impact, we hypothesized that alternative splicing and alternative polyadenylation in brain can contribute to a predisposition for voluntary alcohol consumption. Using the HXB/BXH recombinant inbred rat panel (a subset of the Hybrid Rat Diversity Panel), we generated over one terabyte of brain RNA sequencing data (total RNA) and identified novel splice variants (via StringTie) and alternative polyadenylation sites (via aptardi) to determine the transcriptional landscape in the brains of these animals. After establishing an analysis pipeline to ascertain high quality transcripts, we quantitated transcripts and integrated genotype data to identify candidate transcript coexpression networks and individual candidate transcripts associated with predisposition to voluntary alcohol consumption in the two-bottle choice paradigm. For genes that were previously associated with this trait (e.g., Lrap, Ift81, and P2rx4) (Saba et al., Febs. J., 282, 3556–3578, Saba et al., Genes. Brain. Behav., 20, e12698), we were able to distinguish between transcript variants to provide further information about the specific isoforms related to the trait. We also identified additional candidate transcripts associated with the trait of voluntary alcohol consumption (i.e., isoforms of Mapkapk5, Aldh1a7, and Map3k7). Consistent with our previous work, our results indicate that transcripts and networks related to inflammation and the immune system in brain can be linked to voluntary alcohol consumption. Overall, we have established a pipeline for including the quantitation of alternative splicing and alternative polyadenylation variants in the transcriptome in the analysis of the relationship between the transcriptome and complex traits.
Collapse
Affiliation(s)
- Ryan Lusk
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Paula L. Hoffman
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Spencer Mahaffey
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Samuel Rosean
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Harry Smith
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jan Silhavy
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Michal Pravenec
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Laura M. Saba
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Laura M. Saba,
| |
Collapse
|
122
|
Song P, Zhou S, Qi X, Jiao Y, Gong Y, Zhao J, Yang H, Qian Z, Qian J, Tang L. RNA modification writers influence tumor microenvironment in gastric cancer and prospects of targeted drug therapy. J Bioinform Comput Biol 2022; 20:2250004. [PMID: 35287562 DOI: 10.1142/s0219720022500044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: RNA adenosine modifications are crucial for regulating RNA levels. N6-methyladenosine (m6A), N1-methyladenosine (m1A), adenosine-to-inosine RNA editing, and alternative polyadenylation (APA) are four major RNA modification types. Methods: We evaluated the altered mRNA expression profiles of 27 RNA modification enzymes and compared the differences in tumor microenvironment (TME) and clinical prognosis between two RNA modification patterns using unsupervised clustering. Then, we constructed a scoring system, WM_score, and quantified the RNA modifications in patients of gastric cancer (GC), associating WM_score with TME, clinical outcomes, and effectiveness of targeted therapies. Results: RNA adenosine modifications strongly correlated with TME and could predict the degree of TME cell infiltration, genetic variation, and clinical prognosis. Two modification patterns were identified according to high and low WM_scores. Tumors in the WM_score-high subgroup were closely linked with survival advantage, CD4[Formula: see text] T-cell infiltration, high tumor mutation burden, and cell cycle signaling pathways, whereas those in the WM_score-low subgroup showed strong infiltration of inflammatory cells and poor survival. Regarding the immunotherapy response, a high WM_score showed a significant correlation with PD-L1 expression, predicting the effect of PD-L1 blockade therapy. Conclusion: The WM_scoring system could facilitate scoring and prediction of GC prognosis.
Collapse
Affiliation(s)
- Peng Song
- Department of Gastrointestinal Surgery, The Affiliated Changzhou, No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, P. R. China
| | - Sheng Zhou
- Department of Gastrointestinal Surgery, The Affiliated Changzhou, No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, P. R. China
| | - Xiaoyang Qi
- Department of Gastrointestinal Surgery, The Affiliated Changzhou, No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, P. R. China
| | - Yuwen Jiao
- Department of Gastrointestinal Surgery, The Affiliated Changzhou, No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, P. R. China
| | - Yu Gong
- Department of Gastrointestinal Surgery, The Affiliated Changzhou, No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, P. R. China
| | - Jie Zhao
- Department of Gastrointestinal Surgery, The Affiliated Changzhou, No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, P. R. China
| | - Haojun Yang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou, No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, P. R. China
| | - Zhifen Qian
- Department of Gastrointestinal Surgery, The Affiliated Changzhou, No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, P. R. China
| | - Jun Qian
- Department of Gastrointestinal Surgery, The Affiliated Changzhou, No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, P. R. China
| | - Liming Tang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou, No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, P. R. China
| |
Collapse
|
123
|
Abstract
The AID/APOBEC polynucleotide cytidine deaminases have historically been classified as either DNA mutators or RNA editors based on their first identified nucleic acid substrate preference. DNA mutators can generate functional diversity at antibody genes but also cause genomic instability in cancer. RNA editors can generate informational diversity in the transcriptome of innate immune cells, and of cancer cells. Members of both classes can act as antiviral restriction factors. Recent structural work has illuminated differences and similarities between AID/APOBEC enzymes that can catalyse DNA mutation, RNA editing or both, suggesting that the strict functional classification of members of this family should be reconsidered. As many of these enzymes have been employed for targeted genome (or transcriptome) editing, a more holistic understanding will help improve the design of therapeutically relevant programmable base editors. In this Perspective, Pecori et al. provide an overview of the AID/APOBEC cytidine deaminase family, discussing key structural features, how they contribute to viral and tumour evolution and how they can be harnessed for (potentially therapeutic) base-editing purposes.
Collapse
|
124
|
Kefaloyianni E. Soluble forms of cytokine and growth factor receptors: mechanisms of generation and modes of action in the regulation of local and systemic inflammation. FEBS Lett 2022; 596:589-606. [PMID: 35113454 PMCID: PMC11924200 DOI: 10.1002/1873-3468.14305] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/16/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022]
Abstract
Cytokine and growth factor receptors are usually transmembrane proteins, but they can also exist in soluble forms, either through cleavage and release of their ligand-binding extracellular domain or through the secretion of a soluble isoform. As an extension of this concept, transmembrane receptors on exosomes released into the circulation may act similarly to circulating soluble receptors. These soluble receptors add to the complexity of cytokine and growth factor signalling: they can function as decoy receptor that compete for ligand binding with their respective membrane-bound forms thereby attenuating signalling, or stabilize their ligands, or activate additional signalling events through interactions with other cell-surface proteins. Their soluble nature allows for a functional role away from the production sites, in remote cell types and organs. Accumulating evidence demonstrates that soluble receptors participate in the regulation and orchestration of various key cellular processes, particularly inflammatory responses. In this review, we will discuss release mechanisms of soluble cytokine and growth factor receptors, their mechanisms of action and strategies for targeting their pathways in disease.
Collapse
Affiliation(s)
- Eirini Kefaloyianni
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
125
|
Pereira-Castro I, Garcia BC, Curinha A, Neves-Costa A, Conde-Sousa E, Moita LF, Moreira A. MCL1 alternative polyadenylation is essential for cell survival and mitochondria morphology. Cell Mol Life Sci 2022; 79:164. [PMID: 35229202 PMCID: PMC11072748 DOI: 10.1007/s00018-022-04172-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/07/2022] [Accepted: 01/27/2022] [Indexed: 02/02/2023]
Abstract
Alternative polyadenylation in the 3' UTR (3' UTR-APA) is a mode of gene expression regulation, fundamental for mRNA stability, translation and localization. In the immune system, it was shown that upon T cell activation, there is an increase in the relative expression of mRNA isoforms with short 3' UTRs resulting from 3' UTR-APA. However, the functional significance of 3' UTR-APA remains largely unknown. Here, we studied the physiological function of 3' UTR-APA in the regulation of Myeloid Cell Leukemia 1 (MCL1), an anti-apoptotic member of the Bcl-2 family essential for T cell survival. We found that T cells produce two MCL1 mRNA isoforms (pA1 and pA2) by 3' UTR-APA. We show that upon T cell activation, there is an increase in both the shorter pA1 mRNA isoform and MCL1 protein levels. Moreover, the less efficiently translated pA2 isoform is downregulated by miR-17, which is also more expressed upon T cell activation. Therefore, by increasing the expression of the more efficiently translated pA1 mRNA isoform, which escapes regulation by miR-17, 3' UTR-APA fine tunes MCL1 protein levels, critical for activated T cells' survival. Furthermore, using CRISPR/Cas9-edited cells, we show that depletion of either pA1 or pA2 mRNA isoforms causes severe defects in mitochondria morphology, increases apoptosis and impacts cell proliferation. Collectively, our results show that MCL1 alternative polyadenylation has a key role in the regulation of MCL1 protein levels upon T cell activation and reveal an essential function for MCL1 3' UTR-APA in cell viability and mitochondria dynamics.
Collapse
Affiliation(s)
- Isabel Pereira-Castro
- Gene Regulation, i3S, Instituto de Investigação E Inovação Em Saúde, Universidade Do Porto, Porto, Portugal.
- Gene Regulation, IBMC, Instituto de Biologia Molecular E Celular, Universidade Do Porto, Porto, Portugal.
| | - Beatriz C Garcia
- Gene Regulation, i3S, Instituto de Investigação E Inovação Em Saúde, Universidade Do Porto, Porto, Portugal
- Gene Regulation, IBMC, Instituto de Biologia Molecular E Celular, Universidade Do Porto, Porto, Portugal
| | - Ana Curinha
- Gene Regulation, IBMC, Instituto de Biologia Molecular E Celular, Universidade Do Porto, Porto, Portugal
- Department of Molecular Biology and Genetics, John Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Eduardo Conde-Sousa
- i3S, Instituto de Investigação E Inovação Em Saúde, Universidade Do Porto, Porto, Portugal
- INEB, Instituto de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
| | - Luís F Moita
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Alexandra Moreira
- Gene Regulation, i3S, Instituto de Investigação E Inovação Em Saúde, Universidade Do Porto, Porto, Portugal.
- Gene Regulation, IBMC, Instituto de Biologia Molecular E Celular, Universidade Do Porto, Porto, Portugal.
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Porto, Portugal.
| |
Collapse
|
126
|
CPEB1 directs muscle stem cell activation by reprogramming the translational landscape. Nat Commun 2022; 13:947. [PMID: 35177647 PMCID: PMC8854658 DOI: 10.1038/s41467-022-28612-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/14/2022] [Indexed: 11/08/2022] Open
Abstract
Skeletal muscle stem cells, also called Satellite Cells (SCs), are actively maintained in quiescence but can activate quickly upon extrinsic stimuli. However, the mechanisms of how quiescent SCs (QSCs) activate swiftly remain elusive. Here, using a whole mouse perfusion fixation approach to obtain bona fide QSCs, we identify massive proteomic changes during the quiescence-to-activation transition in pathways such as chromatin maintenance, metabolism, transcription, and translation. Discordant correlation of transcriptomic and proteomic changes reveals potential translational regulation upon SC activation. Importantly, we show Cytoplasmic Polyadenylation Element Binding protein 1 (CPEB1), post-transcriptionally affects protein translation during SC activation by binding to the 3' UTRs of different transcripts. We demonstrate phosphorylation-dependent CPEB1 promoted Myod1 protein synthesis by binding to the cytoplasmic polyadenylation elements (CPEs) within its 3' UTRs to regulate SC activation and muscle regeneration. Our study characterizes CPEB1 as a key regulator to reprogram the translational landscape directing SC activation and subsequent proliferation.
Collapse
|
127
|
Implications of Poly(A) Tail Processing in Repeat Expansion Diseases. Cells 2022; 11:cells11040677. [PMID: 35203324 PMCID: PMC8870147 DOI: 10.3390/cells11040677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 11/21/2022] Open
Abstract
Repeat expansion diseases are a group of more than 40 disorders that affect mainly the nervous and/or muscular system and include myotonic dystrophies, Huntington’s disease, and fragile X syndrome. The mutation-driven expanded repeat tract occurs in specific genes and is composed of tri- to dodeca-nucleotide-long units. Mutant mRNA is a pathogenic factor or important contributor to the disease and has great potential as a therapeutic target. Although repeat expansion diseases are quite well known, there are limited studies concerning polyadenylation events for implicated transcripts that could have profound effects on transcript stability, localization, and translation efficiency. In this review, we briefly present polyadenylation and alternative polyadenylation (APA) mechanisms and discuss their role in the pathogenesis of selected diseases. We also discuss several methods for poly(A) tail measurement (both transcript-specific and transcriptome-wide analyses) and APA site identification—the further development and use of which may contribute to a better understanding of the correlation between APA events and repeat expansion diseases. Finally, we point out some future perspectives on the research into repeat expansion diseases, as well as APA studies.
Collapse
|
128
|
Huang CK, Lin WD, Wu SH. An improved repertoire of splicing variants and their potential roles in Arabidopsis photomorphogenic development. Genome Biol 2022; 23:50. [PMID: 35139889 PMCID: PMC8827149 DOI: 10.1186/s13059-022-02620-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/25/2022] [Indexed: 01/03/2023] Open
Abstract
Background Light switches on the photomorphogenic development of young plant seedlings, allowing young seedlings to acquire photosynthetic capacities and gain survival fitness. Light regulates gene expression at all levels of the central dogma, including alternative splicing (AS) during the photomorphogenic development. However, accurate determination of full-length (FL) splicing variants has been greatly hampered by short-read RNA sequencing technologies. Result In this study, we adopt PacBio isoform sequencing (Iso-seq) to overcome the limitation of the short-read RNA-seq technologies. Normalized cDNA libraries used for Iso-seq allows for comprehensive and effective identification of FL AS variants. Our analyses reveal more than 30,000 splicing variant models from approximately 16,500 gene loci and additionally identify approximately 700 previously unannotated genes. Among the variants, approximately 12,000 represent new gene models. Intron retention (IR) is the most frequently observed form of variants, and many IR-containing AS variants show evidence of engagement in translation. Our study reveals the formation of heterodimers of transcription factors composed of annotated and IR-containing AS variants. Moreover, transgenic plants overexpressing the IR forms of two B-BOX DOMAIN PROTEINs exhibits light-hypersensitive phenotypes, suggesting their regulatory roles in modulating optimal light responses. Conclusions This study provides an accurate and comprehensive portrait of full-length transcript isoforms and experimentally confirms the presence of de novo synthesized AS variants that impose regulatory functions in photomorphogenic development in Arabidopsis. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02620-2.
Collapse
Affiliation(s)
- Chun-Kai Huang
- Institute of Plant and Microbial Biology, Academia Sinica, 128, Sec. 2, Academia Rd., Taipei, 11529, Taiwan
| | - Wen-Dar Lin
- The Bioinformatics Core Lab, Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, 128, Sec. 2, Academia Rd., Taipei, 11529, Taiwan.
| |
Collapse
|
129
|
Zhang S, Xiong Y, Zheng C, Long J, Zhou H, Zeng Z, Ouyang Y, Tang F. Crosstalk Between Four Types of RNA Modification Writers Characterizes the Tumor Immune Microenvironment Infiltration Patterns in Skin Cutaneous Melanoma. Front Cell Dev Biol 2022; 10:821678. [PMID: 35155433 PMCID: PMC8826580 DOI: 10.3389/fcell.2022.821678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
The “writers” of four types of adenosine (A)-related RNA modifications (N6-methyladenosine, N1-methyladenosine, alternative polyadenylation, as well as A-to-inosine RNA editing) are closely related to the tumorigenesis and progression of many cancer types, including skin cutaneous melanoma (SKCM). However, the potential roles of the crosstalk between these RNA modification “writers” in the tumor microenvironment (TME) remain unclear. The RNA modification patterns were identified using an unsupervised clustering method. Subsequently, based on differentially expressed genes responsible for the aforementioned RNA modification patterns, an RNA modification “writer” scoring model (W_Score) was constructed to quantify the RNA modification-associated subtypes in individual patients. Moreover, a correlation analysis for W_Score and the TME characteristics, clinical features, molecular subtypes, drug sensitivities, immune responses, and prognosis was performed. We identified three RNA modification patterns, corresponding to distinct tumor immune microenvironment characteristics and survival outcomes. Based on the W_Score score, which was extracted from the RNA modification-related signature genes, patients with SKCM were divided into high- and low-W_Score groups. The low-W_Score group was characterized by better survival outcomes and strengthened immunocyte infiltration. Further analysis showed that the low-W_Score group was positively associated with higher tumor mutation burden and PD-L1 expression. Of note, two immunotherapy cohorts demonstrated that patients with low W_Score exhibited long-term clinical benefits and an enhanced immune response. This study is the first to systematically analyze four types of A-related RNA modifications in SKCM, revealing that these “writers” essentially contribute to TME complexity and diversity. We quantitatively evaluated the RNA modification patterns in individual tumors, which could aid in developing personalized immunotherapy strategies for patients.
Collapse
Affiliation(s)
- Shichao Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yu Xiong
- Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Chaochao Zheng
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Jinhua Long
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Houming Zhou
- Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Zhu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- *Correspondence: Fuzhou Tang, ; Yan Ouyang, ; Zhu Zeng,
| | - Yan Ouyang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- *Correspondence: Fuzhou Tang, ; Yan Ouyang, ; Zhu Zeng,
| | - Fuzhou Tang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- *Correspondence: Fuzhou Tang, ; Yan Ouyang, ; Zhu Zeng,
| |
Collapse
|
130
|
Interpreting neural networks for biological sequences by learning stochastic masks. NAT MACH INTELL 2022; 4:41-54. [DOI: 10.1038/s42256-021-00428-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
131
|
Wu D, Khan FA, Huo L, Sun F, Huang C. Alternative splicing and MicroRNA: epigenetic mystique in male reproduction. RNA Biol 2022; 19:162-175. [PMID: 35067179 PMCID: PMC8786336 DOI: 10.1080/15476286.2021.2024033] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Infertility is rarely life threatening, however, it poses a serious global health issue posing far-reaching socio-economic impacts affecting 12–15% of couples worldwide where male factor accounts for 70%. Functional spermatogenesis which is the result of several concerted coordinated events to produce sperms is at the core of male fertility, Alternative splicing and microRNA (miRNA) mediated RNA silencing (RNAi) constitute two conserved post-transcriptional gene (re)programming machinery across species. The former by diversifying transcriptome signature and the latter by repressing target mRNA activity orchestrate a spectrum of testicular events, and their dysfunctions has several implications in male infertility. This review recapitulates the knowledge of these mechanistic events in regulation of spermatogenesis and testicular homoeostasis. In addition, miRNA payload in sperm, vulnerable to paternal inputs, including unhealthy diet, infection and trauma, creates epigenetic memory to initiate intergenerational phenotype. Naive zygote injection of sperm miRNAs from stressed father recapitulates phenotypes of offspring of stressed father. The epigenetic inheritance of paternal pathologies through miRNA could be a tantalizing avenue to better appreciate ‘Paternal Origins of Health and Disease’ and the power of tiny sperm.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Faheem Ahmed Khan
- Laboratory of Molecular Biology and Genomics, Department of Zoology, Faculty of Science, University of Central Punjab, Lahore, Pakistan
| | - Lijun Huo
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
132
|
Arora A, Goering R, Lo HYG, Lo J, Moffatt C, Taliaferro JM. The Role of Alternative Polyadenylation in the Regulation of Subcellular RNA Localization. Front Genet 2022; 12:818668. [PMID: 35096024 PMCID: PMC8795681 DOI: 10.3389/fgene.2021.818668] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Alternative polyadenylation (APA) is a widespread and conserved regulatory mechanism that generates diverse 3' ends on mRNA. APA patterns are often tissue specific and play an important role in cellular processes such as cell proliferation, differentiation, and response to stress. Many APA sites are found in 3' UTRs, generating mRNA isoforms with different 3' UTR contents. These alternate 3' UTR isoforms can change how the transcript is regulated, affecting its stability and translation. Since the subcellular localization of a transcript is often regulated by 3' UTR sequences, this implies that APA can also change transcript location. However, this connection between APA and RNA localization has only recently been explored. In this review, we discuss the role of APA in mRNA localization across distinct subcellular compartments. We also discuss current challenges and future advancements that will aid our understanding of how APA affects RNA localization and molecular mechanisms that drive these processes.
Collapse
Affiliation(s)
- Ankita Arora
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Raeann Goering
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Hei Yong G. Lo
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Joelle Lo
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Charlie Moffatt
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - J. Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
133
|
Molecular identification of a PGRMC-2 receptor in maturing oocytes of the zoonotic nematode parasite Trichinella spiralis. Vet Parasitol 2022; 302:109662. [DOI: 10.1016/j.vetpar.2022.109662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 11/19/2022]
|
134
|
Beauregard AP, Hannay B, Gharib E, Crapoulet N, Finn N, Guerrette R, Ouellet A, Robichaud GA. Pax-5 Protein Expression Is Regulated by Transcriptional 3'UTR Editing. Cells 2021; 11:cells11010076. [PMID: 35011638 PMCID: PMC8750734 DOI: 10.3390/cells11010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
The Pax-5 gene encodes a transcription factor that is essential for B-cell commitment and maturation. However, Pax-5 deregulation is associated with various cancer lesions, notably hematopoietic cancers. Mechanistically, studies have characterized genetic alterations within the Pax-5 locus that result in either dominant oncogenic function or haploinsufficiency-inducing mutations leading to oncogenesis. Apart from these mutations, some examples of aberrant Pax-5 expression cannot be associated with genetic alterations. In the present study, we set out to elucidate potential alterations in post-transcriptional regulation of Pax-5 expression and establish that Pax-5 transcript editing represents an important means to aberrant expression. Upon the profiling of Pax-5 mRNA in leukemic cells, we found that the 3′end of the Pax-5 transcript is submitted to alternative polyadenylation (APA) and alternative splicing events. Using rapid amplification of cDNA ends (3′RACE) from polysomal fractions, we found that Pax-5 3′ untranslated region (UTR) shortening correlates with increased ribosomal occupancy for translation. These observations were also validated using reporter gene assays with truncated 3′UTR regions cloned downstream of a luciferase gene. We also showed that Pax-5 3′UTR editing has direct repercussions on regulatory elements such as miRNAs, which in turn impact Pax-5 protein expression. More importantly, we found that advanced staging of various hematopoietic cancer lesions relates to shorter Pax-5 3′UTRs. Altogether, our findings identify novel molecular mechanisms that account for aberrant expression and function of the Pax-5 oncogene in cancer cells. These findings also present new avenues for strategic intervention in Pax-5-mediated cancers.
Collapse
Affiliation(s)
- Annie-Pier Beauregard
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada; (A.-P.B.); (B.H.); (E.G.); (N.C.); (R.G.); (A.O.)
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Brandon Hannay
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada; (A.-P.B.); (B.H.); (E.G.); (N.C.); (R.G.); (A.O.)
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Ehsan Gharib
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada; (A.-P.B.); (B.H.); (E.G.); (N.C.); (R.G.); (A.O.)
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Nicolas Crapoulet
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada; (A.-P.B.); (B.H.); (E.G.); (N.C.); (R.G.); (A.O.)
- Dr. Georges-L-Dumont University Hospital Centre, Moncton, NB E1C 8X3, Canada;
| | - Nicholas Finn
- Dr. Georges-L-Dumont University Hospital Centre, Moncton, NB E1C 8X3, Canada;
| | - Roxann Guerrette
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada; (A.-P.B.); (B.H.); (E.G.); (N.C.); (R.G.); (A.O.)
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Amélie Ouellet
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada; (A.-P.B.); (B.H.); (E.G.); (N.C.); (R.G.); (A.O.)
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A. Robichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada; (A.-P.B.); (B.H.); (E.G.); (N.C.); (R.G.); (A.O.)
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
- Correspondence: ; Tel.: +1-(506)-858-4320
| |
Collapse
|
135
|
Subramanian A, Hall M, Hou H, Mufteev M, Yu B, Yuki KE, Nishimura H, Sathaseevan A, Lant B, Zhai B, Ellis J, Wilson MD, Daugaard M, Derry WB. Alternative polyadenylation is a determinant of oncogenic Ras function. SCIENCE ADVANCES 2021; 7:eabh0562. [PMID: 34919436 PMCID: PMC8682989 DOI: 10.1126/sciadv.abh0562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Alternative polyadenylation of mRNA has important but poorly understood roles in development and cancer. Activating mutations in the Ras oncogene are common drivers of many human cancers. From a screen for enhancers of activated Ras (let-60) in Caenorhabditis elegans, we identified cfim-1, a subunit of the alternative polyadenylation machinery. Ablation of cfim-1 increased penetrance of the multivulva phenotype in let-60/Ras gain-of-function (gf) mutants. Depletion of the human cfim-1 ortholog CFIm25/NUDT21 in cancer cells with KRAS mutations increased their migration and stimulated an epithelial-to-mesenchymal transition. CFIm25-depleted cells and cfim-1 mutants displayed biased placement of poly(A) tails to more proximal sites in many conserved transcripts. Functional analysis of these transcripts identified the multidrug resistance protein mrp-5/ABCC1 as a previously unidentified regulator of C. elegans vulva development and cell migration in human cells through alternative 3′UTR usage. Our observations demonstrate a conserved functional role for alternative polyadenylation in oncogenic Ras function.
Collapse
Affiliation(s)
- Aishwarya Subramanian
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Mathew Hall
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Huayun Hou
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Marat Mufteev
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bin Yu
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Kyoko E. Yuki
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Haruka Nishimura
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anson Sathaseevan
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Benjamin Lant
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Beibei Zhai
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - James Ellis
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michael D. Wilson
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mads Daugaard
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - W. Brent Derry
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
136
|
Liu W, Sun Y, Qiu X, Meng C, Song C, Tan L, Liao Y, Liu X, Ding C. Genome-Wide Analysis of Alternative Splicing during Host-Virus Interactions in Chicken. Viruses 2021; 13:v13122409. [PMID: 34960678 PMCID: PMC8703359 DOI: 10.3390/v13122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
The chicken is a model animal for the study of evolution, immunity and development. In addition to their use as a model organism, chickens also represent an important agricultural product. Pathogen invasion has already been shown to modulate the expression of hundreds of genes, but the role of alternative splicing in avian virus infection remains unclear. We used RNA-seq data to analyze virus-induced changes in the alternative splicing of Gallus gallus, and found that a large number of alternative splicing events were induced by virus infection both in vivo and in vitro. Virus-responsive alternative splicing events preferentially occurred in genes involved in metabolism and transport. Many of the alternatively spliced transcripts were also expressed from genes with a function relating to splicing or immune response, suggesting a potential impact of virus infection on pre-mRNA splicing and immune gene regulation. Moreover, exon skipping was the most frequent AS event in chickens during virus infection. This is the first report describing a genome-wide analysis of alternative splicing in chicken and contributes to the genomic resources available for studying host-virus interaction in this species. Our analysis fills an important knowledge gap in understanding the extent of genome-wide alternative splicing dynamics occurring during avian virus infection and provides the impetus for the further exploration of AS in chicken defense signaling and homeostasis.
Collapse
Affiliation(s)
- Weiwei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Chunchun Meng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Xiufan Liu
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-21-3429-3441
| |
Collapse
|
137
|
Xiaoli L, Fengbin H, Shihui H, Xi N, Sheng L, Zhou W, Xueqin R, Jiafu W. Detection of genomic structure variants associated with wrinkled skin in Xiang pig by next generation sequencing. Aging (Albany NY) 2021; 13:24710-24739. [PMID: 34837693 PMCID: PMC8660620 DOI: 10.18632/aging.203711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/02/2021] [Indexed: 11/25/2022]
Abstract
Wrinkling is prominent manifestation of aging skin. A mutant phenotype characterized by systemic wrinkles and thickened skin was discovered in Xiang pig populations with incidence about 1-3%. The feature in histological structure was epidermal hyperplasia and thickening, collagen fibers disorder. To uncover genetic mechanisms for the mutant phenotype of Xiang pigs with systemic wrinkle (WXP), a genome-wide of structural variations (SVs) in WXP was described by next generation resequencing, taking Xiang pigs (XP) and European pigs (EUP) as compares. Total of 32,308 SVs were detected from three pig groups and 965 SVs were identified specifically from WXP, involving 481 protein-coding genes. These genes were mainly enriched in nuclear structure, ECM components and immunomodulatory pathways. According to gene function and enrichment analysis, we found that 65 candidate SVs in 59 protein genes were probably related with the systemic wrinkle of WXP. Of these, several genes are reported to be associate with aging, such as EIF4G2, NOLC1, XYLT1, FUT8, MDM2 and so on. The insertion/deletion and duplication variations of SVs in these genes resulted in the loss of stop-codon or frameshift mutation, and aberrant alternative splicing of transcripts. These genes are involved in cell lamin filament, intermediate filament cytoskeleton, supramolecular complex, cell differentiation and regulation of macromolecule metabolic process etc. Our study suggested that the loss of function or aberrant expression of these genes lead to structural disorder of nuclear and the extracellular matrix (ECM) in skin cells, which probably was the genetic mechanisms for the mutant phenotype of systemic skin wrinkle of Xiang pig.
Collapse
Affiliation(s)
- Liu Xiaoli
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Hu Fengbin
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Huang Shihui
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Niu Xi
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Li Sheng
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Wang Zhou
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Ran Xueqin
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Wang Jiafu
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
138
|
Mo W, Liu B, Zhang H, Jin X, Lu D, Yu Y, Liu Y, Jia J, Long Y, Deng X, Cao X, Guo H, Zhai J. Landscape of transcription termination in Arabidopsis revealed by single-molecule nascent RNA sequencing. Genome Biol 2021; 22:322. [PMID: 34823554 PMCID: PMC8613925 DOI: 10.1186/s13059-021-02543-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The dynamic process of transcription termination produces transient RNA intermediates that are difficult to distinguish from each other via short-read sequencing methods. RESULTS Here, we use single-molecule nascent RNA sequencing to characterize the various forms of transient RNAs during termination at genome-wide scale in wildtype Arabidopsis and in atxrn3, fpa, and met1 mutants. Our data reveal a wide range of termination windows among genes, ranging from ~ 50 nt to over 1000 nt. We also observe efficient termination before downstream tRNA genes, suggesting that chromatin structure around the promoter region of tRNA genes may block pol II elongation. 5' Cleaved readthrough transcription in atxrn3 with delayed termination can run into downstream genes to produce normally spliced and polyadenylated mRNAs in the absence of their own transcription initiation. Consistent with previous reports, we also observe long chimeric transcripts with cryptic splicing in fpa mutant; but loss of CG DNA methylation has no obvious impact on termination in the met1 mutant. CONCLUSIONS Our method is applicable to establish a comprehensive termination landscape in a broad range of species.
Collapse
Affiliation(s)
- Weipeng Mo
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bo Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hong Zhang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xianhao Jin
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dongdong Lu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiming Yu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuelin Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinbu Jia
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yanping Long
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongwei Guo
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China.
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
139
|
An S, Li Y, Lin Y, Chu J, Su J, Chen Q, Wang H, Pan P, Zheng R, Li J, Jiang J, Ye L, Liang H. Genome-Wide Profiling Reveals Alternative Polyadenylation of Innate Immune-Related mRNA in Patients With COVID-19. Front Immunol 2021; 12:756288. [PMID: 34777369 PMCID: PMC8578971 DOI: 10.3389/fimmu.2021.756288] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/13/2021] [Indexed: 01/13/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused many deaths worldwide. To date, the mechanism of viral immune escape remains unclear, which is a great obstacle to developing effective clinical treatment. RNA processing mechanisms, including alternative polyadenylation (APA) and alternative splicing (AS), are crucial in the regulation of most human genes in many types of infectious diseases. Because the role of APA and AS in response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains unknown, we performed de novo identification of dynamic APA sites using a public dataset of human peripheral blood mononuclear cell (PBMC) RNA-Seq data in COVID-19 patients. We found that genes with APA were enriched in innate immunity -related gene ontology categories such as neutrophil activation, regulation of the MAPK cascade and cytokine production, response to interferon-gamma and the innate immune response. We also reported genome-wide AS events and enriched viral transcription-related categories upon SARS-CoV-2 infection. Interestingly, we found that APA events may give better predictions than AS in COVID-19 patients, suggesting that APA could act as a potential therapeutic target and novel biomarker in those patients. Our study is the first to annotate genes with APA and AS in COVID-19 patients and highlights the roles of APA variation in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sanqi An
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Yueqi Li
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Yao Lin
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Jiemei Chu
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Jinming Su
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Qiuli Chen
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Hailong Wang
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Peijiang Pan
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Ruili Zheng
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Jingyi Li
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Junjun Jiang
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Li Ye
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Hao Liang
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| |
Collapse
|
140
|
Yuan Z, Ge L, Sun J, Zhang W, Wang S, Cao X, Sun W. Integrative analysis of Iso-Seq and RNA-seq data reveals transcriptome complexity and differentially expressed transcripts in sheep tail fat. PeerJ 2021; 9:e12454. [PMID: 34760406 PMCID: PMC8571958 DOI: 10.7717/peerj.12454] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/18/2021] [Indexed: 01/22/2023] Open
Abstract
Background Nowadays, both customers and producers prefer thin-tailed fat sheep. To effectively breed for this phenotype, it is important to identify candidate genes and uncover the genetic mechanism related to tail fat deposition in sheep. Accumulating evidence suggesting that post-transcriptional modification events of precursor-messenger RNA (pre-mRNA), including alternative splicing (AS) and alternative polyadenylation (APA), may regulate tail fat deposition in sheep. Differentially expressed transcripts (DETs) analysis is a way to identify candidate genes related to tail fat deposition. However, due to the technological limitation, post-transcriptional modification events in the tail fat of sheep and DETs between thin-tailed and fat-tailed sheep remains unclear. Methods In the present study, we applied pooled PacBio isoform sequencing (Iso-Seq) to generate transcriptomic data of tail fat tissue from six sheep (three thin-tailed sheep and three fat-tailed sheep). By comparing with reference genome, potential gene loci and novel transcripts were identified. Post-transcriptional modification events, including AS and APA, and lncRNA in sheep tail fat were uncovered using pooled Iso-Seq data. Combining Iso-Seq data with six RNA-sequencing (RNA-Seq) data, DETs between thin- and fat-tailed sheep were identified. Protein protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were implemented to investigate the potential functions of DETs. Results In the present study, we revealed the transcriptomic complexity of the tail fat of sheep, result in 9,001 potential novel gene loci, 17,834 AS events, 5,791 APA events, and 3,764 lncRNAs. Combining Iso-Seq data with RNA-Seq data, we identified hundreds of DETs between thin- and fat-tailed sheep. Among them, 21 differentially expressed lncRNAs, such as ENSOART00020036299, ENSOART00020033641, ENSOART00020024562, ENSOART00020003848 and 9.53.1 may regulate tail fat deposition. Many novel transcripts were identified as DETs, including 15.527.13 (DGAT2), 13.624.23 (ACSS2), 11.689.28 (ACLY), 11.689.18 (ACLY), 11.689.14 (ACLY), 11.660.12 (ACLY), 22.289.6 (SCD), 22.289.3 (SCD) and 22.289.14 (SCD). Most of the identified DETs have been enriched in GO and KEGG pathways related to extracellular matrix (ECM). Our result revealed the transcriptome complexity and identified many candidate transcripts in tail fat, which could enhance the understanding of molecular mechanisms behind tail fat deposition.
Collapse
Affiliation(s)
- Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Ling Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jingyi Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Weibo Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
141
|
Cao J, Verma SK, Jaworski E, Mohan S, Nagasawa CK, Rayavara K, Sooter A, Miller SN, Holcomb RJ, Powell MJ, Ji P, Elrod ND, Yildirim E, Wagner EJ, Popov V, Garg NJ, Routh AL, Kuyumcu-Martinez MN. RBFOX2 is critical for maintaining alternative polyadenylation patterns and mitochondrial health in rat myoblasts. Cell Rep 2021; 37:109910. [PMID: 34731606 PMCID: PMC8600936 DOI: 10.1016/j.celrep.2021.109910] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/22/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
RBFOX2, which has a well-established role in alternative splicing, is linked to heart diseases. However, it is unclear whether RBFOX2 has other roles in RNA processing that can influence gene expression in muscle cells, contributing to heart disease. Here, we employ both 3'-end and nanopore cDNA sequencing to reveal a previously unrecognized role for RBFOX2 in maintaining alternative polyadenylation (APA) signatures in myoblasts. RBFOX2-mediated APA modulates mRNA levels and/or isoform expression of a collection of genes, including contractile and mitochondrial genes. Depletion of RBFOX2 adversely affects mitochondrial health in myoblasts, correlating with disrupted APA of mitochondrial gene Slc25a4. Mechanistically, RBFOX2 regulation of Slc25a4 APA is mediated through consensus RBFOX2 binding motifs near the distal polyadenylation site, enforcing the use of the proximal polyadenylation site. In sum, our results unveil a role for RBFOX2 in fine-tuning expression of mitochondrial and contractile genes via APA in myoblasts relevant to heart diseases.
Collapse
Affiliation(s)
- Jun Cao
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sunil K Verma
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Elizabeth Jaworski
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Stephanie Mohan
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chloe K Nagasawa
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kempaiah Rayavara
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Amanda Sooter
- School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sierra N Miller
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Richard J Holcomb
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mason J Powell
- School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ping Ji
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nathan D Elrod
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Eda Yildirim
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Centre for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Vsevolod Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nisha J Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Centre for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Neuroscience, Cell biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
142
|
RNA Modifications and RNA Metabolism in Neurological Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms222111870. [PMID: 34769301 PMCID: PMC8584444 DOI: 10.3390/ijms222111870] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 02/06/2023] Open
Abstract
The intrinsic cellular heterogeneity and molecular complexity of the mammalian nervous system relies substantially on the dynamic nature and spatiotemporal patterning of gene expression. These features of gene expression are achieved in part through mechanisms involving various epigenetic processes such as DNA methylation, post-translational histone modifications, and non-coding RNA activity, amongst others. In concert, another regulatory layer by which RNA bases and sugar residues are chemically modified enhances neuronal transcriptome complexity. Similar RNA modifications in other systems collectively constitute the cellular epitranscriptome that integrates and impacts various physiological processes. The epitranscriptome is dynamic and is reshaped constantly to regulate vital processes such as development, differentiation and stress responses. Perturbations of the epitranscriptome can lead to various pathogenic conditions, including cancer, cardiovascular abnormalities and neurological diseases. Recent advances in next-generation sequencing technologies have enabled us to identify and locate modified bases/sugars on different RNA species. These RNA modifications modulate the stability, transport and, most importantly, translation of RNA. In this review, we discuss the formation and functions of some frequently observed RNA modifications—including methylations of adenine and cytosine bases, and isomerization of uridine to pseudouridine—at various layers of RNA metabolism, together with their contributions to abnormal physiological conditions that can lead to various neurodevelopmental and neurological disorders.
Collapse
|
143
|
Linder J, Seelig G. Fast activation maximization for molecular sequence design. BMC Bioinformatics 2021; 22:510. [PMID: 34670493 PMCID: PMC8527647 DOI: 10.1186/s12859-021-04437-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 10/11/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Optimization of DNA and protein sequences based on Machine Learning models is becoming a powerful tool for molecular design. Activation maximization offers a simple design strategy for differentiable models: one-hot coded sequences are first approximated by a continuous representation, which is then iteratively optimized with respect to the predictor oracle by gradient ascent. While elegant, the current version of the method suffers from vanishing gradients and may cause predictor pathologies leading to poor convergence. RESULTS Here, we introduce Fast SeqProp, an improved activation maximization method that combines straight-through approximation with normalization across the parameters of the input sequence distribution. Fast SeqProp overcomes bottlenecks in earlier methods arising from input parameters becoming skewed during optimization. Compared to prior methods, Fast SeqProp results in up to 100-fold faster convergence while also finding improved fitness optima for many applications. We demonstrate Fast SeqProp's capabilities by designing DNA and protein sequences for six deep learning predictors, including a protein structure predictor. CONCLUSIONS Fast SeqProp offers a reliable and efficient method for general-purpose sequence optimization through a differentiable fitness predictor. As demonstrated on a variety of deep learning models, the method is widely applicable, and can incorporate various regularization techniques to maintain confidence in the sequence designs. As a design tool, Fast SeqProp may aid in the development of novel molecules, drug therapies and vaccines.
Collapse
Affiliation(s)
- Johannes Linder
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, USA
| | - Georg Seelig
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, USA
| |
Collapse
|
144
|
Shah A, Mittleman BE, Gilad Y, Li YI. Benchmarking sequencing methods and tools that facilitate the study of alternative polyadenylation. Genome Biol 2021; 22:291. [PMID: 34649612 PMCID: PMC8518154 DOI: 10.1186/s13059-021-02502-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/16/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Alternative cleavage and polyadenylation (APA), an RNA processing event, occurs in over 70% of human protein-coding genes. APA results in mRNA transcripts with distinct 3' ends. Most APA occurs within 3' UTRs, which harbor regulatory elements that can impact mRNA stability, translation, and localization. RESULTS APA can be profiled using a number of established computational tools that infer polyadenylation sites from standard, short-read RNA-seq datasets. Here, we benchmarked a number of such tools-TAPAS, QAPA, DaPars2, GETUTR, and APATrap- against 3'-Seq, a specialized RNA-seq protocol that enriches for reads at the 3' ends of genes, and Iso-Seq, a Pacific Biosciences (PacBio) single-molecule full-length RNA-seq method in their ability to identify polyadenylation sites and quantify polyadenylation site usage. We demonstrate that 3'-Seq and Iso-Seq are able to identify and quantify the usage of polyadenylation sites more reliably than computational tools that take short-read RNA-seq as input. However, we find that running one such tool, QAPA, with a set of polyadenylation site annotations derived from small quantities of 3'-Seq or Iso-Seq can reliably quantify variation in APA across conditions, such asacross genotypes, as demonstrated by the successful mapping of alternative polyadenylation quantitative trait loci (apaQTL). CONCLUSIONS We envisage that our analyses will shed light on the advantages of studying APA with more specialized sequencing protocols, such as 3'-Seq or Iso-Seq, and the limitations of studying APA with short-read RNA-seq. We provide a computational pipeline to aid in the identification of polyadenylation sites and quantification of polyadenylation site usages using Iso-Seq data as input.
Collapse
Affiliation(s)
- Ankeeta Shah
- Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Briana E Mittleman
- Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Yoav Gilad
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Yang I Li
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA.
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
145
|
Yang X, Tong Y, Liu G, Yuan J, Yang Y. scAPAatlas: an atlas of alternative polyadenylation across cell types in human and mouse. Nucleic Acids Res 2021; 50:D356-D364. [PMID: 34643729 PMCID: PMC8728290 DOI: 10.1093/nar/gkab917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/15/2021] [Accepted: 09/25/2021] [Indexed: 12/22/2022] Open
Abstract
Alternative polyadenylation (APA) has been widely recognized as a crucial step during the post-transcriptional regulation of eukaryotic genes. Recent studies have demonstrated that APA exerts key regulatory roles in many biological processes and often occurs in a tissue- and cell-type-specific manner. However, to our knowledge, there is no database incorporating information about APA at the cell-type level. Single-cell RNA-seq is a rapidly evolving and powerful tool that enable APA analysis at the cell-type level. Here, we present a comprehensive resource, scAPAatlas (http://www.bioailab.com:3838/scAPAatlas), for exploring APA across different cell types, and interpreting potential biological functions. Based on the curated scRNA-seq data from 24 human and 25 mouse normal tissues, we systematically identified cell-type-specific APA events for different cell types and examined the correlations between APA and gene expression level. We also estimated the crosstalk between cell-type-specific APA events and microRNAs or RNA-binding proteins. A user-friendly web interface has been constructed to support browsing, searching and visualizing multi-layer information of cell-type-specific APA events. Overall, scAPAatlas, incorporating a rich resource for exploration of APA at the cell-type level, will greatly help researchers chart cell type with APA and elucidate the biological functions of APA.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, Tianjin Key Laboratory of Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.,Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yang Tong
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, Tianjin Key Laboratory of Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.,Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Gerui Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, Tianjin Key Laboratory of Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.,Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jiapei Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yang Yang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, Tianjin Key Laboratory of Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.,Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
146
|
Ruta V, Pagliarini V, Sette C. Coordination of RNA Processing Regulation by Signal Transduction Pathways. Biomolecules 2021; 11:biom11101475. [PMID: 34680108 PMCID: PMC8533259 DOI: 10.3390/biom11101475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Signal transduction pathways transmit the information received from external and internal cues and generate a response that allows the cell to adapt to changes in the surrounding environment. Signaling pathways trigger rapid responses by changing the activity or localization of existing molecules, as well as long-term responses that require the activation of gene expression programs. All steps involved in the regulation of gene expression, from transcription to processing and utilization of new transcripts, are modulated by multiple signal transduction pathways. This review provides a broad overview of the post-translational regulation of factors involved in RNA processing events by signal transduction pathways, with particular focus on the regulation of pre-mRNA splicing, cleavage and polyadenylation. The effects of several post-translational modifications (i.e., sumoylation, ubiquitination, methylation, acetylation and phosphorylation) on the expression, subcellular localization, stability and affinity for RNA and protein partners of many RNA-binding proteins are highlighted. Moreover, examples of how some of the most common signal transduction pathways can modulate biological processes through changes in RNA processing regulation are illustrated. Lastly, we discuss challenges and opportunities of therapeutic approaches that correct RNA processing defects and target signaling molecules.
Collapse
Affiliation(s)
- Veronica Ruta
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Correspondence:
| |
Collapse
|
147
|
Guo S, Lin S. mRNA alternative polyadenylation (APA) in regulation of gene expression and diseases. Genes Dis 2021; 10:165-174. [PMID: 37013028 PMCID: PMC10066270 DOI: 10.1016/j.gendis.2021.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
The mRNA polyadenylation plays essential function in regulation of mRNA metabolism. Mis-regulations of mRNA polyadenylation are frequently linked with aberrant gene expression and disease progression. Under the action of polyadenylate polymerase, poly(A) tail is synthesized after the polyadenylation signal (PAS) sites on the mRNAs. Alternative polyadenylation (APA) often occurs in mRNAs with multiple poly(A) sites, producing different 3' ends for transcript variants, and therefore plays important functions in gene expression regulation. In this review, we first summarize the classical process of mRNA 3'-terminal formation and discuss the length control mechanisms of poly(A) in nucleus and cytoplasm. Then we review the research progress on alternative polyadenylation regulation and the APA site selection mechanism. Finally, we summarize the functional roles of APA in the regulation of gene expression and diseases including cancers.
Collapse
Affiliation(s)
- Siyao Guo
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Shuibin Lin
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
- Corresponding author. Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
148
|
Li J, Chen W, Cao Y, Li ZR. The Identification of Alternative Polyadenylation in Stomach Adenocarcinomas Using the Genotype-Tissue Expression Project and the Cancer Genome Atlas- Stomach Adenocarcinoma Profiles. Int J Gen Med 2021; 14:6035-6045. [PMID: 34588807 PMCID: PMC8475968 DOI: 10.2147/ijgm.s329064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/27/2021] [Indexed: 12/09/2022] Open
Abstract
Objective Alternative polyadenylation (APA) is a common mechanism that is present in most human genes and determines the length of the messenger ribonucleic acid (mRNA) three prime untranslated region (3ʹ-UTR), which can give rise to changes in mRNA stability and localization. However, little is known about the specific changes related to APA in stomach adenocarcinomas (STADs). Methods We integrated RNA sequencing data from The Cancer Genome Atlas and Genotype-Tissue Expression project to comprehensively analyze APA events in 289 cases of STAD. Results Our results showed that APA events were widespread in patients with STAD and were rich in genes related to known STAD pathways. The APA events result in the loss of tumor-suppressing micro-ribonucleic acid (miRNA) binding sites and increased heterogeneity in the length of the 3ʹ-UTR altered genes. Survival analysis revealed that specific subsets of 3ʹ-UTR-altered genes independently characterized a poor prognostic cohort among patients with STAD, thereby indicating the potential of APA as a new prognostic biomarker. Conclusion Our single-cancer analysis showed that by losing miRNA regulation, APA can become a driving factor for regulating the expression of oncogenic genes in STAD and promote its development. Our research revealed that APA events regulated STAD genes that were functionally related, thereby providing a new approach for gaining a better understanding of the progress of STADs and a means for identifying new drug targets as avenues of treatment.
Collapse
Affiliation(s)
- Jian Li
- Department of Gastrointestinal Surgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330000, People's Republic of China
| | - Wen Chen
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, People's Republic of China
| | - Yi Cao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, People's Republic of China
| | - Zheng-Rong Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, People's Republic of China
| |
Collapse
|
149
|
Mai L, Qiu Y, Lian Z, Chen C, Wang L, Yin Y, Wang S, Yang X, Li Y, Peng W, Luo C, Pan X. MustSeq, an alternative approach for multiplexible strand-specific 3' end sequencing of mRNA transcriptome confers high efficiency and practicality. RNA Biol 2021; 18:232-243. [PMID: 34586036 DOI: 10.1080/15476286.2021.1974208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
RNA-seq has been widely used to reveal the molecular mechanism of variants of life process. We have developed an alternative method, MustSeq, which generates multiple second strands along a single 1st strand cDNA by random-priming initiation, immediately after reverse transcription for each RNA extract using sample-barcoded poly-dT primers, then 3' ends-enriching PCR is applied to construct the library. Unlike the conventional RNA seq, MustSeq avoids procedures such as mRNA isolation, fragmentation and RNA 5'-end capture, enables early pooling of multiple samples, and requires only one twentieth of sequencing reads of full-length sequencing. We demonstrate the power and features of MustSeq comparing with TruSeq and NEBNext RNA-seq, two conventional full-length methods and QuantSeq, an industrial 3' end method. In cancer cell lines, the reads distribution of CDS-exon as well as genes, lncRNAs and GO terms detected by MustSeq are closer than QuantSeq to TruSeq. In mouse hepatocarcinoma and healthy livers, MustSeq enriches the same pathways as by NEBNext, and reveals the molecular profile of carcinogenesis. Overall MustSeq is a robust and accurate RNA-seq method allowing efficient library construction, sequencing and analysis, particularly valuable for analysis of differentially expressed genes with a large number of samples. MustSeq will greatly accelerate the application of bulk RNA-seq on different fields, and potentially applicable for single cell RNA-seq.
Collapse
Affiliation(s)
- Liyao Mai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, China
| | - Yinbin Qiu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, China
| | - Zhiwei Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, China
| | - Caiming Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, China
| | - Linlin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, China
| | - Yao Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, China
| | - Siqi Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, China
| | - Xiang Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, China.,Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yazi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, China
| | - Wanwan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, China
| | - Chaochao Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, China
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, China.,Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,Guangdong-Hongkong-Macao Great Bar Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong Province, China
| |
Collapse
|
150
|
Mohanan NK, Shaji F, Koshre GR, Laishram RS. Alternative polyadenylation: An enigma of transcript length variation in health and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1692. [PMID: 34581021 DOI: 10.1002/wrna.1692] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Alternative polyadenylation (APA) is a molecular mechanism during a pre-mRNA processing that involves usage of more than one polyadenylation site (PA-site) generating transcripts of varying length from a single gene. The location of a PA-site affects transcript length and coding potential of an mRNA contributing to both mRNA and protein diversification. This variation in the transcript length affects mRNA stability and translation, mRNA subcellular and tissue localization, and protein function. APA is now considered as an important regulatory mechanism in the pathophysiology of human diseases. An important consequence of the changes in the length of 3'-untranslated region (UTR) from disease-induced APA is altered protein expression. Yet, the relationship between 3'-UTR length and protein expression remains a paradox in a majority of diseases. Here, we review occurrence of APA, mechanism of PA-site selection, and consequences of transcript length variation in different diseases. Emerging evidence reveals coordinated involvement of core RNA processing factors including poly(A) polymerases in the PA-site selection in diseases-associated APAs. Targeting such APA regulators will be therapeutically significant in combating drug resistance in cancer and other complex diseases. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease Translation > Regulation.
Collapse
Affiliation(s)
- Neeraja K Mohanan
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Feba Shaji
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ganesh R Koshre
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|