101
|
Zheng Q, Maksimovic I, Upad A, David Y. Non-enzymatic covalent modifications: a new link between metabolism and epigenetics. Protein Cell 2020; 11:401-416. [PMID: 32356279 PMCID: PMC7251012 DOI: 10.1007/s13238-020-00722-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/02/2020] [Indexed: 12/22/2022] Open
Abstract
Epigenetic modifications, including those on DNA and histones, have been shown to regulate cellular metabolism by controlling expression of enzymes involved in the corresponding metabolic pathways. In turn, metabolic flux influences epigenetic regulation by affecting the biosynthetic balance of enzyme cofactors or donors for certain chromatin modifications. Recently, non-enzymatic covalent modifications (NECMs) by chemically reactive metabolites have been reported to manipulate chromatin architecture and gene transcription through multiple mechanisms. Here, we summarize these recent advances in the identification and characterization of NECMs on nucleic acids, histones, and transcription factors, providing an additional mechanistic link between metabolism and epigenetics.
Collapse
Affiliation(s)
- Qingfei Zheng
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Igor Maksimovic
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, 10065, USA
| | - Akhil Upad
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, 10065, USA.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, USA.
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
102
|
Zuurbier CJ, Bertrand L, Beauloye CR, Andreadou I, Ruiz‐Meana M, Jespersen NR, Kula‐Alwar D, Prag HA, Eric Botker H, Dambrova M, Montessuit C, Kaambre T, Liepinsh E, Brookes PS, Krieg T. Cardiac metabolism as a driver and therapeutic target of myocardial infarction. J Cell Mol Med 2020; 24:5937-5954. [PMID: 32384583 PMCID: PMC7294140 DOI: 10.1111/jcmm.15180] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/13/2020] [Accepted: 03/08/2020] [Indexed: 12/11/2022] Open
Abstract
Reducing infarct size during a cardiac ischaemic-reperfusion episode is still of paramount importance, because the extension of myocardial necrosis is an important risk factor for developing heart failure. Cardiac ischaemia-reperfusion injury (IRI) is in principle a metabolic pathology as it is caused by abruptly halted metabolism during the ischaemic episode and exacerbated by sudden restart of specific metabolic pathways at reperfusion. It should therefore not come as a surprise that therapy directed at metabolic pathways can modulate IRI. Here, we summarize the current knowledge of important metabolic pathways as therapeutic targets to combat cardiac IRI. Activating metabolic pathways such as glycolysis (eg AMPK activators), glucose oxidation (activating pyruvate dehydrogenase complex), ketone oxidation (increasing ketone plasma levels), hexosamine biosynthesis pathway (O-GlcNAcylation; administration of glucosamine/glutamine) and deacetylation (activating sirtuins 1 or 3; administration of NAD+ -boosting compounds) all seem to hold promise to reduce acute IRI. In contrast, some metabolic pathways may offer protection through diminished activity. These pathways comprise the malate-aspartate shuttle (in need of novel specific reversible inhibitors), mitochondrial oxygen consumption, fatty acid oxidation (CD36 inhibitors, malonyl-CoA decarboxylase inhibitors) and mitochondrial succinate metabolism (malonate). Additionally, protecting the cristae structure of the mitochondria during IR, by maintaining the association of hexokinase II or creatine kinase with mitochondria, or inhibiting destabilization of FO F1 -ATPase dimers, prevents mitochondrial damage and thereby reduces cardiac IRI. Currently, the most promising and druggable metabolic therapy against cardiac IRI seems to be the singular or combined targeting of glycolysis, O-GlcNAcylation and metabolism of ketones, fatty acids and succinate.
Collapse
Affiliation(s)
- Coert J. Zuurbier
- Department of AnesthesiologyLaboratory of Experimental Intensive Care and AnesthesiologyAmsterdam Infection & ImmunityAmsterdam Cardiovascular SciencesAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Luc Bertrand
- Institut de Recherche Expérimentale et CliniquePole of Cardiovascular ResearchUniversité catholique de LouvainBrusselsBelgium
| | - Christoph R. Beauloye
- Institut de Recherche Expérimentale et CliniquePole of Cardiovascular ResearchUniversité catholique de LouvainBrusselsBelgium
- Cliniques Universitaires Saint‐LucBrusselsBelgium
| | - Ioanna Andreadou
- Laboratory of PharmacologyFaculty of PharmacyNational and Kapodistrian University of AthensAthensGreece
| | - Marisol Ruiz‐Meana
- Department of CardiologyHospital Universitari Vall d’HebronVall d’Hebron Institut de Recerca (VHIR)CIBER‐CVUniversitat Autonoma de Barcelona and Centro de Investigación Biomédica en Red‐CVMadridSpain
| | | | | | - Hiran A. Prag
- Department of MedicineUniversity of CambridgeCambridgeUK
| | - Hans Eric Botker
- Department of CardiologyAarhus University HospitalAarhus NDenmark
| | - Maija Dambrova
- Pharmaceutical PharmacologyLatvian Institute of Organic SynthesisRigaLatvia
| | - Christophe Montessuit
- Department of Pathology and ImmunologyUniversity of Geneva School of MedicineGenevaSwitzerland
| | - Tuuli Kaambre
- Laboratory of Chemical BiologyNational Institute of Chemical Physics and BiophysicsTallinnEstonia
| | - Edgars Liepinsh
- Pharmaceutical PharmacologyLatvian Institute of Organic SynthesisRigaLatvia
| | - Paul S. Brookes
- Department of AnesthesiologyUniversity of Rochester Medical CenterRochesterNYUSA
| | - Thomas Krieg
- Department of MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
103
|
Fang Y, Akimoto M, Mayanagi K, Hatano A, Matsumoto M, Matsuda S, Yasukawa T, Kang D. Chemical acetylation of mitochondrial transcription factor A occurs on specific lysine residues and affects its ability to change global DNA topology. Mitochondrion 2020; 53:99-108. [PMID: 32439622 DOI: 10.1016/j.mito.2020.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 12/20/2022]
Abstract
Chemical acetylation is postulated to occur in mitochondria. Mitochondrial transcription factor A (TFAM or mtTFA), a mitochondrial transcription initiation factor as well as the major mitochondrial nucleoid protein coating the entire mitochondrial genome, is proposed to be acetylated in animals and cultured cells. This study investigated the properties of human TFAM, in conjunction with the mechanism and effects of TFAM acetylation in vitro. Using highly purified recombinant human TFAM and 3 kb circular DNA as a downsized mtDNA model, we studied how the global TFAM-DNA interaction is affected/regulated by the quantitative TFAM-DNA relationship and TFAM acetylation. Results showed that the TFAM-DNA ratio strictly affects the TFAM property to unwind circular DNA in the presence of topoisomerase I. Mass spectrometry analysis showed that in vitro chemical acetylation of TFAM with acetyl-coenzyme A occurs preferentially on specific lysine residues, including those reported to be acetylated in exogenously expressed TFAM in cultured human cells, indicating that chemical acetylation plays a crucial role in TFAM acetylation in mitochondria. Intriguingly, the modification significantly decreased TFAM's DNA-unwinding ability, while its DNA-binding ability was largely unaffected. Altogether, we propose TFAM is chemically acetylated in vivo, which could change mitochondrial DNA topology, leading to copy number and gene expression modulation.
Collapse
Affiliation(s)
- Yuan Fang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| | - Masaru Akimoto
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan; Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| | - Kouta Mayanagi
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| | - Atsushi Hatano
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichibancho, Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata 951-8510, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichibancho, Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata 951-8510, Japan
| | - Shigeru Matsuda
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| | - Takehiro Yasukawa
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan.
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| |
Collapse
|
104
|
Comprehensive analysis of posttranslational protein modifications in aging of subcellular compartments. Sci Rep 2020; 10:7596. [PMID: 32371922 PMCID: PMC7200742 DOI: 10.1038/s41598-020-64265-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
Enzymatic and non-enzymatic posttranslational protein modifications by oxidation, glycation and acylation are key regulatory mechanisms in hallmarks of aging like inflammation, altered epigenetics and decline in proteostasis. In this study a mouse cohort was used to monitor changes of posttranslational modifications in the aging process. A protocol for the extraction of histones, cytosolic and mitochondrial proteins from mouse liver was developed and validated. In total, 6 lysine acylation structures, 7 advanced glycation endproducts, 6 oxidative stress markers, and citrullination were quantitated in proteins of subcellular compartments using HPLC-MS/MS. Methionine sulfoxide, acetylation, formylation, and citrullination were the most abundant modifications. Histone proteins were extraordinary high modified and non-enzymatic modifications accumulated in all subcellular compartments during the aging process. Compared to acetylation of histone proteins which gave between 350 and 305 µmol/mol leucine equivalents in young and old animals, modifications like acylation, glycation, and citrullination raised to 43%, 20%, and 18% of acetylation, respectively. On the other hand there was an age related increase of selected oxidative stress markers by up to 150%. The data and patterns measured in this study are mandatory for further studies and will strongly facilitate understanding of the molecular mechanisms in aging.
Collapse
|
105
|
Martinez-Moreno JM, Fontecha-Barriuso M, Martín-Sánchez D, Sánchez-Niño MD, Ruiz-Ortega M, Sanz AB, Ortiz A. The Contribution of Histone Crotonylation to Tissue Health and Disease: Focus on Kidney Health. Front Pharmacol 2020; 11:393. [PMID: 32308622 PMCID: PMC7145939 DOI: 10.3389/fphar.2020.00393] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are the most severe consequences of kidney injury. They are interconnected syndromes as CKD predisposes to AKI and AKI may accelerate CKD progression. Despite their growing impact on the global burden of disease, there is no satisfactory treatment for AKI and current therapeutic approaches to CKD remain suboptimal. Recent research has focused on the therapeutic target potential of epigenetic regulation of gene expression, including non-coding RNAs and the covalent modifications of histones and DNA. Indeed, several drugs targeting histone modifications are in clinical use or undergoing clinical trials. Acyl-lysine histone modifications (e.g. methylation, acetylation, and crotonylation) have modulated experimental kidney injury. Most recently, increased histone lysine crotonylation (Kcr) was observed during experimental AKI and could be reproduced in cultured tubular cells exposed to inflammatory stress triggered by the cytokine TWEAK. The degree of kidney histone crotonylation was modulated by crotonate availability and crotonate supplementation protected from nephrotoxic AKI. We now review the functional relevance of histone crotonylation in kidney disease and other pathophysiological contexts, as well as the implications for the development of novel therapeutic approaches. These studies provide insights into the overall role of histone crotonylation in health and disease.
Collapse
Affiliation(s)
- Julio M Martinez-Moreno
- Research Institute-Fundacion Jimenez Diaz, Autonomous University of Madrid (UAM), Madrid, Spain
| | - Miguel Fontecha-Barriuso
- Research Institute-Fundacion Jimenez Diaz, Autonomous University of Madrid (UAM), Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Diego Martín-Sánchez
- Research Institute-Fundacion Jimenez Diaz, Autonomous University of Madrid (UAM), Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Maria D Sánchez-Niño
- Research Institute-Fundacion Jimenez Diaz, Autonomous University of Madrid (UAM), Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Marta Ruiz-Ortega
- Research Institute-Fundacion Jimenez Diaz, Autonomous University of Madrid (UAM), Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain.,School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
| | - Ana B Sanz
- Research Institute-Fundacion Jimenez Diaz, Autonomous University of Madrid (UAM), Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Alberto Ortiz
- Research Institute-Fundacion Jimenez Diaz, Autonomous University of Madrid (UAM), Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain.,School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,IRSIN, Madrid, Spain
| |
Collapse
|
106
|
A bicyclic pentapeptide-based highly potent and selective pan-SIRT1/2/3 inhibitor harboring Nε-thioacetyl-lysine. Bioorg Med Chem 2020; 28:115356. [DOI: 10.1016/j.bmc.2020.115356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 11/20/2022]
|
107
|
Bhatt AN, Rai Y, Verma A, Pandey S, Kaushik K, Parmar VS, Arya A, Prasad AK, Dwarakanath BS. Non-Enzymatic Protein Acetylation by 7-Acetoxy-4-Methylcoumarin: Implications in Protein Biochemistry. Protein Pept Lett 2020; 27:736-743. [PMID: 32133945 DOI: 10.2174/0929866527666200305143016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND The semi-synthetic acetoxycoumarins are known to acetylate proteins using novel enzymatic Calreticulin Transacetylase (CRTAase) system in cells. However, the nonenzymatic protein acetylation by polyphenolic acetates is not known. OBJECTIVE To investigate the ability of 7-acetoxy-4-methyl coumarin (7-AMC) to acetylate proteins non-enzymatically in the test tube. METHODS We incubated 7-AMC with BSA and analyzed the protein acetylation using Western blot technique. Further, BSA induced biophysical changes in the spectroscopic properties of 7-AMC was analyzed using Fluorescence spectroscopy. RESULTS Using pan anti-acetyl lysine antibody, herein we demonstrate that 7-AMC acetylates Bovine Serum Albumin (BSA) in time and concentration dependent manner in the absence of any enzyme. 7-AMC is a relatively less fluorescent molecule compared to the parental compound, 7- hydroxy-4-methylcoumarin (7-HMC), however the fluorescence of 7-AMC increased by two fold on incubation with BSA, depending on the time of incubation and concentration of BSA. Analysis of the reaction mixture of 7-AMC and BSA after filtration revealed that the increased fluorescence is associated with the compound of lower molecular weight in the filtrate and not residual BSA, suggesting that the less fluorescent 7-AMC undergoes self-hydrolysis in the presence of protein to give highly fluorescent parental molecule 7-HMC and acetate ion in polar solvent (phosphate buffered saline, PBS). The protein augmented conversion of 7-AMC to 7-HMC was found to be linearly related to the protein concentration. CONCLUSION Thus protein acetylation induced by 7-AMC could also be non-enzymatic in nature and this molecule can be exploited for quantification of proteins.
Collapse
Affiliation(s)
- Anant Narayan Bhatt
- Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Majumdar Marg, Timarpur, Delhi, India
| | - Yogesh Rai
- Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Majumdar Marg, Timarpur, Delhi, India
| | - Amit Verma
- Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Majumdar Marg, Timarpur, Delhi, India
| | - Sanjay Pandey
- Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Majumdar Marg, Timarpur, Delhi, India
| | - Kumar Kaushik
- Department of Chemistry and Environmental Science, Medgar Evers College, The City University of New York, New York City, NY, United States
| | - Virinder S Parmar
- Department of Chemistry and Environmental Science, Medgar Evers College, The City University of New York, New York City, NY, United States
| | - Anu Arya
- V.P. Chest Institute, Delhi, India
| | - Ashok K Prasad
- Deparment of Chemistry, University of Delhi, Delhi, India
| | - Bilikere S Dwarakanath
- Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Majumdar Marg, Timarpur, Delhi, India
| |
Collapse
|
108
|
Guo L, Gao J, Gao Y, Zhu Z, Zhang Y. Aspirin Reshapes Acetylomes in Inflammatory and Cancer Cells via CoA-Dependent and CoA-Independent Pathways. J Proteome Res 2020; 19:962-972. [PMID: 31922419 DOI: 10.1021/acs.jproteome.9b00853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aspirin, or acetylsalicylic acid (ASA), is the most widely used medication to relieve pain, fever, and inflammation. Recent studies have revealed new benefits of aspirin, including reduction of heart attack and stroke, anticancer, and life extension. Despite the profound effects of aspirin, the mechanism of its action remains to be elucidated. Here, we used deuterium-labeled aspirin (D-aspirin) together with mass spectrometry-based acetylomic analysis, termed DAcMS, to investigate the landscape of protein acetylation induced by aspirin. The DAcMS revealed the acetylomes of lipopolysaccharide-induced inflammatory BV2 cells and colon cancer HCT116 cells. The acetylation level was substantially induced upon aspirin treatment in both cell lines. In total, we identified 17,003 acetylation sites on 4623 proteins in BV2 cells and 16,366 acetylated sites corresponding to 4702 acetylated proteins in HCT116 cells. Importantly, functional analyses of these aspirin-induced acetylated proteins suggested that they were highly enriched in many key biological categories, which function importantly in inflammatory response. We further demonstrated that aspirin acetylates proteins through both acetyl-CoA-dependent and acetyl-CoA-independent pathways, and the accessible lysine residues at the protein surface are major acetylation targets of aspirin. Hence, our study provides the comprehensive atlas of aspirin-induced acetylome under disease conditions. This knowledge proffers new insight into the aspirin-directed acetylome and perhaps new drug target sites relevant to human cancer and inflammatory diseases. The MS data of this study have been deposited under the accession number IPX0001923000 at iProX.
Collapse
Affiliation(s)
- Lin Guo
- Interdisciplinary Research Center on Biology and Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 26 Qiuyue Road , Pudong, Shanghai 201210 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jing Gao
- Interdisciplinary Research Center on Biology and Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 26 Qiuyue Road , Pudong, Shanghai 201210 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yang Gao
- Interdisciplinary Research Center on Biology and Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 26 Qiuyue Road , Pudong, Shanghai 201210 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhengjiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 26 Qiuyue Road , Pudong, Shanghai 201210 , China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 26 Qiuyue Road , Pudong, Shanghai 201210 , China
| |
Collapse
|
109
|
Abstract
Nε-lysine acetylation was discovered more than half a century ago as a post-translational modification of histones and has been extensively studied in the context of transcription regulation. In the past decade, proteomic analyses have revealed that non-histone proteins are frequently acetylated and constitute a major portion of the acetylome in mammalian cells. Indeed, non-histone protein acetylation is involved in key cellular processes relevant to physiology and disease, such as gene transcription, DNA damage repair, cell division, signal transduction, protein folding, autophagy and metabolism. Acetylation affects protein functions through diverse mechanisms, including by regulating protein stability, enzymatic activity, subcellular localization and crosstalk with other post-translational modifications and by controlling protein-protein and protein-DNA interactions. In this Review, we discuss recent progress in our understanding of the scope, functional diversity and mechanisms of non-histone protein acetylation.
Collapse
|
110
|
Peterson BS, Campbell JE, Ilkayeva O, Grimsrud PA, Hirschey MD, Newgard CB. Remodeling of the Acetylproteome by SIRT3 Manipulation Fails to Affect Insulin Secretion or β Cell Metabolism in the Absence of Overnutrition. Cell Rep 2019; 24:209-223.e6. [PMID: 29972782 PMCID: PMC6093627 DOI: 10.1016/j.celrep.2018.05.088] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/10/2018] [Accepted: 05/25/2018] [Indexed: 12/19/2022] Open
Abstract
SIRT3 is a nicotinamide adenine dinucleotide (NAD+)- dependent mitochondrial protein deacetylase purported to influence metabolism through post-translational modification of metabolic enzymes. Fuel-stimulated insulin secretion, which involves mitochondrial metabolism, could be susceptible to SIRT3-mediated effects. We used CRISPR/Cas9 technology to manipulate SIRT3 expression in β cells, resulting in widespread SIRT3-dependent changes in acetylation of key metabolic enzymes but no appreciable changes in glucose- or pyruvate-stimulated insulin secretion or metabolomic profile during glucose stimulation. Moreover, these broad changes in the SIRT3-targeted acetylproteome did not affect responses to nutritional or ER stress. We also studied mice with global SIRT3 knockout fed either standard chow (STD) or high-fat and high-sucrose (HFHS) diets. Only when chronically fed HFHS diet do SIRT3 KO animals exhibit a modest reduction in insulin secretion. We conclude that broad changes in mitochondrial protein acetylation in response to manipulation of SIRT3 are not sufficient to cause changes in islet function or metabolism. Peterson et al. report that ablation of SIRT3 in 832/13 β cells dramatically alters the mitochondrial acetylproteome but does not affect insulin secretion, metabolomic profile, or β cell survival. Moreover, SIRT3 knockout causes a modest reduction in insulin secretion in mice fed a high-fat and high-sucrose but not a standard chow diet.
Collapse
Affiliation(s)
- Brett S Peterson
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Olga Ilkayeva
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Paul A Grimsrud
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Matthew D Hirschey
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher B Newgard
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
111
|
Defining decreased protein succinylation of failing human cardiac myofibrils in ischemic cardiomyopathy. J Mol Cell Cardiol 2019; 138:304-317. [PMID: 31836543 DOI: 10.1016/j.yjmcc.2019.11.159] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022]
Abstract
Succinylation is a post-translational modification of protein lysine residues with succinyl groups derived from succinyl CoA. Succinylation is considered a significant post-translational modification with the potential to impact protein function which is highly conserved across numerous species. The role of succinylation in the heart, especially in heart failure and myofibril mechanics, remains largely unexplored. Mechanical parameters were measured in myofibrils isolated from failing hearts of ischemic cardiomyopathy patients and non-failing donor controls. We employed mass spectrometry to quantify differential protein expression in myofibrils from failing ischemic cardiomyopathy hearts compared to non-failing hearts. In addition, we combined peptide enrichment by immunoprecipitation with liquid chromatography tandem mass spectrometry to quantitatively analyze succinylated lysine residues in these myofibrils. Several key parameters of sarcomeric mechanical interactions were altered in myofibrils isolated from failing ischemic cardiomyopathy hearts, including lower resting tension and a faster rate of activation. Of the 100 differentially expressed proteins, 46 showed increased expression in ischemic heart failure, while 54 demonstrated decreased expression in ischemic heart failure. Our quantitative succinylome analysis identified a total of 572 unique succinylated lysine sites located on 181 proteins, with 307 significantly changed succinylation events. We found that 297 succinyl-Lys demonstrated decreased succinylation on 104 proteins, while 10 residues demonstrated increased succinylation on 4 proteins. Investigating succinyl CoA generation, enzyme activity assays demonstrated that α-ketoglutarate dehydrogenase and succinate dehydrogenase activities were significantly decreased in ischemic heart failure. An activity assay for succinyl CoA synthetase demonstrated a significant increase in ischemic heart failure. Taken together, our findings support the hypothesis that succinyl CoA production is decreased and succinyl CoA turnover is increased in ischemic heart failure, potentially resulting in an overall decrease in the mitochondrial succinyl CoA pool, which may contribute to decreased myofibril protein succinylation in heart failure.
Collapse
|
112
|
Zhou B, Du Y, Xue Y, Miao G, Wei T, Zhang P. Identification of Malonylation, Succinylation, and Glutarylation in Serum Proteins of Acute Myocardial Infarction Patients. Proteomics Clin Appl 2019; 14:e1900103. [PMID: 31532912 DOI: 10.1002/prca.201900103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 08/21/2019] [Indexed: 11/09/2022]
Abstract
PURPOSE To identify protein malonylation, succinylation, and glutarylation in human and rat serum. EXPERIMENTAL DESIGN Immunoprecipitation coupled with MS/MS is employed to compare the relative abundance of malonylation, succinylation, and glutarylation of serum protein in acute myocardial infarction human and rat. RESULTS One hundred thirty and 48 unique malonylated, succinylated, or glutarylated peptides are found in human and rat serum, respectively. Succinylation is the most predominant modification. The most modified protein is albumin. Abundance of serum protein succinylation and glutarylation is significantly (p < 0.05) lower in the peripheral serum of ST-segment elevation myocardial infarction patients compared with healthy volunteers, which is also observed in acute myocardial infarction rats. CONCLUSIONS AND CLINICAL RELEVANCE Malonylation, succinylation, and glutarylation widely exist in mammalian serum proteins, and may reveal novel mechanism of acute myocardial infarction.
Collapse
Affiliation(s)
- Boda Zhou
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine Tsinghua University, Beijing, 102218, China
| | - Yipeng Du
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yajun Xue
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine Tsinghua University, Beijing, 102218, China
| | - Guobin Miao
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine Tsinghua University, Beijing, 102218, China
| | - Taotao Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ping Zhang
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine Tsinghua University, Beijing, 102218, China
| |
Collapse
|
113
|
Li, J, Wang, T, Xia J, Yao W, Huang F. Enzymatic and nonenzymatic protein acetylations control glycolysis process in liver diseases. FASEB J 2019; 33:11640-11654. [PMID: 31370704 PMCID: PMC6902721 DOI: 10.1096/fj.201901175r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
Impaired glycolysis has pathologic effects on the occurrence and progression of liver diseases, and it appears that glycolysis is increased to different degrees in different liver diseases. As an important post-translational modification, reversible lysine acetylation regulates almost all cellular processes, including glycolysis. Lysine acetylation can occur enzymatically with acetyltransferases or nonenzymatically with acetyl-coenzyme A. Accompanied by the progression of liver diseases, there seems to be a temporal and spatial variation between enzymatic and nonenzymatic acetylations in the regulation of glycolysis. Here, we summarize the most recent findings on the functions and targets of acetylation in controlling glycolysis in the different stages of liver diseases. In addition, we discuss the differences and causes between enzymatic and nonenzymatic acetylations in regulating glycolysis throughout the progression of liver diseases. Then, we review these new discoveries to provide the potential implications of these findings for therapeutic interventions in liver diseases.-Li, J., Wang, T., Xia, J., Yao, W., Huang, F. Enzymatic and nonenzymatic protein acetylations control glycolysis process in liver diseases.
Collapse
Affiliation(s)
- Juan Li,
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tongxin Wang,
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jun Xia
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
114
|
Kanwal A, Pillai VB, Samant S, Gupta M, Gupta MP. The nuclear and mitochondrial sirtuins, Sirt6 and Sirt3, regulate each other's activity and protect the heart from developing obesity-mediated diabetic cardiomyopathy. FASEB J 2019; 33:10872-10888. [PMID: 31318577 PMCID: PMC6766651 DOI: 10.1096/fj.201900767r] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/04/2019] [Indexed: 01/31/2023]
Abstract
Sirtuins (Sirts) are implicated in regulating a myriad of biologic functions ranging from cell growth and metabolism to longevity. Here, we show that nuclear Sirt, Sirt6, and mitochondrial Sirt, Sirt3, regulate each other's activity and protect the heart from developing diabetic cardiomyopathy. We found that expression of both Sirt6 and Sirt3 was reduced in cardiomyocytes treated with palmitate and in hearts of mice fed with a high-fat, high-sucrose (HF-HS) diet to develop obesity and diabetes. Conversely, whole-body overexpressing Sirt6 transgenic (Tg.Sirt6) mice were protected from developing obesity and insulin resistance when fed with the same HF-HS diet. The hearts of Tg.Sirt6 mice were also protected from mitochondrial fragmentation and decline of Sirt3, resulting otherwise from HF-HS diet feeding. Mechanistic studies showed that Sirt3 preserves Sirt6 levels by reducing oxidative stress, whereas Sirt6 maintains Sirt3 levels by up-regulating nuclear respiratory factor 2 (Nrf2)-dependent Sirt3 gene transcription. We found that Sirt6 regulates Nrf2-mediated cardiac gene expression in 2 ways; first, Sirt6 suppresses expression of Kelch-like ECH-associated protein 1 (Keap1), a negative regulator of Nrf2, and second, Sirt6 binds to Nrf2 and antagonizes its interaction with Keap1, thereby stabilizing Nrf2 levels in cardiomyocytes. Together, these studies demonstrate that Sirt6 and Sirt3 maintain each other's activity and protect the heart from developing diabetic cardiomyopathy.-Kanwal, A., Pillai, V. B., Samant, S., Gupta, M., Gupta, M. P. The nuclear and mitochondrial sirtuins, Sirt6 and Sirt3, regulate each other's activity and protect the heart from developing obesity-mediated diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Abhinav Kanwal
- Department of Surgery, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Vinodkumar B. Pillai
- Department of Surgery, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Sadhana Samant
- Department of Surgery, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Madhu Gupta
- Department of Surgery, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Mahesh P. Gupta
- Department of Surgery, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
115
|
Abstract
Significance: Nicotinamide adenine dinucleotide (NAD+) spans diverse roles in biology, serving as both an important redox cofactor in metabolism and a substrate for signaling enzymes that regulate protein post-translational modifications (PTMs). Critical Issues: Although the interactions between these different roles of NAD+ (and its reduced form NADH) have been considered, little attention has been paid to the role of compartmentation in these processes. Specifically, the role of NAD+ in metabolism is compartment specific (e.g., mitochondrial vs. cytosolic), affording a very different redox landscape for PTM-modulating enzymes such as sirtuins and poly(ADP-ribose) polymerases in different cell compartments. In addition, the orders of magnitude differences in expression levels between NAD+-dependent enzymes are often not considered when assuming the effects of bulk changes in NAD+ levels on their relative activities. Recent Advances: In this review, we discuss the metabolic, nonmetabolic, redox, and enzyme substrate roles of cellular NAD+, and the recent discoveries regarding the interplay between these roles in different cell compartments. Future Directions: Therapeutic implications for the compartmentation and manipulation of NAD+ biology are discussed. Antioxid. Redox Signal. 31, 623-642.
Collapse
Affiliation(s)
- Chaitanya A Kulkarni
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York
| | - Paul S Brookes
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
116
|
Liu JM, Solem C, Jensen PR. Harnessing biocompatible chemistry for developing improved and novel microbial cell factories. Microb Biotechnol 2019; 13:54-66. [PMID: 31386283 PMCID: PMC6922530 DOI: 10.1111/1751-7915.13472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 01/15/2023] Open
Abstract
White biotechnology relies on the sophisticated chemical machinery inside living cells for producing a broad range of useful compounds in a sustainable and environmentally friendly way. However, despite the impressive repertoire of compounds that can be generated using white biotechnology, this approach cannot currently fully replace traditional chemical production, often relying on petroleum as a raw material. One challenge is the limited number of chemical transformations taking place in living organisms. Biocompatible chemistry, that is non‐enzymatic chemical reactions taking place under mild conditions compatible with living organisms, could provide a solution. Biocompatible chemistry is not a novel invention, and has since long been used by living organisms. Examples include Fenton chemistry, used by microorganisms for degrading plant materials, and manganese or ketoacids dependent chemistry used for detoxifying reactive oxygen species. However, harnessing biocompatible chemistry for expanding the chemical repertoire of living cells is a relatively novel approach within white biotechnology, and it could potentially be used for producing valuable compounds which living organisms otherwise are not able to generate. In this mini review, we discuss such applications of biocompatible chemistry, and clarify the potential that lies in using biocompatible chemistry in conjunction with metabolically engineered cell factories for cheap substrate utilization, improved cell physiology, efficient pathway construction and novel chemicals production.
Collapse
Affiliation(s)
- Jian-Ming Liu
- National Food Institute, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Christian Solem
- National Food Institute, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|
117
|
Wolski D, Lauer GM. Hepatitis C Virus as a Unique Human Model Disease to Define Differences in the Transcriptional Landscape of T Cells in Acute versus Chronic Infection. Viruses 2019; 11:v11080683. [PMID: 31357397 PMCID: PMC6723887 DOI: 10.3390/v11080683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
The hepatitis C virus is unique among chronic viral infections in that an acute outcome with complete viral elimination is observed in a minority of infected patients. This unique feature allows direct comparison of successful immune responses with those that fail in the setting of the same human infection. Here we review how this scenario can be used to achieve better understanding of transcriptional regulation of T-cell differentiation. Specifically, we discuss results from a study comparing transcriptional profiles of hepatitis C virus (HCV)-specific CD8 T-cells during early HCV infection between patients that do and do not control and eliminate HCV. Identification of early gene expression differences in key T-cell differentiation molecules as well as clearly distinct transcriptional networks related to cell metabolism and nucleosomal regulation reveal novel insights into the development of exhausted and memory T-cells. With additional transcriptional studies of HCV-specific CD4 and CD8 T-cells in different stages of infection currently underway, we expect HCV infection to become a valuable model disease to study human immunity to viruses.
Collapse
Affiliation(s)
- David Wolski
- Liver Center at the Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Georg M Lauer
- Liver Center at the Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
118
|
Niemi NM, Wilson GM, Overmyer KA, Vögtle FN, Myketin L, Lohman DC, Schueler KL, Attie AD, Meisinger C, Coon JJ, Pagliarini DJ. Pptc7 is an essential phosphatase for promoting mammalian mitochondrial metabolism and biogenesis. Nat Commun 2019; 10:3197. [PMID: 31324765 PMCID: PMC6642090 DOI: 10.1038/s41467-019-11047-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/14/2019] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial proteins are replete with phosphorylation, yet its functional relevance remains largely unclear. The presence of multiple resident mitochondrial phosphatases, however, suggests that protein dephosphorylation may be broadly important for calibrating mitochondrial activities. To explore this, we deleted the poorly characterized matrix phosphatase Pptc7 from mice using CRISPR-Cas9 technology. Strikingly, Pptc7-/- mice exhibit hypoketotic hypoglycemia, elevated acylcarnitines and serum lactate, and die soon after birth. Pptc7-/- tissues have markedly diminished mitochondrial size and protein content despite normal transcript levels, and aberrantly elevated phosphorylation on select mitochondrial proteins. Among these, we identify the protein translocase complex subunit Timm50 as a putative Pptc7 substrate whose phosphorylation reduces import activity. We further find that phosphorylation within or near the mitochondrial targeting sequences of multiple proteins could disrupt their import rates and matrix processing. Overall, our data define Pptc7 as a protein phosphatase essential for proper mitochondrial function and biogenesis during the extrauterine transition.
Collapse
Affiliation(s)
- Natalie M Niemi
- Morgridge Institute for Research, Madison, WI, 53715, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Gary M Wilson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Katherine A Overmyer
- Morgridge Institute for Research, Madison, WI, 53715, USA
- Genome Center of Wisconsin, Madison, WI, 53706, USA
| | - F-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, 79104, Germany
| | - Lisa Myketin
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, 79104, Germany
| | | | - Kathryn L Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Chris Meisinger
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, 79104, Germany
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, WI, 53715, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Genome Center of Wisconsin, Madison, WI, 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - David J Pagliarini
- Morgridge Institute for Research, Madison, WI, 53715, USA.
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
119
|
Sirtuins as regulators of the cellular stress response and metabolism in marine ectotherms. Comp Biochem Physiol A Mol Integr Physiol 2019; 236:110528. [PMID: 31319169 DOI: 10.1016/j.cbpa.2019.110528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/07/2019] [Accepted: 07/10/2019] [Indexed: 12/16/2022]
Abstract
The effects of climate change are altering the environmental landscape of marine habitats and exposing organisms to stressful conditions that may exceed their tolerance limits. Marine intertidal organisms are well adapted to fluctuating environments by adjusting energy metabolism and inducing the cellular stress response (CSR). Recent studies have shown that food availability can influence stress tolerance of marine ectotherms where a well-fed organism is more "robust" and more likely to survive a stressor than an animal under a low-food regime. We propose that the link between food availability and stress tolerance in marine ectotherms may be regulated by sirtuins, NAD+-dependent deacylases. In model organisms sirtuins act as energy sensors and are active under calorie restricted states where they target and regulate cellular metabolism, minimize oxidative stress, and influence the CSR. However, we know little regarding sirtuins in marine ectotherms. Herein we review the current literature on sirtuins in marine ectotherms including marine teleosts, limpets, and mussels. We show that the role of sirtuins in marine ectotherms is conserved from model organisms in regulating the CSR and energy, but the direct connection to NAD+ status under fed and starved conditions requires more attention. Although there is a beginning foundation of research regarding sirtuins in marine organisms, it is limited and would benefit from targeted studies investigating sirtuin activity in various tissues and animals under multiple stressors, NAD+/NADH levels under various fed states, and by using known sirtuin inhibitors and activators to elucidate the potential targets of sirtuins in marine animals.
Collapse
|
120
|
Banks CJ, Andersen JL. Mechanisms of SOD1 regulation by post-translational modifications. Redox Biol 2019; 26:101270. [PMID: 31344643 PMCID: PMC6658992 DOI: 10.1016/j.redox.2019.101270] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022] Open
Abstract
SOD1 is commonly known for its ROS scavenging activity, but recent work has uncovered additional roles in modulating metabolism, maintaining redox balance, and regulating transcription. This new paradigm of expanded SOD1 function raises questions regarding the regulation of SOD1 and the cellular partitioning of its biological roles. Despite decades of research on SOD1, much of which focuses on its pathogenic role in amyotrophic lateral sclerosis, relatively little is known about its regulation by post-translational modifications (PTMs). However, over the last decade, advancements in mass spectrometry have led to a boom in PTM discovery across the proteome, which has also revealed new mechanisms of SOD1 regulation by PTMs and an array of SOD1 PTMs with high likelihood of biological function. In this review, we address emerging mechanisms of SOD1 regulation by post-translational modifications, many of which begin to shed light on how the various functions of SOD1 are regulated within the cell.
Collapse
Affiliation(s)
- C J Banks
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - J L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
121
|
Suprun EV. Protein post-translational modifications – A challenge for bioelectrochemistry. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
122
|
Moruno Algara M, Kuczyńska‐Wiśnik D, Dębski J, Stojowska‐Swędrzyńska K, Sominka H, Bukrejewska M, Laskowska E. Trehalose protects
Escherichia coli
against carbon stress manifested by protein acetylation and aggregation. Mol Microbiol 2019; 112:866-880. [DOI: 10.1111/mmi.14322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2019] [Indexed: 12/22/2022]
Affiliation(s)
- María Moruno Algara
- Faculty of Biology, Department of General and Medical Biochemistry University of Gdansk Wita Stwosza 5980‐308Gdansk Poland
| | - Dorota Kuczyńska‐Wiśnik
- Faculty of Biology, Department of General and Medical Biochemistry University of Gdansk Wita Stwosza 5980‐308Gdansk Poland
| | - Janusz Dębski
- Mass Spectrometry Laboratory IBB PAS ul. Pawińskiego 5A02‐106Warsaw Poland
| | - Karolina Stojowska‐Swędrzyńska
- Faculty of Biology, Department of General and Medical Biochemistry University of Gdansk Wita Stwosza 5980‐308Gdansk Poland
| | - Hanna Sominka
- Faculty of Biology, Department of General and Medical Biochemistry University of Gdansk Wita Stwosza 5980‐308Gdansk Poland
| | - Małgorzata Bukrejewska
- Faculty of Biology, Department of General and Medical Biochemistry University of Gdansk Wita Stwosza 5980‐308Gdansk Poland
| | - Ewa Laskowska
- Faculty of Biology, Department of General and Medical Biochemistry University of Gdansk Wita Stwosza 5980‐308Gdansk Poland
| |
Collapse
|
123
|
Ahn YM, Boshoff HI. Elevation of Fumarate Levels Compromise Redox Control and Viability in Mycobacterium tuberculosis. Cell Chem Biol 2019; 24:243-245. [PMID: 28306498 DOI: 10.1016/j.chembiol.2017.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this issue of Cell Chemical Biology, Ruecker et al. (2017) show that fumarase depletion in Mycobacterium tuberculosis leads to fumarate, a TCA cycle intermediate, accumulation, causing succination of a range of thiol-containing metabolites and proteins. Fumarate is bactericidal to the pathogen, and its accumulation may enhance the bactericidal effector mechanisms of other TCA cycle intermediates that accumulate due to activation of infected macrophages.
Collapse
Affiliation(s)
- Yong-Mo Ahn
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Helena I Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
124
|
Abstract
Non-enzymatic modification of proteins by acyl-CoA species involved in intermediary metabolism is a possible explanation for widespread protein acylation. In this issue, Kulkarni et al. (2017) develop a set of chemoproteomic probes to interrogate the role of malonyl-CoA in mediating protein malonylation and find malonylation influences glycolysis in cancer cells.
Collapse
Affiliation(s)
- Gregory R Wagner
- Duke Molecular Physiology Institute and the Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Durham, NC 27710, USA
| | - Matthew D Hirschey
- Duke Molecular Physiology Institute and the Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Durham, NC 27710, USA; Department of Pharmacology & Cancer Biology and Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
125
|
Ringel AE, Tucker SA, Haigis MC. Chemical and Physiological Features of Mitochondrial Acylation. Mol Cell 2019; 72:610-624. [PMID: 30444998 DOI: 10.1016/j.molcel.2018.10.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/15/2018] [Accepted: 10/15/2018] [Indexed: 01/09/2023]
Abstract
Growing appreciation of the diversity of post-translational modifications (PTMs) in the mitochondria necessitates reevaluation of the roles these modifications play in both health and disease. Compared to the cytosol and nucleus, the mitochondrial proteome is highly acylated, and remodeling of the mitochondrial "acylome" is a key adaptive mechanism that regulates fundamental aspects of mitochondrial biology. It is clear that we need to understand the underlying chemistry that regulates mitochondrial acylation, as well as how chemical properties of the acyl chain impact biological functions. Here, we dissect the sources of PTMs in the mitochondria, review major mitochondrial pathways that control levels of PTMs, and highlight how sirtuin enzymes respond to the bioenergetic state of the cell via NAD+ availability to regulate mitochondrial biology. By providing a framework connecting the chemistry of these modifications, their biochemical consequences, and the pathways that regulate the levels of acyl PTMs, we will gain a deeper understanding of the physiological significance of mitochondrial acylation and its role in mitochondrial adaptation.
Collapse
Affiliation(s)
- Alison E Ringel
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA
| | - Sarah A Tucker
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA
| | - Marcia C Haigis
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA.
| |
Collapse
|
126
|
Wang G, Meyer JG, Cai W, Softic S, Li ME, Verdin E, Newgard C, Schilling B, Kahn CR. Regulation of UCP1 and Mitochondrial Metabolism in Brown Adipose Tissue by Reversible Succinylation. Mol Cell 2019; 74:844-857.e7. [PMID: 31000437 PMCID: PMC6525068 DOI: 10.1016/j.molcel.2019.03.021] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 02/06/2019] [Accepted: 03/20/2019] [Indexed: 11/23/2022]
Abstract
Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis, and glucose homeostasis. We find that levels of mitochondrial protein succinylation and malonylation are high in BAT and subject to physiological and genetic regulation. BAT-specific deletion of Sirt5, a mitochondrial desuccinylase and demalonylase, results in dramatic increases in global protein succinylation and malonylation. Mass spectrometry-based quantification of succinylation reveals that Sirt5 regulates the key thermogenic protein in BAT, UCP1. Mutation of the two succinylated lysines in UCP1 to acyl-mimetic glutamine and glutamic acid significantly decreases its stability and activity. The reduced function of UCP1 and other proteins in Sirt5KO BAT results in impaired mitochondria respiration, defective mitophagy, and metabolic inflexibility. Thus, succinylation of UCP1 and other mitochondrial proteins plays an important role in BAT and in regulation of energy homeostasis.
Collapse
Affiliation(s)
- GuoXiao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jesse G Meyer
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Weikang Cai
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Samir Softic
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mengyao Ella Li
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Christopher Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 27708, USA
| | | | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
127
|
He Y, Gao M, Tang H, Cao Y, Liu S, Tao Y. Metabolic Intermediates in Tumorigenesis and Progression. Int J Biol Sci 2019; 15:1187-1199. [PMID: 31223279 PMCID: PMC6567815 DOI: 10.7150/ijbs.33496] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
Traditional antitumor drugs inhibit the proliferation and metastasis of tumour cells by restraining the replication and expression of DNA. These drugs are usually highly cytotoxic. They kill tumour cells while also cause damage to normal cells at the same time, especially the hematopoietic cells that divide vigorously. Patients are exposed to other serious situations such as a severe infection caused by a decrease in the number of white blood cells. Energy metabolism is an essential process for the survival of all cells, but differs greatly between normal cells and tumour cells in metabolic pathways and metabolic intermediates. Whether this difference could be used as new therapeutic target while reducing damage to normal tissues is the topic of this paper. In this paper, we introduce five major metabolic intermediates in detail, including acetyl-CoA, SAM, FAD, NAD+ and THF. Their contents and functions in tumour cells and normal cells are significantly different. And the possible regulatory mechanisms that lead to these differences are proposed carefully. It is hoped that the key enzymes in these regulatory pathways could be used as new targets for tumour therapy.
Collapse
Affiliation(s)
- Yuchen He
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China.,Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China.,Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Menghui Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China.,Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China.,Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Haosheng Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China.,Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China.,Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yiqu Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China.,Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China.,Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Liu
- Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China.,Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China.,Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
128
|
Acetylation & Co: an expanding repertoire of histone acylations regulates chromatin and transcription. Essays Biochem 2019; 63:97-107. [PMID: 30940741 PMCID: PMC6484784 DOI: 10.1042/ebc20180061] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022]
Abstract
Packaging the long and fragile genomes of eukaryotic species into nucleosomes is all well and good, but how do cells gain access to the DNA again after it has been bundled away? The solution, in every species from yeast to man, is to post-translationally modify histones, altering their chemical properties to either relax the chromatin, label it for remodelling or make it more compact still. Histones are subject to a myriad of modifications: acetylation, methylation, phosphorylation, ubiquitination etc. This review focuses on histone acylations, a diverse group of modifications which occur on the ε-amino group of Lysine residues and includes the well-characterised Lysine acetylation. Over the last 50 years, histone acetylation has been extensively characterised, with the discovery of histone acetyltransferases (HATs) and histone deacetylases (HDACs), and global mapping experiments, revealing an association of hyperacetylated histones with accessible, transcriptionally active chromatin. More recently, there has been an explosion in the number of unique short chain ‘acylations’ identified by MS, including: propionylation, butyrylation, crotonylation, succinylation, malonylation and 2-hydroxyisobutyrylation. These novel modifications add a range of chemical environments to histones, and similar to acetylation, appear to accumulate at transcriptional start sites and correlate with gene activity.
Collapse
|
129
|
Zhang L, Yao W, Xia J, Wang T, Huang F. Glucagon-Induced Acetylation of Energy-Sensing Factors in Control of Hepatic Metabolism. Int J Mol Sci 2019; 20:ijms20081885. [PMID: 30995792 PMCID: PMC6515121 DOI: 10.3390/ijms20081885] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022] Open
Abstract
The liver is the central organ of glycolipid metabolism, which regulates the metabolism of lipids and glucose to maintain energy homeostasis upon alterations of physiological conditions. Researchers formerly focused on the phosphorylation of glucagon in controlling liver metabolism. Noteworthily, emerging evidence has shown glucagon could additionally induce acetylation to control hepatic metabolism in response to different physiological states. Through inducing acetylation of complex metabolic networks, glucagon interacts extensively with various energy-sensing factors in shifting from glucose metabolism to lipid metabolism during prolonged fasting. In addition, glucagon-induced acetylation of different energy-sensing factors is involved in the advancement of nonalcoholic fatty liver disease (NAFLD) to liver cancer. Here, we summarize the latest findings on glucagon to control hepatic metabolism by inducing acetylation of energy-sensing factors. Finally, we summarize and discuss the potential impact of glucagon on the treatment of liver diseases.
Collapse
Affiliation(s)
- Li Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Xia
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tongxin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
130
|
Ganesan A. Epigenetic drug discovery: a success story for cofactor interference. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0069. [PMID: 29685973 DOI: 10.1098/rstb.2017.0069] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
Within the past two decades, seven epigenetic drugs have received regulatory approval and numerous other candidates are currently in clinical trials. Among the epigenetic targets are the writer and eraser enzymes that are, respectively, responsible for the reversible introduction and removal of structural modifications in the nucleosome. This review discusses the progress achieved in the design and development of inhibitors against the key writer and eraser pairs: DNA methyltransferases and Tet demethylases; lysine/arginine methyltransferases and lysine demethylases; and histone acetyltransferases and histone deacetylases. A common theme for the successful inhibition of these enzymes in a potent and selective manner is the targeting of the cofactors present in the active site, namely zinc and iron cations, S-adenosylmethione, nicotinamide adenine dinucleotide, flavin adenine dinucleotide and acetyl Coenzyme A.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.
Collapse
Affiliation(s)
- A Ganesan
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK .,Freiburg Institute of Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
131
|
Devabhaktuni A, Lin S, Zhang L, Swaminathan K, Gonzalez CG, Olsson N, Pearlman SM, Rawson K, Elias JE. TagGraph reveals vast protein modification landscapes from large tandem mass spectrometry datasets. Nat Biotechnol 2019; 37:469-479. [PMID: 30936560 PMCID: PMC6447449 DOI: 10.1038/s41587-019-0067-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 02/12/2019] [Indexed: 02/06/2023]
Abstract
Although mass spectrometry is well suited to identifying thousands of potential protein post-translational modifications (PTMs), it has historically been biased towards just a few. To measure the entire set of PTMs across diverse proteomes, software must overcome the dual challenges of covering enormous search spaces and distinguishing correct from incorrect spectrum interpretations. Here, we describe TagGraph, a computational tool that overcomes both challenges with an unrestricted string-based search method that is as much as 350-fold faster than existing approaches, and a probabilistic validation model that we optimized for PTM assignments. We applied TagGraph to a published human proteomic dataset of 25 million mass spectra and tripled confident spectrum identifications compared to its original analysis. We identified thousands of modification types on almost 1 million sites in the proteome. We show alternative contexts for highly abundant yet understudied PTMs such as proline hydroxylation, and its unexpected association with cancer mutations. By enabling broad characterization of PTMs, TagGraph informs as to how their functions and regulation intersect.
Collapse
Affiliation(s)
- Arun Devabhaktuni
- Department of Chemical and Systems Biology Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Sarah Lin
- Department of Chemical and Systems Biology Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Lichao Zhang
- Department of Chemical and Systems Biology Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Kavya Swaminathan
- Department of Chemical and Systems Biology Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Carlos G Gonzalez
- Department of Chemical and Systems Biology Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Niclas Olsson
- Department of Chemical and Systems Biology Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Samuel M Pearlman
- Department of Chemical and Systems Biology Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Keith Rawson
- Department of Chemical and Systems Biology Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Joshua E Elias
- Department of Chemical and Systems Biology Stanford School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
132
|
Abstract
The sirtuin family of NAD+-dependent protein deacetylases promotes longevity and counteracts age-related diseases. One of the major targets of Sirtuins are the FoxO family of transcription factors. FoxOs play a major role in the adaptation of cells to a variety of stressors such as oxidative stress and growth factor deprivation. Studies with murine models of cell-specific loss- or gain-of-function of Sirtuins or FoxOs and with Sirtuin1 stimulators have provided novel insights into the function and signaling of these proteins on the skeleton. These studies have revealed that both Sirtuins and FoxOs acting directly in cartilage and bone cells are critical for normal skeletal development, homeostasis and that their dysregulation might contribute to skeletal disease. Deacetylation of FoxOs by Sirt1 in osteoblasts and osteoclasts stimulates bone formation and inhibits bone resorption, making Sirt1 ligands promising therapeutic agents for diseases of low bone mass. While a similar link has not been established in chondrocytes, Sirt1 and FoxOs both have chondroprotective actions, suggesting that Sirt1 activators may have similar efficacy in preventing cartilage degeneration due to aging or injury. In this review we summarize these advances and discuss their implications for the pathogenesis of age-related osteoporosis and osteoarthritis.
Collapse
Affiliation(s)
- Maria Almeida
- Department of Medicine, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Orthopedics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Ryan M Porter
- Department of Medicine, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Orthopedics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
133
|
Hansen BK, Gupta R, Baldus L, Lyon D, Narita T, Lammers M, Choudhary C, Weinert BT. Analysis of human acetylation stoichiometry defines mechanistic constraints on protein regulation. Nat Commun 2019; 10:1055. [PMID: 30837475 PMCID: PMC6401094 DOI: 10.1038/s41467-019-09024-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
Lysine acetylation is a reversible posttranslational modification that occurs at thousands of sites on human proteins. However, the stoichiometry of acetylation remains poorly characterized, and is important for understanding acetylation-dependent mechanisms of protein regulation. Here we provide accurate, validated measurements of acetylation stoichiometry at 6829 sites on 2535 proteins in human cervical cancer (HeLa) cells. Most acetylation occurs at very low stoichiometry (median 0.02%), whereas high stoichiometry acetylation (>1%) occurs on nuclear proteins involved in gene transcription and on acetyltransferases. Analysis of acetylation copy numbers show that histones harbor the majority of acetylated lysine residues in human cells. Class I deacetylases target a greater proportion of high stoichiometry acetylation compared to SIRT1 and HDAC6. The acetyltransferases CBP and p300 catalyze a majority (65%) of high stoichiometry acetylation. This resource dataset provides valuable information for evaluating the impact of individual acetylation sites on protein function and for building accurate mechanistic models. Many human proteins are regulated by lysine acetylation, but the degree of acetylation at individual sites is poorly characterized. Here, the authors measure acetylation stoichiometry in the HeLa cell proteome, providing a resource to assess mechanistic constraints on acetylation-mediated protein regulation.
Collapse
Affiliation(s)
- Bogi Karbech Hansen
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Rajat Gupta
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Linda Baldus
- Institute of Biochemistry, Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, Greifswald, 17487, Germany.,Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, CECAD, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - David Lyon
- Disease Systems Biology Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Takeo Narita
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Michael Lammers
- Institute of Biochemistry, Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, Greifswald, 17487, Germany.,Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, CECAD, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Chunaram Choudhary
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark.
| | - Brian T Weinert
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
134
|
Fang Y, Tang S, Li X. Sirtuins in Metabolic and Epigenetic Regulation of Stem Cells. Trends Endocrinol Metab 2019; 30:177-188. [PMID: 30630664 PMCID: PMC6382540 DOI: 10.1016/j.tem.2018.12.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/30/2018] [Accepted: 12/16/2018] [Indexed: 02/08/2023]
Abstract
Sirtuins are highly conserved NAD+-dependent enzymes that are capable of removing a wide range of lipid lysine acyl-groups from protein substrates in a NAD+-dependent manner. These NAD+-dependent activities enable sirtuins to monitor cellular energy status and modulate gene transcription, genome stability, and energy metabolism in response to environmental signals. Consequently, sirtuins are important for cell survival, stress resistance, proliferation, and differentiation. In recent years, sirtuins are increasingly recognized as crucial regulators of stem cell biology in addition to their well-known roles in metabolism and aging. This review article highlights our current knowledge on sirtuins in stem cells, including their functions in pluripotent stem cells, embryogenesis, and development as well as their roles in adult stem cell maintenance, regeneration, and aging.
Collapse
Affiliation(s)
- Yi Fang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; These authors contributed equally to this work
| | - Shuang Tang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; Current address: Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; These authors contributed equally to this work
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
135
|
Zhang M, Wu J, Sun R, Tao X, Wang X, Kang Q, Wang H, Zhang L, Liu P, Zhang J, Xia Y, Zhao Y, Yang Y, Xiong Y, Guan KL, Zou Y, Ye D. SIRT5 deficiency suppresses mitochondrial ATP production and promotes AMPK activation in response to energy stress. PLoS One 2019; 14:e0211796. [PMID: 30759120 PMCID: PMC6373945 DOI: 10.1371/journal.pone.0211796] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 01/21/2019] [Indexed: 01/30/2023] Open
Abstract
Sirtuin 5 (SIRT5) is a member of the NAD+-dependent sirtuin family of protein deacylase that catalyzes removal of post-translational modifications, such as succinylation, malonylation, and glutarylation on lysine residues. In light of the SIRT5's roles in regulating mitochondrion function, we show here that SIRT5 deficiency leads to suppression of mitochondrial NADH oxidation and inhibition of ATP synthase activity. As a result, SIRT5 deficiency decreases mitochondrial ATP production, increases AMP/ATP ratio, and subsequently activates AMP-activated protein kinase (AMPK) in cultured cells and mouse hearts under energy stress conditions. Moreover, Sirt5 knockout attenuates transverse aortic constriction (TAC)-induced cardiac hypertrophy and cardiac dysfunction in mice, which is associated with decreased ATP level, increased AMP/ATP ratio and enhanced AMPK activation. Our study thus uncovers an important role of SIRT5 in regulating cellular energy metabolism and AMPK activation in response to energy stress.
Collapse
Affiliation(s)
- Mengli Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and The Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Renqiang Sun
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and The Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoting Tao
- Department of Thoracic Surgery and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoxia Wang
- Waters corporation Shanghai Science & Technology Co Ltd, Shanghai, China
| | - Qi Kang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and The Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Wang
- Waters corporation Shanghai Science & Technology Co Ltd, Shanghai, China
| | - Lei Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and The Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Liu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and The Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinye Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and The Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yukun Xia
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and The Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuzheng Zhao
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yi Yang
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yue Xiong
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and The Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Kun-Liang Guan
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and The Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, California, United States
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Dan Ye
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and The Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
136
|
YfmK is an N ε-lysine acetyltransferase that directly acetylates the histone-like protein HBsu in Bacillus subtilis. Proc Natl Acad Sci U S A 2019; 116:3752-3757. [PMID: 30808761 DOI: 10.1073/pnas.1815511116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nε-lysine acetylation is an abundant and dynamic regulatory posttranslational modification that remains poorly characterized in bacteria. In bacteria, hundreds of proteins are known to be acetylated, but the biological significance of the majority of these events remains unclear. Previously, we characterized the Bacillus subtilis acetylome and found that the essential histone-like protein HBsu contains seven previously unknown acetylation sites in vivo. Here, we investigate whether acetylation is a regulatory component of the function of HBsu in nucleoid compaction. Using mutations that mimic the acetylated and unacetylated forms of the protein, we show that the inability to acetylate key HBsu lysine residues results in a more compacted nucleoid. We further investigated the mechanism of HBsu acetylation. We screened deletions of the ∼50 putative GNAT domain-encoding genes in B. subtilis for their effects on DNA compaction, and identified five candidates that may encode acetyltransferases acting on HBsu. Genetic bypass experiments demonstrated that two of these, YfmK and YdgE, can acetylate Hbsu, and their potential sites of action on HBsu were identified. Additionally, purified YfmK was able to directly acetylate HBsu in vitro, suggesting that it is the second identified protein acetyltransferase in B. subtilis We propose that at least one physiological function of the acetylation of HBsu at key lysine residues is to regulate nucleoid compaction, analogous to the role of histone acetylation in eukaryotes.
Collapse
|
137
|
Fisher-Wellman KH, Draper JA, Davidson MT, Williams AS, Narowski TM, Slentz DH, Ilkayeva OR, Stevens RD, Wagner GR, Najjar R, Hirschey MD, Thompson JW, Olson DP, Kelly DP, Koves TR, Grimsrud PA, Muoio DM. Respiratory Phenomics across Multiple Models of Protein Hyperacylation in Cardiac Mitochondria Reveals a Marginal Impact on Bioenergetics. Cell Rep 2019; 26:1557-1572.e8. [PMID: 30726738 PMCID: PMC6478502 DOI: 10.1016/j.celrep.2019.01.057] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/02/2018] [Accepted: 01/15/2019] [Indexed: 11/25/2022] Open
Abstract
Acyl CoA metabolites derived from the catabolism of carbon fuels can react with lysine residues of mitochondrial proteins, giving rise to a large family of post-translational modifications (PTMs). Mass spectrometry-based detection of thousands of acyl-PTMs scattered throughout the proteome has established a strong link between mitochondrial hyperacylation and cardiometabolic diseases; however, the functional consequences of these modifications remain uncertain. Here, we use a comprehensive respiratory diagnostics platform to evaluate three disparate models of mitochondrial hyperacylation in the mouse heart caused by genetic deletion of malonyl CoA decarboxylase (MCD), SIRT5 demalonylase and desuccinylase, or SIRT3 deacetylase. In each case, elevated acylation is accompanied by marginal respiratory phenotypes. Of the >60 mitochondrial energy fluxes evaluated, the only outcome consistently observed across models is a ∼15% decrease in ATP synthase activity. In sum, the findings suggest that the vast majority of mitochondrial acyl PTMs occur as stochastic events that minimally affect mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Kelsey H Fisher-Wellman
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - James A Draper
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Michael T Davidson
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Ashley S Williams
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Tara M Narowski
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Dorothy H Slentz
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Olga R Ilkayeva
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Robert D Stevens
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Gregory R Wagner
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Rami Najjar
- Cell Signaling Technologies, Danvers, MA 01923, USA
| | - Mathew D Hirschey
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - J Will Thompson
- Duke Proteomics and Metabolomics Shared Resource, Duke University Medical Center, Durham, NC 27710, USA
| | - David P Olson
- Department of Pediatrics, Division of Pediatric Endocrinology, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Daniel P Kelly
- Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Paul A Grimsrud
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA.
| | - Deborah M Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
138
|
Ali HR, Assiri MA, Harris PS, Michel CR, Yun Y, Marentette JO, Huynh FK, Orlicky DJ, Shearn CT, Saba LM, Reisdorph R, Reisdorph N, Hirschey MD, Fritz KS. Quantifying Competition among Mitochondrial Protein Acylation Events Induced by Ethanol Metabolism. J Proteome Res 2019; 18:1513-1531. [PMID: 30644754 DOI: 10.1021/acs.jproteome.8b00800] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mitochondrial dysfunction is one of many key factors in the etiology of alcoholic liver disease (ALD). Lysine acetylation is known to regulate numerous mitochondrial metabolic pathways, and recent reports demonstrate that alcohol-induced protein acylation negatively impacts these processes. To identify regulatory mechanisms attributed to alcohol-induced protein post-translational modifications, we employed a model of alcohol consumption within the context of wild type (WT), sirtuin 3 knockout (SIRT3 KO), and sirtuin 5 knockout (SIRT5 KO) mice to manipulate hepatic mitochondrial protein acylation. Mitochondrial fractions were examined by label-free quantitative HPLC-MS/MS to reveal competition between lysine acetylation and succinylation. A class of proteins defined as "differential acyl switching proteins" demonstrate select sensitivity to alcohol-induced protein acylation. A number of these proteins reveal saturated lysine-site occupancy, suggesting a significant level of differential stoichiometry in the setting of ethanol consumption. We hypothesize that ethanol downregulates numerous mitochondrial metabolic pathways through differential acyl switching proteins. Data are available via ProteomeXchange with identifier PXD012089.
Collapse
Affiliation(s)
- Hadi R Ali
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Mohammed A Assiri
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Peter S Harris
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Cole R Michel
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Youngho Yun
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - John O Marentette
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Frank K Huynh
- Department of Biological Sciences , San Jose State University , San Jose , California 95192 , United States
| | - David J Orlicky
- Department of Pathology, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Colin T Shearn
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Laura M Saba
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Richard Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Nichole Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Matthew D Hirschey
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Department of Pharmacology and Cancer Biology , Duke University Medical Center , Durham , North Carolina 27710 , United States
| | - Kristofer S Fritz
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| |
Collapse
|
139
|
Abstract
Significance: Diabetic cardiomyopathy (DCM) is a frequent complication occurring even in well-controlled asymptomatic diabetic patients, and it may advance to heart failure (HF). Recent Advances: The diabetic heart is characterized by a state of "metabolic rigidity" involving enhanced rates of fatty acid uptake and mitochondrial oxidation as the predominant energy source, and it exhibits mitochondrial electron transport chain defects. These alterations promote redox state changes evidenced by a decreased NAD+/NADH ratio associated with an increase in acetyl-CoA/CoA ratio. NAD+ is a co-substrate for deacetylases, sirtuins, and a critical molecule in metabolism and redox signaling; whereas acetyl-CoA promotes protein lysine acetylation, affecting mitochondrial integrity and causing epigenetic changes. Critical Issues: DCM lacks specific therapies with treatment only in later disease stages using standard, palliative HF interventions. Traditional therapy targeting neurohormonal signaling and hemodynamics failed to improve mortality rates. Though mitochondrial redox state changes occur in the heart with obesity and diabetes, how the mitochondrial NAD+/NADH redox couple connects the remodeled energy metabolism with mitochondrial and cytosolic antioxidant defense and nuclear epigenetic changes remains to be determined. Mitochondrial therapies targeting the mitochondrial NAD+/NADH redox ratio may alleviate cardiac dysfunction. Future Directions: Specific therapies must be supported by an optimal understanding of changes in mitochondrial redox state and how it influences other cellular compartments; this field has begun to surface as a therapeutic target for the diabetic heart. We propose an approach based on an alternate mitochondrial electron transport that normalizes the mitochondrial redox state and improves cardiac function in diabetes.
Collapse
Affiliation(s)
- Jessica M Berthiaume
- 1 Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University , Cleveland, Ohio
| | - Jacob G Kurdys
- 2 Department of Foundational Sciences, College of Medicine, Central Michigan University , Mount Pleasant, Michigan
| | - Danina M Muntean
- 3 Department of Functional Sciences-Pathophysiology, "Victor Babes" University of Medicine and Pharmacy , Timisoara, Romania
| | - Mariana G Rosca
- 2 Department of Foundational Sciences, College of Medicine, Central Michigan University , Mount Pleasant, Michigan
| |
Collapse
|
140
|
Ghirotto B, Terra FF, Câmara NOS, Basso PJ. Sirtuins in B lymphocytes metabolism and function. World J Exp Med 2019; 9:1-13. [PMID: 30705866 PMCID: PMC6354076 DOI: 10.5493/wjem.v9.i1.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Accepted: 01/05/2019] [Indexed: 02/06/2023] Open
Abstract
Sirtuins (SIRTs) are NAD+-dependent histone deacetylases and play a role in virtually all cell biological processes. As SIRTs functions vary according to their subtypes, they can either activate or inhibit signaling pathways upon different conditions or tissues. Recent studies have focused on metabolic effects performed by SIRTs in several cell types since specific metabolic pathways (e.g., aerobic glycolysis, oxidative phosphorylation, β-oxidation, glutaminolysis) are used to determine the cell fate. However, few efforts have been made to understand the role of SIRTs on B lymphocytes metabolism and function. These cells are associated with humoral immune responses by secreting larger amounts of antibodies after differentiating into antibody-secreting cells. Besides, both the SIRTs and B lymphocytes are potential targets to treat several immune-mediated disorders, including cancer. Here, we provide an outlook of recent studies regarding the role of SIRTs in general cellular metabolism and B lymphocytes functions, pointing out the future perspectives of this field.
Collapse
Affiliation(s)
- Bruno Ghirotto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Fernanda Fernandes Terra
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Division of Nephrology, School of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
- Laboratory of Renal Physiology (LIM 16), School of Medicine, University of São Paulo, São Paulo 01246-903, Brazil
| | - Paulo José Basso
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
141
|
Fedotcheva NI, Kondrashova MN, Litvinova EG, Zakharchenko MV, Khunderyakova NV, Beloborodova NV. Modulation of the Activity of Succinate Dehydrogenase by Acetylation with Chemicals, Drugs, and Microbial Metabolites. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350918050081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
142
|
Bowman CE, Wolfgang MJ. Role of the malonyl-CoA synthetase ACSF3 in mitochondrial metabolism. Adv Biol Regul 2019; 71:34-40. [PMID: 30201289 PMCID: PMC6347522 DOI: 10.1016/j.jbior.2018.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/26/2022]
Abstract
Malonyl-CoA is a central metabolite in fatty acid biochemistry. It is the rate-determining intermediate in fatty acid synthesis but is also an allosteric inhibitor of the rate-setting step in mitochondrial long-chain fatty acid oxidation. While these canonical cytoplasmic roles of malonyl-CoA have been well described, malonyl-CoA can also be generated within the mitochondrial matrix by an alternative pathway: the ATP-dependent ligation of malonate to Coenzyme A by the malonyl-CoA synthetase ACSF3. Malonate, a competitive inhibitor of succinate dehydrogenase of the TCA cycle, is a potent inhibitor of mitochondrial respiration. A major role for ACSF3 is to provide a metabolic pathway for the clearance of malonate by the generation of malonyl-CoA, which can then be decarboxylated to acetyl-CoA by malonyl-CoA decarboxylase. Additionally, ACSF3-derived malonyl-CoA can be used to malonylate lysine residues on proteins within the matrix of mitochondria, possibly adding another regulatory layer to post-translational control of mitochondrial metabolism. The discovery of ACSF3-mediated generation of malonyl-CoA defines a new mitochondrial metabolic pathway and raises new questions about how the metabolic fates of this multifunctional metabolite intersect with mitochondrial metabolism.
Collapse
Affiliation(s)
- Caitlyn E Bowman
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
143
|
Abstract
Posttranslational modifications of proteins control many complex biological processes, including genome expression, chromatin dynamics, metabolism, and cell division through a language of chemical modifications. Improvements in mass spectrometry-based proteomics have demonstrated protein acetylation is a widespread and dynamic modification in the cell; however, many questions remain on the regulation and downstream effects, and an assessment of the overall acetylation stoichiometry is needed. In this chapter, we describe the determination of acetylation stoichiometry using data-independent acquisition mass spectrometry to expand the number of acetylation sites quantified. However, the increased depth of data-independent acquisition is limited by the spectral library used to deconvolute fragmentation spectra. We describe a powerful approach of subcellular fractionation in conjunction with offline prefractionation to increase the depth of the spectral library. This deep interrogation of subcellular compartments provides essential insights into the compartment-specific regulation and downstream functions of protein acetylation.
Collapse
|
144
|
Temporal dynamics of liver mitochondrial protein acetylation and succinylation and metabolites due to high fat diet and/or excess glucose or fructose. PLoS One 2018; 13:e0208973. [PMID: 30586434 PMCID: PMC6306174 DOI: 10.1371/journal.pone.0208973] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022] Open
Abstract
Dietary macronutrient composition alters metabolism through several mechanisms, including post-translational modification (PTM) of proteins. To connect diet and molecular changes, here we performed short- and long-term feeding of mice with standard chow diet (SCD) and high-fat diet (HFD), with or without glucose or fructose supplementation, and quantified liver metabolites, 861 proteins, and 1,815 protein level-corrected mitochondrial acetylation and succinylation sites. Nearly half the acylation sites were altered by at least one diet; nutrient-specific changes in protein acylation sometimes encompass entire pathways. Although acetyl-CoA is an intermediate in both sugar and fat metabolism, acetyl-CoA had a dichotomous fate depending on its source; chronic feeding of dietary sugars induced protein hyperacetylation, whereas the same duration of HFD did not. Instead, HFD resulted in citrate accumulation, anaplerotic metabolism of amino acids, and protein hypo-succinylation. Together, our results demonstrate novel connections between dietary macronutrients, protein post-translational modifications, and regulation of fuel selection in liver.
Collapse
|
145
|
Lantier L, Williams AS, Hughey CC, Bracy DP, James FD, Ansari MA, Gius D, Wasserman DH. SIRT2 knockout exacerbates insulin resistance in high fat-fed mice. PLoS One 2018; 13:e0208634. [PMID: 30533032 PMCID: PMC6289500 DOI: 10.1371/journal.pone.0208634] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/20/2018] [Indexed: 01/26/2023] Open
Abstract
The NAD+-dependent deacetylase SIRT2 is unique amongst sirtuins as it is effective in the cytosol, as well as the mitochondria. Defining the role of cytosolic acetylation state in specific tissues is difficult since even physiological effects at the whole body level are unknown. We hypothesized that genetic SIRT2 knockout (KO) would lead to impaired insulin action, and that this impairment would be worsened in HF fed mice. Insulin sensitivity was tested using the hyperinsulinemic-euglycemic clamp in SIRT2 KO mice and WT littermates. SIRT2 KO mice exhibited reduced skeletal muscle insulin-induced glucose uptake compared to lean WT mice, and this impairment was exacerbated in HF SIRT2 KO mice. Liver insulin sensitivity was unaffected in lean SIRT2 KO mice. However, the insulin resistance that accompanies HF-feeding was worsened in SIRT2 KO mice. It was notable that the effects of SIRT2 KO were largely disassociated from cytosolic acetylation state, but were closely linked to acetylation state in the mitochondria. SIRT2 KO led to an increase in body weight that was due to increased food intake in HF fed mice. In summary, SIRT2 deletion in vivo reduces muscle insulin sensitivity and contributes to liver insulin resistance by a mechanism that is unrelated to cytosolic acetylation state. Mitochondrial acetylation state and changes in feeding behavior that result in increased body weight correspond to the deleterious effects of SIRT2 KO on insulin action.
Collapse
Affiliation(s)
- Louise Lantier
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN, United States of America
- Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, TN, United States of America
| | - Ashley S. Williams
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN, United States of America
| | - Curtis C. Hughey
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN, United States of America
| | - Deanna P. Bracy
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN, United States of America
| | - Freyja D. James
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN, United States of America
| | - Muhammad A. Ansari
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN, United States of America
| | - David Gius
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - David H. Wasserman
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN, United States of America
- Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, TN, United States of America
| |
Collapse
|
146
|
Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 2018; 17:865-886. [PMID: 30393373 DOI: 10.1038/nrd.2018.174] [Citation(s) in RCA: 533] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although the development of mitochondrial therapies has largely focused on diseases caused by mutations in mitochondrial DNA or in nuclear genes encoding mitochondrial proteins, it has been found that mitochondrial dysfunction also contributes to the pathology of many common disorders, including neurodegeneration, metabolic disease, heart failure, ischaemia-reperfusion injury and protozoal infections. Mitochondria therefore represent an important drug target for these highly prevalent diseases. Several strategies aimed at therapeutically restoring mitochondrial function are emerging, and a small number of agents have entered clinical trials. This Review discusses the opportunities and challenges faced for the further development of mitochondrial pharmacology for common pathologies.
Collapse
Affiliation(s)
- Michael P Murphy
- Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
147
|
Wu K, Wang L, Chen Y, Pirooznia M, Singh K, Wälde S, Kehlenbach RH, Scott I, Gucek M, Sack MN. GCN5L1 interacts with αTAT1 and RanBP2 to regulate hepatic α-tubulin acetylation and lysosome trafficking. J Cell Sci 2018; 131:jcs.221036. [PMID: 30333138 DOI: 10.1242/jcs.221036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/04/2018] [Indexed: 01/07/2023] Open
Abstract
Although GCN5L1 (also known as BLOC1S1) facilitates mitochondrial protein acetylation and controls endosomal-lysosomal trafficking, the mechanisms underpinning these disparate effects are unclear. As microtubule acetylation modulates endosome-lysosome trafficking, we reasoned that exploring the role of GCN5L1 in this biology may enhance our understanding of GCN5L1-mediated protein acetylation. We show that α-tubulin acetylation is reduced in GCN5L1-knockout hepatocytes and restored by GCN5L1 reconstitution. Furthermore, GCN5L1 binds to the α-tubulin acetyltransferase αTAT1, and GCN5L1-mediated α-tubulin acetylation is dependent on αTAT1. Given that cytosolic GCN5L1 has been identified as a component of numerous multiprotein complexes, we explored whether novel interacting partners contribute to this regulation. We identify RanBP2 as a novel interacting partner of GCN5L1 and αTAT1. Genetic silencing of RanBP2 phenocopies GCN5L1 depletion by reducing α-tubulin acetylation, and we find that RanBP2 possesses a tubulin-binding domain, which recruits GCN5L1 to α-tubulin. Finally, we find that genetic depletion of GCN5L1 promotes perinuclear lysosome accumulation and histone deacetylase inhibition partially restores lysosomal positioning. We conclude that the interactions of GCN5L1, RanBP2 and αTAT1 function in concert to control α-tubulin acetylation and may contribute towards the regulation of cellular lysosome positioning. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Kaiyuan Wu
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lingdi Wang
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yong Chen
- Proteomics Core, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Core, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Komudi Singh
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah Wälde
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Iain Scott
- Cardiology Division, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Marjan Gucek
- Proteomics Core, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Michael N Sack
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
148
|
Vancura A, Nagar S, Kaur P, Bu P, Bhagwat M, Vancurova I. Reciprocal Regulation of AMPK/SNF1 and Protein Acetylation. Int J Mol Sci 2018; 19:ijms19113314. [PMID: 30366365 PMCID: PMC6274705 DOI: 10.3390/ijms19113314] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/31/2022] Open
Abstract
Adenosine monophosphate (AMP)-activated protein kinase (AMPK) serves as an energy sensor and master regulator of metabolism. In general, AMPK inhibits anabolism to minimize energy consumption and activates catabolism to increase ATP production. One of the mechanisms employed by AMPK to regulate metabolism is protein acetylation. AMPK regulates protein acetylation by at least five distinct mechanisms. First, AMPK phosphorylates and inhibits acetyl-CoA carboxylase (ACC) and thus regulates acetyl-CoA homeostasis. Since acetyl-CoA is a substrate for all lysine acetyltransferases (KATs), AMPK affects the activity of KATs by regulating the cellular level of acetyl-CoA. Second, AMPK activates histone deacetylases (HDACs) sirtuins by increasing the cellular concentration of NAD⁺, a cofactor of sirtuins. Third, AMPK inhibits class I and II HDACs by upregulating hepatic synthesis of α-hydroxybutyrate, a natural inhibitor of HDACs. Fourth, AMPK induces translocation of HDACs 4 and 5 from the nucleus to the cytoplasm and thus increases histone acetylation in the nucleus. Fifth, AMPK directly phosphorylates and downregulates p300 KAT. On the other hand, protein acetylation regulates AMPK activity. Sirtuin SIRT1-mediated deacetylation of liver kinase B1 (LKB1), an upstream kinase of AMPK, activates LKB1 and AMPK. AMPK phosphorylates and inactivates ACC, thus increasing acetyl-CoA level and promoting LKB1 acetylation and inhibition. In yeast cells, acetylation of Sip2p, one of the regulatory β-subunits of the SNF1 complex, results in inhibition of SNF1. This results in activation of ACC and reduced cellular level of acetyl-CoA, which promotes deacetylation of Sip2p and activation of SNF1. Thus, in both yeast and mammalian cells, AMPK/SNF1 regulate protein acetylation and are themselves regulated by protein acetylation.
Collapse
Affiliation(s)
- Ales Vancura
- Department of Biological Sciences, St. John's University, New York, NY 11439, USA.
| | - Shreya Nagar
- Department of Biological Sciences, St. John's University, New York, NY 11439, USA.
| | - Pritpal Kaur
- Department of Biological Sciences, St. John's University, New York, NY 11439, USA.
| | - Pengli Bu
- Department of Biological Sciences, St. John's University, New York, NY 11439, USA.
| | - Madhura Bhagwat
- Department of Biological Sciences, St. John's University, New York, NY 11439, USA.
| | - Ivana Vancurova
- Department of Biological Sciences, St. John's University, New York, NY 11439, USA.
| |
Collapse
|
149
|
SIRT5 deacylates metabolism-related proteins and attenuates hepatic steatosis in ob/ob mice. EBioMedicine 2018; 36:347-357. [PMID: 30279144 PMCID: PMC6197389 DOI: 10.1016/j.ebiom.2018.09.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 11/22/2022] Open
Abstract
Background Sirtuin 5 (SIRT5) is a NAD+-dependent lysine deacylase. The SIRT5 deficiency mouse model shows that it is dispensable for metabolic homeostasis under normal conditions. However, the biological role of SIRT5 and acylation in pathological states such as obesity and type 2 diabetes (T2D) remains elusive. Methods The hepatic SIRT5-overexpressing ob/ob mouse model (ob/ob-SIRT5 OE) was established by CRISPR/Cas9 gene editing tool Protein malonylation and succinylation lysine sites were identified by immunoprecipitation coupled lipid chromatography - tandem mass spectrometry (LC-MS/MS) methods. Findings The ob/ob-SIRT5 OE mice showed decreased malonylation and succinylation, improved cellular glycolysis, suppressed gluconeogenesis, enhanced fatty acid oxidation, and attenuated hepatic steatosis. A total of 955 malonylation sites on 434 proteins and 1377 succinylation sites on 429 proteins were identified and quantitated. Bioinformatics analysis revealed that malonylation was the major SIRT5 target in the glycolysis/gluconeogenesis pathway, whereas succinylation was the preferred SIRT5 target in the oxidative phosphorylation pathway. Interpretation Hepatic overexpression of SIRT5 ameliorated the metabolic abnormalities of ob/ob mice, probably through demalonylating and desuccinylating proteins in the main metabolic pathways. SIRT5 and related acylation might be potential targets for metabolic disorders. Fund National Key R&D Program of China, the National Natural Science Foundation of China, the Strategic Priority Research Programs (Category A) of the Chinese Academy of Sciences, the Interdisciplinary Medicine Seed Fund of Peking University and the National Laboratory of Biomacromolecules.
Collapse
|
150
|
Wang T, Yao W, Shao Y, Zheng R, Huang F. PCAF fine-tunes hepatic metabolic syndrome, inflammatory disease, and cancer. J Cell Mol Med 2018; 22:5787-5800. [PMID: 30216660 PMCID: PMC6237576 DOI: 10.1111/jcmm.13877] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023] Open
Abstract
The P300/CBP‐associating factor (PCAF), a histone acetyltransferase, is involved in metabolic and pathogenic diseases, particularly of the liver. The effects of PCAF on fine‐tuning liver diseases are extremely complex and vary according to different pathological conditions. This enzyme has dichotomous functions, depending on differently modified sites, which regulate the activities of various enzymes, metabolic functions, and gene expression. Here, we summarize the most recent findings on the functions and targets of PCAF in various metabolic and immunological processes in the liver and review these new discoveries and models of PCAF biology in three areas: hepatic metabolic syndrome, inflammatory disease, and cancer. Finally, we discuss the potential implications of these findings for therapeutic interventions in liver diseases.
Collapse
Affiliation(s)
- Tongxin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yafei Shao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ruilong Zheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|