101
|
Findlay GM. Linking genome variants to disease: scalable approaches to test the functional impact of human mutations. Hum Mol Genet 2021; 30:R187-R197. [PMID: 34338757 PMCID: PMC8490018 DOI: 10.1093/hmg/ddab219] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
The application of genomics to medicine has accelerated the discovery of mutations underlying disease and has enhanced our knowledge of the molecular underpinnings of diverse pathologies. As the amount of human genetic material queried via sequencing has grown exponentially in recent years, so too has the number of rare variants observed. Despite progress, our ability to distinguish which rare variants have clinical significance remains limited. Over the last decade, however, powerful experimental approaches have emerged to characterize variant effects orders of magnitude faster than before. Fueled by improved DNA synthesis and sequencing and, more recently, by CRISPR/Cas9 genome editing, multiplex functional assays provide a means of generating variant effect data in wide-ranging experimental systems. Here, I review recent applications of multiplex assays that link human variants to disease phenotypes and I describe emerging strategies that will enhance their clinical utility in coming years.
Collapse
Affiliation(s)
- Gregory M Findlay
- The Francis Crick Institute, The Genome Function Laboratory, London NW1 1AT, UK
| |
Collapse
|
102
|
Hu J, Cao J, Topatana W, Juengpanich S, Li S, Zhang B, Shen J, Cai L, Cai X, Chen M. Targeting mutant p53 for cancer therapy: direct and indirect strategies. J Hematol Oncol 2021; 14:157. [PMID: 34583722 PMCID: PMC8480024 DOI: 10.1186/s13045-021-01169-0] [Citation(s) in RCA: 285] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023] Open
Abstract
TP53 is a critical tumor-suppressor gene that is mutated in more than half of all human cancers. Mutations in TP53 not only impair its antitumor activity, but also confer mutant p53 protein oncogenic properties. The p53-targeted therapy approach began with the identification of compounds capable of restoring/reactivating wild-type p53 functions or eliminating mutant p53. Treatments that directly target mutant p53 are extremely structure and drug-species-dependent. Due to the mutation of wild-type p53, multiple survival pathways that are normally maintained by wild-type p53 are disrupted, necessitating the activation of compensatory genes or pathways to promote cancer cell survival. Additionally, because the oncogenic functions of mutant p53 contribute to cancer proliferation and metastasis, targeting the signaling pathways altered by p53 mutation appears to be an attractive strategy. Synthetic lethality implies that while disruption of either gene alone is permissible among two genes with synthetic lethal interactions, complete disruption of both genes results in cell death. Thus, rather than directly targeting p53, exploiting mutant p53 synthetic lethal genes may provide additional therapeutic benefits. Additionally, research progress on the functions of noncoding RNAs has made it clear that disrupting noncoding RNA networks has a favorable antitumor effect, supporting the hypothesis that targeting noncoding RNAs may have potential synthetic lethal effects in cancers with p53 mutations. The purpose of this review is to discuss treatments for cancers with mutant p53 that focus on directly targeting mutant p53, restoring wild-type functions, and exploiting synthetic lethal interactions with mutant p53. Additionally, the possibility of noncoding RNAs acting as synthetic lethal targets for mutant p53 will be discussed.
Collapse
Affiliation(s)
- Jiahao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | | | - Shijie Li
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Bin Zhang
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jiliang Shen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
| | - Liuxin Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China.
- School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Engineering Research Center of Cognitive Healthcare of Zhejiang Province, Zhejiang Province, Hangzhou, China.
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No. 3 East Qingchun Road, Hangzhou, 310016, China.
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China.
- School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Engineering Research Center of Cognitive Healthcare of Zhejiang Province, Zhejiang Province, Hangzhou, China.
| |
Collapse
|
103
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
104
|
Yabumoto M, Kianmahd J, Singh M, Palafox MF, Wei A, Elliott K, Goodloe DH, Dean SJ, Gooch C, Murray BK, Swartz E, Schrier Vergano SA, Towne MC, Nugent K, Roeder ER, Kresge C, Pletcher BA, Grand K, Graham JM, Gates R, Gomez‐Ospina N, Ramanathan S, Clark RD, Glaser K, Benke PJ, Cohen JS, Fatemi A, Mu W, Baranano KW, Madden JA, Gubbels CS, Yu TW, Agrawal PB, Chambers M, Phornphutkul C, Pugh JA, Tauber KA, Azova S, Smith JR, O’Donnell‐Luria A, Medsker H, Srivastava S, Krakow D, Schweitzer DN, Arboleda VA. Novel variants in KAT6B spectrum of disorders expand our knowledge of clinical manifestations and molecular mechanisms. Mol Genet Genomic Med 2021; 9:e1809. [PMID: 34519438 PMCID: PMC8580094 DOI: 10.1002/mgg3.1809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023] Open
Abstract
The phenotypic variability associated with pathogenic variants in Lysine Acetyltransferase 6B (KAT6B, a.k.a. MORF, MYST4) results in several interrelated syndromes including Say-Barber-Biesecker-Young-Simpson Syndrome and Genitopatellar Syndrome. Here we present 20 new cases representing 10 novel KAT6B variants. These patients exhibit a range of clinical phenotypes including intellectual disability, mobility and language difficulties, craniofacial dysmorphology, and skeletal anomalies. Given the range of features previously described for KAT6B-related syndromes, we have identified additional phenotypes including concern for keratoconus, sensitivity to light or noise, recurring infections, and fractures in greater numbers than previously reported. We surveyed clinicians to qualitatively assess the ways families engage with genetic counselors upon diagnosis. We found that 56% (10/18) of individuals receive diagnoses before the age of 2 years (median age = 1.96 years), making it challenging to address future complications with limited accessible information and vast phenotypic severity. We used CRISPR to introduce truncating variants into the KAT6B gene in model cell lines and performed chromatin accessibility and transcriptome sequencing to identify key dysregulated pathways. This study expands the clinical spectrum and addresses the challenges to management and genetic counseling for patients with KAT6B-related disorders.
Collapse
Affiliation(s)
- Megan Yabumoto
- Department of Human GeneticsDavid Geffen School of MedicineUCLALos AngelesCaliforniaUSA,Department of Pathology and Laboratory MedicineDavid Geffen School of MedicineUCLALos AngelesCaliforniaUSA
| | - Jessica Kianmahd
- Division of Medical GeneticsDepartment of PediatricsDavid Geffen School of MedicineUCLALos AngelesCaliforniaUSA
| | - Meghna Singh
- Department of Human GeneticsDavid Geffen School of MedicineUCLALos AngelesCaliforniaUSA,Department of Pathology and Laboratory MedicineDavid Geffen School of MedicineUCLALos AngelesCaliforniaUSA
| | - Maria F. Palafox
- Department of Human GeneticsDavid Geffen School of MedicineUCLALos AngelesCaliforniaUSA,Department of Pathology and Laboratory MedicineDavid Geffen School of MedicineUCLALos AngelesCaliforniaUSA
| | - Angela Wei
- Department of Pathology and Laboratory MedicineDavid Geffen School of MedicineUCLALos AngelesCaliforniaUSA
| | - Kathryn Elliott
- Department of Pathology and Laboratory MedicineDavid Geffen School of MedicineUCLALos AngelesCaliforniaUSA
| | - Dana H. Goodloe
- Department of GeneticsUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - S. Joy Dean
- Department of GeneticsUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Catherine Gooch
- Department of PediatricsWashington University School of Medicine in St. LouisSt. LouisMissouriUSA
| | - Brianna K. Murray
- Division of Medical Genetics and MetabolismChildren’s Hospital of The King’s DaughtersNorfolkVirginiaUSA
| | - Erin Swartz
- Division of Medical Genetics and MetabolismChildren’s Hospital of The King’s DaughtersNorfolkVirginiaUSA
| | | | | | - Kimberly Nugent
- Department of PediatricsBaylor College of MedicineSan AntonioTexasUSA,Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexasUSA
| | - Elizabeth R. Roeder
- Department of PediatricsBaylor College of MedicineSan AntonioTexasUSA,Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexasUSA
| | - Christina Kresge
- Department of PediatricsDivision of Clinical GeneticsRutgers New Jersey Medical SchoolNewarkNew JerseyUSA
| | - Beth A. Pletcher
- Department of PediatricsDivision of Clinical GeneticsRutgers New Jersey Medical SchoolNewarkNew JerseyUSA
| | - Katheryn Grand
- Department of PediatricsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - John M. Graham
- Department of PediatricsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Ryan Gates
- Department of PediatricsDivision of Medical GeneticsStanford UniversityStanfordCaliforniaUSA
| | - Natalia Gomez‐Ospina
- Department of PediatricsDivision of Medical GeneticsStanford UniversityStanfordCaliforniaUSA
| | - Subhadra Ramanathan
- Department of PediatricsDivision of Medical GeneticsLoma Linda University Children’s HospitalLoma LindaCaliforniaUSA
| | - Robin Dawn Clark
- Department of PediatricsDivision of Medical GeneticsLoma Linda University Children’s HospitalLoma LindaCaliforniaUSA
| | - Kimberly Glaser
- Division of GeneticsJoe DiMaggio Children’s HospitalHollywoodFloridaUSA
| | - Paul J. Benke
- Division of GeneticsJoe DiMaggio Children’s HospitalHollywoodFloridaUSA
| | - Julie S. Cohen
- Department of Neurology and Developmental MedicineKennedy Krieger InstituteBaltimoreMarylandUSA,Department of NeurologyJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Ali Fatemi
- Department of Neurology and Developmental MedicineKennedy Krieger InstituteBaltimoreMarylandUSA,Department of NeurologyJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Weiyi Mu
- Department of Genetic MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | | | - Jill A. Madden
- Division of Genetics and GenomicsDepartment of PediatricsBoston Children’s HospitalHarvard Medical SchoolBostonMassachusettsUSA,The Manton Center for Orphan Disease ResearchBoston Children’s HospitalBostonMassachusettsUSA
| | - Cynthia S. Gubbels
- Division of Genetics and GenomicsDepartment of PediatricsBoston Children’s HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Timothy W. Yu
- Division of Genetics and GenomicsDepartment of PediatricsBoston Children’s HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Pankaj B. Agrawal
- Division of Genetics and GenomicsDepartment of PediatricsBoston Children’s HospitalHarvard Medical SchoolBostonMassachusettsUSA,The Manton Center for Orphan Disease ResearchBoston Children’s HospitalBostonMassachusettsUSA,Division of Newborn MedicineDepartment of PediatricsBoston Children’s HospitalBostonMassachusettsUSA
| | - Mary‐Kathryn Chambers
- Division of Human GeneticsWarren Alpert Medical School of Brown UniversityHasbro Children’s Hospital/Rhode Island HospitalProvidenceRhode IslandUSA
| | - Chanika Phornphutkul
- Division of Human GeneticsWarren Alpert Medical School of Brown UniversityHasbro Children’s Hospital/Rhode Island HospitalProvidenceRhode IslandUSA
| | - John A. Pugh
- Division of Child NeurologyDepartment of NeurologyAlbany Medical CenterAlbanyNew YorkUSA
| | - Kate A. Tauber
- Division of NeonatologyDepartment of PediatricsAlbany Medical CenterBernard and Millie Duker Children’s HospitalAlbanyNew YorkUSA
| | - Svetlana Azova
- Division of EndocrinologyBoston Children’s HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Jessica R. Smith
- Division of EndocrinologyBoston Children’s HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Anne O’Donnell‐Luria
- Division of Genetics and GenomicsDepartment of PediatricsBoston Children’s HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Hannah Medsker
- Department of NeurologyBoston Children’s HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Siddharth Srivastava
- Department of NeurologyBoston Children’s HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Deborah Krakow
- Department of Human GeneticsDavid Geffen School of MedicineUCLALos AngelesCaliforniaUSA,Department of Obstetrics and GynecologyDavid Geffen School of MedicineUCLALos AngelesCaliforniaUSA
| | - Daniela N. Schweitzer
- Division of Medical GeneticsDepartment of PediatricsDavid Geffen School of MedicineUCLALos AngelesCaliforniaUSA
| | - Valerie A. Arboleda
- Department of Human GeneticsDavid Geffen School of MedicineUCLALos AngelesCaliforniaUSA,Department of Pathology and Laboratory MedicineDavid Geffen School of MedicineUCLALos AngelesCaliforniaUSA
| |
Collapse
|
105
|
Lo Piccolo L, Jantrapirom S, Moonmuang S, Teeyakasem P, Pasena A, Suksakit P, Charoenkwan P, Pruksakorn D, Koonrungsesomboon N. In search of TP53 mutational hot spots for Li-Fraumeni syndrome in Asian populations. Trop Med Int Health 2021; 26:1401-1410. [PMID: 34478609 DOI: 10.1111/tmi.13673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Germline mutations of the TP53 tumour suppressor gene are the only known cause of the hereditary autosomal disorder called Li-Fraumeni syndrome (LFS). However, little information is available about TP53 pathogenic variants in Asian LFS patients, making it difficult to provide precise genetic counselling with regard to long-term cancer risk. We conducted a systematic review to gather relevant case-control studies exploring the association between TP53 polymorphisms and the incidence of cancer belonging to the LFS spectrum in Asian populations. METHOD Systematic review and meta-analysis. The odds ratio was used as a summary effect measure to quantify the strength of the association between TP53 polymorphisms and cancer risk by means of random-effects meta-analysis. RESULTS In total, 16 studies were included in this systematic review, with 13 studies (involving 10,645 cases and 28,288 controls) that enabled meta-analysis. The majority of the studies focused on a single-nucleotide variation at codon 72 in exon 4 (c.215C>G, p.Arg72Pro, rs1042522). Therefore, we tested either dominant, co-dominant, recessive, or heterozygous models and found that the p.Arg72Pro was not significantly associated with increased cancer risk in any of the models. CONCLUSION We found the number of studies on cancers belonging to the LFS spectrum in Asia is very small. Thus, at the present time a meta-analysis approach is somewhat useful to identify germline TP53 mutations as potential markers of hereditary cancer associated with LFS in Asian populations.
Collapse
Affiliation(s)
- Luca Lo Piccolo
- Omics Center for Health Science, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand.,Musculoskeletal Science and Translational Research Center, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Drosophila Center for Human Diseases and Drug Discovery, Chiang Mai University, Chiang Mai, Thailand
| | - Sutpirat Moonmuang
- Omics Center for Health Science, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Pimpisa Teeyakasem
- Department of Orthopedics, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Arnat Pasena
- Omics Center for Health Science, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Pathacha Suksakit
- Omics Center for Health Science, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | | | - Dumnoensun Pruksakorn
- Omics Center for Health Science, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand.,Musculoskeletal Science and Translational Research Center, Chiang Mai University, Muang, Chiang Mai, Thailand.,Excellence Center in Osteology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand
| | - Nut Koonrungsesomboon
- Musculoskeletal Science and Translational Research Center, Chiang Mai University, Muang, Chiang Mai, Thailand.,Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
106
|
Fares B, Berger L, Bangiev-Girsh E, Kakun RR, Ghannam-Shahbari D, Tabach Y, Zohar Y, Gottlieb E, Perets R. PAX8 plays an essential antiapoptotic role in uterine serous papillary cancer. Oncogene 2021; 40:5275-5285. [PMID: 34244607 DOI: 10.1038/s41388-021-01925-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/31/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
Endometrial carcinoma (EC) is the fourth-most common cancer in women in the United States, and generally carries a favorable prognosis. However, about 10% of EC patients have a rare and aggressive form, uterine serous papillary carcinoma (USPC), which carries a much higher mortality rate. The developmental transcription factor PAX8 is expressed in nearly 100% of USPCs. We show that PAX8 plays a critical antiapoptotic role in USPC and this role is established via transcriptional activation of two aberrant signaling pathways. First, PAX8 positively regulates mutated p53, and missense p53 mutations have an oncogenic gain of function effect. Second, PAX8 directly transcriptionally regulates p21, in a p53-independent manner, and p21 acquires a growth promoting role that is mediated via cytoplasmic localization of the protein. We propose that mutated p53 and cytoplasmic p21 can independently mediate the pro-proliferative role of PAX8 in USPC. In addition, we performed a genome-wide transcriptome analysis to detect pathways that are regulated by PAX8, and propose that metabolism and HIF-1alpha -related pathways are potential candidates for mediating the role of PAX8 in USPC. Taken together our findings demonstrate for the first time that PAX8 is an essential lineage marker in USPC, and suggest its mechanism of action.
Collapse
MESH Headings
- PAX8 Transcription Factor/genetics
- PAX8 Transcription Factor/metabolism
- Humans
- Female
- Uterine Neoplasms/genetics
- Uterine Neoplasms/pathology
- Uterine Neoplasms/metabolism
- Apoptosis/genetics
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Cell Line, Tumor
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Gene Expression Regulation, Neoplastic
- Paired Box Transcription Factors/genetics
- Paired Box Transcription Factors/metabolism
- Signal Transduction/genetics
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/pathology
- Cystadenocarcinoma, Serous/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/pathology
- Carcinoma, Papillary/metabolism
Collapse
Affiliation(s)
- Basem Fares
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Division of Oncology, The Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
| | - Liron Berger
- Division of Oncology, The Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
| | - Einav Bangiev-Girsh
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Division of Oncology, The Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
| | - Reli Rachel Kakun
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Division of Oncology, The Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
| | - Dima Ghannam-Shahbari
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Division of Oncology, The Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
| | - Yuval Tabach
- Department of Developmental Biology & Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaniv Zohar
- Department of Pathology, Rambam Health Care Campus, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eyal Gottlieb
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ruth Perets
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
- Division of Oncology, The Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel.
| |
Collapse
|
107
|
Ford KM, Panwala R, Chen DH, Portell A, Palmer N, Mali P. Peptide-tiling screens of cancer drivers reveal oncogenic protein domains and associated peptide inhibitors. Cell Syst 2021; 12:716-732.e7. [PMID: 34051140 PMCID: PMC8298269 DOI: 10.1016/j.cels.2021.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 02/09/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Gene fragments derived from structural domains mediating physical interactions can modulate biological functions. Utilizing this, we developed lentiviral overexpression libraries of peptides comprehensively tiling high-confidence cancer driver genes. Toward inhibiting cancer growth, we assayed ~66,000 peptides, tiling 65 cancer drivers and 579 mutant alleles. Pooled fitness screens in two breast cancer cell lines revealed peptides, which selectively reduced cellular proliferation, implicating oncogenic protein domains important for cell fitness. Coupling of cell-penetrating motifs to these peptides enabled drug-like function, with peptides derived from EGFR and RAF1 inhibiting cell growth at IC50s of 27-63 μM. We anticipate that this peptide-tiling (PepTile) approach will enable rapid de novo mapping of bioactive protein domains and associated interfering peptides.
Collapse
Affiliation(s)
- Kyle M Ford
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Rebecca Panwala
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Dai-Hua Chen
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Andrew Portell
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Nathan Palmer
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
108
|
Salinas VH, Stüve O. Systems Approaches to Unravel T Cell Function and Therapeutic Potential in Autoimmune Disease. THE JOURNAL OF IMMUNOLOGY 2021; 206:669-675. [PMID: 33526601 DOI: 10.4049/jimmunol.2000954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022]
Abstract
Producing Ag-specific immune responses constrained to target tissues or cells that can be engaged or disengaged at will is predicated on understanding the network of genes governing immune cell function, defining the rules underlying Ag specificity, and synthesizing the tools to engineer them. The successes and limitations of chimeric Ag receptor (CAR) T cells emphasize this goal, and advances in high-throughput sequencing, large-scale genomic screens, single-cell profiling, and genetic modification are providing the necessary data to bring it to fruition-including a broader application into the treatment of autoimmune diseases. In this review, we delve into the implementation of these developments, survey the relevant works, and propose a framework for generating the next generation of synthetic T cells informed by the principles learned from these systems approaches.
Collapse
Affiliation(s)
- Victor H Salinas
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390; and .,Neurology Section, Medical Service, U.S. Department of Veterans Affairs, North Texas Health Care System, Dallas, TX 75216
| |
Collapse
|
109
|
Fortuno C, Pesaran T, Dolinsky J, Yussuf A, McGoldrick K, Tavtigian SV, Goldgar D, Spurdle AB, James PA. An updated quantitative model to classify missense variants in the TP53 gene: A novel multifactorial strategy. Hum Mutat 2021; 42:1351-1361. [PMID: 34273903 DOI: 10.1002/humu.24264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 06/25/2021] [Accepted: 07/15/2021] [Indexed: 11/07/2022]
Abstract
Multigene panel testing has led to an increase in the number of variants of uncertain significance identified in the TP53 gene, associated with Li-Fraumeni syndrome. We previously developed a quantitative model for predicting the pathogenicity of P53 missense variants based on the combination of calibrated bioinformatic information and somatic to germline ratio. Here, we extended this quantitative model for the classification of P53 predicted missense variants by adding new pieces of evidence (personal and family history parameters, loss-of-function results, population allele frequency, healthy individual status by age 60, and breast tumor pathology). We also annotated which missense variants might have an effect on splicing based on bioinformatic predictions. This updated model plus annotation led to the classification of 805 variants into a clinically relevant class, which correlated well with existing ClinVar classifications, and resolved a large number of conflicting and uncertain classifications. We propose this model as a reliable approach to TP53 germline variant classification and emphasize its use in contributing to optimize TP53-specific ACMG/AMP guidelines.
Collapse
Affiliation(s)
- Cristina Fortuno
- Genetics and Computational Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | - Amal Yussuf
- Ambry Genetics, Aliso Viejo, California, USA
| | | | - Sean V Tavtigian
- Huntsman Cancer Institute and Department of Dermatology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - David Goldgar
- Huntsman Cancer Institute and Department of Dermatology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Amanda B Spurdle
- Genetics and Computational Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Paul A James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
110
|
Maddalena M, Mallel G, Nataraj NB, Shreberk-Shaked M, Hassin O, Mukherjee S, Arandkar S, Rotkopf R, Kapsack A, Lambiase G, Pellegrino B, Ben-Isaac E, Golani O, Addadi Y, Hajaj E, Eilam R, Straussman R, Yarden Y, Lotem M, Oren M. TP53 missense mutations in PDAC are associated with enhanced fibrosis and an immunosuppressive microenvironment. Proc Natl Acad Sci U S A 2021; 118:e2025631118. [PMID: 34088837 PMCID: PMC8201917 DOI: 10.1073/pnas.2025631118] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, which is refractory to all currently available treatments and bears dismal prognosis. About 70% of all PDAC cases harbor mutations in the TP53 tumor suppressor gene. Many of those are missense mutations, resulting in abundant production of mutant p53 (mutp53) protein in the cancer cells. Analysis of human PDAC patient data from The Cancer Genome Atlas (TCGA) revealed a negative association between the presence of missense mutp53 and infiltration of CD8+ T cells into the tumor. Moreover, CD8+ T cell infiltration was negatively correlated with the expression of fibrosis-associated genes. Importantly, silencing of endogenous mutp53 in KPC cells, derived from mouse PDAC tumors driven by mutant Kras and mutp53, down-regulated fibrosis and elevated CD8+ T cell infiltration in the tumors arising upon orthotopic injection of these cells into the pancreas of syngeneic mice. Moreover, the tumors generated by mutp53-silenced KPC cells were markedly smaller than those elicited by mutp53-proficient control KPC cells. Altogether, our findings suggest that missense p53 mutations may contribute to worse PDAC prognosis by promoting a more vigorous fibrotic tumor microenvironment and impeding the ability of the immune system to eliminate the cancer cells.
Collapse
Affiliation(s)
- Martino Maddalena
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Giuseppe Mallel
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | - Michal Shreberk-Shaked
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Ori Hassin
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Saptaparna Mukherjee
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Sharathchandra Arandkar
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, 410210 Kharghar, India
| | - Ron Rotkopf
- Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Abby Kapsack
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Giuseppina Lambiase
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Bianca Pellegrino
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Eyal Ben-Isaac
- Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Yoseph Addadi
- Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Emma Hajaj
- Sharett Institute of Oncology, Hadassah Hebrew University Hospital, 91120 Jerusalem, Israel
| | - Raya Eilam
- Department of Veterinary Resources, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah Hebrew University Hospital, 91120 Jerusalem, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel;
| |
Collapse
|
111
|
Sabary O, Orlev Y, Shafir R, Anavy L, Yaakobi E, Yakhini Z. SOLQC: Synthetic Oligo Library Quality Control tool. Bioinformatics 2021; 37:720-722. [PMID: 32840559 DOI: 10.1093/bioinformatics/btaa740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 07/27/2020] [Accepted: 08/19/2020] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Recent years have seen a growing number and an expanding scope of studies using synthetic oligo libraries for a range of applications in synthetic biology. As experiments are growing by numbers and complexity, analysis tools can facilitate quality control and support better assessment and inference. RESULTS We present a novel analysis tool, called SOLQC, which enables fast and comprehensive analysis of synthetic oligo libraries, based on NGS analysis performed by the user. SOLQC provides statistical information such as the distribution of variant representation, different error rates and their dependence on sequence or library properties. SOLQC produces graphical reports from the analysis, in a flexible format. We demonstrate SOLQC by analyzing literature libraries. We also discuss the potential benefits and relevance of the different components of the analysis. AVAILABILITY AND IMPLEMENTATION SOLQC is a free software for non-commercial use, available at https://app.gitbook.com/@yoav-orlev/s/solqc/. For commercial use please contact the authors. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Omer Sabary
- The Henry and Marilyn Taub Faculty of Computer Science, Technion, Haifa, 3200003, Israel
| | - Yoav Orlev
- School of Computer Science, Herzliya Interdisciplinary Center, Herzliya 4610101, Israel
| | - Roy Shafir
- The Henry and Marilyn Taub Faculty of Computer Science, Technion, Haifa, 3200003, Israel.,School of Computer Science, Herzliya Interdisciplinary Center, Herzliya 4610101, Israel
| | - Leon Anavy
- The Henry and Marilyn Taub Faculty of Computer Science, Technion, Haifa, 3200003, Israel
| | - Eitan Yaakobi
- The Henry and Marilyn Taub Faculty of Computer Science, Technion, Haifa, 3200003, Israel
| | - Zohar Yakhini
- The Henry and Marilyn Taub Faculty of Computer Science, Technion, Haifa, 3200003, Israel.,School of Computer Science, Herzliya Interdisciplinary Center, Herzliya 4610101, Israel
| |
Collapse
|
112
|
Terradas M, Mur P, Belhadj S, Woodward ER, Burghel GJ, Munoz-Torres PM, Quintana I, Navarro M, Brunet J, Lazaro C, Pineda M, Moreno V, Capella G, Evans DGR, Valle L. TP53, a gene for colorectal cancer predisposition in the absence of Li-Fraumeni-associated phenotypes. Gut 2021; 70:1139-1146. [PMID: 32998877 DOI: 10.1136/gutjnl-2020-321825] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Germline TP53 pathogenic (P) variants cause Li-Fraumeni syndrome (LFS), an aggressive multitumor-predisposing condition. Due to the implementation of multigene panel testing, TP53 variants have been detected in individuals without LFS suspicion, for example, patients with colorectal cancer (CRC). We aimed to decipher whether these findings are the result of detecting the background population prevalence or the aetiological basis of CRC. DESIGN We analysed TP53 in 473 familial/early-onset CRC cases and evaluated the results together with five additional studies performed in patients with CRC (total n=6200). Control population and LFS data were obtained from Genome Aggregation Database (gnomAD V.2.1.1) and the International Agency for Research on Cancer (IARC) TP53 database, respectively. All variants were reclassified according to the guidelines of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP), following the ClinGen TP53 Expert Panel specifications. RESULTS P or likely pathogenic (LP) variants were identified in 0.05% of controls (n=27/59 095) and 0.26% of patients with CRC (n=16/6200) (p<0.0001) (OR=5.7, 95% CI 2.8 to 10.9), none of whom fulfilled the clinical criteria established for TP53 testing. This association was still detected when patients with CRC diagnosed at more advanced ages (>50 and>60 years) were excluded from the analysis to minimise the inclusion of variants caused by clonal haematopoiesis. Loss-of-function and missense variants were strongly associated with CRC as compared with controls (OR=25.44, 95% CI 6.10 to 149.03, for loss of function and splice-site alleles, and OR=3.58, 95% CI 1.46 to 7.98, for missense P or LP variants). CONCLUSION TP53 P variants should not be unequivocally associated with LFS. Prospective follow-up of carriers of germline TP53 P variants in the absence of LFS phenotypes will define how surveillance and clinical management of these individuals should be performed.
Collapse
Affiliation(s)
- Mariona Terradas
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sami Belhadj
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Emma R Woodward
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.,Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - George J Burghel
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Pau M Munoz-Torres
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Isabel Quintana
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Matilde Navarro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Catalan Institute of Oncology, IDIBGi, Girona, Spain
| | - Conxi Lazaro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Victor Moreno
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.,Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Gabriel Capella
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - D Gareth R Evans
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.,Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain .,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
113
|
Grill S, Ramser J, Hellebrand H, Pfarr N, Boxberg M, Brambs C, Ditsch N, Meindl A, Groß E, Meitinger T, Kiechle M, Quante AS. TP53 germline mutations in the context of families with hereditary breast and ovarian cancer: a clinical challenge. Arch Gynecol Obstet 2021; 303:1557-1567. [PMID: 33245408 PMCID: PMC8087555 DOI: 10.1007/s00404-020-05883-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/04/2020] [Indexed: 11/09/2022]
Abstract
PURPOSE TP53germline (g) mutations, associated with the Li-Fraumeni syndrome (LFS), have rarely been reported in the context of hereditary breast and ovarian cancer (HBOC). The prevalence and cancer risks in this target group are unknown and counseling remains challenging. Notably an extensive high-risk surveillance program is implemented, which evokes substantial psychological discomfort. Emphasizing the lack of consensus about clinical implications, we aim to further characterize TP53g mutations in HBOC families. METHODS Next-generation sequencing was conducted on 1876 breast cancer (BC) patients who fulfilled the inclusion criteria for HBOC. RESULTS (Likely) pathogenic variants in TP53 gene were present in 0.6% of the BC cohort with higher occurrence in early onset BC < 36 years. (1.1%) and bilateral vs. unilateral BC (1.1% vs. 0.3%). Two out of eleven patients with a (likely) pathogenic TP53g variant (c.542G > A; c.375G > A) did not comply with classic LFS/Chompret criteria. Albeit located in the DNA-binding domain of the p53-protein and therefore revealing no difference to LFS-related variants, they only displayed a medium transactivity reduction constituting a retainment of wildtype-like anti-proliferative functionality. CONCLUSION Among our cohort of HBOC families, we were able to describe a clinical subgroup, which is distinct from the classic LFS-families. Strikingly, two families did not adhere to the LFS criteria, and functional analysis revealed a reduced impact on TP53 activity, which may suit to the attenuated phenotype. This is an approach that could be useful in developing individualized screening efforts for TP53g mutation carrier in HBOC families. Due to the low incidence, national/international cooperation is necessary to further explore clinical implications. This might allow providing directions for clinical recommendations in the future.
Collapse
Affiliation(s)
- Sabine Grill
- Department of Gynecology and Obstetrics, University Hospital Klinikum Rechts der Isar, Technical University Munich (TUM), Munich, Germany.
| | - Juliane Ramser
- Department of Gynecology and Obstetrics, University Hospital Klinikum Rechts der Isar, Technical University Munich (TUM), Munich, Germany
| | - Heide Hellebrand
- Department of Gynecology and Obstetrics, University Hospital Klinikum Rechts der Isar, Technical University Munich (TUM), Munich, Germany
| | - Nicole Pfarr
- Institute of Pathology, Technical University Munich (TUM), Munich, Germany
| | - Melanie Boxberg
- Institute of Pathology, Technical University Munich (TUM), Munich, Germany
| | - Christine Brambs
- Department of Gynecology and Obstetrics, University Hospital Klinikum Rechts der Isar, Technical University Munich (TUM), Munich, Germany
| | - Nina Ditsch
- Department of Gynecology and Obstetrics, University Hospital of Augsburg, Augsburg, Germany
| | - Alfons Meindl
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Eva Groß
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, University Hospital Klinikum Rechts der Isar, Technical University Munich (TUM), Munich, Germany
| | - Marion Kiechle
- Department of Gynecology and Obstetrics, University Hospital Klinikum Rechts der Isar, Technical University Munich (TUM), Munich, Germany
| | - Anne S Quante
- Department of Gynecology and Obstetrics, University Hospital Klinikum Rechts der Isar, Technical University Munich (TUM), Munich, Germany
| |
Collapse
|
114
|
Timofeev O, Stiewe T. Rely on Each Other: DNA Binding Cooperativity Shapes p53 Functions in Tumor Suppression and Cancer Therapy. Cancers (Basel) 2021; 13:2422. [PMID: 34067731 PMCID: PMC8155944 DOI: 10.3390/cancers13102422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/24/2022] Open
Abstract
p53 is a tumor suppressor that is mutated in half of all cancers. The high clinical relevance has made p53 a model transcription factor for delineating general mechanisms of transcriptional regulation. p53 forms tetramers that bind DNA in a highly cooperative manner. The DNA binding cooperativity of p53 has been studied by structural and molecular biologists as well as clinical oncologists. These experiments have revealed the structural basis for cooperative DNA binding and its impact on sequence specificity and target gene spectrum. Cooperativity was found to be critical for the control of p53-mediated cell fate decisions and tumor suppression. Importantly, an estimated number of 34,000 cancer patients per year world-wide have mutations of the amino acids mediating cooperativity, and knock-in mouse models have confirmed such mutations to be tumorigenic. While p53 cancer mutations are classically subdivided into "contact" and "structural" mutations, "cooperativity" mutations form a mechanistically distinct third class that affect the quaternary structure but leave DNA contacting residues and the three-dimensional folding of the DNA-binding domain intact. In this review we discuss the concept of DNA binding cooperativity and highlight the unique nature of cooperativity mutations and their clinical implications for cancer therapy.
Collapse
Affiliation(s)
- Oleg Timofeev
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, 35037 Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, 35037 Marburg, Germany
| |
Collapse
|
115
|
Grzadkowski MR, Holly HD, Somers J, Demir E. Systematic interrogation of mutation groupings reveals divergent downstream expression programs within key cancer genes. BMC Bioinformatics 2021; 22:233. [PMID: 33957863 PMCID: PMC8101181 DOI: 10.1186/s12859-021-04147-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Genes implicated in tumorigenesis often exhibit diverse sets of genomic variants in the tumor cohorts within which they are frequently mutated. For many genes, neither the transcriptomic effects of these variants nor their relationship to one another in cancer processes have been well-characterized. We sought to identify the downstream expression effects of these mutations and to determine whether this heterogeneity at the genomic level is reflected in a corresponding heterogeneity at the transcriptomic level. RESULTS By applying a novel hierarchical framework for organizing the mutations present in a cohort along with machine learning pipelines trained on samples' expression profiles we systematically interrogated the signatures associated with combinations of mutations recurrent in cancer. This allowed us to catalogue the mutations with discernible downstream expression effects across a number of tumor cohorts as well as to uncover and characterize over a hundred cases where subsets of a gene's mutations are clearly divergent in their function from the remaining mutations of the gene. These findings successfully replicated across a number of disease contexts and were found to have clear implications for the delineation of cancer processes and for clinical decisions. CONCLUSIONS The results of cataloguing the downstream effects of mutation subgroupings across cancer cohorts underline the importance of incorporating the diversity present within oncogenes in models designed to capture the downstream effects of their mutations.
Collapse
Affiliation(s)
- Michal R Grzadkowski
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA.
| | - Hannah D Holly
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Julia Somers
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Emek Demir
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
116
|
Doffe F, Carbonnier V, Tissier M, Leroy B, Martins I, Mattsson JSM, Micke P, Pavlova S, Pospisilova S, Smardova J, Joerger AC, Wiman KG, Kroemer G, Soussi T. Identification and functional characterization of new missense SNPs in the coding region of the TP53 gene. Cell Death Differ 2021; 28:1477-1492. [PMID: 33257846 PMCID: PMC8166836 DOI: 10.1038/s41418-020-00672-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Infrequent and rare genetic variants in the human population vastly outnumber common ones. Although they may contribute significantly to the genetic basis of a disease, these seldom-encountered variants may also be miss-identified as pathogenic if no correct references are available. Somatic and germline TP53 variants are associated with multiple neoplastic diseases, and thus have come to serve as a paradigm for genetic analyses in this setting. We searched 14 independent, globally distributed datasets and recovered TP53 SNPs from 202,767 cancer-free individuals. In our analyses, 19 new missense TP53 SNPs, including five novel variants specific to the Asian population, were recurrently identified in multiple datasets. Using a combination of in silico, functional, structural, and genetic approaches, we showed that none of these variants displayed loss of function compared to the normal TP53 gene. In addition, classification using ACMG criteria suggested that they are all benign. Considered together, our data reveal that the TP53 coding region shows far more polymorphism than previously thought and present high ethnic diversity. They furthermore underline the importance of correctly assessing novel variants in all variant-calling pipelines associated with genetic diagnoses for cancer.
Collapse
Affiliation(s)
- Flora Doffe
- Equipe Labellisée par la Ligue Contre le Cancer, Université Paris Descartes, Université Sorbonne Paris Cité, Université Paris Diderot, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm, Sweden
| | - Vincent Carbonnier
- Equipe Labellisée par la Ligue Contre le Cancer, Université Paris Descartes, Université Sorbonne Paris Cité, Université Paris Diderot, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Manon Tissier
- Equipe Labellisée par la Ligue Contre le Cancer, Université Paris Descartes, Université Sorbonne Paris Cité, Université Paris Diderot, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Bernard Leroy
- Department of Life Science, Sorbonne Université, Paris, France
| | - Isabelle Martins
- Equipe Labellisée par la Ligue Contre le Cancer, Université Paris Descartes, Université Sorbonne Paris Cité, Université Paris Diderot, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Johanna S M Mattsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sarka Pavlova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Sarka Pospisilova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jana Smardova
- Faculty of Science, Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Klas G Wiman
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm, Sweden
| | - Guido Kroemer
- Equipe Labellisée par la Ligue Contre le Cancer, Université Paris Descartes, Université Sorbonne Paris Cité, Université Paris Diderot, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Thierry Soussi
- Equipe Labellisée par la Ligue Contre le Cancer, Université Paris Descartes, Université Sorbonne Paris Cité, Université Paris Diderot, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France.
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm, Sweden.
- Department of Life Science, Sorbonne Université, Paris, France.
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France.
| |
Collapse
|
117
|
Kuang D, Truty R, Weile J, Johnson B, Nykamp K, Araya C, Nussbaum RL, Roth FP. Prioritizing genes for systematic variant effect mapping. Bioinformatics 2021; 36:5448-5455. [PMID: 33300982 PMCID: PMC8016487 DOI: 10.1093/bioinformatics/btaa1008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION When rare missense variants are clinically interpreted as to their pathogenicity, most are classified as variants of uncertain significance (VUS). Although functional assays can provide strong evidence for variant classification, such results are generally unavailable. Multiplexed assays of variant effect can generate experimental 'variant effect maps' that score nearly all possible missense variants in selected protein targets for their impact on protein function. However, these efforts have not always prioritized proteins for which variant effect maps would have the greatest impact on clinical variant interpretation. RESULTS Here, we mined databases of clinically interpreted variants and applied three strategies, each building on the previous, to prioritize genes for systematic functional testing of missense variation. The strategies ranked genes (i) by the number of unique missense VUS that had been reported to ClinVar; (ii) by movability- and reappearance-weighted impact scores, to give extra weight to reappearing, movable VUS and (iii) by difficulty-adjusted impact scores, to account for the more resource-intensive nature of generating variant effect maps for longer genes. Our results could be used to guide systematic functional testing of missense variation toward greater impact on clinical variant interpretation. AVAILABILITY AND IMPLEMENTATION Source code available at: https://github.com/rothlab/mave-gene-prioritization. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Da Kuang
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada.,Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada
| | | | - Jochen Weile
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada.,Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada
| | | | - Keith Nykamp
- Invitae Corporation, San Francisco, CA 94103, USA
| | - Carlos Araya
- Invitae Corporation, San Francisco, CA 94103, USA
| | | | - Frederick P Roth
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada.,Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada
| |
Collapse
|
118
|
Chao JT, Roskelley CD, Loewen CJR. MAPS: machine-assisted phenotype scoring enables rapid functional assessment of genetic variants by high-content microscopy. BMC Bioinformatics 2021; 22:202. [PMID: 33879063 PMCID: PMC8056608 DOI: 10.1186/s12859-021-04117-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/02/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Genetic testing is widely used in evaluating a patient's predisposition to hereditary diseases. In the case of cancer, when a functionally impactful mutation (i.e. genetic variant) is identified in a disease-relevant gene, the patient is at elevated risk of developing a lesion in their lifetime. Unfortunately, as the rate and coverage of genetic testing has accelerated, our ability to assess the functional status of new variants has fallen behind. Therefore, there is an urgent need for more practical, streamlined and cost-effective methods for classifying variants. RESULTS To directly address this issue, we designed a new approach that uses alterations in protein subcellular localization as a key indicator of loss of function. Thus, new variants can be rapidly functionalized using high-content microscopy (HCM). To facilitate the analysis of the large amounts of imaging data, we developed a new software toolkit, named MAPS for machine-assisted phenotype scoring, that utilizes deep learning to extract and classify cell-level features. MAPS helps users leverage cloud-based deep learning services that are easy to train and deploy to fit their specific experimental conditions. Model training is code-free and can be done with limited training images. Thus, MAPS allows cell biologists to easily incorporate deep learning into their image analysis pipeline. We demonstrated an effective variant functionalization workflow that integrates HCM and MAPS to assess missense variants of PTEN, a tumor suppressor that is frequently mutated in hereditary and somatic cancers. CONCLUSIONS This paper presents a new way to rapidly assess variant function using cloud deep learning. Since most tumor suppressors have well-defined subcellular localizations, our approach could be widely applied to functionalize variants of uncertain significance and help improve the utility of genetic testing.
Collapse
Affiliation(s)
- Jesse T Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T1Z3, Canada.
| | - Calvin D Roskelley
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T1Z3, Canada
| | - Christopher J R Loewen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T1Z3, Canada
| |
Collapse
|
119
|
Shorthouse D, Hall MWJ, Hall BA. Computational Saturation Screen Reveals the Landscape of Mutations in Human Fumarate Hydratase. J Chem Inf Model 2021; 61:1970-1980. [DOI: 10.1021/acs.jcim.1c00063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- David Shorthouse
- Department of Medical Physics and Biomedical Engineering, UCL, London WC1E 6BT, U.K
| | - Michael W. J. Hall
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, U.K
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, U.K
| | - Benjamin A. Hall
- Department of Medical Physics and Biomedical Engineering, UCL, London WC1E 6BT, U.K
| |
Collapse
|
120
|
Abstract
In this review, Pilley et al. examine the impact of different p53 mutations and focus on how heterogeneity of p53 status can affect relationships between cells within a tumor. p53 is an important tumor suppressor, and the complexities of p53 function in regulating cancer cell behaviour are well established. Many cancers lose or express mutant forms of p53, with evidence that the type of alteration affecting p53 may differentially impact cancer development and progression. It is also clear that in addition to cell-autonomous functions, p53 status also affects the way cancer cells interact with each other. In this review, we briefly examine the impact of different p53 mutations and focus on how heterogeneity of p53 status can affect relationships between cells within a tumor.
Collapse
Affiliation(s)
- Steven Pilley
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Tristan A Rodriguez
- National Heart and Lung Institute, Imperial College, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | | |
Collapse
|
121
|
Fortuno C, Lee K, Olivier M, Pesaran T, Mai PL, de Andrade KC, Attardi LD, Crowley S, Evans DG, Feng BJ, Major Foreman AK, Frone MN, Huether R, James PA, McGoldrick K, Mester J, Seifert BA, Slavin TP, Witkowski L, Zhang L, Plon SE, Spurdle AB, Savage SA. Specifications of the ACMG/AMP variant interpretation guidelines for germline TP53 variants. Hum Mutat 2021; 42:223-236. [PMID: 33300245 PMCID: PMC8374922 DOI: 10.1002/humu.24152] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/05/2020] [Accepted: 12/07/2020] [Indexed: 12/28/2022]
Abstract
Germline pathogenic variants in TP53 are associated with Li-Fraumeni syndrome, a cancer predisposition disorder inherited in an autosomal dominant pattern associated with a high risk of malignancy, including early-onset breast cancers, sarcomas, adrenocortical carcinomas, and brain tumors. Intense cancer surveillance for individuals with TP53 germline pathogenic variants is associated with reduced cancer-related mortality. Accurate and consistent classification of germline variants across clinical and research laboratories is important to ensure appropriate cancer surveillance recommendations. Here, we describe the work performed by the Clinical Genome Resource TP53 Variant Curation Expert Panel (ClinGen TP53 VCEP) focused on specifying the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines for germline variant classification to the TP53 gene. Specifications were developed for 20 ACMG/AMP criteria, while nine were deemed not applicable. The original strength level for the 10 criteria was also adjusted due to current evidence. Use of TP53-specific guidelines and sharing of clinical data among experts and clinical laboratories led to a decrease in variants of uncertain significance from 28% to 12% compared with the original guidelines. The ClinGen TP53 VCEP recommends the use of these TP53-specific ACMG/AMP guidelines as the standard strategy for TP53 germline variant classification.
Collapse
Affiliation(s)
- Cristina Fortuno
- QIMR Berghofer Medical Research Institute, Brisbane City, Australia, AUS
| | - Kristy Lee
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Phuong L. Mai
- Magee-Womens Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kelvin C. de Andrade
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Laura D. Attardi
- Departments of Radiation-Oncology and Genetics, Stanford University, Stanford, CA, USA
| | - Stephanie Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | - Megan N. Frone
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Paul A. James
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | | | | | - Bryce A. Seifert
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Leora Witkowski
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, MA, USA
| | - Liying Zhang
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sharon E. Plon
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Amanda B. Spurdle
- QIMR Berghofer Medical Research Institute, Brisbane City, Australia, AUS
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
122
|
Rosu A, El Hachem N, Rapino F, Rouault-Pierre K, Jorssen J, Somja J, Ramery E, Thiry M, Nguyen L, Jacquemyn M, Daelemans D, Adams CM, Bonnet D, Chariot A, Close P, Bureau F, Desmet CJ. Loss of tRNA-modifying enzyme Elp3 activates a p53-dependent antitumor checkpoint in hematopoiesis. J Exp Med 2021; 218:e20200662. [PMID: 33507234 PMCID: PMC7849823 DOI: 10.1084/jem.20200662] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/23/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
The hematopoietic system is highly sensitive to perturbations in the translational machinery, of which an emerging level of regulation lies in the epitranscriptomic modification of transfer RNAs (tRNAs). Here, we interrogate the role of tRNA anticodon modifications in hematopoiesis by using mouse models of conditional inactivation of Elp3, the catalytic subunit of Elongator that modifies wobble uridine in specific tRNAs. Loss of Elp3 causes bone marrow failure by inducing death in committing progenitors and compromises the grafting activity of hematopoietic stem cells. Mechanistically, Elp3 deficiency activates a p53-dependent checkpoint in what resembles a misguided amino acid deprivation response that is accompanied by Atf4 overactivation and increased protein synthesis. While deletion of p53 rescues hematopoiesis, loss of Elp3 prompts the development of p53-mutated leukemia/lymphoma, and inactivation of p53 and Elongator cooperatively promotes tumorigenesis. Specific tRNA-modifying enzymes thus condition differentiation and antitumor fate decisions in hematopoietic stem cells and progenitors.
Collapse
Affiliation(s)
- Adeline Rosu
- Laboratory of Molecular and Cellular Immunology, GIGA-Stem Cells, GIGA-Research, Liege University, Liège, Belgium
| | - Najla El Hachem
- Laboratory of Cancer Signaling, GIGA-Stem Cells, GIGA-Research, Liege University, Liège, Belgium
| | - Francesca Rapino
- Laboratory of Cancer Signaling, GIGA-Stem Cells, GIGA-Research, Liege University, Liège, Belgium
| | - Kevin Rouault-Pierre
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, Queen Mary University of London, London, UK
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Joseph Jorssen
- Laboratory of Molecular and Cellular Immunology, GIGA-Stem Cells, GIGA-Research, Liege University, Liège, Belgium
| | - Joan Somja
- Laboratory of Pathological Anatomy and Cytology, Centre Hospitalier Universitaire, GIGA-Stem Cells and GIGA-Neurosciences, Liege University, Liège, Belgium
| | - Eve Ramery
- Department of Functional Sciences, Faculty of Veterinary Medicine, Liege University, Liège, Belgium
| | - Marc Thiry
- Laboratory of Cellular and Tissular Biology, GIGA-Stem Cells and GIGA-Neurosciences, Liege University, Liège, Belgium
| | - Laurent Nguyen
- Laboratory of MolecularRegulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Liege University, Liège, Belgium
| | - Maarten Jacquemyn
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - Dirk Daelemans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - Christopher M. Adams
- Departments of Internal Medicine and Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, Queen Mary University of London, London, UK
| | - Alain Chariot
- Laboratory of Medical Chemistry, GIGA-Stem Cells, Liege University, Liège, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Wavres, Belgium
| | - Pierre Close
- Laboratory of Cancer Signaling, GIGA-Stem Cells, GIGA-Research, Liege University, Liège, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Wavres, Belgium
| | - Fabrice Bureau
- Laboratory of Molecular and Cellular Immunology, GIGA-Stem Cells, GIGA-Research, Liege University, Liège, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Wavres, Belgium
| | - Christophe J. Desmet
- Laboratory of Molecular and Cellular Immunology, GIGA-Stem Cells, GIGA-Research, Liege University, Liège, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Wavres, Belgium
| |
Collapse
|
123
|
Comprehensive Analysis of the Expression of Key Genes Related to Hippo Signaling and Their Prognosis Impact in Ovarian Cancer. Diagnostics (Basel) 2021; 11:diagnostics11020344. [PMID: 33669647 PMCID: PMC7922135 DOI: 10.3390/diagnostics11020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/24/2022] Open
Abstract
The Hippo signaling pathway, one of the most conserved in humans, controlling dimensions of organs and tumor growth, is frequently deregulated in several human malignancies, including ovarian cancer (OC). The alteration of Hippo signaling has been reported to contribute to ovarian carcinogenesis and progression. However, the prognostic roles of individual Hippo genes in OC patients remain elusive. Herein we investigated the expression level and prognostic value of key Hippo genes in OC using online databases, followed by a qRT-PCR validation step in an additional patient cohort. Using the GEPIA database, we observed an increased level for TP53 and reduced expression level for LATS1, LATS2, MST1, TAZ, and TEF in tumor tissue versus normal adjacent tissue. Moreover, LATS1, LATS2, TP53, TAZ, and TEF expression levels have prognostic significance correlated with progression-free survival. The qRT-PCR validation step was conducted in an OC patient cohort comprising 29 tumor tissues and 20 normal adjacent tissues, endorsing the expression level for LATS1, LATS2, and TP53, as well as for two of the miRNAs targeting the TP53 gene, revealing miR-25-3p upregulation and miR-181c-5p downregulation. These results display that there are critical prognostic value dysregulations of the Hippo genes in OC. Our data demonstrate the major role the conserved Hippo pathway presents in tumor control, underlying potential therapeutic strategies and controlling several steps modulated by miRNAs and their target genes that could limit ovarian cancer progression.
Collapse
|
124
|
Mäki-Nevala S, Ukwattage S, Olkinuora A, Almusa H, Ahtiainen M, Ristimäki A, Seppälä T, Lepistö A, Mecklin JP, Peltomäki P. Somatic mutation profiles as molecular classifiers of ulcerative colitis-associated colorectal cancer. Int J Cancer 2021; 148:2997-3007. [PMID: 33521965 DOI: 10.1002/ijc.33492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/22/2022]
Abstract
Ulcerative colitis increases colorectal cancer risk by mechanisms that remain incompletely understood. We approached this question by determining the genetic and epigenetic profiles of colitis-associated colorectal carcinomas (CA-CRC). The findings were compared to Lynch syndrome (LS), a different form of cancer predisposition that shares the importance of immunological factors in tumorigenesis. CA-CRCs (n = 27) were investigated for microsatellite instability, CpG island methylator phenotype and somatic mutations of 999 cancer-relevant genes ("Pan-cancer" panel). A subpanel of "Pan-cancer" design (578 genes) was used for LS colorectal tumors (n = 28). Mutational loads and signatures stratified CA-CRCs into three subgroups: hypermutated microsatellite-unstable (Group 1, n = 1), hypermutated microsatellite-stable (Group 2, n = 9) and nonhypermutated microsatellite-stable (Group 3, n = 17). The Group 1 tumor was the only one with MLH1 promoter hypermethylation and exhibited the mismatch repair deficiency-associated Signatures 21 and 15. Signatures 30 and 32 characterized Group 2, whereas no prominent single signature existed in Group 3. TP53, the most common mutational target in CA-CRC (16/27, 59%), was similarly affected in Groups 2 and 3, but DNA repair genes and Wnt signaling genes were mutated significantly more often in Group 2. In LS tumors, the degree of hypermutability exceeded that of the hypermutated CA-CRC Groups 1 and 2, and somatic mutational profiles and signatures were different. In conclusion, Groups 1 (4%) and 3 (63%) comply with published studies, whereas Group 2 (33%) is novel. The existence of molecularly distinct subgroups within CA-CRC may guide clinical management, such as therapy options.
Collapse
Affiliation(s)
- Satu Mäki-Nevala
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Sanjeevi Ukwattage
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Alisa Olkinuora
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Henrikki Almusa
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Maarit Ahtiainen
- Department of Education and Research, Central Finland Central Hospital, Jyväskylä, Finland
| | - Ari Ristimäki
- Department of Pathology, HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Toni Seppälä
- Department of Gastrointestinal Surgery, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Anna Lepistö
- Department of Gastrointestinal Surgery, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Jukka-Pekka Mecklin
- Department of Sport and Health Sciences, University of Jyväskylä and Jyväskylä Central Hospital, Jyväskylä, Finland
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
125
|
Ghezelayagh TS, Pennington KP, Norquist BM, Khasnavis N, Radke MR, Kilgore MR, Garcia RL, Lee M, Katz R, Leslie KK, Risques RA, Swisher EM. Characterizing TP53 mutations in ovarian carcinomas with and without concurrent BRCA1 or BRCA2 mutations. Gynecol Oncol 2020; 160:786-792. [PMID: 33375991 DOI: 10.1016/j.ygyno.2020.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/08/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Mutations in the TP53 tumor suppressor gene are common in ovarian carcinoma (OC) but their impact on outcomes is controversial. We sought to define the relationship of TP53 mutations to cancer outcomes and their interactions with co-occurrent BRCA1 or BRCA2 (BRCA) mutations, comparing three different TP53 mutation classification schemes. METHODS We performed next generation sequencing on 393 cases of OC prospectively followed for survival. TP53 mutations were classified according to three schemes termed Structural, Functional, and Hotspot. Mutation distribution was compared between cases with and without BRCA mutations. In a subset of 281 cases of high grade serous carcinoma (HGSC), overall survival was compared using Kaplan-Meier curves, logrank testing, and multivariate Cox regression analysis, both stratified and adjusted for BRCA mutation status. Multivariate logistic regression was used to analyze the effects of TP53 mutation type on platinum resistance. RESULTS TP53 mutations were identified in 76.8% of the total cohort (n = 302/393) and 87.9% of HGSC (n = 247/281). Cases with BRCA mutations demonstrated significantly higher TP53 mutation frequency overall (n = 84/91, 92.3% vs. n = 218/302, 72.2%, p < 0.001). TP53 mutations were not associated with overall survival, even when stratified by BRCA mutation. TP53 mutations were associated with platinum sensitivity, even after adjusting for BRCA mutation status (OR 0.41, p = 0.048). The choice of TP53 mutation classification scheme was not found to alter any significant outcome. CONCLUSIONS BRCA mutations significantly co-occur with TP53 mutations. After adjusting for BRCA mutations, TP53 mutations are associated with platinum sensitivity, and this effect is not dependent on TP53 mutation type.
Collapse
Affiliation(s)
- Talayeh S Ghezelayagh
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| | - Kathryn P Pennington
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Barbara M Norquist
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Nithisha Khasnavis
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA; Department of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Marc R Radke
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Mark R Kilgore
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Rochelle L Garcia
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Ming Lee
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Ronit Katz
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Kimberly K Leslie
- Department of Obstetrics and Gynecology and the Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Rosa Ana Risques
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Elizabeth M Swisher
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| |
Collapse
|
126
|
Evans DG, Woodward ER, Bajalica-Lagercrantz S, Oliveira C, Frebourg T. Germline TP53 Testing in Breast Cancers: Why, When and How? Cancers (Basel) 2020; 12:cancers12123762. [PMID: 33327514 PMCID: PMC7764913 DOI: 10.3390/cancers12123762] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary TP53 variants detected in blood represent a main genetic cause of breast cancers occurring before 31 years of age. TP53 being included in most of the cancer gene panels, patients with breast cancer are offered germline TP53 testing, independently of the age of tumour onset and familial history. Interpretation of TP53 variants is remarkably complex, and detection of a germline disease-causing TP53 variant in a breast cancer patient has drastic medical consequences: radiotherapy contributing to the development of subsequent tumours should be, if possible, avoided. In her family, variant carriers should be offered annual follow-up, including whole-body MRI. Therefore, we consider that, in breast cancer patients, germline TP53 testing should be performed before treatment and that the decision of TP53 testing should not be systematic but based on the age of tumour onset, type of breast cancer, personal and familial history of cancer. Abstract Germline TP53 variants represent a main genetic cause of breast cancers before 31 years of age. Development of cancer multi-gene panels has resulted in an exponential increase of germline TP53 testing in breast cancer patients. Interpretation of TP53 variants, which are mostly missense, is complex and requires excluding clonal haematopoiesis and circulating tumour DNA. In breast cancer patients harbouring germline disease-causing TP53 variants, radiotherapy contributing to the development of subsequent tumours should be, if possible, avoided and, within families, annual follow-up including whole-body MRI should be offered to carriers. We consider that, in breast cancer patients, germline TP53 testing should be performed before treatment and offered systematically only to patients with: (i) invasive breast carcinoma or ductal carcinoma in situ (DCIS) before 31; or (ii) bilateral or multifocal or HER2+ invasive breast carcinoma/DCIS or phyllode tumour before 36; or (iii) invasive breast carcinoma before 46 and another TP53 core tumour (breast cancer, soft-tissue sarcoma, osteosarcoma, central nervous system tumour, adrenocortical carcinoma); or (iv) invasive breast carcinoma before 46 and one first- or second-degree relative with a TP53 core tumour before 56. In contrast, women presenting with breast cancer after 46, without suggestive personal or familial history, should not be tested for TP53.
Collapse
Affiliation(s)
- D. Gareth Evans
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, University of Manchester, Manchester M13 9WL, UK;
- Manchester Centre for Genomic Medicine St Mary’s Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
- Correspondence: (D.G.E.); (T.F.)
| | - Emma R. Woodward
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, University of Manchester, Manchester M13 9WL, UK;
- Manchester Centre for Genomic Medicine St Mary’s Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Svetlana Bajalica-Lagercrantz
- Hereditary Cancer Unit, Department of Clinical Genetics, Karolinska University Hospital, SE-17176 Stockholm, Sweden;
| | - Carla Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Ipatimup-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Porto Comprehensive Cancer Center, 4200-072 Porto, Portugal
| | - Thierry Frebourg
- Department of Genetics, Rouen University Hospital, Normandy Centre for Genomic and Personalized Medicine, 76000 Rouen, France
- Inserm U1245, Normandie University, UNIROUEN, Normandy Centre for Genomic and Personalized Medicine, 76183 Rouen, France
- Correspondence: (D.G.E.); (T.F.)
| |
Collapse
|
127
|
Meitlis I, Allenspach EJ, Bauman BM, Phan IQ, Dabbah G, Schmitt EG, Camp ND, Torgerson TR, Nickerson DA, Bamshad MJ, Hagin D, Luthers CR, Stinson JR, Gray J, Lundgren I, Church JA, Butte MJ, Jordan MB, Aceves SS, Schwartz DM, Milner JD, Schuval S, Skoda-Smith S, Cooper MA, Starita LM, Rawlings DJ, Snow AL, James RG. Multiplexed Functional Assessment of Genetic Variants in CARD11. Am J Hum Genet 2020; 107:1029-1043. [PMID: 33202260 PMCID: PMC7820631 DOI: 10.1016/j.ajhg.2020.10.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/27/2020] [Indexed: 12/28/2022] Open
Abstract
Genetic testing has increased the number of variants identified in disease genes, but the diagnostic utility is limited by lack of understanding variant function. CARD11 encodes an adaptor protein that expresses dominant-negative and gain-of-function variants associated with distinct immunodeficiencies. Here, we used a "cloning-free" saturation genome editing approach in a diploid cell line to simultaneously score 2,542 variants for decreased or increased function in the region of CARD11 associated with immunodeficiency. We also described an exon-skipping mechanism for CARD11 dominant-negative activity. The classification of reported clinical variants was sensitive (94.6%) and specific (88.9%), which rendered the data immediately useful for interpretation of seven coding and splicing variants implicated in immunodeficiency found in our clinic. This approach is generalizable for variant interpretation in many other clinically actionable genes, in any relevant cell type.
Collapse
Affiliation(s)
- Iana Meitlis
- Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Eric J Allenspach
- Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Brotman-Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Bradly M Bauman
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Isabelle Q Phan
- Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Gina Dabbah
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Erica G Schmitt
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, MO 63130, USA
| | - Nathan D Camp
- Seattle Children's Research Institute, Seattle, WA 98101, USA
| | | | - Deborah A Nickerson
- Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman-Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman-Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - David Hagin
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, University of Tel Aviv, Tel Aviv 62919, Israel
| | - Christopher R Luthers
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Jeffrey R Stinson
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Jessica Gray
- Divisions of Immunobiology, and Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | - Joseph A Church
- Department of Pediatrics, Keck School of Medicine, University of Southern California and Children's Hospital Los Angeles, Los Angeles, CA 90033, USA
| | - Manish J Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA 90404, USA
| | - Mike B Jordan
- Divisions of Immunobiology, and Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Seema S Aceves
- Division of Allergy Immunology, Departments of Pediatrics and Medicine, University of California, San Diego, and Rady Children's Hospital, San Diego, CA 92123, USA
| | | | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Susan Schuval
- Department of Pediatrics, Stonybrook University, Stony Brook, NY 11794, USA
| | - Suzanne Skoda-Smith
- Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, MO 63130, USA
| | - Lea M Starita
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman-Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - David J Rawlings
- Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Andrew L Snow
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Richard G James
- Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Brotman-Baty Institute for Precision Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
128
|
Porta‐Pardo E, Valencia A, Godzik A. Understanding oncogenicity of cancer driver genes and mutations in the cancer genomics era. FEBS Lett 2020; 594:4233-4246. [PMID: 32239503 PMCID: PMC7529711 DOI: 10.1002/1873-3468.13781] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/23/2020] [Accepted: 02/09/2020] [Indexed: 12/12/2022]
Abstract
One of the key challenges of cancer biology is to catalogue and understand the somatic genomic alterations leading to cancer. Although alternative definitions and search methods have been developed to identify cancer driver genes and mutations, analyses of thousands of cancer genomes return a remarkably similar catalogue of around 300 genes that are mutated in at least one cancer type. Yet, many features of these genes and their role in cancer remain unclear, first and foremost when a somatic mutation is truly oncogenic. In this review, we first summarize some of the recent efforts in completing the catalogue of cancer driver genes. Then, we give an overview of different aspects that influence the oncogenicity of somatic mutations in the core cancer driver genes, including their interactions with the germline genome, other cancer driver mutations, the immune system, or their potential role in healthy tissues. In the coming years, this research holds promise to illuminate how, when, and why cancer driver genes and mutations are really drivers, and thereby move personalized cancer medicine and targeted therapies forward.
Collapse
Affiliation(s)
- Eduard Porta‐Pardo
- Barcelona Supercomputing Center (BSC)BarcelonaSpain
- Josep Carreras Leukaemia Research Institute (IJC)BadalonaSpain
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC)BarcelonaSpain
- Institucio Catalana de Recerca I Estudis Avançats (ICREA)BarcelonaSpain
| | - Adam Godzik
- Division of Biomedical SciencesUniversity of California Riverside School of MedicineRiversideCAUSA
| |
Collapse
|
129
|
Yee K, Papayannidis C, Vey N, Dickinson MJ, Kelly KR, Assouline S, Kasner M, Seiter K, Drummond MW, Yoon SS, Lee JH, Blotner S, Jukofsky L, Pierceall WE, Zhi J, Simon S, Higgins B, Nichols G, Monnet A, Muehlbauer S, Ott M, Chen LC, Martinelli G. Murine double minute 2 inhibition alone or with cytarabine in acute myeloid leukemia: Results from an idasanutlin phase 1/1b study⋆. Leuk Res 2020; 100:106489. [PMID: 33302031 DOI: 10.1016/j.leukres.2020.106489] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
The prognosis remains poor for patients with relapsed or refractory (r/r) acute myeloid leukemia; thus, novel therapies are needed. We evaluated idasanutlin-a new, potent murine double minute 2 antagonist-alone or with cytarabine in patients with r/r acute myeloid leukemia, de novo untreated acute myeloid leukemia unsuitable for standard treatment or with adverse features, or secondary acute myeloid leukemia in a multicenter, open-label, phase 1/1b trial. Primary objectives were to determine the maximum tolerated dose (MTD) and recommended dose for expansion (RDE) and characterize the safety profile of idasanutlin monotherapy and combination therapy. Clinical activity and pharmacokinetics were secondary objectives. Two idasanutlin formulations were investigated: a microprecipitate bulk powder (MBP) and optimized spray-dried powder (SDP). Following dose escalation, patients (N = 122) received idasanutlin at the RDE in the extension cohorts. No formal MTD was identified. Idasanutlin was tolerable alone and in combination with cytarabine. The RDE was determined as 600 mg twice a day for the MBP formulation and 300 mg twice a day for the SDP formulation. Adverse events were mostly grade 1/2 (76.2 %). The most common any-grade adverse events were gastrointestinal (including diarrhea [90.2 %]). The early death rate across all patients was 14.8 %. Plasma idasanutlin exposure was dose related. In TP53 wild-type patients, composite complete remission rates were 18.9 % with monotherapy and 35.6 % with combination therapy. Based on these results, idasanutlin development continued with further investigation in the treatment of acute myeloid leukemia. ClinicalTrials.gov: NCT01773408.
Collapse
Affiliation(s)
- Karen Yee
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada.
| | - Cristina Papayannidis
- Institute of Hematology "L. and A. Seràgnoli", University Hospital S. Orsola-Malpighi, Bologna, Italy
| | - Norbert Vey
- Department of Hematology, Aix-Marseille University, Institut Paoli-Calmettes, Marseille, France
| | - Michael J Dickinson
- Clinical Haematology, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin R Kelly
- Division of Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Sarit Assouline
- Division of Hematologic Oncology, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - Margaret Kasner
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Karen Seiter
- Department of Medicine, Division of Oncology, New York Medical College, Valhalla, NY, United States
| | - Mark W Drummond
- Department of Haemato-Oncology, Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Sung-Soo Yoon
- Division of Hematology/Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Je-Hwan Lee
- Department of Hematology, Asan Medical Center, Seoul, Republic of Korea
| | - Steven Blotner
- Translational Medicine-Oncology, Roche Innovation Center, New York, NY, United States
| | - Lori Jukofsky
- Translational Medicine-Oncology, Roche Innovation Center, New York, NY, United States
| | - William E Pierceall
- Translational Medicine-Oncology, Roche Innovation Center, New York, NY, United States
| | - Jianguo Zhi
- Clinical Pharmacology, Roche Innovation Center, New York, NY, United States
| | - Silke Simon
- Clinical Pharmacology, F. Hoffmann-La Roche, Basel, Switzerland
| | - Brian Higgins
- Product Development Oncology, Genentech, Inc, South San Francisco, CA, United States
| | - Gwen Nichols
- Translational Medicine-Oncology, Roche Innovation Center, New York, NY, United States
| | - Annabelle Monnet
- Department of Biostatistics Oncology, F. Hoffmann-La Roche, Basel, Switzerland
| | | | - Marion Ott
- Clinical Development Oncology, F. Hoffmann-La Roche, Basel, Switzerland
| | - Lin-Chi Chen
- Translational Medicine-Oncology, Roche Innovation Center, New York, NY, United States
| | - Giovanni Martinelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| |
Collapse
|
130
|
Comprehensive assessment of TP53 loss of function using multiple combinatorial mutagenesis libraries. Sci Rep 2020; 10:20368. [PMID: 33230179 PMCID: PMC7683535 DOI: 10.1038/s41598-020-74892-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/30/2020] [Indexed: 11/23/2022] Open
Abstract
The diagnosis of somatic and germline TP53 mutations in human tumors or in individuals prone to various types of cancer has now reached the clinic. To increase the accuracy of the prediction of TP53 variant pathogenicity, we gathered functional data from three independent large-scale saturation mutagenesis screening studies with experimental data for more than 10,000 TP53 variants performed in different settings (yeast or mammalian) and with different readouts (transcription, growth arrest or apoptosis). Correlation analysis and multidimensional scaling showed excellent agreement between all these variables. Furthermore, we found that some missense mutations localized in TP53 exons led to impaired TP53 splicing as shown by an analysis of the TP53 expression data from the cancer genome atlas. With the increasing availability of genomic, transcriptomic and proteomic data, it is essential to employ both protein and RNA prediction to accurately define variant pathogenicity.
Collapse
|
131
|
Monti P, Menichini P, Speciale A, Cutrona G, Fais F, Taiana E, Neri A, Bomben R, Gentile M, Gattei V, Ferrarini M, Morabito F, Fronza G. Heterogeneity of TP53 Mutations and P53 Protein Residual Function in Cancer: Does It Matter? Front Oncol 2020; 10:593383. [PMID: 33194757 PMCID: PMC7655923 DOI: 10.3389/fonc.2020.593383] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
The human TP53 locus, located on the short arm of chromosome 17, encodes a tumour suppressor protein which functions as a tetrameric transcription factor capable of regulating the expression of a plethora of target genes involved in cell cycle arrest, apoptosis, DNA repair, autophagy, and metabolism regulation. TP53 is the most commonly mutated gene in human cancer cells and TP53 germ-line mutations are responsible for the cancer-prone Li-Fraumeni syndrome. When mutated, the TP53 gene generally presents missense mutations, which can be distributed throughout the coding sequence, although they are found most frequently in the central DNA binding domain of the protein. TP53 mutations represent an important prognostic and predictive marker in cancer. The presence of a TP53 mutation does not necessarily imply a complete P53 inactivation; in fact, mutant P53 proteins are classified based on the effects on P53 protein function. Different models have been used to explore these never-ending facets of TP53 mutations, generating abundant experimental data on their functional impact. Here, we briefly review the studies analysing the consequences of TP53 mutations on P53 protein function and their possible implications for clinical outcome. The focus shall be on Chronic Lymphocytic Leukemia (CLL), which also has generated considerable discussion on the role of TP53 mutations for therapy decisions.
Collapse
Affiliation(s)
- Paola Monti
- Mutagenesis and Cancer Prevention Unit, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Menichini
- Mutagenesis and Cancer Prevention Unit, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Speciale
- Mutagenesis and Cancer Prevention Unit, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Elisa Taiana
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Italy
| | - Massimo Gentile
- Hematology Unit, Azienda Ospedaliera (AO) di Cosenza, Cosenza, Italy
| | - Valter Gattei
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Italy
| | - Manlio Ferrarini
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Fortunato Morabito
- Unità di Ricerca Biotecnologica, Azienda Sanitaria Provinciale di Cosenza, Aprigliano, Italy.,Department of Hematology and Bone Marrow Transplant Unit, Augusta Victoria Hospital, Jerusalem, Israel
| | - Gilberto Fronza
- Mutagenesis and Cancer Prevention Unit, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
132
|
Jones EM, Lubock NB, Venkatakrishnan AJ, Wang J, Tseng AM, Paggi JM, Latorraca NR, Cancilla D, Satyadi M, Davis JE, Babu MM, Dror RO, Kosuri S. Structural and functional characterization of G protein-coupled receptors with deep mutational scanning. eLife 2020; 9:54895. [PMID: 33084570 PMCID: PMC7707821 DOI: 10.7554/elife.54895] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 10/16/2020] [Indexed: 01/14/2023] Open
Abstract
The >800 human G protein–coupled receptors (GPCRs) are responsible for transducing diverse chemical stimuli to alter cell state- and are the largest class of drug targets. Their myriad structural conformations and various modes of signaling make it challenging to understand their structure and function. Here, we developed a platform to characterize large libraries of GPCR variants in human cell lines with a barcoded transcriptional reporter of G protein signal transduction. We tested 7800 of 7828 possible single amino acid substitutions to the beta-2 adrenergic receptor (β2AR) at four concentrations of the agonist isoproterenol. We identified residues specifically important for β2AR signaling, mutations in the human population that are potentially loss of function, and residues that modulate basal activity. Using unsupervised learning, we identify residues critical for signaling, including all major structural motifs and molecular interfaces. We also find a previously uncharacterized structural latch spanning the first two extracellular loops that is highly conserved across Class A GPCRs and is conformationally rigid in both the inactive and active states of the receptor. More broadly, by linking deep mutational scanning with engineered transcriptional reporters, we establish a generalizable method for exploring pharmacogenomics, structure and function across broad classes of drug receptors.
Collapse
Affiliation(s)
- Eric M Jones
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, United States
| | - Nathan B Lubock
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, United States
| | - A J Venkatakrishnan
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.,Department of Computer Science, Stanford University, Department of Computer Science, Institute for Computational and Mathematical Engineering, Stanford University, Department of Computer Science, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Department of Computer Science, Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Jeffrey Wang
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, United States
| | - Alex M Tseng
- Department of Computer Science, Stanford University, Department of Computer Science, Institute for Computational and Mathematical Engineering, Stanford University, Department of Computer Science, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Department of Computer Science, Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Joseph M Paggi
- Department of Computer Science, Stanford University, Department of Computer Science, Institute for Computational and Mathematical Engineering, Stanford University, Department of Computer Science, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Department of Computer Science, Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Naomi R Latorraca
- Department of Computer Science, Stanford University, Department of Computer Science, Institute for Computational and Mathematical Engineering, Stanford University, Department of Computer Science, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Department of Computer Science, Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Daniel Cancilla
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, United States
| | - Megan Satyadi
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, United States
| | - Jessica E Davis
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, United States
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Ron O Dror
- Department of Computer Science, Stanford University, Department of Computer Science, Institute for Computational and Mathematical Engineering, Stanford University, Department of Computer Science, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Department of Computer Science, Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Sriram Kosuri
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, United States
| |
Collapse
|
133
|
Raad S, Rolain M, Coutant S, Derambure C, Lanos R, Charbonnier F, Bou J, Bouvignies E, Lienard G, Vasseur S, Farrell M, Ingster O, Baert Desurmont S, Kasper E, Bougeard G, Frébourg T, Tournier I. Blood functional assay for rapid clinical interpretation of germline TP53 variants. J Med Genet 2020; 58:796-805. [PMID: 33051313 PMCID: PMC8639931 DOI: 10.1136/jmedgenet-2020-107059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/05/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The interpretation of germline TP53 variants is critical to ensure appropriate medical management of patients with cancer and follow-up of variant carriers. This interpretation remains complex and is becoming a growing challenge considering the exponential increase in TP53 tests. We developed a functional assay directly performed on patients' blood. METHODS Peripheral blood mononuclear cells were cultured, activated, exposed to doxorubicin and the p53-mediated transcriptional response was quantified using reverse transcription-multiplex ligation probe amplification and RT-QMPSF assays, including 10 p53 targets selected from transcriptome analysis, and two amplicons to measure p53 mRNA levels. We applied this blood functional assay to 77 patients addressed for TP53 analysis. RESULTS In 51 wild-type TP53 individuals, the mean p53 functionality score was 12.7 (range 7.5-22.8). Among eight individuals harbouring likely pathogenic or pathogenic variants, the scores were reduced (mean 4.8, range 3.1-7.1), and p53 mRNA levels were reduced in patients harbouring truncating variants. We tested 14 rare unclassified variants (p.(Pro72His), p.(Gly105Asp), p.(Arg110His), p.(Phe134Leu), p.(Arg158Cys), p.(Pro191Arg), p.(Pro278Arg), p.(Arg283Cys), p.(Leu348Ser), p.(Asp352Tyr), p.(Gly108_Phe109delinsVal), p.(Asn131del), p.(Leu265del), c.-117G>T) and 12 yielded functionally abnormal scores. Remarkably, the assay revealed that the c.*1175A>C polymorphic variant within TP53 poly-adenylation site can impact p53 function with the same magnitude as a null variant, when present on both alleles, and may act as a modifying factor in pathogenic variant carriers. CONCLUSION This blood p53 assay should therefore be a useful tool for the rapid clinical classification of germline TP53 variants and detection of non-coding functional variants.
Collapse
Affiliation(s)
- Sabine Raad
- Normandie University, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics, F76000, Normandy Centre for Genomic and Personalized Medicine, University of Rouen Faculty of Medicine and Pharmacy, Rouen, France
| | - Marion Rolain
- Normandie University, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics, F76000, Normandy Centre for Genomic and Personalized Medicine, University of Rouen Faculty of Medicine and Pharmacy, Rouen, France
| | - Sophie Coutant
- Normandie University, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics, F76000, Normandy Centre for Genomic and Personalized Medicine, University of Rouen Faculty of Medicine and Pharmacy, Rouen, France
| | - Céline Derambure
- Normandie University, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics, F76000, Normandy Centre for Genomic and Personalized Medicine, University of Rouen Faculty of Medicine and Pharmacy, Rouen, France
| | - Raphael Lanos
- Normandie University, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics, F76000, Normandy Centre for Genomic and Personalized Medicine, University of Rouen Faculty of Medicine and Pharmacy, Rouen, France
| | - Françoise Charbonnier
- Normandie University, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics, F76000, Normandy Centre for Genomic and Personalized Medicine, University of Rouen Faculty of Medicine and Pharmacy, Rouen, France
| | - Jacqueline Bou
- Normandie University, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics, F76000, Normandy Centre for Genomic and Personalized Medicine, University of Rouen Faculty of Medicine and Pharmacy, Rouen, France
| | - Emilie Bouvignies
- Normandie University, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics, F76000, Normandy Centre for Genomic and Personalized Medicine, University of Rouen Faculty of Medicine and Pharmacy, Rouen, France
| | - Gwendoline Lienard
- Normandie University, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics, F76000, Normandy Centre for Genomic and Personalized Medicine, University of Rouen Faculty of Medicine and Pharmacy, Rouen, France
| | - Stéphanie Vasseur
- Normandie University, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics, F76000, Normandy Centre for Genomic and Personalized Medicine, University of Rouen Faculty of Medicine and Pharmacy, Rouen, France
| | - Michael Farrell
- Cancer Genetics Service, Mater Private Hospital, Dublin, Leinster, Ireland
| | - Olivier Ingster
- Department of Genetics, University Hospital Centre Angers, Angers, Pays de la Loire, France
| | - Stéphanie Baert Desurmont
- Normandie University, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics, F76000, Normandy Centre for Genomic and Personalized Medicine, University of Rouen Faculty of Medicine and Pharmacy, Rouen, France
| | - Edwige Kasper
- Normandie University, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics, F76000, Normandy Centre for Genomic and Personalized Medicine, University of Rouen Faculty of Medicine and Pharmacy, Rouen, France
| | - Gaëlle Bougeard
- Normandie University, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics, F76000, Normandy Centre for Genomic and Personalized Medicine, University of Rouen Faculty of Medicine and Pharmacy, Rouen, France
| | - Thierry Frébourg
- Normandie University, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics, F76000, Normandy Centre for Genomic and Personalized Medicine, University of Rouen Faculty of Medicine and Pharmacy, Rouen, France
| | - Isabelle Tournier
- Normandie University, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics, F76000, Normandy Centre for Genomic and Personalized Medicine, University of Rouen Faculty of Medicine and Pharmacy, Rouen, France
| |
Collapse
|
134
|
Association of MicroRNA-21 with p53 at Mutant Sites R175H and R248Q, Clinicopathological Features, and Prognosis of NSCLC. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:208-217. [PMID: 33251333 PMCID: PMC7666326 DOI: 10.1016/j.omto.2020.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/06/2020] [Indexed: 01/05/2023]
Abstract
This study aimed to investigate the association of miRNA-21 with mutant p53 expression, prognosis, interaction, and clinicopathological features of non-small cell lung cancer (NSCLC). Tissue specimens from 200 NSCLC patients were collected for qRT-PCR analysis of miR-21 and p53 expression, and p53 mutations were analyzed by Sanger sequencing. NSCLC cell lines were used to determine the effects of miR-21 knockdown on cell viability, cell cycle distribution, and p53 expression. We found that miR-21 expression was upregulated in NSCLC tissues, which was associated with an increase in p53 mRNA levels and with advanced tumor-node-metastasis (TNM) stages and lymph node metastasis. The most common mutant sites of p53 in NSCLC were R175H and R248Q. Moreover, elevated miR-21 and p53 expression levels were associated with shorter overall survival. Knockdown of miR-21 reduced NSCLC cell viability, arrested NSCLC cells at the G0-to-G1 phase of the cell cycle, and downregulated mutant p53 mRNA levels and phosphorylated p53 protein expression in A549 and H1650 cells compared to control cells. miR-21 is associated p53 at mutant sites R175H and R248Q, which seems not to be oncogenic, as it is being reported, since in a normal cell, without a mutated p53, it will probably have a protective role.
Collapse
|
135
|
Bories P, Prade N, Lagarde S, Cabarrou B, Largeaud L, Plenecassagnes J, Luquet I, De Mas V, Filleron T, Cassou M, Sarry A, Fornecker LM, Simand C, Bertoli S, Recher C, Delabesse E. Impact of TP53 mutations in acute myeloid leukemia patients treated with azacitidine. PLoS One 2020; 15:e0238795. [PMID: 33001991 PMCID: PMC7529302 DOI: 10.1371/journal.pone.0238795] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/24/2020] [Indexed: 12/31/2022] Open
Abstract
Hypomethylating agents are a classical frontline low-intensity therapy for older patients with acute myeloid leukemia. Recently, TP53 gene mutations have been described as a potential predictive biomarker of better outcome in patients treated with a ten-day decitabine regimen., However, functional characteristics of TP53 mutant are heterogeneous, as reflected in multiple functional TP53 classifications and their impact in patients treated with azacitidine is less clear. We analyzed the therapeutic course and outcome of 279 patients treated with azacitidine between 2007 and 2016, prospectively enrolled in our regional healthcare network. By screening 224 of them, we detected TP53 mutations in 55 patients (24.6%), including 53 patients (96.4%) harboring high-risk cytogenetics. The identification of any TP53 mutation was associated with worse overall survival but not with response to azacitidine in the whole cohort and in the subgroup of patients with adverse karyotype. Stratification of patients according to three recent validated functional classifications did not allow the identification of TP53 mutated patients who could benefit from azacitidine. Systematic TP53 mutant classification will deserve further exploration in the setting of patients treated with conventional therapy and in the emerging field of therapies targeting TP53 pathway.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antimetabolites, Antineoplastic/therapeutic use
- Azacitidine/therapeutic use
- Biomarkers, Tumor/genetics
- Female
- France/epidemiology
- Genes, p53
- Humans
- Kaplan-Meier Estimate
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Male
- Middle Aged
- Mutation
- Prognosis
- Prospective Studies
- Registries
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Pierre Bories
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
- Réseau Onco-occitanie, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
- * E-mail:
| | - Naïs Prade
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Stéphanie Lagarde
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Bastien Cabarrou
- Unité de biostatistique, Institut Claudius Régaud, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Laetitia Largeaud
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Julien Plenecassagnes
- Unité de bioinformatique, Institut Claudius Régaud, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Isabelle Luquet
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Véronique De Mas
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Thomas Filleron
- Unité de biostatistique, Institut Claudius Régaud, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Manon Cassou
- Unité de bioinformatique, Institut Claudius Régaud, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Audrey Sarry
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Luc-Matthieu Fornecker
- Service d'Onco-Hématologie, Centre Hospitalier Universitaire de Strasbourg, Strasbourg, France
| | - Célestine Simand
- Service d'Onco-Hématologie, Centre Hospitalier Universitaire de Strasbourg, Strasbourg, France
| | - Sarah Bertoli
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Christian Recher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Eric Delabesse
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| |
Collapse
|
136
|
Evans DG, Woodward ER. New surveillance guidelines for Li-Fraumeni and hereditary TP53 related cancer syndrome: implications for germline TP53 testing in breast cancer. Fam Cancer 2020; 20:1-7. [PMID: 32984917 DOI: 10.1007/s10689-020-00207-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- D Gareth Evans
- Division of Evolution and Genomic Sciences, Manchester Centre for Genomic Medicine, University of Manchester, Manchester Academic Health Sciences Centre (MAHSC), St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.
| | - Emma R Woodward
- Division of Evolution and Genomic Sciences, Manchester Centre for Genomic Medicine, University of Manchester, Manchester Academic Health Sciences Centre (MAHSC), St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| |
Collapse
|
137
|
Donehower LA, Soussi T, Korkut A, Liu Y, Schultz A, Cardenas M, Li X, Babur O, Hsu TK, Lichtarge O, Weinstein JN, Akbani R, Wheeler DA. Integrated Analysis of TP53 Gene and Pathway Alterations in The Cancer Genome Atlas. Cell Rep 2020; 28:1370-1384.e5. [PMID: 31365877 DOI: 10.1016/j.celrep.2019.07.001] [Citation(s) in RCA: 375] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/09/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022] Open
Abstract
The TP53 tumor suppressor gene is frequently mutated in human cancers. An analysis of five data platforms in 10,225 patient samples from 32 cancers reported by The Cancer Genome Atlas (TCGA) enables comprehensive assessment of p53 pathway involvement in these cancers. More than 91% of TP53-mutant cancers exhibit second allele loss by mutation, chromosomal deletion, or copy-neutral loss of heterozygosity. TP53 mutations are associated with enhanced chromosomal instability, including increased amplification of oncogenes and deep deletion of tumor suppressor genes. Tumors with TP53 mutations differ from their non-mutated counterparts in RNA, miRNA, and protein expression patterns, with mutant TP53 tumors displaying enhanced expression of cell cycle progression genes and proteins. A mutant TP53 RNA expression signature shows significant correlation with reduced survival in 11 cancer types. Thus, TP53 mutation has profound effects on tumor cell genomic structure, expression, and clinical outlook.
Collapse
Affiliation(s)
- Lawrence A Donehower
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Thierry Soussi
- Sorbonne Université, UPMC University Paris 06, 75005 Paris, France; Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden; INSERM, U1138, Équipe 11, Centre de Recherche des Cordeliers, Paris, France
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuexin Liu
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Andre Schultz
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria Cardenas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xubin Li
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Ozgun Babur
- Computational Biology Program, Oregon Health and Science University, Portland, OR 97239, USA
| | - Teng-Kuei Hsu
- Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - John N Weinstein
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Rehan Akbani
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - David A Wheeler
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
138
|
Haley B, Roudnicky F. Functional Genomics for Cancer Drug Target Discovery. Cancer Cell 2020; 38:31-43. [PMID: 32442401 DOI: 10.1016/j.ccell.2020.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/06/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022]
Abstract
Functional genomics describes a field of biology that uses a range of approaches for assessing gene function with high-throughput molecular, genetic, and cellular technologies. The near limitless potential for applying these concepts to study the activities of all genetic loci has completely upended how today's cancer biologists tackle drug target discovery. We provide an overview of contemporary functional genomics platforms, highlighting areas of distinction and complementarity across technologies, so as to aid in the development or interpretation of cancer-focused screening efforts.
Collapse
Affiliation(s)
- Benjamin Haley
- Molecular Biology Department, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Filip Roudnicky
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland.
| |
Collapse
|
139
|
Klesmith JR, Hackel BJ. Improved mutant function prediction via PACT: Protein Analysis and Classifier Toolkit. Bioinformatics 2020; 35:2707-2712. [PMID: 30590444 DOI: 10.1093/bioinformatics/bty1042] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/06/2018] [Accepted: 12/19/2018] [Indexed: 12/31/2022] Open
Abstract
MOTIVATION Deep mutational scanning experiments have enabled the measurement of the sequence-function relationship for thousands of mutations in a single experiment. The Protein Analysis and Classifier Toolkit (PACT) is a Python software package that marries the fitness metric of a given mutation within these experiments to sequence and structural features enabling downstream analyses. PACT enables the easy development of user sharable protocols for custom deep mutational scanning experiments as all code is modular and reusable between protocols. Protocols for mutational libraries with single or multiple mutations are included. To exemplify its utility, PACT assessed two deep mutational scanning datasets that measured the tradeoff of enzyme activity and enzyme stability. RESULTS PACT efficiently evaluated classifiers that predict protein mutant function tested on deep mutational scanning screens. We found that the classifiers with the lowest false positive and highest true positive rate assesses sequence homology, contact number and if mutation involves proline. AVAILABILITY AND IMPLEMENTATION PACT and the processed datasets are distributed freely under the terms of the GPL-3 license. The source code is available at GitHub (https://github.com/JKlesmith/PACT). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Justin R Klesmith
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
140
|
Wang Z, Wu W, Guan X, Guo S, Li C, Niu R, Gao J, Jiang M, Bai L, Leung EL, Hou Y, Jiang Z, Bai G. 20( S)-Protopanaxatriol promotes the binding of P53 and DNA to regulate the antitumor network via multiomic analysis. Acta Pharm Sin B 2020; 10:1020-1035. [PMID: 32642409 PMCID: PMC7332671 DOI: 10.1016/j.apsb.2020.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022] Open
Abstract
Although the tumor suppressor P53 is known to regulate a broad network of signaling pathways, it is still unclear how certain drugs influence these P53 signaling networks. Here, we used a comprehensive single-cell multiomics view of the effects of ginsenosides on cancer cells. Transcriptome and proteome profiling revealed that the antitumor activity of ginsenosides is closely associated with P53 protein. A miRNA–proteome interaction network revealed that P53 controlled the transcription of at least 38 proteins, and proteome-metabolome profiling analysis revealed that P53 regulated proteins involved in nucleotide metabolism, amino acid metabolism and “Warburg effect”. The results of integrative multiomics analysis revealed P53 protein as a potential key target that influences the anti-tumor activity of ginsenosides. Furthermore, by applying affinity mass spectrometry (MS) screening and surface plasmon resonance fragment library screening, we confirmed that 20(S)-protopanaxatriol directly targeted adjacent regions of the P53 DNA-binding pocket and promoted the stability of P53–DNA interactions, which further induced a series of omics changes.
Collapse
|
141
|
Guidelines for the Li-Fraumeni and heritable TP53-related cancer syndromes. Eur J Hum Genet 2020; 28:1379-1386. [PMID: 32457520 PMCID: PMC7609280 DOI: 10.1038/s41431-020-0638-4] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/28/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Fifty years after the recognition of the Li-Fraumeni syndrome (LFS), our perception of cancers related to germline alterations of TP53 has drastically changed: (i) germline TP53 alterations are often identified among children with cancers, in particular soft-tissue sarcomas, adrenocortical carcinomas, central nervous system tumours, or among adult females with early breast cancers, without familial history. This justifies the expansion of the LFS concept to a wider cancer predisposition syndrome designated heritable TP53-related cancer (hTP53rc) syndrome; (ii) the interpretation of germline TP53 variants remains challenging and should integrate epidemiological, phenotypical, bioinformatics prediction, and functional data; (iii) the penetrance of germline disease-causing TP53 variants is variable, depending both on the type of variant (dominant-negative variants being associated with a higher cancer risk) and on modifying factors; (iv) whole-body MRI (WBMRI) allows early detection of tumours in variant carriers and (v) in cancer patients with germline disease-causing TP53 variants, radiotherapy, and conventional genotoxic chemotherapy contribute to the development of subsequent primary tumours. It is critical to perform TP53 testing before the initiation of treatment in order to avoid in carriers, if possible, radiotherapy and genotoxic chemotherapies. In children, the recommendations are to perform clinical examination and abdominal ultrasound every 6 months, annual WBMRI and brain MRI from the first year of life, if the TP53 variant is known to be associated with childhood cancers. In adults, the surveillance should include every year clinical examination, WBMRI, breast MRI in females from 20 until 65 years and brain MRI until 50 years.
Collapse
|
142
|
Johansson PA, Brooks K, Newell F, Palmer JM, Wilmott JS, Pritchard AL, Broit N, Wood S, Carlino MS, Leonard C, Koufariotis LT, Nathan V, Beasley AB, Howlie M, Dawson R, Rizos H, Schmidt CW, Long GV, Hamilton H, Kiilgaard JF, Isaacs T, Gray ES, Rolfe OJ, Park JJ, Stark A, Mann GJ, Scolyer RA, Pearson JV, van Baren N, Waddell N, Wadt KW, McGrath LA, Warrier SK, Glasson W, Hayward NK. Whole genome landscapes of uveal melanoma show an ultraviolet radiation signature in iris tumours. Nat Commun 2020; 11:2408. [PMID: 32415113 PMCID: PMC7229209 DOI: 10.1038/s41467-020-16276-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/22/2020] [Indexed: 01/04/2023] Open
Abstract
Uveal melanoma (UM) is the most common intraocular tumour in adults and despite surgical or radiation treatment of primary tumours, ~50% of patients progress to metastatic disease. Therapeutic options for metastatic UM are limited, with clinical trials having little impact. Here we perform whole-genome sequencing (WGS) of 103 UM from all sites of the uveal tract (choroid, ciliary body, iris). While most UM have low tumour mutation burden (TMB), two subsets with high TMB are seen; one driven by germline MBD4 mutation, and another by ultraviolet radiation (UVR) exposure, which is restricted to iris UM. All but one tumour have a known UM driver gene mutation (GNAQ, GNA11, BAP1, PLCB4, CYSLTR2, SF3B1, EIF1AX). We identify three other significantly mutated genes (TP53, RPL5 and CENPE). Uveal melanoma has a propensity to metastasise. Here, the authors report the whole genome sequence of 103 uveal melanomas and find that the tumour mutational burden is variable and that two subsets of tumours are characterised by MBD4 mutations and a UV exposure signature.
Collapse
Affiliation(s)
| | - Kelly Brooks
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Felicity Newell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jane M Palmer
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Antonia L Pritchard
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,University of the Highlands and Island, Inverness, UK
| | - Natasa Broit
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,University of Queensland, Brisbane, QLD, Australia
| | - Scott Wood
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Conrad Leonard
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Vaishnavi Nathan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,University of Queensland, Brisbane, QLD, Australia
| | - Aaron B Beasley
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Madeleine Howlie
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Rebecca Dawson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Helen Rizos
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Chris W Schmidt
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Mater Research, Woolloongabba, QLD, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Department of Medical Oncology, Royal North Shore Hospital, St Leonards, Sydney, NSW, Australia
| | - Hayley Hamilton
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Queensland Ocular Oncology Service, The Terrace Eye Centre, Brisbane, QLD, Australia
| | - Jens F Kiilgaard
- Department of Ophthalmology, Rigshospitalet-Glostrup Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Timothy Isaacs
- Perth Retina, Perth, WA, Australia.,Centre for Ophthalmology and Visual Science, University of Western Australia, Crawley, WA, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia
| | - Elin S Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Centre for Ophthalmology and Visual Science, University of Western Australia, Crawley, WA, Australia
| | - Olivia J Rolfe
- Queensland Ocular Oncology Service, The Terrace Eye Centre, Brisbane, QLD, Australia
| | - John J Park
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Andrew Stark
- Queensland Ocular Oncology Service, The Terrace Eye Centre, Brisbane, QLD, Australia
| | - Graham J Mann
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Sydney, NSW, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, Australia
| | - John V Pearson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Karin W Wadt
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Lindsay A McGrath
- Queensland Ocular Oncology Service, The Terrace Eye Centre, Brisbane, QLD, Australia
| | - Sunil K Warrier
- Queensland Ocular Oncology Service, The Terrace Eye Centre, Brisbane, QLD, Australia
| | - William Glasson
- Queensland Ocular Oncology Service, The Terrace Eye Centre, Brisbane, QLD, Australia
| | | |
Collapse
|
143
|
Montesinos P, Beckermann BM, Catalani O, Esteve J, Gamel K, Konopleva MY, Martinelli G, Monnet A, Papayannidis C, Park A, Récher C, Rodríguez-Veiga R, Röllig C, Vey N, Wei AH, Yoon SS, Fenaux P. MIRROS: a randomized, placebo-controlled, Phase III trial of cytarabine ± idasanutlin in relapsed or refractory acute myeloid leukemia. Future Oncol 2020; 16:807-815. [DOI: 10.2217/fon-2020-0044] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Patients with refractory or relapsed acute myeloid leukemia (R/R AML) have a poor prognosis, with a high unmet medical need. Idasanutlin is a small-molecule inhibitor of MDM2, a negative regulator of tumor suppressor p53. By preventing the p53–MDM2 interaction, idasanutlin allows for p53 activation, particularly in patients with TP53 wild-type (WT) status. MIRROS (NCT02545283) is a randomized Phase III trial evaluating idasanutlin + cytarabine versus placebo + cytarabine in R/R AML. The primary end point is overall survival in the TP53-WT population. Secondary end points include complete remission rate (cycle 1), overall remission rate (cycle 1) and event-free survival in the TP53-WT population. MIRROS has an innovative design that integrates a stringent interim analysis for futility; continuation criteria were met in mid-2017 and accrual is ongoing. Trial registration number: NCT02545283
Collapse
Affiliation(s)
- Pau Montesinos
- Departamento de Hematologia, Hospital Universitari i Politècnic La Fe, València, Spain
- CIBERONC, Instituto Carlos III, Madrid, Spain
| | | | | | - Jordi Esteve
- Hospital Clinic de Barcelona, IDIBAPS, Barcelona, Spain
| | - Katia Gamel
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Marina Y Konopleva
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giovanni Martinelli
- Department of Hematology and Sciences Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | | | - Cristina Papayannidis
- Department of Experimental, Diagnostic and Specialty Medicine Institute of Hematology & Medical Oncology L & A Seràgnoli, Bologna, Italy
| | - Aaron Park
- Hoffmann-La Roche Ltd, Mississauga, ON, Canada
| | - Christian Récher
- Serviced’Hématologie, Institut Universitaire du Cancer Toulouse – Oncopole,Toulouse, France
| | | | - Christoph Röllig
- Department of Internal Medicine, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Norbert Vey
- Hematology Department, Aix-Marseille University, Institut Paoli-Calmettes, Marseille, France
| | - Andrew H Wei
- Department of Haematology, The Alfred Hospital & Monash University, Melbourne, VIC, Australia
| | - Sung-Soo Yoon
- Division of Hematology/Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Pierre Fenaux
- Service d'Hématologie Séniors Hôpital Saint-Louis, Assistance Publique – Hôpitaux de Paris, Université de Paris, Paris, France
| |
Collapse
|
144
|
Boettcher S, Miller PG, Sharma R, McConkey M, Leventhal M, Krivtsov AV, Giacomelli AO, Wong W, Kim J, Chao S, Kurppa KJ, Yang X, Milenkowic K, Piccioni F, Root DE, Rücker FG, Flamand Y, Neuberg D, Lindsley RC, Jänne PA, Hahn WC, Jacks T, Döhner H, Armstrong SA, Ebert BL. A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. Science 2020; 365:599-604. [PMID: 31395785 DOI: 10.1126/science.aax3649] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
Abstract
TP53, which encodes the tumor suppressor p53, is the most frequently mutated gene in human cancer. The selective pressures shaping its mutational spectrum, dominated by missense mutations, are enigmatic, and neomorphic gain-of-function (GOF) activities have been implicated. We used CRISPR-Cas9 to generate isogenic human leukemia cell lines of the most common TP53 missense mutations. Functional, DNA-binding, and transcriptional analyses revealed loss of function but no GOF effects. Comprehensive mutational scanning of p53 single-amino acid variants demonstrated that missense variants in the DNA-binding domain exert a dominant-negative effect (DNE). In mice, the DNE of p53 missense variants confers a selective advantage to hematopoietic cells on DNA damage. Analysis of clinical outcomes in patients with acute myeloid leukemia showed no evidence of GOF for TP53 missense mutations. Thus, a DNE is the primary unit of selection for TP53 missense mutations in myeloid malignancies.
Collapse
Affiliation(s)
- Steffen Boettcher
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.,Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peter G Miller
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.,Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rohan Sharma
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.,Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marie McConkey
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.,Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew Leventhal
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.,Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrei V Krivtsov
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Andrew O Giacomelli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.,The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Waihay Wong
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.,Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jesi Kim
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sherry Chao
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.,Department of Biomedical Informatics, Harvard University, Boston, MA 02115, USA
| | - Kari J Kurppa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Xiaoping Yang
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Kirsten Milenkowic
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Federica Piccioni
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - David E Root
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Frank G Rücker
- Department of Internal Medicine III, University of Ulm, 89081 Ulm, Germany
| | - Yael Flamand
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Donna Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - R Coleman Lindsley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hartmut Döhner
- Department of Internal Medicine III, University of Ulm, 89081 Ulm, Germany
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. .,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.,Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| |
Collapse
|
145
|
Pirona AC, Oktriani R, Boettcher M, Hoheisel JD. Process for an efficient lentiviral cell transduction. Biol Methods Protoc 2020; 5:bpaa005. [PMID: 32395634 PMCID: PMC7200879 DOI: 10.1093/biomethods/bpaa005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 01/01/2023] Open
Abstract
The combination of lentiviruses with techniques such as CRISPR-Cas9 has resulted in efficient and precise processes for targeted genome modification. An often-limiting aspect, however, is the efficiency of cell transduction. Low efficiencies with particular cell types and/or the high complexity of lentiviral libraries can cause insufficient representation. Here, we present a protocol that yielded substantial increases in transduction efficiency in various cell lines in comparison to several other procedures.
Collapse
Affiliation(s)
- Anna Chiara Pirona
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg 69120, Germany.,Faculty of Bioscience, University of Heidelberg, Im Neuenheimer Feld 234, Heidelberg 69120, Germany
| | - Risky Oktriani
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg 69120, Germany.,Faculty of Bioscience, University of Heidelberg, Im Neuenheimer Feld 234, Heidelberg 69120, Germany.,Department of Biochemistry, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Farmako Sekip Utara, Yogyakarta 55281, Indonesia
| | - Michael Boettcher
- Medical Faculty of Molecular Medicine of Signal Transduction, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle 06120, Germany
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg 69120, Germany
| |
Collapse
|
146
|
Miyahira AK, Sharp A, Ellis L, Jones J, Kaochar S, Larman HB, Quigley DA, Ye H, Simons JW, Pienta KJ, Soule HR. Prostate cancer research: The next generation; report from the 2019 Coffey-Holden Prostate Cancer Academy Meeting. Prostate 2020; 80:113-132. [PMID: 31825540 PMCID: PMC7301761 DOI: 10.1002/pros.23934] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The 2019 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, "Prostate Cancer Research: The Next Generation," was held 20 to 23 June, 2019, in Los Angeles, California. METHODS The CHPCA Meeting is an annual conference held by the Prostate Cancer Foundation, that is uniquely structured to stimulate intense discussion surrounding topics most critical to accelerating prostate cancer research and the discovery of new life-extending treatments for patients. The 7th Annual CHPCA Meeting was attended by 86 investigators and concentrated on many of the most promising new treatment opportunities and next-generation research technologies. RESULTS The topics of focus at the meeting included: new treatment strategies and novel agents for targeted therapies and precision medicine, new treatment strategies that may synergize with checkpoint immunotherapy, next-generation technologies that visualize tumor microenvironment (TME) and molecular pathology in situ, multi-omics and tumor heterogeneity using single cells, 3D and TME models, and the role of extracellular vesicles in cancer and their potential as biomarkers. DISCUSSION This meeting report provides a comprehensive summary of the talks and discussions held at the 2019 CHPCA Meeting, for the purpose of globally disseminating this knowledge and ultimately accelerating new treatments and diagnostics for patients with prostate cancer.
Collapse
Affiliation(s)
- Andrea K. Miyahira
- Science Department, Prostate Cancer Foundation, Santa Monica, California
| | - Adam Sharp
- Division of Clinical Studies, Institute of Cancer Research, London, UK
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London, UK
| | - Leigh Ellis
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Pathology, Brigham and Womenʼs Hospital, Harvard Medical School, Boston, Massachusetts
- The Broad Institute of MIT and Harvard University, Cambridge, Massachusetts
| | - Jennifer Jones
- National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Salma Kaochar
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - H. Benjamin Larman
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - David A. Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, California
| | - Huihui Ye
- Department of Pathology, University of California Los Angeles, Los Angeles, California
- Department of Urology, University of California Los Angeles, Los Angeles, California
| | - Jonathan W. Simons
- Science Department, Prostate Cancer Foundation, Santa Monica, California
| | - Kenneth J. Pienta
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Urology, The James Buchanan Brady Urological Institute, Baltimore, Maryland
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Howard R. Soule
- Science Department, Prostate Cancer Foundation, Santa Monica, California
| |
Collapse
|
147
|
Matreyek KA, Stephany JJ, Chiasson MA, Hasle N, Fowler DM. An improved platform for functional assessment of large protein libraries in mammalian cells. Nucleic Acids Res 2020; 48:e1. [PMID: 31612958 PMCID: PMC7145622 DOI: 10.1093/nar/gkz910] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 12/19/2022] Open
Abstract
Multiplex genetic assays can simultaneously test thousands of genetic variants for a property of interest. However, limitations of existing multiplex assay methods in cultured mammalian cells hinder the breadth, speed and scale of these experiments. Here, we describe a series of improvements that greatly enhance the capabilities of a Bxb1 recombinase-based landing pad system for conducting different types of multiplex genetic assays in various mammalian cell lines. We incorporate the landing pad into a lentiviral vector, easing the process of generating new landing pad cell lines. We also develop several new landing pad versions, including one where the Bxb1 recombinase is expressed from the landing pad itself, improving recombination efficiency more than 2-fold and permitting rapid prototyping of transgenic constructs. Other versions incorporate positive and negative selection markers that enable drug-based enrichment of recombinant cells, enabling the use of larger libraries and reducing costs. A version with dual convergent promoters allows enrichment of recombinant cells independent of transgene expression, permitting the assessment of libraries of transgenes that perturb cell growth and survival. Lastly, we demonstrate these improvements by assessing the effects of a combinatorial library of oncogenes and tumor suppressors on cell growth. Collectively, these advancements make multiplex genetic assays in diverse cultured cell lines easier, cheaper and more effective, facilitating future studies probing how proteins impact cell function, using transgenic variant libraries tested individually or in combination.
Collapse
Affiliation(s)
- Kenneth A Matreyek
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jason J Stephany
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Melissa A Chiasson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Nicholas Hasle
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
148
|
Plougmann JI, Klausen P, Toxvaerd A, Abedi AA, Kovacevic B, Karstensen JG, Poulsen TS, Kalaitzakis E, Høgdall E, Vilmann P. DNA sequencing of cytopathologically inconclusive EUS-FNA from solid pancreatic lesions suspicious for malignancy confirms EUS diagnosis. Endosc Ultrasound 2020; 9:37-44. [PMID: 31552911 PMCID: PMC7038737 DOI: 10.4103/eus.eus_36_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background and Objectives: EUS-FNA is inconclusive in up to 10%–15% of patients with solid pancreatic lesions (SPLs). We aimed to investigate whether supplementary genetic analyses with whole-exome sequencing add diagnostic value in patients with SPLs suspicious of malignancy but inconclusive EUS-FNA. Patients and Methods: Thirty-nine patients, who underwent EUS-FNA of an SPL were retrospectively included. Three groups were defined: 16 (41.0%) had suspected malignancy on EUS confirmed by cytology (malignant), 13 (33.3%) had suspected malignancy on EUS but benign cytology (inconclusive), and 10 (25.6%) had benign EUS imaging and cytology (benign). Areas with the highest epithelial cell concentrations were macro-dissected from the FNA smears from each patient, and extracted DNA was used for whole-exome sequencing by next-generation sequencing of a selected gene panel including 19 genes commonly mutated in cancer. Results: Pathogenic mutations in K-RAS,TP53, and PIK3CA differed significantly between the three groups (P < 0.001, P = 0.018, and P = 0.026, respectively). Pathogenic mutations in KRAS and TP53 were predominant in the inconclusive (54% and 31%, respectively) and malignant groups (81.3% and 50%, respectively) compared to the benign group (0%). Malignant and inconclusive diagnoses correlated strongly with poor overall survival (P < 0.001). Conclusion: Whole-exome sequencing of genes commonly mutated in pancreatic cancer may be an important adjunct in patients with SPLs suspicious for malignancy on EUS but with uncertain cytological diagnosis.
Collapse
Affiliation(s)
| | - Pia Klausen
- Division of Endoscopy, Gastro Unit, Copenhagen University Hospital, Herlev, Denmark
| | - Anders Toxvaerd
- Department of Pathology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Armita Armina Abedi
- Division of Endoscopy, Gastro Unit, Copenhagen University Hospital, Herlev, Denmark
| | - Bojan Kovacevic
- Division of Endoscopy, Gastro Unit, Copenhagen University Hospital, Herlev, Denmark
| | | | | | | | - Estrid Høgdall
- Department of Pathology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Peter Vilmann
- Division of Endoscopy, Gastro Unit, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
149
|
Gelman H, Dines JN, Berg J, Berger AH, Brnich S, Hisama FM, James RG, Rubin AF, Shendure J, Shirts B, Fowler DM, Starita LM. Recommendations for the collection and use of multiplexed functional data for clinical variant interpretation. Genome Med 2019; 11:85. [PMID: 31862013 PMCID: PMC6925490 DOI: 10.1186/s13073-019-0698-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/20/2019] [Indexed: 01/31/2023] Open
Abstract
Variants of uncertain significance represent a massive challenge to medical genetics. Multiplexed functional assays, in which the functional effects of thousands of genomic variants are assessed simultaneously, are increasingly generating data that can be used as additional evidence for or against variant pathogenicity. Such assays have the potential to resolve variants of uncertain significance, thereby increasing the clinical utility of genomic testing. Existing standards from the American College of Medical Genetics and Genomics (ACMG)/Association for Molecular Pathology (AMP) and new guidelines from the Clinical Genome Resource (ClinGen) establish the role of functional data in variant interpretation, but do not address the specific challenges or advantages of using functional data derived from multiplexed assays. Here, we build on these existing guidelines to provide recommendations to experimentalists for the production and reporting of multiplexed functional data and to clinicians for the evaluation and use of such data. By following these recommendations, experimentalists can produce transparent, complete, and well-validated datasets that are primed for clinical uptake. Our recommendations to clinicians and diagnostic labs on how to evaluate the quality of multiplexed functional datasets, and how different datasets could be incorporated into the ACMG/AMP variant-interpretation framework, will hopefully clarify whether and how such data should be used. The recommendations that we provide are designed to enhance the quality and utility of multiplexed functional data, and to promote their judicious use.
Collapse
Affiliation(s)
- Hannah Gelman
- Department of Genome Sciences, University of Washington School of Medicine, 15th Avenue NE, Seattle, WA, 98195, USA
- Current affiliation: Center of Innovation for Veteran-Centered and Value-Driven Care, VA Puget Sound Health Care System, S Columbian Way, Seattle, WA, 98108, USA
| | - Jennifer N Dines
- Department of Genome Sciences, University of Washington School of Medicine, 15th Avenue NE, Seattle, WA, 98195, USA
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Current affiliation: Adaptive Biotechnologies, Eastlake Avenue E, Seattle, WA, 98102, USA
| | - Jonathan Berg
- Department of Genetics, University of North Carolina at Chapel Hill,, Mason Farm Road, Chapel Hill, NC, 27514, USA
| | - Alice H Berger
- Human Biology Division, Fred Hutchinson Cancer Research Center, Fairview Avenue, Seattle, WA, 98109, USA
- Brotman Baty Institute for Precision Medicine, NE Pacific Street, Seattle, WA, 98195, USA
| | - Sarah Brnich
- Department of Genetics, University of North Carolina at Chapel Hill,, Mason Farm Road, Chapel Hill, NC, 27514, USA
| | - Fuki M Hisama
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Brotman Baty Institute for Precision Medicine, NE Pacific Street, Seattle, WA, 98195, USA
| | - Richard G James
- Brotman Baty Institute for Precision Medicine, NE Pacific Street, Seattle, WA, 98195, USA
- Department of Pediatrics, University of Washington School of Medicine, NE Pacific Street, Seattle, WA, 98195, USA
- Center for Immunity and Immunotherapies, Seattle Children, Research Institute, Ninth Avenue, Seattle, WA, 98145, USA
| | - Alan F Rubin
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia
- Bioinformatics and Cancer Genomics Laboratory, Peter MacCallum Cancer Centre, Grattan Street, Melbourne, VIC, 3000, Australia
| | - Jay Shendure
- Department of Genome Sciences, University of Washington School of Medicine, 15th Avenue NE, Seattle, WA, 98195, USA
- Brotman Baty Institute for Precision Medicine, NE Pacific Street, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, Pacific Street, Seattle, WA, 98195, USA
| | - Brian Shirts
- Brotman Baty Institute for Precision Medicine, NE Pacific Street, Seattle, WA, 98195, USA
- Department of Laboratory Medicine, University of Washington School of Medicine, NE Pacific Street, Seattle, WA, 98195, USA
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington School of Medicine, 15th Avenue NE, Seattle, WA, 98195, USA.
- Brotman Baty Institute for Precision Medicine, NE Pacific Street, Seattle, WA, 98195, USA.
- Department of Bioengineering, University of Washington, 15th Avenue NE, Seattle, WA, 98195, USA.
| | - Lea M Starita
- Department of Genome Sciences, University of Washington School of Medicine, 15th Avenue NE, Seattle, WA, 98195, USA.
- Brotman Baty Institute for Precision Medicine, NE Pacific Street, Seattle, WA, 98195, USA.
| |
Collapse
|
150
|
The Emerging Landscape of p53 Isoforms in Physiology, Cancer and Degenerative Diseases. Int J Mol Sci 2019; 20:ijms20246257. [PMID: 31835844 PMCID: PMC6941119 DOI: 10.3390/ijms20246257] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
p53, first described four decades ago, is now established as a master regulator of cellular stress response, the “guardian of the genome”. p53 contributes to biological robustness by behaving in a cellular-context dependent manner, influenced by several factors (e.g., cell type, active signalling pathways, the type, extent and intensity of cellular damage, cell cycle stage, nutrient availability, immune function). The p53 isoforms regulate gene transcription and protein expression in response to the stimuli so that the cell response is precisely tuned to the cell signals and cell context. Twelve isoforms of p53 have been described in humans. In this review, we explore the interactions between p53 isoforms and other proteins contributing to their established cellular functions, which can be both tumour-suppressive and oncogenic in nature. Evidence of p53 isoform in human cancers is largely based on RT-qPCR expression studies, usually investigating a particular type of isoform. Beyond p53 isoform functions in cancer, it is implicated in neurodegeneration, embryological development, progeroid phenotype, inflammatory pathology, infections and tissue regeneration, which are described in this review.
Collapse
|