101
|
Zeng M, Li B, Yang L, Guan Q. CBX2 depletion inhibits the proliferation, invasion and migration of gastric cancer cells by inactivating the YAP/β-catenin pathway. Mol Med Rep 2020; 23:137. [PMID: 33313949 PMCID: PMC7751489 DOI: 10.3892/mmr.2020.11776] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is the most common and fast-growing malignancy of the digestive system, which has a high mortality. Chromobox homolog 2 (CBX2) has been reported to be highly expressed in cancer tissues compared with adjacent normal tissues. It has also been established that CBX2 is upregulated in GC cell lines by searching the Cancer Cell Line Encyclopedia. The aim of the present study was to investigate the biomolecular role and underlying mechanism of CBX2 in the proliferation, invasion and migration of GC cells. Short hairpin RNA-CBX2 and yes-associated protein (YAP) overexpression plasmids were constructed to regulate CBX2 and YAP expression, respectively. Additionally, the expression of certain mRNAs and proteins involved in the YAP/β-catenin pathway and those associated with cell invasion were assessed by western blotting and reverse transcription-quantitative PCR, respectively. The cellular behaviors of MFC cells were analyzed using Cell Counting Kit-8, colony formation wound-healing and Transwell assays. The results of the present study revealed that increased CBX2 expression was observed in GC cell lines compared with normal gastric cells. In addition, CBX2 knockdown inhibited the nuclear cytoplasm translocation of YAP, inducing its phosphorylation, and suppressing the activation of the β-catenin signaling pathway. The results also demonstrated that CBX2 depletion inhibited the proliferation, migration and invasion of GC cells by inactivating the YAP/β-catenin pathway. It was determined that CBX2 promoted the proliferation, invasion and migration of GC cells by activating the YAP/β-catenin pathway, suggesting that CBX2 is involved in the pathogenesis of GC and may represent a novel target for the clinical treatment of GC.
Collapse
Affiliation(s)
- Miaomiao Zeng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Bangxue Li
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Lei Yang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Quanlin Guan
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
102
|
USP47-mediated deubiquitination and stabilization of YAP contributes to the progression of colorectal cancer. Protein Cell 2020; 11:138-143. [PMID: 31748975 PMCID: PMC6954888 DOI: 10.1007/s13238-019-00674-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
103
|
Qiu D, Zhu Y, Cong Z. YAP Triggers Bladder Cancer Proliferation by Affecting the MAPK Pathway. Cancer Manag Res 2020; 12:12205-12214. [PMID: 33273857 PMCID: PMC7707444 DOI: 10.2147/cmar.s273442] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/10/2020] [Indexed: 12/22/2022] Open
Abstract
Background The transcriptional regulator YAP is frequently overexpressed in human cancers, such as breast and pancreatic cancers, plays an important role in tumorigenesis and can regulate many factors affecting cancer progression. These observations encouraged us to investigate the effect of YAP expression on bladder cancer. Methods The changes in multiple cellular functions associated with tumor progression including cell proliferation, cell migration, cell cycle, and cell apoptosis were assessed after YAP knockdown/overexpression in bladder cancer cell lines. Additionally, Western blot was developed to verify the change of proteins caused by YAP knockdown/overexpression. Results YAP had relatively higher expression in bladder cancer tissues than in normal tissues. The proliferation and migration of bladder cancer cells were inhibited by YAP knockdown but were promoted by its overexpression. This promoting effect was accompanied by the increased activity of MAPK/ERK pathway. Conclusion Our data established that YAP is an oncogene involved in bladder cancer and thus can be a potential target for treatment.
Collapse
Affiliation(s)
- Dandan Qiu
- Department of Urology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yan Zhu
- Department of Urology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Zhicheng Cong
- Department of Urology, Zhejiang Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
104
|
Zhao W, Wang M, Cai M, Zhang C, Qiu Y, Wang X, Zhang T, Zhou H, Wang J, Zhao W, Shao R. Transcriptional co-activators YAP/TAZ: Potential therapeutic targets for metastatic breast cancer. Biomed Pharmacother 2020; 133:110956. [PMID: 33189066 DOI: 10.1016/j.biopha.2020.110956] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer among women. Although routine and targeted therapies have improved the survival rate, there are still considerable challenges in the treatment of breast cancer. Metastasis is the leading cause of death in patients diagnosed with breast cancer. Yes-associated protein (YAP) and/or PDZ binding motif (TAZ) are usually abnormally activated in breast cancer leading to a variety of effects on tumour promotion, such as epithelial-mesenchymal transition, cancer stem cell production and drug-resistance. The abnormal activation of YAP/TAZ can affect metastasis-related processes and promote cancer progression and metastasis by interacting with some metastasis-related factors and pathways. In this article, we summarise the evidence that YAP/TAZ regulates breast cancer metastasis, its post-translational modification mechanisms, and the latest advances in the treatment of YAP/TAZ-related breast cancer metastasis, besides providing a new strategy of YAP/TAZ-based treatment of human breast cancer.
Collapse
Affiliation(s)
- Wenxia Zhao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Mengyan Wang
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Meilian Cai
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Conghui Zhang
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Yuhan Qiu
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Xiaowei Wang
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Tianshu Zhang
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Huimin Zhou
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Junxia Wang
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Wuli Zhao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Rongguang Shao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| |
Collapse
|
105
|
Shi L, Liu J, Peng Y, Zhang J, Dai X, Zhang S, Wang Y, Liu J, Long J. Deubiquitinase OTUD6A promotes proliferation of cancer cells via regulating Drp1 stability and mitochondrial fission. Mol Oncol 2020; 14:3169-3183. [PMID: 33070427 PMCID: PMC7718948 DOI: 10.1002/1878-0261.12825] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/13/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Dynamin‐related protein 1 (Drp1) is a cytosolic protein responsible for mitochondrial fission and is essential in the initiation and development of several human diseases, including cancer. However, the regulation of Drp1, especially of its ubiquitination, remains unclear. In this study, we report that the ovarian tumor‐associated protease deubiquitinase 6A (OTUD6A) deubiquitylates and stabilizes Drp1, thereby facilitating regulation of mitochondrial morphology and tumorigenesis. OTUD6A is upregulated in human patients with colorectal cancer. The depletion of OTUD6A leads to lower Drp1 levels and suppressed mitochondrial fission, and the affected cells are consequently less prone to tumorigenesis. Conversely, the overexpression of OTUD6A increases Drp1 levels and its protein half‐life and enhances cancer cell growth. Therefore, our results reveal a novel upstream protein of Drp1, and its role in tumorigenesis that is played, in part, through the activation of mitochondrial fission mediated by Drp1.
Collapse
Affiliation(s)
- Le Shi
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, China
| | - Jing Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, China
| | - Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, China
| | - Jinfang Zhang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Shuangxi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, China
| | - Yongyao Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, China
| |
Collapse
|
106
|
Kaushal K, Ramakrishna S. Deubiquitinating Enzyme-Mediated Signaling Networks in Cancer Stem Cells. Cancers (Basel) 2020; 12:E3253. [PMID: 33158118 PMCID: PMC7694198 DOI: 10.3390/cancers12113253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) have both the capacity for self-renewal and the potential to differentiate and contribute to multiple tumor properties, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. Thus, CSCs are considered to be promising therapeutic targets for cancer therapy. The function of CSCs can be regulated by ubiquitination and deubiquitination of proteins related to the specific stemness of the cells executing various stem cell fate choices. To regulate the balance between ubiquitination and deubiquitination processes, the disassembly of ubiquitin chains from specific substrates by deubiquitinating enzymes (DUBs) is crucial. Several key developmental and signaling pathways have been shown to play essential roles in this regulation. Growing evidence suggests that overactive or abnormal signaling within and among these pathways may contribute to the survival of CSCs. These signaling pathways have been experimentally shown to mediate various stem cell properties, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation. In this review, we focus on the DUBs involved in CSCs signaling pathways, which are vital in regulating their stem-cell fate determination.
Collapse
Affiliation(s)
- Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
- College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
107
|
Gu Y, Wang Y, Wang Y, Luo J, Wang X, Ma M, Hua W, Liu Y, Yu FX. Hypermethylation of LATS2 Promoter and Its Prognostic Value in IDH-Mutated Low-Grade Gliomas. Front Cell Dev Biol 2020; 8:586581. [PMID: 33195240 PMCID: PMC7642219 DOI: 10.3389/fcell.2020.586581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations in the enzyme isocitrate dehydrogenase 1/2 (IDH1/2) are the most common somatic mutations in low-grade glioma (LGG). The Hippo signaling pathway is known to play a key role in organ size control, and its dysregulation is involved in the development of diverse cancers. Large tumor suppressor 1/2 (LATS1/2) are core Hippo pathway components that phosphorylate and inactivate Yes-associated protein (YAP), a transcriptional co-activator that regulates expression of genes involved in tumorigenesis. A recent report from The Cancer Genome Atlas (TCGA) has highlighted a frequent hypermethylation of LATS2 in IDH-mutant LGG. However, it is unclear if LATS2 hypermethylation is associated with YAP activation and prognosis of LGG patients. Here, we performed a network analysis of the status of the Hippo pathway in IDH-mutant LGG samples and determined its association with cancer prognosis. Combining TCGA data with our biochemical assays, we found hypermethylation of LATS2 promoter in IDH-mutant LGG. LATS2 hypermethylation, however, did not translate into YAP activation but highly correlated with IDH mutation. LATS2 hypermethylation may thus serve as an alternative for IDH mutation in diagnosis and a favorable prognostic factor for LGG patients.
Collapse
Affiliation(s)
- Yuan Gu
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yebin Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaqian Luo
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingyue Ma
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
108
|
Wang D, He J, Huang B, Liu S, Zhu H, Xu T. Emerging role of the Hippo pathway in autophagy. Cell Death Dis 2020; 11:880. [PMID: 33082313 PMCID: PMC7576599 DOI: 10.1038/s41419-020-03069-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/07/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
Autophagy is a dynamic circulatory system that occurs in all eukaryotic cells. Cytoplasmic material is transported to lysosomes for degradation and recovery through autophagy. This provides energy and macromolecular precursors for cell renewal and homeostasis. The Hippo-YAP pathway has significant biological properties in controlling organ size, tissue homeostasis, and regeneration. Recently, the Hippo-YAP axis has been extensively referred to as the pathophysiological processes regulating autophagy. Understanding the cellular and molecular basis of these processes is crucial for identifying disease pathogenesis and novel therapeutic targets. Here we review recent findings from Drosophila models to organisms. We particularly emphasize the regulation between Hippo core components and autophagy, which is involved in normal cellular regulation and the pathogenesis of human diseases, and its application to disease treatment.
Collapse
Affiliation(s)
- Dongying Wang
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, China
| | - Jiaxing He
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, China
| | - Bingyu Huang
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, China
| | - Shanshan Liu
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, China
| | - Hongming Zhu
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, China
| | - Tianmin Xu
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, China.
| |
Collapse
|
109
|
Lee TF, Liu YP, Lin YF, Hsu CF, Lin H, Chang WC, Pan CM, Chou TY, Wu CW. TAZ negatively regulates the novel tumor suppressor ANKRD52 and promotes PAK1 dephosphorylation in lung adenocarcinomas. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118891. [PMID: 33096142 DOI: 10.1016/j.bbamcr.2020.118891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 11/15/2022]
Abstract
Lung cancer is the leading cause of cancer death, and therefore the discovery of novel therapeutic targets is crucial. P21-activated kinase (PAK1) is an important oncogene involved in the signaling of actin cytoskeleton organization. Although PAK1 inhibition has been shown to suppress cancer progression, specific PAK1 inhibitors are not available due to the complex structure and insufficient understanding of this kinase. The Hippo signaling effector TAZ is known to be elevated in multiple human cancers and to promote cancer metastasis. This study aimed to explore the role of TAZ in regulating the tumor suppressor ankyrin repeat domain 52 (ANKRD52) and PAK1 activity. A negative correlation between TAZ and ANKRD52 was observed, with knockdown of TAZ leading to enhanced ANKRD52 promoter activity and increased mRNA levels. Moreover, reduced ANKRD52 levels were associated with late-stage lung cancer. Knockdowns of ANKRD52 resulted in elevated cell mobility, while forced ANKRD52 expression attenuated cell mobility. ANKRD52 is a subunit of the protein phosphatase 6 (PP6) holoenzyme. Mass spectrometry analysis revealed the interaction between PAK1 and the ANKRD52-PP6 complex. Knockdown of ANKRD52 or PP6c resulted in upregulated PAK1 phosphorylation. Our study demonstrates that the novel tumor suppressor protein ANKRD52 is transcriptionally inhibited by TAZ, regulating cell mobility through interactions with PP6c and dephosphorylation of PAK1.
Collapse
Affiliation(s)
- Ting-Fang Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; National Chiao Tung University, Hsinchu, Taiwan
| | - Ying-Pu Liu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Fan Lin
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chiung-Fang Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsuan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Chin Chang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Pathology, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Teh-Ying Chou
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Wen Wu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; National Health Research Institute, Miaoli, Taiwan; National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
110
|
Zhang Z, Fang X, Wu X, Ling L, Chu F, Li J, Wang S, Zang J, Zhang B, Ye S, Zhang L, Yang B, Lin S, Huang H, Wang A, Zhou F. Acetylation-Dependent Deubiquitinase OTUD3 Controls MAVS Activation in Innate Antiviral Immunity. Mol Cell 2020; 79:304-319.e7. [PMID: 32679077 DOI: 10.1016/j.molcel.2020.06.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022]
Abstract
Accurate regulation of innate immunity is necessary for the host to efficiently respond to invading pathogens and avoid excessive harmful immune pathology. Here we identified OTUD3 as an acetylation-dependent deubiquitinase that restricts innate antiviral immune signaling. OTUD3 deficiency in mice results in enhanced innate immunity, a diminished viral load, and morbidity. OTUD3 directly hydrolyzes lysine 63 (Lys63)-linked polyubiquitination of MAVS and thus shuts off innate antiviral immune response. Notably, the catalytic activity of OTUD3 relies on acetylation of its Lys129 residue. In response to virus infection, the acetylated Lys129 is removed by SIRT1, which promptly inactivates OTUD3 and thus allows timely induction of innate antiviral immunity. Importantly, acetyl-OTUD3 levels are inversely correlated with IFN-β expression in influenza patients. These findings establish OTUD3 as a repressor of MAVS and uncover a previously unknown regulatory mechanism by which the catalytic activity of OTUD3 is tightly controlled to ensure timely activation of antiviral defense.
Collapse
Affiliation(s)
- Zhengkui Zhang
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Xiuwu Fang
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Xiaojin Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Ling
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Feng Chu
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Jingxian Li
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Shuai Wang
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Jia Zang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Bo Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Sheng Ye
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Long Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Bing Yang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China; Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Shixian Lin
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Huizhe Huang
- Faculty of Basic Medical Sciences, Chonqing Medical University, Medical College Road 1, 400016 Chongqing, China
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California, Davis, CA 95817, USA
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
111
|
Chai TF, Manu KA, Casey PJ, Wang M. Isoprenylcysteine carboxylmethyltransferase is required for the impact of mutant KRAS on TAZ protein level and cancer cell self-renewal. Oncogene 2020; 39:5373-5389. [PMID: 32561852 PMCID: PMC7391290 DOI: 10.1038/s41388-020-1364-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022]
Abstract
Cancer stem cells possess the capacity for self-renewal and resistance to chemotherapy. It is therefore crucial to understand the molecular regulators of stemness in the quest to develop effective cancer therapies. TAZ is a transcription activator that promotes stem cell functions in post-development mammalian cells; suppression of TAZ activity reduces or eliminates cancer stemness in select cancers. Isoprenylcysteine carboxylmethyltransferase (ICMT) is the unique enzyme of the last step of posttranslational prenylation processing pathway that modifies several oncogenic proteins, including RAS. We found that suppression of ICMT results in reduced self-renewal/stemness in KRAS-driven pancreatic and breast cancer cells. Silencing of ICMT led to significant reduction of TAZ protein levels and loss of self-renewal ability, which could be reversed by overexpressing mutant KRAS, demonstrating the functional impact of ICMT modification on the ability of KRAS to control TAZ stability and function. Contrary to expectation, YAP protein levels appear to be much less susceptible than TAZ to the regulation by ICMT and KRAS, and YAP is less consequential in regulating stemness characteristics in these cells. Further, we found that the ICMT-dependent KRAS regulation of TAZ was mediated through RAF, but not PI3K, signaling. Functionally, we demonstrate that a signaling cascade from ICMT modification of KRAS to TAZ protein stability supports cancer cell self-renewal abilities in both in vitro and in vivo settings. In addition, studies using the proof-of-concept small molecule inhibitors of ICMT confirmed its role in regulating TAZ and self-renewal, demonstrating the potential utility of targeting ICMT to control aggressive KRAS-driven cancers.
Collapse
Affiliation(s)
- Tin Fan Chai
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore.,Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Kanjoormana Aryan Manu
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Patrick J Casey
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Mei Wang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore. .,Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore.
| |
Collapse
|
112
|
An L, Nie P, Chen M, Tang Y, Zhang H, Guan J, Cao Z, Hou C, Wang W, Zhao Y, Xu H, Jiao S, Zhou Z. MST4 kinase suppresses gastric tumorigenesis by limiting YAP activation via a non-canonical pathway. J Exp Med 2020; 217:e20191817. [PMID: 32271880 PMCID: PMC7971137 DOI: 10.1084/jem.20191817] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/08/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Hyperactivation of YAP has been commonly associated with tumorigenesis, and emerging evidence hints at multilayered Hippo-independent regulations of YAP. In this study, we identified a new MST4-YAP axis, which acts as a noncanonical Hippo signaling pathway that limits stress-induced YAP activation. MST4 kinase directly phosphorylated YAP at Thr83 to block its binding with importin α, therefore leading to YAP cytoplasmic retention and inactivation. Due to a consequential interplay between MST4-mediated YAP phospho-Thr83 signaling and the classical YAP phospho-Ser127 signaling, the phosphorylation level of YAP at Thr83 was correlated to that at Ser127. Mutation of T83E mimicking MST4-mediated alternative signaling restrained the activity of both wild-type YAP and its S127A mutant mimicking loss of classical Hippo signal. Depletion of MST4 in mice promoted gastric tumorigenesis with diminished Thr83 phosphorylation and hyperactivation of YAP. Moreover, loss of MST4-YAP signaling was associated with poor prognosis of human gastric cancer. Collectively, our study uncovered a noncanonical MST4-YAP signaling axis essential for suppressing gastric tumorigenesis.
Collapse
Affiliation(s)
- Liwei An
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Pingping Nie
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Min Chen
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yang Tang
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Hui Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Jingmin Guan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Zhifa Cao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Chun Hou
- The School of Life Science and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Wenjia Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Huixiong Xu
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Shi Jiao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Zhaocai Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
- The School of Life Science and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| |
Collapse
|
113
|
Zhu H, Yan F, Yuan T, Qian M, Zhou T, Dai X, Cao J, Ying M, Dong X, He Q, Yang B. USP10 Promotes Proliferation of Hepatocellular Carcinoma by Deubiquitinating and Stabilizing YAP/TAZ. Cancer Res 2020; 80:2204-2216. [PMID: 32217697 DOI: 10.1158/0008-5472.can-19-2388] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/28/2020] [Accepted: 03/17/2020] [Indexed: 11/16/2022]
Abstract
Yes-associated protein (YAP) and its paralog, transcriptional coactivator with PDZ-binding motif (TAZ), play pivotal roles in promoting the progression of hepatocellular carcinoma. However, the regulatory mechanism underpinning aberrant activation of YAP/TAZ in hepatocellular carcinoma remains unclear. In this study, we globally profiled the contribution of deubiquitinating enzymes (DUB) to both transcriptional activity and protein abundance of YAP/TAZ in hepatocellular carcinoma models and identified ubiquitin-specific peptidase 10 (USP10) as a potent YAP/TAZ-activating DUB. Mechanistically, USP10 directly interacted with and stabilized YAP/TAZ by reverting their proteolytic ubiquitination. Depletion of USP10 enhanced polyubiquitination of YAP/TAZ, promoted their proteasomal degradation, and ultimately arrested the proliferation of hepatocellular carcinoma in vitro and in vivo. Expression levels of USP10 positively correlated with the abundance of YAP/TAZ in hepatocellular carcinoma patient samples as well as in N-nitrosodiethylamine (DEN)-induced liver cancer mice models. Collectively, this study establishes the causal link between USP10 and hyperactivated YAP/TAZ in hepatocellular carcinoma cells and provides a rationale for potential therapeutic interventions in the treatment of patients with hepatocellular carcinoma harboring a high level of YAP/TAZ. SIGNIFICANCE: These findings identify USP10 as a DUB of YAP/TAZ and its role in hepatocellular carcinoma progression, which may serve as a potential therapeutic target for hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fangjie Yan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Tao Yuan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meijia Qian
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Tianyi Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoyang Dai
- Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaowu Dong
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
114
|
Zhou S, Liu S, Lin C, Li Y, Ye L, Wu X, Jian Y, Dai Y, Ouyang Y, Zhao L, Liu M, Song L, Xi M. TRIB3 confers radiotherapy resistance in esophageal squamous cell carcinoma by stabilizing TAZ. Oncogene 2020; 39:3710-3725. [PMID: 32157210 DOI: 10.1038/s41388-020-1245-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023]
Abstract
Radioresistance becomes the major obstacle to reduce tumor recurrence and improve prognosis in the treatment of esophageal squamous cell carcinoma (ESCC). Thus new strategies for radioresistant ESCC are urgently needed. Herein, we reported that tribbles pseudokinase 3 (TRIB3) serves as a key regulator of radioresistance in ESCC. TRIB3 is overexpressed in ESCC tissues and cell lines. High expression of TRIB3 significantly correlates with poor radiotherapy response and prognosis in ESCC patients. Upregulation of TRIB3 in ESCC cells conferred radioresistance in vitro and in vivo by interacting with TAZ thus impeding β-TrCP-mediated TAZ ubiquitination and degradation. Conversely, silencing TRIB3 sensitized ESCC cells to ionizing radiation. More importantly, TRIB3 was significantly correlated with TAZ activation in ESCC biopsies, and patients with high expression of both TRIB3 and TAZ suffered the worst radiotherapy response and survival. Our study uncovers the critical mechanism of ESCC resistance to radiotherapy, and provides a new pharmacological opportunity for developing a mechanism-based strategy to eliminate radioresistant ESCC in clinical practice.
Collapse
Affiliation(s)
- Sha Zhou
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Shiliang Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Chuyong Lin
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Yue Li
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Liping Ye
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Xianqiu Wu
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Yunting Jian
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Yuhu Dai
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-senUniversity, Guangzhou, 510080, China
| | - Ying Ouyang
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Lei Zhao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Mengzhong Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Libing Song
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Mian Xi
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| |
Collapse
|
115
|
Gu ZL, Huang J, Zhen LL. Knockdown of otubain 2 inhibits liver cancer cell growth by suppressing NF-κB signaling. Kaohsiung J Med Sci 2020; 36:399-404. [PMID: 32003539 DOI: 10.1002/kjm2.12187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
The deubiquitinase otubain 2 (OTUB2) has been reported to play significant roles in the tumorigenesis of several cancers, but the role of OTUB2 in liver cancer is not investigated yet. In the present study, OTUB2 was found significantly upregulated in liver cancer tumor tissues and cell lines, and elevated OTUB2 indicated as a negative index for the overall survival of liver cancer patients. At the cellular level, knockdown of OTUB2 markedly inhibited liver cancer cell growth. Our further investigations revealed that knockdown of OTUB2 significantly suppressed NF-κB-driving luciferase activity, and markedly inhibited the phosphorylation of NF-κB p65 in liver cancer cells, which indicated that OTUB2 mediated liver cancer cell growth by regulating NF-κB signaling. Additionally, we found that liver cancer cell lines harboring higher OTUB2 expression were more sensitive to NF-κB inhibitors, and overexpression of OTUB2 could significantly reduce the antitumor effects of NF-κB inhibitors in liver cancer cells. This study indicated that OTUB2 could be a promising target for the treatment of liver cancer in the future.
Collapse
Affiliation(s)
- Zhen-Lin Gu
- Department of Interventional Radiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Jing Huang
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Lin-Lin Zhen
- Department of Breast and Thyroid Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| |
Collapse
|
116
|
Wan Q, Chen Q, Cai D, Zhao Y, Wu X. OTUB2 Promotes Homologous Recombination Repair Through Stimulating Rad51 Expression in Endometrial Cancer. Cell Transplant 2020; 29:963689720931433. [PMID: 32830515 PMCID: PMC7563931 DOI: 10.1177/0963689720931433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022] Open
Abstract
Genetic instability, raised from dysregulation of DNA repair, is involved in tumor development. OTUB2 (ovarian tumor domain protease domain-containing ubiquitin aldehyde-binding protein 2), which is responsible for DNA double-strand break (DSB), is implicated in carcinogenesis of various tumors. The effect of OTUB2 on endometrial cancer progression was then investigated. First, OTUB2 was found to be upregulated in endometrial cancer tissues and cell lines, and was closely associated with overall survival of endometrial cancer patients. Cell Counting Kit-8 and flow cytometry assay results revealed that overexpression of OTUB2 enhanced cell viability of endometrial cancer cells, while knockdown of OTUB2 inhibited cell viability. Moreover, as demonstrated by promoting cell viability and suppression of cell apoptosis, cisplatin-induced cell damage was reversed by OTUB2. Mechanistically, OTUB2 could activate Yes-associated protein/transcriptional co-activator with PDZ-binding motif (TAZ) to promote homologous recombination repair via depletion of γH2AX (phosphorylation of histone H2AX) and accumulation of Rad51. In vivo xenograft model also showed that silence of OTUB2 suppressed the growth of endometrial cancer and increased tumor sensitivity to antitumor drugs. In conclusion, OTUB2 promoted homologous recombination repair in endometrial cancer via YAP/TAZ-mediated Rad51 expression, providing a potential therapeutic target for endometrial cancer.
Collapse
Affiliation(s)
- Qiuyuan Wan
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an City, Shaanxi Province, PR China
| | - Qing Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an City, Shaanxi Province, PR China
| | - Dongge Cai
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an City, Shaanxi Province, PR China
| | - Yan Zhao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an City, Shaanxi Province, PR China
| | - Xiaoling Wu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an City, Shaanxi Province, PR China
| |
Collapse
|
117
|
The function and regulation of OTU deubiquitinases. Front Med 2019; 14:542-563. [PMID: 31884527 DOI: 10.1007/s11684-019-0734-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
Post-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including cell division, immune responses, and apoptosis. Ubiquitin-mediated control over these processes can be reversed by deubiquitinases (DUBs), which remove ubiquitin from target proteins and depolymerize polyubiquitin chains. Recently, much progress has been made in the DUBs. In humans, the ovarian tumor protease (OTU) subfamily of DUBs includes 16 members, most of which mediate cell signaling cascades. These OTUs show great variation in structure and function, which display a series of mechanistic features. In this review, we provide a comprehensive analysis of current progress in character, structure and function of OTUs, such as the substrate specificity and catalytic activity regulation. Then we discuss the relationship between some diseases and OTUs. Finally, we summarize the structure of viral OTUs and their function in immune escape and viral survival. Despite the challenges, OTUs might provide new therapeutic targets, due to their involvement in key regulatory processes.
Collapse
|
118
|
Breast Cancer Stem Cells as Drivers of Tumor Chemoresistance, Dormancy and Relapse: New Challenges and Therapeutic Opportunities. Cancers (Basel) 2019; 11:cancers11101569. [PMID: 31619007 PMCID: PMC6826533 DOI: 10.3390/cancers11101569] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most frequent cancer among women worldwide. Therapeutic strategies to prevent or treat metastatic disease are still inadequate although great progress has been made in treating early-stage breast cancer. Cancer stem-like cells (CSCs) that are endowed with high plasticity and self-renewal properties have been shown to play a key role in breast cancer development, progression, and metastasis. A subpopulation of CSCs that combines tumor-initiating capacity and a dormant/quiescent/slow cycling status is present throughout the clinical history of breast cancer patients. Dormant/quiescent/slow cycling CSCs are a key component of tumor heterogeneity and they are responsible for chemoresistance, tumor migration, and metastatic dormancy, defined as the ability of CSCs to survive in target organs and generate metastasis up to two decades after diagnosis. Understanding the strategies that are used by CSCs to resist conventional and targeted therapies, to interact with their niche, to escape immune surveillance, and finally to awaken from dormancy is of key importance to prevent and treat metastatic cancer. This review summarizes the current understanding of mechanisms involved in CSCs chemoresistance, dissemination, and metastasis in breast cancer, with a particular focus on dormant cells. Finally, we discuss how advancements in the detection, molecular understanding, and targeting of dormant CSCs will likely open new therapeutic avenues for breast cancer treatment.
Collapse
|
119
|
The role of DUBs in the post-translational control of cell migration. Essays Biochem 2019; 63:579-594. [DOI: 10.1042/ebc20190022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022]
Abstract
AbstractCell migration is a multifactorial/multistep process that requires the concerted action of growth and transcriptional factors, motor proteins, extracellular matrix remodeling and proteases. In this review, we focus on the role of transcription factors modulating Epithelial-to-Mesenchymal Transition (EMT-TFs), a fundamental process supporting both physiological and pathological cell migration. These EMT-TFs (Snail1/2, Twist1/2 and Zeb1/2) are labile proteins which should be stabilized to initiate EMT and provide full migratory and invasive properties. We present here a family of enzymes, the deubiquitinases (DUBs) which have a crucial role in counteracting polyubiquitination and proteasomal degradation of EMT-TFs after their induction by TGFβ, inflammatory cytokines and hypoxia. We also describe the DUBs promoting the stabilization of Smads, TGFβ receptors and other key proteins involved in transduction pathways controlling EMT.
Collapse
|
120
|
Zinc-Induced SUMOylation of Dynamin-Related Protein 1 Protects the Heart against Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1232146. [PMID: 31428220 PMCID: PMC6679852 DOI: 10.1155/2019/1232146] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/13/2019] [Indexed: 11/22/2022]
Abstract
Background Zinc plays a role in mitophagy and protects cardiomyocytes from ischemia/reperfusion injury. This study is aimed at investigating whether SUMOylation of Drp1 is involved in the protection of zinc ion on cardiac I/R injury. Methods Mouse hearts were subjected to 30 minutes of regional ischemia followed by 2 hours of reperfusion (ischemia/reoxygenation (I/R)). Infarct size and apoptosis were assessed. HL-1 cells were subjected to 24 hours of hypoxia and 6 hours of reoxygenation (hypoxia/reoxygenation (H/R)). Zinc was given 5 min before reperfusion for 30 min. SENP2 overexpression plasmid (Flag-SENP2), Drp1 mutation plasmid (Myc-Drp1 4KR), and SUMO1 siRNA were transfected into HL-1 cells for 48 h before hypoxia. Effects of zinc on SUMO family members were analyzed by Western blotting. SUMOylation of Drp1, apoptosis and the collapse of mitochondrial membrane potential (ΔΨm), and mitophagy were evaluated. Results Compared with the control, SUMO1 modification level of proteins in the H/R decreased, while this effect was reversed by zinc. In the setting of H/R, zinc attenuated myocardial apoptosis, which was reversed by SUMO1 siRNA. Similar effects were observed in SUMO1 KO mice exposed to H/R. In addition, the dynamin-related protein 1 (Drp1) is a target protein of SUMO1. The SUMOylation of Drp1 induced by zinc regulated mitophagy and contributed to the protective effect of zinc on H/R injury. Conclusions SUMOylation of Drp1 played an essential role in zinc-induced cardio protection against I/R injury. Our findings provide a promising therapeutic approach for acute myocardial I/R injury.
Collapse
|
121
|
Yan F, Qian M, He Q, Zhu H, Yang B. The posttranslational modifications of Hippo-YAP pathway in cancer. Biochim Biophys Acta Gen Subj 2019; 1864:129397. [PMID: 31306710 DOI: 10.1016/j.bbagen.2019.07.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Yes-associated protein (YAP) is a key effector of the Hippo pathway and is frequently dysregulated in aggressive human cancers. Aberrant YAP activation has emerged as an important driver of tumorigenesis, chemoresistance and metastasis. Since posttranslational modifications (PTMs) are pivotal modifiers that determine protein activation or subcellular localization, the malfunction of YAP due to dysregulated PTMs has been linked to various cancers. Collectively, although YAP has long been considered an "undruggable" transcription cofactor, its PTMs may be its "Achilles' heel". To provide theoretical support for developing small molecule inhibitors based on PTMs, in this review article, we summarize the current understanding of the impact of PTMs in regulating the Hippo-YAP pathway and further discuss potential therapeutic intervention. SCOPE OF REVIEW In our review, we summarize the known posttranslational modifications (PTMs) of YAP that dictate its protein stability, transcriptional activity and subcellular localization at different stages. Here, we clearly summarize the specific enzymes and sites involved in YAP PTMs and place additional focus on the consequences of PTM-modulated YAP activity and translocation. MAIN CONCLUSION PTMs of YAP play fundamental roles in controlling the protein abundance and function. Therefore, interfering with PTMs of YAP may contribute to solving the "undruggable" problem in YAP inhibition, thus providing new approaches for YAP-based cancer therapy. GENERAL SIGNIFICANCE Future studies that target corresponding PTM-related kinases/enzymes will provide new strategies for cancer therapy, particularly in tumors with YAP dysregulation.
Collapse
Affiliation(s)
- Fangjie Yan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meijia Qian
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
122
|
Mussell A, Frangou C, Zhang J. Regulation of the Hippo signaling pathway by deubiquitinating enzymes in cancer. Genes Dis 2019; 6:335-341. [PMID: 31832513 PMCID: PMC6888741 DOI: 10.1016/j.gendis.2019.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/04/2019] [Accepted: 06/18/2019] [Indexed: 12/30/2022] Open
Abstract
Regulation of the Hippo signaling pathway is essential for normal organ growth and tissue homeostasis. The proteins that act to regulate this pathway are important for ensuring proper function and cellular location. Deubiquitinases (DUBs) are a family of proteases that act upon many proteins. While ubiquitinases add ubiquitin and target proteins for degradation, DUBs act by removing ubiquitin (Ub) moieties. Changes in ubiquitin chain topology results in the stabilization of proteins, membrane trafficking, and the alteration of cellular localization. While the roles of these proteins have been well established in a cancer setting, their convergence in cancer is still under investigation. In this review, we discuss the roles that DUBs play in the regulation of the Hippo signaling pathway for homeostasis and disease.
Collapse
Affiliation(s)
- Ashley Mussell
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14261, USA
| | - Costa Frangou
- Harvard TH Chan School of Public Health, Molecular and Integrative Physiological Sciences, Boston, MA 02115, USA
| | - Jianmin Zhang
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14261, USA
| |
Collapse
|
123
|
Dumontet T, Sahut‐Barnola I, Dufour D, Lefrançois‐Martinez A, Berthon A, Montanier N, Ragazzon B, Djari C, Pointud J, Roucher‐Boulez F, Batisse‐Lignier M, Tauveron I, Bertherat J, Val P, Martinez A. Hormonal and spatial control of SUMOylation in the human and mouse adrenal cortex. FASEB J 2019; 33:10218-10230. [DOI: 10.1096/fj.201900557r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Typhanie Dumontet
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Isabelle Sahut‐Barnola
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Damien Dufour
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Anne‐Marie Lefrançois‐Martinez
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Annabel Berthon
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Nathanaëlle Montanier
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
- Service d'EndocrinologieCentre Hospitalier Régional (CHR)Hôpital de la Source Orléans France
| | - Bruno Ragazzon
- Institut CochinCentre National de la Recherche Scientifique (CNRS)INSERMUniversité Paris Descartes Paris France
| | - Cyril Djari
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Jean‐Christophe Pointud
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Florence Roucher‐Boulez
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
- Endocrinologie Moléculaire et Maladies RaresCHUUniversité Claude Bernard Lyon 1 Bron France
| | - Marie Batisse‐Lignier
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
- Service d'EndocrinologieFaculté de MédecineCentre Hospitalier Universitaire (CHU)Université Clermont‐Auvergne Clermont‐Ferrand France
| | - Igor Tauveron
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
- Service d'EndocrinologieFaculté de MédecineCentre Hospitalier Universitaire (CHU)Université Clermont‐Auvergne Clermont‐Ferrand France
| | - Jérôme Bertherat
- Institut CochinCentre National de la Recherche Scientifique (CNRS)INSERMUniversité Paris Descartes Paris France
- Centre Maladies Rares de la SurrénaleService d'EndocrinologieHôpital CochinAssistance Publique Hôpitaux de Paris Paris France
| | - Pierre Val
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Antoine Martinez
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| |
Collapse
|
124
|
LncRNA NORAD is repressed by the YAP pathway and suppresses lung and breast cancer metastasis by sequestering S100P. Oncogene 2019; 38:5612-5626. [PMID: 30967631 DOI: 10.1038/s41388-019-0812-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/19/2022]
Abstract
Metastasis is responsible for most cancer mortality, but its molecular mechanism has not been completely understood. In addition to coding genes and miRNAs, the contribution of long noncoding RNAs (lncRNAs) to tumor metastatic dissemination and the mechanisms controlling their expression are areas of intensive investigation. Here, we show that lncRNA NORAD is downregulated in lung and breast cancers, and that NORAD low expression in these cancer types is associated with lymph node metastasis and poor prognosis. NORAD is transcriptionally repressed by the Hippo pathway transducer YAP/TAZ-TEAD complex in conjunction with the action of NuRD complex. Functionally, NORAD elicits potent inhibitory effects on migration and invasion of multiple lung and breast cancer cell lines, and repression of NORAD expression participates in the migration- and invasion-stimulatory effects of the YAP pathway. Mechanistically, NORAD exploits its multiple repeated sequences to function as a multivalent platform for binding and sequestering S100P, thereby suppressing S100P-elicited pro-metastatic signaling network. Using cell and mouse models, we show that the S100P decoy function of NORAD suppresses lung and breast cancer migration, invasion, and metastasis. Together, our study identifies NORAD as a novel metastasis suppressor, elucidates its regulatory and functional mechanisms, and highlights its prognostic value.
Collapse
|