101
|
Zhou J, Gelot C, Pantelidou C, Li A, Yücel H, Davis RE, Farkkila A, Kochupurakkal B, Syed A, Shapiro GI, Tainer JA, Blagg BSJ, Ceccaldi R, D’Andrea AD. A first-in-class Polymerase Theta Inhibitor selectively targets Homologous-Recombination-Deficient Tumors. NATURE CANCER 2021; 2:598-610. [PMID: 34179826 PMCID: PMC8224818 DOI: 10.1038/s43018-021-00203-x] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA polymerase theta (POLθ) is synthetic lethal with Homologous Recombination (HR) deficiency and thus a candidate target for HR-deficient cancers. Through high-throughput small molecule screens we identified the antibiotic Novobiocin (NVB) as a specific POLθ inhibitor that selectively kills HR-deficient tumor cells in vitro and in vivo. NVB directly binds to the POLθ ATPase domain, inhibits its ATPase activity, and phenocopies POLθ depletion. NVB kills HR-deficient breast and ovarian tumors in GEMM, xenograft and PDX models. Increased POLθ levels predict NVB sensitivity, and BRCA-deficient tumor cells with acquired resistance to PARP inhibitors (PARPi) are sensitive to NVB in vitro and in vivo. Mechanistically, NVB-mediated cell death in PARPi-resistant cells arises from increased double-strand break end resection, leading to accumulation of single-strand DNA intermediates and non-functional RAD51 foci. Our results demonstrate that NVB may be useful alone or in combination with PARPi in treating HR-deficient tumors, including those with acquired PARPi resistance. (151/150).
Collapse
Affiliation(s)
- Jia Zhou
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Camille Gelot
- Inserm U830, PSL Research University, Institut Curie, 75005, Paris, France
| | - Constantia Pantelidou
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Adam Li
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Hatice Yücel
- Inserm U830, PSL Research University, Institut Curie, 75005, Paris, France
| | - Rachel E. Davis
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Anniina Farkkila
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Bose Kochupurakkal
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Aleem Syed
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, USA
| | - John A. Tainer
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Brian S. J. Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Raphael Ceccaldi
- Inserm U830, PSL Research University, Institut Curie, 75005, Paris, France.,Corresponding authors: Alan D. D’Andrea, M.D., Director, Susan F. Smith Center for Women’s Cancers (SFSCWC), Director, Center for DNA Damage and Repair, Dana-Farber Cancer Institute, The Fuller-American Cancer Society Professor, Harvard Medical School, Phone: 617-632-2080, , Raphael Ceccaldi, Institut Curie, 75005, Paris, France, Phone: +33 (0)1 56 24 69 49,
| | - Alan D. D’Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, USA.,Susan F. Smith Center for Women’s Cancers, Dana-Farber Cancer Institute, Boston, MA, USA.,Corresponding authors: Alan D. D’Andrea, M.D., Director, Susan F. Smith Center for Women’s Cancers (SFSCWC), Director, Center for DNA Damage and Repair, Dana-Farber Cancer Institute, The Fuller-American Cancer Society Professor, Harvard Medical School, Phone: 617-632-2080, , Raphael Ceccaldi, Institut Curie, 75005, Paris, France, Phone: +33 (0)1 56 24 69 49,
| |
Collapse
|
102
|
Kyca T, Pavlíková L, Boháčová V, Mišák A, Poturnayová A, Breier A, Sulová Z, Šereš M. Insight into Bortezomib Focusing on Its Efficacy against P-gp-Positive MDR Leukemia Cells. Int J Mol Sci 2021; 22:ijms22115504. [PMID: 34071136 PMCID: PMC8197160 DOI: 10.3390/ijms22115504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
In this paper, we compared the effects of bortezomib on L1210 (S) cells with its effects on P-glycoprotein (P-gp)-positive variant S cells, which expressed P-gp either after selection with vincristine (R cells) or after transfection with a human gene encoding P-gp (T cells). Bortezomib induced the death-related effects in the S, R, and T cells at concentrations not exceeding 10 nM. Bortezomib-induced cell cycle arrest in the G2/M phase was more pronounced in the S cells than in the R or T cells and was related to the expression levels of cyclins, cyclin-dependent kinases, and their inhibitors. We also observed an increase in the level of polyubiquitinated proteins (via K48-linkage) and a decrease in the gene expression of some deubiquitinases after treatment with bortezomib. Resistant cells expressed higher levels of genes encoding 26S proteasome components and the chaperone HSP90, which is involved in 26S proteasome assembly. After 4 h of preincubation, bortezomib induced a more pronounced depression of proteasome activity in S cells than in R or T cells. However, none of these changes alone or in combination sufficiently suppressed the sensitivity of R or T cells to bortezomib, which remained at a level similar to that of S cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Bortezomib/pharmacology
- Cell Cycle/drug effects
- Cell Division
- Cell Line, Tumor
- Deubiquitinating Enzymes
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Fluoresceins/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, cdc/drug effects
- Humans
- Inhibitory Concentration 50
- Leukemia, Lymphoid/genetics
- Leukemia, Lymphoid/metabolism
- Leukemia, Lymphoid/pathology
- Mice
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Protease Inhibitors/pharmacology
- Proteasome Endopeptidase Complex/drug effects
- Proteasome Endopeptidase Complex/metabolism
- RNA, Messenger/biosynthesis
- RNA, Neoplasm/biosynthesis
- Recombinant Proteins/metabolism
- Transcription, Genetic/drug effects
- Ubiquitinated Proteins/metabolism
- Vincristine/pharmacology
Collapse
Affiliation(s)
- Tomáš Kyca
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
| | - Lucia Pavlíková
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Viera Boháčová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
| | - Anton Mišák
- Institute for Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia;
| | - Alexandra Poturnayová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava 1, Slovakia
- Correspondence: (A.B.); (Z.S.); (M.Š.); Tel.: +421-2-593-25-514 or +421-918-674-514 (A.B.); +421-2-3229-5510 (Z.S.)
| | - Zdena Sulová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
- Correspondence: (A.B.); (Z.S.); (M.Š.); Tel.: +421-2-593-25-514 or +421-918-674-514 (A.B.); +421-2-3229-5510 (Z.S.)
| | - Mário Šereš
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
- Correspondence: (A.B.); (Z.S.); (M.Š.); Tel.: +421-2-593-25-514 or +421-918-674-514 (A.B.); +421-2-3229-5510 (Z.S.)
| |
Collapse
|
103
|
Sharp MF, Bythell-Douglas R, Deans AJ, Crismani W. The Fanconi anemia ubiquitin E3 ligase complex as an anti-cancer target. Mol Cell 2021; 81:2278-2289. [PMID: 33984284 DOI: 10.1016/j.molcel.2021.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/27/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Agents that induce DNA damage can cure some cancers. However, the side effects of chemotherapy are severe because of the indiscriminate action of DNA-damaging agents on both healthy and cancerous cells. DNA repair pathway inhibition provides a less toxic and targeted alternative to chemotherapy. A compelling DNA repair target is the Fanconi anemia (FA) E3 ligase core complex due to its critical-and likely singular-role in the efficient removal of specific DNA lesions. FA pathway inactivation has been demonstrated to specifically kill some types of cancer cells without the addition of exogenous DNA damage, including cells that lack BRCA1, BRCA2, ATM, or functionally related genes. In this perspective, we discuss the genetic and biochemical evidence in support of the FA core complex as a compelling drug target for cancer therapy. In particular, we discuss the genetic, biochemical, and structural data that could rapidly advance our capacity to identify and implement the use of FA core complex inhibitors in the clinic.
Collapse
Affiliation(s)
- Michael F Sharp
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC, Australia
| | - Wayne Crismani
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC, Australia.
| |
Collapse
|
104
|
Tye S, Ronson GE, Morris JR. A fork in the road: Where homologous recombination and stalled replication fork protection part ways. Semin Cell Dev Biol 2021; 113:14-26. [PMID: 32653304 PMCID: PMC8082280 DOI: 10.1016/j.semcdb.2020.07.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022]
Abstract
In response to replication hindrances, DNA replication forks frequently stall and are remodelled into a four-way junction. In such a structure the annealed nascent strand is thought to resemble a DNA double-strand break and remodelled forks are vulnerable to nuclease attack by MRE11 and DNA2. Proteins that promote the recruitment, loading and stabilisation of RAD51 onto single-stranded DNA for homology search and strand exchange in homologous recombination (HR) repair and inter-strand cross-link repair also act to set up RAD51-mediated protection of nascent DNA at stalled replication forks. However, despite the similarities of these pathways, several lines of evidence indicate that fork protection is not simply analogous to the RAD51 loading step of HR. Protection of stalled forks not only requires separate functions of a number of recombination proteins, but also utilises nucleases important for the resection steps of HR in alternative ways. Here we discuss how fork protection arises and how its differences with HR give insights into the differing contexts of these two pathways.
Collapse
Affiliation(s)
- Stephanie Tye
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - George E Ronson
- University of Birmingham, College of Medical Dental Schools, Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK
| | - Joanna R Morris
- University of Birmingham, College of Medical Dental Schools, Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
105
|
Dharadhar S, van Dijk WJ, Scheffers S, Fish A, Sixma TK. Insert L1 is a central hub for allosteric regulation of USP1 activity. EMBO Rep 2021; 22:e51749. [PMID: 33619839 PMCID: PMC8024992 DOI: 10.15252/embr.202051749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/22/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
During DNA replication, the deubiquitinating enzyme USP1 limits the recruitment of translesion polymerases by removing ubiquitin marks from PCNA to allow specific regulation of the translesion synthesis (TLS) pathway. USP1 activity depends on an allosteric activator, UAF1, and this is tightly controlled. In comparison to paralogs USP12 and USP46, USP1 contains three defined inserts and lacks the second WDR20-mediated activation step. Here we show how inserts L1 and L3 together limit intrinsic USP1 activity and how this is relieved by UAF1. Intriguingly, insert L1 also conveys substrate-dependent increase in USP1 activity through DNA and PCNA interactions, in a process that is independent of UAF1-mediated activation. This study establishes insert L1 as an important regulatory hub within USP1 necessary for both substrate-mediated activity enhancement and allosteric activation upon UAF1 binding.
Collapse
Affiliation(s)
- Shreya Dharadhar
- Division of Biochemistry and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Willem J van Dijk
- Division of Biochemistry and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Serge Scheffers
- Division of Biochemistry and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Alexander Fish
- Division of Biochemistry and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
106
|
Patel PS, Algouneh A, Hakem R. Exploiting synthetic lethality to target BRCA1/2-deficient tumors: where we stand. Oncogene 2021; 40:3001-3014. [PMID: 33716297 DOI: 10.1038/s41388-021-01744-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
The principle of synthetic lethality, which refers to the loss of viability resulting from the disruption of two genes, which, individually, do not cause lethality, has become an attractive target approach due to the development and clinical success of Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi). In this review, we present the most recent findings on the use of PARPi in the clinic, which are currently approved for second-line therapy for advanced ovarian and breast cancer associated with mutations of BRCA1 or BRCA2 (BRCA1/2) genes. PARPi efficacy, however, appears to be limited by acquired and inherent resistance, highlighting the need for alternative and synergistic targets to eliminate these tumors. Here, we explore other identified synthetic lethal interactors of BRCA1/2, including DNA polymerase theta (POLQ), Fanconi anemia complementation group D2 (FANDC2), radiation sensitive 52 (RAD52), Flap structure-specific endonuclease 1 (FEN1), and apurinic/apyrimidinic endodeoxyribonuclease 2 (APE2), as well as other protein and nonprotein targets, for BRCA1/2-mutated cancers and their implications for future therapies. A wealth of information now exists for phenotypic and functional characterization of these novel synthetic lethal interactors of BRCA1/2, and leveraging these findings can pave the way for the development of new targeted therapies for patients suffering from these cancers.
Collapse
Affiliation(s)
- Parasvi S Patel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Arash Algouneh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Razq Hakem
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
107
|
Structural basis of FANCD2 deubiquitination by USP1-UAF1. Nat Struct Mol Biol 2021; 28:356-364. [PMID: 33795880 DOI: 10.1038/s41594-021-00576-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Abstract
Ubiquitin-specific protease 1 (USP1) acts together with the cofactor UAF1 during DNA repair processes to specifically remove monoubiquitin signals. One substrate of the USP1-UAF1 complex is the monoubiquitinated FANCI-FANCD2 heterodimer, which is involved in the repair of DNA interstrand crosslinks via the Fanconi anemia pathway. Here we determine structures of human USP1-UAF1 with and without ubiquitin and bound to monoubiquitinated FANCI-FANCD2. The crystal structures of USP1-UAF1 reveal plasticity in USP1 and key differences to USP12-UAF1 and USP46-UAF1, two related proteases. A cryo-EM reconstruction of USP1-UAF1 in complex with monoubiquitinated FANCI-FANCD2 highlights a highly orchestrated deubiquitination process, with USP1-UAF1 driving conformational changes in the substrate. An extensive interface between UAF1 and FANCI, confirmed by mutagenesis and biochemical assays, provides a molecular explanation for the requirement of both proteins, despite neither being directly involved in catalysis. Overall, our data provide molecular details of USP1-UAF1 regulation and substrate recognition.
Collapse
|
108
|
Quinet A, Tirman S, Cybulla E, Meroni A, Vindigni A. To skip or not to skip: choosing repriming to tolerate DNA damage. Mol Cell 2021; 81:649-658. [PMID: 33515486 PMCID: PMC7935405 DOI: 10.1016/j.molcel.2021.01.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/21/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Accurate DNA replication is constantly threatened by DNA lesions arising from endogenous and exogenous sources. Specialized DNA replication stress response pathways ensure replication fork progression in the presence of DNA lesions with minimal delay in fork elongation. These pathways broadly include translesion DNA synthesis, template switching, and replication fork repriming. Here, we discuss recent advances toward our understanding of the mechanisms that regulate the fine-tuned balance between these different replication stress response pathways. We also discuss the molecular pathways required to fill single-stranded DNA gaps that accumulate throughout the genome after repriming and the biological consequences of using repriming instead of other DNA damage tolerance pathways on genome integrity and cell fitness.
Collapse
Affiliation(s)
- Annabel Quinet
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephanie Tirman
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Emily Cybulla
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Alice Meroni
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
109
|
Li LY, Guan YD, Chen XS, Yang JM, Cheng Y. DNA Repair Pathways in Cancer Therapy and Resistance. Front Pharmacol 2021; 11:629266. [PMID: 33628188 PMCID: PMC7898236 DOI: 10.3389/fphar.2020.629266] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/31/2020] [Indexed: 12/21/2022] Open
Abstract
DNA repair pathways are triggered to maintain genetic stability and integrity when mammalian cells are exposed to endogenous or exogenous DNA-damaging agents. The deregulation of DNA repair pathways is associated with the initiation and progression of cancer. As the primary anti-cancer therapies, ionizing radiation and chemotherapeutic agents induce cell death by directly or indirectly causing DNA damage, dysregulation of the DNA damage response may contribute to hypersensitivity or resistance of cancer cells to genotoxic agents and targeting DNA repair pathway can increase the tumor sensitivity to cancer therapies. Therefore, targeting DNA repair pathways may be a potential therapeutic approach for cancer treatment. A better understanding of the biology and the regulatory mechanisms of DNA repair pathways has the potential to facilitate the development of inhibitors of nuclear and mitochondria DNA repair pathways for enhancing anticancer effect of DNA damage-based therapy.
Collapse
Affiliation(s)
- Lan-Ya Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yi-di Guan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xi-Sha Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jin-Ming Yang
- Department of Cancer Biology and Toxicology, Department of Pharmacology, College of Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
110
|
Wu RA, Pellman DS, Walter JC. The Ubiquitin Ligase TRAIP: Double-Edged Sword at the Replisome. Trends Cell Biol 2021; 31:75-85. [PMID: 33317933 PMCID: PMC7856240 DOI: 10.1016/j.tcb.2020.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
In preparation for cell division, the genome must be copied with high fidelity. However, replisomes often encounter obstacles, including bulky DNA lesions caused by reactive metabolites and chemotherapeutics, as well as stable nucleoprotein complexes. Here, we discuss recent advances in our understanding of TRAIP, a replisome-associated E3 ubiquitin ligase that is mutated in microcephalic primordial dwarfism. In interphase, TRAIP helps replisomes overcome DNA interstrand crosslinks and DNA-protein crosslinks, whereas in mitosis it triggers disassembly of all replisomes that remain on chromatin. We describe a model to explain how TRAIP performs these disparate functions and how they help maintain genome integrity.
Collapse
Affiliation(s)
- R Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - David S Pellman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Howard Hughes Medical Institute, Cambridge, MA, 02139, USA.
| |
Collapse
|
111
|
Tirman S, Cybulla E, Quinet A, Meroni A, Vindigni A. PRIMPOL ready, set, reprime! Crit Rev Biochem Mol Biol 2021; 56:17-30. [PMID: 33179522 PMCID: PMC7906090 DOI: 10.1080/10409238.2020.1841089] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
DNA replication forks are constantly challenged by DNA lesions induced by endogenous and exogenous sources. DNA damage tolerance mechanisms ensure that DNA replication continues with minimal effects on replication fork elongation either by using specialized DNA polymerases, which have the ability to replicate through the damaged template, or by skipping the damaged DNA, leaving it to be repaired after replication. These mechanisms are evolutionarily conserved in bacteria, yeast, and higher eukaryotes, and are paramount to ensure timely and faithful duplication of the genome. The Primase and DNA-directed Polymerase (PRIMPOL) is a recently discovered enzyme that possesses both primase and polymerase activities. PRIMPOL is emerging as a key player in DNA damage tolerance, particularly in vertebrate and human cells. Here, we review our current understanding of the function of PRIMPOL in DNA damage tolerance by focusing on the structural aspects that define its dual enzymatic activity, as well as on the mechanisms that control its chromatin recruitment and expression levels. We also focus on the latest findings on the mitochondrial and nuclear functions of PRIMPOL and on the impact of loss of these functions on genome stability and cell survival. Defining the function of PRIMPOL in DNA damage tolerance is becoming increasingly important in the context of human disease. In particular, we discuss recent evidence pointing at the PRIMPOL pathway as a novel molecular target to improve cancer cell response to DNA-damaging chemotherapy and as a predictive parameter to stratify patients in personalized cancer therapy.
Collapse
Affiliation(s)
- Stephanie Tirman
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Emily Cybulla
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Annabel Quinet
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
| | - Alice Meroni
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
| |
Collapse
|
112
|
Färkkilä A, Rodríguez A, Oikkonen J, Gulhan DC, Nguyen H, Domínguez J, Ramos S, Mills CE, Pérez-Villatoro F, Lazaro JB, Zhou J, Clairmont CS, Moreau LA, Park PJ, Sorger PK, Hautaniemi S, Frias S, D'Andrea AD. Heterogeneity and Clonal Evolution of Acquired PARP Inhibitor Resistance in TP53- and BRCA1-Deficient Cells. Cancer Res 2021; 81:2774-2787. [PMID: 33514515 DOI: 10.1158/0008-5472.can-20-2912] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/17/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022]
Abstract
Homologous recombination (HR)-deficient cancers are sensitive to poly-ADP ribose polymerase inhibitors (PARPi), which have shown clinical efficacy in the treatment of high-grade serous cancers (HGSC). However, the majority of patients will relapse, and acquired PARPi resistance is emerging as a pressing clinical problem. Here we generated seven single-cell clones with acquired PARPi resistance derived from a PARPi-sensitive TP53 -/- and BRCA1 -/- epithelial cell line generated using CRISPR/Cas9. These clones showed diverse resistance mechanisms, and some clones presented with multiple mechanisms of resistance at the same time. Genomic analysis of the clones revealed unique transcriptional and mutational profiles and increased genomic instability in comparison with a PARPi-sensitive cell line. Clonal evolutionary analyses suggested that acquired PARPi resistance arose via clonal selection from an intrinsically unstable and heterogenous cell population in the sensitive cell line, which contained preexisting drug-tolerant cells. Similarly, clonal and spatial heterogeneity in tumor biopsies from a clinical patient with BRCA1-mutant HGSC with acquired PARPi resistance was observed. In an imaging-based drug screening, the clones showed heterogenous responses to targeted therapeutic agents, indicating that not all PARPi-resistant clones can be targeted with just one therapy. Furthermore, PARPi-resistant clones showed mechanism-dependent vulnerabilities to the selected agents, demonstrating that a deeper understanding on the mechanisms of resistance could lead to improved targeting and biomarkers for HGSC with acquired PARPi resistance. SIGNIFICANCE: This study shows that BRCA1-deficient cells can give rise to multiple genomically and functionally heterogenous PARPi-resistant clones, which are associated with various vulnerabilities that can be targeted in a mechanism-specific manner.
Collapse
Affiliation(s)
- Anniina Färkkilä
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Research Program in Systems Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Alfredo Rodríguez
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jaana Oikkonen
- Research Program in Systems Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | - Huy Nguyen
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Julieta Domínguez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Sandra Ramos
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, México
| | - Caitlin E Mills
- Laboratory of Systems Pharmacology, Harvard Medical School, Massachusetts
| | - Fernando Pérez-Villatoro
- Research Program in Systems Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jean-Bernard Lazaro
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jia Zhou
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Connor S Clairmont
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Lisa A Moreau
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Massachusetts
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sara Frias
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México.,Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, México
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
113
|
Rodríguez A, Zhang K, Färkkilä A, Filiatrault J, Yang C, Velázquez M, Furutani E, Goldman DC, García de Teresa B, Garza-Mayén G, McQueen K, Sambel LA, Molina B, Torres L, González M, Vadillo E, Pelayo R, Fleming WH, Grompe M, Shimamura A, Hautaniemi S, Greenberger J, Frías S, Parmar K, D'Andrea AD. MYC Promotes Bone Marrow Stem Cell Dysfunction in Fanconi Anemia. Cell Stem Cell 2021; 28:33-47.e8. [PMID: 32997960 PMCID: PMC7796920 DOI: 10.1016/j.stem.2020.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/11/2020] [Accepted: 09/08/2020] [Indexed: 01/08/2023]
Abstract
Bone marrow failure (BMF) in Fanconi anemia (FA) patients results from dysfunctional hematopoietic stem and progenitor cells (HSPCs). To identify determinants of BMF, we performed single-cell transcriptome profiling of primary HSPCs from FA patients. In addition to overexpression of p53 and TGF-β pathway genes, we identified high levels of MYC expression. We correspondingly observed coexistence of distinct HSPC subpopulations expressing high levels of TP53 or MYC in FA bone marrow (BM). Inhibiting MYC expression with the BET bromodomain inhibitor (+)-JQ1 reduced the clonogenic potential of FA patient HSPCs but rescued physiological and genotoxic stress in HSPCs from FA mice, showing that MYC promotes proliferation while increasing DNA damage. MYC-high HSPCs showed significant downregulation of cell adhesion genes, consistent with enhanced egress of FA HSPCs from bone marrow to peripheral blood. We speculate that MYC overexpression impairs HSPC function in FA patients and contributes to exhaustion in FA bone marrow.
Collapse
Affiliation(s)
- Alfredo Rodríguez
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Laboratorio de Citogenética, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Kaiyang Zhang
- Research Program in Systems Oncology, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Anniina Färkkilä
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Research Program in Systems Oncology, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Jessica Filiatrault
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Chunyu Yang
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Martha Velázquez
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Elissa Furutani
- Dana Farber and Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02115, USA
| | - Devorah C Goldman
- Oregon Stem Cell Center, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | | | - Gilda Garza-Mayén
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Kelsey McQueen
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Larissa A Sambel
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Bertha Molina
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Leda Torres
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Marisol González
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Eduardo Vadillo
- Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, Centro Médico Nacional, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Rosana Pelayo
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla 74360, Mexico
| | - William H Fleming
- Oregon Stem Cell Center, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Markus Grompe
- Oregon Stem Cell Center, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Akiko Shimamura
- Dana Farber and Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Joel Greenberger
- Department of Radiation Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Sara Frías
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Kalindi Parmar
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
114
|
Conti BA, Smogorzewska A. Mechanisms of direct replication restart at stressed replisomes. DNA Repair (Amst) 2020; 95:102947. [PMID: 32853827 PMCID: PMC7669714 DOI: 10.1016/j.dnarep.2020.102947] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 02/09/2023]
Affiliation(s)
- Brooke A Conti
- Laboratory of Genome Maintenance, The Rockefeller University, New York 10065, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York 10065, USA.
| |
Collapse
|
115
|
Li F, Kozono D, Deraska P, Branigan T, Dunn C, Zheng XF, Parmar K, Nguyen H, DeCaprio J, Shapiro GI, Chowdhury D, D'Andrea AD. CHK1 Inhibitor Blocks Phosphorylation of FAM122A and Promotes Replication Stress. Mol Cell 2020; 80:410-422.e6. [PMID: 33108758 DOI: 10.1016/j.molcel.2020.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/14/2020] [Accepted: 10/04/2020] [Indexed: 12/22/2022]
Abstract
While effective anti-cancer drugs targeting the CHK1 kinase are advancing in the clinic, drug resistance is rapidly emerging. Here, we demonstrate that CRISPR-mediated knockout of the little-known gene FAM122A/PABIR1 confers cellular resistance to CHK1 inhibitors (CHK1is) and cross-resistance to ATR inhibitors. Knockout of FAM122A results in activation of PP2A-B55α, a phosphatase that dephosphorylates the WEE1 protein and rescues WEE1 from ubiquitin-mediated degradation. The resulting increase in WEE1 protein expression reduces replication stress, activates the G2/M checkpoint, and confers cellular resistance to CHK1is. Interestingly, in tumor cells with oncogene-driven replication stress, CHK1 can directly phosphorylate FAM122A, leading to activation of the PP2A-B55α phosphatase and increased WEE1 expression. A combination of a CHK1i plus a WEE1 inhibitor can overcome CHK1i resistance of these tumor cells, thereby enhancing anti-cancer activity. The FAM122A expression level in a tumor cell can serve as a useful biomarker for predicting CHK1i sensitivity or resistance.
Collapse
Affiliation(s)
- Feng Li
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David Kozono
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Peter Deraska
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Timothy Branigan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 01115
| | - Connor Dunn
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Xiao-Feng Zheng
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kalindi Parmar
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Huy Nguyen
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - James DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 01115
| | - Geoffrey I Shapiro
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 01115; Early Drug Development Center, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
116
|
Niu Z, Li X, Feng S, Huang Q, Zhuang T, Yan C, Qian H, Ding Y, Zhu J, Xu W. The deubiquitinating enzyme USP1 modulates ERα and modulates breast cancer progression. J Cancer 2020; 11:6992-7000. [PMID: 33123289 PMCID: PMC7591989 DOI: 10.7150/jca.50477] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/27/2020] [Indexed: 12/27/2022] Open
Abstract
Breast cancer is one of the most common malignancies worldwide, while the luminal types (ERα positive) accounts for two third of all breast cancer cases. Although ERα positive breast cancer could be effective controlled by endocrine therapy, most of the patients will develop endocrine resistance, which becomes a headache clinical issue for breast cancer field. Endocrine resistance could be caused by multiple pathway disorders, the dys-regulation of ERα signaling might be a critical factor, which makes it urgent and important to reveal the potential molecular mechanism of ERα signaling. In our current study, we identified a new deubiquitination enzyme USP1 through screening the whole DUB (Deubiquitinases) siRNA library. The expression of USP1 is elevated in human breast cancer compared with normal mammary tissues. Importantly, USP1 expression levels are specially correlated with poor survival in ERα positive patients. USP1 depletion inhibited breast cancer cell progression and ERα signaling activity. Immuno-precipitation assays indicate that USP1 associates with ERα and promotes its stability possibly via inhibiting ERα K48-linked poly-ubiquitination. In conclusion, our data implicate a non-genomic mechanism by USP1 via stabilizing ERα protein controls ERα target gene expression linked to breast cancer progression.
Collapse
Affiliation(s)
- Zhiguo Niu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212000, China.,Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Xin Li
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Suyin Feng
- Department of Neurosurgery, Affiliated Hospital of Jiangnan University, 200 Huihe Road, Wuxi, 214000, Jiangsu, China
| | - Qingsong Huang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Ting Zhuang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Cheng Yan
- School of Medicine, Xinxiang University, Xinxiang, 453003 Henan P.R. China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Yinlu Ding
- Department of general surgery, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China, 250033
| | - Jian Zhu
- Department of general surgery, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China, 250033.,Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, 453000, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| |
Collapse
|
117
|
Sharp MF, Murphy VJ, Twest SV, Tan W, Lui J, Simpson KJ, Deans AJ, Crismani W. Methodology for the identification of small molecule inhibitors of the Fanconi Anaemia ubiquitin E3 ligase complex. Sci Rep 2020; 10:7959. [PMID: 32409752 PMCID: PMC7224301 DOI: 10.1038/s41598-020-64868-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022] Open
Abstract
DNA inter-strand crosslinks (ICLs) threaten genomic stability by creating a physical barrier to DNA replication and transcription. ICLs can be caused by endogenous reactive metabolites or from chemotherapeutics. ICL repair in humans depends heavily on the Fanconi Anaemia (FA) pathway. A key signalling step of the FA pathway is the mono-ubiquitination of Fanconi Anaemia Complementation Group D2 (FANCD2), which is achieved by the multi-subunit E3 ligase complex. FANCD2 mono-ubiquitination leads to the recruitment of DNA repair proteins to the site of the ICL. The loss of FANCD2 mono-ubiquitination is a common clinical feature of FA patient cells. Therefore, molecules that restore FANCD2 mono-ubiquitination could lead to a potential drug for the management of FA. On the other hand, in some cancers, FANCD2 mono-ubiquitination has been shown to be essential for cell survival. Therefore, inhibition of FANCD2 mono-ubiquitination represents a possible therapeutic strategy for cancer specific killing. We transferred an 11-protein FANCD2 mono-ubiquitination assay to a high-throughput format. We screened 9,067 compounds for both activation and inhibition of the E3 ligase complex. The use of orthogonal assays revealed that candidate compounds acted via non-specific mechanisms. However, our high-throughput biochemical assays demonstrate the feasibility of using sophisticated and robust biochemistry to screen for small molecules that modulate a key step in the FA pathway. The future identification of FA pathway modulators is anticipated to guide future medicinal chemistry projects with drug leads for human disease.
Collapse
Affiliation(s)
- Michael F Sharp
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia
| | - Vince J Murphy
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia
| | - Sylvie Van Twest
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia
| | - Winnie Tan
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia.,Department of Medicine (St. Vincent's Health), The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Jennii Lui
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Kaylene J Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Cancer Centre Department of Oncology, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Andrew J Deans
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia.,Department of Medicine (St. Vincent's Health), The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Wayne Crismani
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia. .,Department of Medicine (St. Vincent's Health), The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
118
|
Krais JJ, Johnson N. Ectopic RNF168 expression promotes break-induced replication-like DNA synthesis at stalled replication forks. Nucleic Acids Res 2020; 48:4298-4308. [PMID: 32182354 PMCID: PMC7192614 DOI: 10.1093/nar/gkaa154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/13/2020] [Accepted: 02/27/2020] [Indexed: 01/26/2023] Open
Abstract
The RNF168 E3 ubiquitin ligase is activated in response to double stranded DNA breaks (DSBs) where it mono-ubiquitinates γH2AX (ub-H2AX). RNF168 protein expression and ubiquitin signaling are finely regulated during the sensing, repair and resolution of DNA damage in order to avoid excessive spreading of ubiquitinated chromatin. Supra-physiological RNF168 protein expression levels have been shown to block DNA end resection at DSBs and increase PARP inhibitor (PARPi) sensitivity. In this study, we examined the impact of ectopic RNF168 overexpression on hydroxyurea (HU)-induced stalled replication forks in the setting of BRCA1 deficiency. Surprisingly, RNF168 overexpression resulted in the extension of DNA fibers, despite the presence of HU, in BRCA1 deficient cells. Mechanistically, RNF168 overexpression recruited RAD18 to ub-H2AX at HU-induced DNA breaks. Subsequently, a RAD18-SLF1 axis was responsible for initiating DNA synthesis in a manner that also required the break-induced replication (BIR) factors RAD52 and POLD3. Strikingly, the presence of wild-type BRCA1 blocked RNF168-induced DNA synthesis. Notably, BIR-like repair has previously been linked with tandem duplication events found in BRCA1-mutated genomes. Thus, in the absence of BRCA1, excessive RNF168 expression may drive BIR, and contribute to the mutational signatures observed in BRCA1-mutated cancers.
Collapse
Affiliation(s)
- John J Krais
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Neil Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
119
|
Liang F, Miller AS, Tang C, Maranon D, Williamson EA, Hromas R, Wiese C, Zhao W, Sung P, Kupfer GM. The DNA-binding activity of USP1-associated factor 1 is required for efficient RAD51-mediated homologous DNA pairing and homology-directed DNA repair. J Biol Chem 2020; 295:8186-8194. [PMID: 32350107 DOI: 10.1074/jbc.ra120.013714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Indexed: 11/06/2022] Open
Abstract
USP1-associated factor 1 (UAF1) is an integral component of the RAD51-associated protein 1 (RAD51AP1)-UAF1-ubiquitin-specific peptidase 1 (USP1) trimeric deubiquitinase complex. This complex acts on DNA-bound, monoubiquitinated Fanconi anemia complementation group D2 (FANCD2) protein in the Fanconi anemia pathway of the DNA damage response. Moreover, RAD51AP1 and UAF1 cooperate to enhance homologous DNA pairing mediated by the recombinase RAD51 in DNA repair via the homologous recombination (HR) pathway. However, whereas the DNA-binding activity of RAD51AP1 has been shown to be important for RAD51-mediated homologous DNA pairing and HR-mediated DNA repair, the role of DNA binding by UAF1 in these processes is unclear. We have isolated mutant UAF1 variants that are impaired in DNA binding and tested them together with RAD51AP1 in RAD51-mediated HR. This biochemical analysis revealed that the DNA-binding activity of UAF1 is indispensable for enhanced RAD51 recombinase activity within the context of the UAF1-RAD51AP1 complex. In cells, DNA-binding deficiency of UAF1 increased DNA damage sensitivity and impaired HR efficiency, suggesting that UAF1 and RAD51AP1 have coordinated roles in DNA binding during HR and DNA damage repair. Our findings show that even though UAF1's DNA-binding activity is redundant with that of RAD51AP1 in FANCD2 deubiquitination, it is required for efficient HR-mediated chromosome damage repair.
Collapse
Affiliation(s)
- Fengshan Liang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Pediatrics, Section of Hematology-Oncology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Adam S Miller
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Caroline Tang
- Department of Pediatrics, Section of Hematology-Oncology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - David Maranon
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Elizabeth A Williamson
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Robert Hromas
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Gary M Kupfer
- Department of Pediatrics, Section of Hematology-Oncology, Yale University School of Medicine, New Haven, Connecticut, USA .,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
120
|
Clairmont CS, Sarangi P, Ponnienselvan K, Galli LD, Csete I, Moreau L, Adelmant G, Chowdhury D, Marto JA, D'Andrea AD. TRIP13 regulates DNA repair pathway choice through REV7 conformational change. Nat Cell Biol 2020; 22:87-96. [PMID: 31915374 PMCID: PMC7336368 DOI: 10.1038/s41556-019-0442-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/25/2019] [Indexed: 01/21/2023]
Abstract
DNA double-strand breaks (DSBs) are repaired through homology-directed repair (HDR) or non-homologous end joining (NHEJ). BRCA1/2-deficient cancer cells cannot perform HDR, conferring sensitivity to poly(ADP-ribose) polymerase inhibitors (PARPi). However, concomitant loss of the pro-NHEJ factors 53BP1, RIF1, REV7-Shieldin (SHLD1-3) or CST-DNA polymerase alpha (Pol-α) in BRCA1-deficient cells restores HDR and PARPi resistance. Here, we identify the TRIP13 ATPase as a negative regulator of REV7. We show that REV7 exists in active 'closed' and inactive 'open' conformations, and TRIP13 catalyses the inactivating conformational change, thereby dissociating REV7-Shieldin to promote HDR. TRIP13 similarly disassembles the REV7-REV3 translesion synthesis (TLS) complex, a component of the Fanconi anaemia pathway, inhibiting error-prone replicative lesion bypass and interstrand crosslink repair. Importantly, TRIP13 overexpression is common in BRCA1-deficient cancers, confers PARPi resistance and correlates with poor prognosis. Thus, TRIP13 emerges as an important regulator of DNA repair pathway choice-promoting HDR, while suppressing NHEJ and TLS.
Collapse
Affiliation(s)
- Connor S Clairmont
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Prabha Sarangi
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Lucas D Galli
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Isabelle Csete
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lisa Moreau
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Guillaume Adelmant
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
121
|
Yang Y, Yang C, Li T, Yu S, Gan T, Hu J, Cui J, Zheng X. The Deubiquitinase USP38 Promotes NHEJ Repair through Regulation of HDAC1 Activity and Regulates Cancer Cell Response to Genotoxic Insults. Cancer Res 2019; 80:719-731. [PMID: 31874856 DOI: 10.1158/0008-5472.can-19-2149] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/16/2019] [Accepted: 12/13/2019] [Indexed: 11/16/2022]
Abstract
The DNA damage response (DDR) is essential for maintaining genome integrity. Mounting evidence reveals that protein modifications play vital roles in the DDR. Here, we show that USP38 is involved in the DDR by regulating the activity of HDAC1. In response to DNA damage, USP38 interacted with HDAC1 and specifically removed the K63-linked ubiquitin chain promoting the deacetylase activity of HDAC1. As a result, HDAC1 was able to deacetylate H3K56. USP38 deletion resulted in persistent focal accumulation of nonhomologous end joining (NHEJ) factors at DNA damage sites and impaired NHEJ efficiency, causing genome instability and sensitizing cancer cells to genotoxic insults. Knockout of USP38 rendered mice hypersensitive to irradiation and shortened survival. In addition, USP38 was expressed at low levels in certain types of cancers including renal cell carcinoma, indicating dysregulation of USP38 expression contributes to genomic instability and may lead to tumorigenesis. In summary, this study identifies a critical role of USP38 in modulating genome integrity and cancer cell resistance to genotoxic insults by deubiquitinating HDAC1 and regulating its deacetylation activity. SIGNIFICANCE: This study demonstrates that USP38 regulates genome stability and mediates cancer cell resistance to DNA-damaging therapy, providing insight into tumorigenesis and implicating USP38 as a potential target for cancer diagnosis.
Collapse
Affiliation(s)
- Yongfeng Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Chuanzhen Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Tingting Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Institute of Basic Medical Sciences, Beijing, China
| | - Shuyu Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Tingting Gan
- Department of Cell Biology, School of Life Sciences, Peking University, Beijing, China
| | - Jiazhi Hu
- Department of Cell Biology, School of Life Sciences, Peking University, Beijing, China
| | - Jun Cui
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China. .,Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
122
|
Garvin AJ. Beyond reversal: ubiquitin and ubiquitin-like proteases and the orchestration of the DNA double strand break repair response. Biochem Soc Trans 2019; 47:1881-1893. [PMID: 31769469 PMCID: PMC6925521 DOI: 10.1042/bst20190534] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022]
Abstract
The cellular response to genotoxic DNA double strand breaks (DSBs) uses a multitude of post-translational modifications to localise, modulate and ultimately clear DNA repair factors in a timely and accurate manner. Ubiquitination is well established as vital to the DSB response, with a carefully co-ordinated pathway of histone ubiquitination events being a central component of DSB signalling. Other ubiquitin-like modifiers (Ubl) including SUMO and NEDD8 have since been identified as playing important roles in DSB repair. In the last five years ∼20 additional Ub/Ubl proteases have been implicated in the DSB response. The number of proteases identified highlights the complexity of the Ub/Ubl signal present at DSBs. Ub/Ubl proteases regulate turnover, activity and protein-protein interactions of DSB repair factors both catalytically and non-catalytically. This not only ensures efficient repair of breaks but has a role in channelling repair into the correct DSB repair sub-pathways. Ultimately Ub/Ubl proteases have essential roles in maintaining genomic stability. Given that deficiencies in many Ub/Ubl proteases promotes sensitivity to DNA damaging chemotherapies, they could be attractive targets for cancer treatment.
Collapse
Affiliation(s)
- Alexander J. Garvin
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, U.K
| |
Collapse
|
123
|
Parmar K, Kochupurakkal BS, Lazaro JB, Wang ZC, Palakurthi S, Kirschmeier PT, Yang C, Sambel LA, Farkkila A, Reznichenko E, Reavis HD, Dunn CE, Zou L, Do KT, Konstantinopoulos PA, Matulonis UA, Liu JF, D’Andrea AD, Shapiro GI. The CHK1 Inhibitor Prexasertib Exhibits Monotherapy Activity in High-Grade Serous Ovarian Cancer Models and Sensitizes to PARP Inhibition. Clin Cancer Res 2019; 25:6127-6140. [PMID: 31409614 PMCID: PMC6801076 DOI: 10.1158/1078-0432.ccr-19-0448] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/24/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE PARP inhibitors are approved for the treatment of high-grade serous ovarian cancers (HGSOC). Therapeutic resistance, resulting from restoration of homologous recombination (HR) repair or replication fork stabilization, is a pressing clinical problem. We assessed the activity of prexasertib, a checkpoint kinase 1 (CHK1) inhibitor known to cause replication catastrophe, as monotherapy and in combination with the PARP inhibitor olaparib in preclinical models of HGSOC, including those with acquired PARP inhibitor resistance. EXPERIMENTAL DESIGN Prexasertib was tested as a single agent or in combination with olaparib in 14 clinically annotated and molecularly characterized luciferized HGSOC patient-derived xenograft (PDX) models and in a panel of ovarian cancer cell lines. The ability of prexasertib to impair HR repair and replication fork stability was also assessed. RESULTS Prexasertib monotherapy demonstrated antitumor activity across the 14 PDX models. Thirteen models were resistant to olaparib monotherapy, including 4 carrying BRCA1 mutation. The combination of olaparib with prexasertib was synergistic and produced significant tumor growth inhibition in an olaparib-resistant model and further augmented the degree and durability of response in the olaparib-sensitive model. HGSOC cell lines, including those with acquired PARP inhibitor resistance, were also sensitive to prexasertib, associated with induction of DNA damage and replication stress. Prexasertib also sensitized these cell lines to PARP inhibition and compromised both HR repair and replication fork stability. CONCLUSIONS Prexasertib exhibits monotherapy activity in PARP inhibitor-resistant HGSOC PDX and cell line models, reverses restored HR and replication fork stability, and synergizes with PARP inhibition.
Collapse
Affiliation(s)
- Kalindi Parmar
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bose S. Kochupurakkal
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jean-Bernard Lazaro
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Zhigang C. Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sangeetha Palakurthi
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Paul T. Kirschmeier
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chunyu Yang
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Larissa A. Sambel
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anniina Farkkila
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Elizaveta Reznichenko
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hunter D Reavis
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Connor E. Dunn
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lee Zou
- Department of Pathology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts
| | - Khanh T. Do
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Panagiotis A. Konstantinopoulos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ursula A. Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joyce F. Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Alan D. D’Andrea
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Geoffrey I. Shapiro
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
124
|
Liang F, Miller AS, Longerich S, Tang C, Maranon D, Williamson EA, Hromas R, Wiese C, Kupfer GM, Sung P. DNA requirement in FANCD2 deubiquitination by USP1-UAF1-RAD51AP1 in the Fanconi anemia DNA damage response. Nat Commun 2019; 10:2849. [PMID: 31253762 PMCID: PMC6599204 DOI: 10.1038/s41467-019-10408-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/08/2019] [Indexed: 02/02/2023] Open
Abstract
Fanconi anemia (FA) is a multigenic disease of bone marrow failure and cancer susceptibility stemming from a failure to remove DNA crosslinks and other chromosomal lesions. Within the FA DNA damage response pathway, DNA-dependent monoubiquitinaton of FANCD2 licenses downstream events, while timely FANCD2 deubiquitination serves to extinguish the response. Here, we show with reconstituted biochemical systems, which we developed, that efficient FANCD2 deubiquitination by the USP1-UAF1 complex is dependent on DNA and DNA binding by UAF1. Surprisingly, we find that the DNA binding activity of the UAF1-associated protein RAD51AP1 can substitute for that of UAF1 in FANCD2 deubiquitination in our biochemical system. We also reveal the importance of DNA binding by UAF1 and RAD51AP1 in FANCD2 deubiquitination in the cellular setting. Our results provide insights into a key step in the FA pathway and help define the multifaceted role of the USP1-UAF1-RAD51AP1 complex in DNA damage tolerance and genome repair. In the Fanconi anemia pathway, deubiquitination of FANCD2 is a fundamental regulatory step. Here, the authors have developed a set of biochemical tools to reconstitute FANCD2 deubiquitination by recombinant USP1-UAF1-RAD51AP1 and reveal critical mechanistic details of the process.
Collapse
Affiliation(s)
- Fengshan Liang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA.,Department of Pediatrics, Section of Hematology-Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Adam S Miller
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Simonne Longerich
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Tang
- Department of Pediatrics, Section of Hematology-Oncology, Yale University School of Medicine, New Haven, CT, USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - David Maranon
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Elizabeth A Williamson
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Robert Hromas
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Gary M Kupfer
- Department of Pediatrics, Section of Hematology-Oncology, Yale University School of Medicine, New Haven, CT, USA. .,Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA. .,Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
125
|
Tonzi P, Huang TT. Role of Y-family translesion DNA polymerases in replication stress: Implications for new cancer therapeutic targets. DNA Repair (Amst) 2019; 78:20-26. [PMID: 30954011 DOI: 10.1016/j.dnarep.2019.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/18/2022]
Abstract
DNA replication stress, defined as the slowing or stalling of replication forks, is considered an emerging hallmark of cancer and a major contributor to genomic instability associated with tumorigenesis (Macheret and Halazonetis, 2015). Recent advances have been made in attempting to target DNA repair factors involved in alleviating replication stress to potentiate genotoxic treatments. Various inhibitors of ATR and Chk1, the two major kinases involved in the intra-S-phase checkpoint, are currently in Phase I and II clinical trials [2]. In addition, currently approved inhibitors of Poly-ADP Ribose Polymerase (PARP) show synthetic lethality in cells that lack double-strand break repair such as in BRCA1/2 deficient tumors [3]. These drugs have also been shown to exacerbate replication stress by creating a DNA-protein crosslink, termed PARP 'trapping', and this is now thought to contribute to the therapeutic efficacy. Translesion synthesis (TLS) is a mechanism whereby special repair DNA polymerases accommodate and tolerate various DNA lesions to allow for damage bypass and continuation of DNA replication (Yang and Gao, 2018). This class of proteins is best characterized by the Y-family, encompassing DNA polymerases (Pols) Kappa, Eta, Iota, and Rev1. While best studied for their ability to bypass physical lesions on the DNA, there is accumulating evidence for these proteins in coping with various natural replication fork barriers and alleviating replication stress. In this mini-review, we will highlight some of these recent advances, and discuss why targeting the TLS pathway may be a mechanism of enhancing cancer-associated replication stress. Exacerbation of replication stress can lead to increased genome instability, which can be toxic to cancer cells and represent a therapeutic vulnerability.
Collapse
Affiliation(s)
- Peter Tonzi
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Tony T Huang
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|