101
|
Ngo J, Osto C, Villalobos F, Shirihai OS. Mitochondrial Heterogeneity in Metabolic Diseases. BIOLOGY 2021; 10:biology10090927. [PMID: 34571805 PMCID: PMC8470264 DOI: 10.3390/biology10090927] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Often times mitochondria within a single cell are depicted as homogenous entities both morphologically and functionally. In normal and diseased states, mitochondria are heterogeneous and display distinct functional properties. In both cases, mitochondria exhibit differences in morphology, membrane potential, and mitochondrial calcium levels. However, the degree of heterogeneity is different during disease; or rather, heterogeneity at the physiological state stems from physically distinct mitochondrial subpopulations. Overall, mitochondrial heterogeneity is both beneficial and detrimental to the cellular system; protective in enabling cellular adaptation to biological stress or detrimental in inhibiting protective mechanisms. Abstract Mitochondria have distinct architectural features and biochemical functions consistent with cell-specific bioenergetic needs. However, as imaging and isolation techniques advance, heterogeneity amongst mitochondria has been observed to occur within the same cell. Moreover, mitochondrial heterogeneity is associated with functional differences in metabolic signaling, fuel utilization, and triglyceride synthesis. These phenotypic associations suggest that mitochondrial subpopulations and heterogeneity influence the risk of metabolic diseases. This review examines the current literature regarding mitochondrial heterogeneity in the pancreatic beta-cell and renal proximal tubules as they exist in the pathological and physiological states; specifically, pathological states of glucolipotoxicity, progression of type 2 diabetes, and kidney diseases. Emphasis will be placed on the benefits of balancing mitochondrial heterogeneity and how the disruption of balancing heterogeneity leads to impaired tissue function and disease onset.
Collapse
Affiliation(s)
- Jennifer Ngo
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive East, Los Angeles, CA 90095, USA; (J.N.); (C.O.); (F.V.)
- Department of Chemistry and Biochemistry, University of California, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Corey Osto
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive East, Los Angeles, CA 90095, USA; (J.N.); (C.O.); (F.V.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Frankie Villalobos
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive East, Los Angeles, CA 90095, USA; (J.N.); (C.O.); (F.V.)
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Orian S. Shirihai
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive East, Los Angeles, CA 90095, USA; (J.N.); (C.O.); (F.V.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
102
|
Perspectives on Mitochondria-ER and Mitochondria-Lipid Droplet Contact in Hepatocytes and Hepatic Lipid Metabolism. Cells 2021; 10:cells10092273. [PMID: 34571924 PMCID: PMC8472694 DOI: 10.3390/cells10092273] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence suggests that mitochondrion–endoplasmic reticulum (ER) and mitochondrion–lipid droplet (LD) contact sites are critical in regulating lipid metabolism in cells. It is well established that intracellular organelles communicate with each other continuously through membrane contact sites to maintain organelle function and cellular homeostasis. The accumulation of LDs in hepatocytes is an early indicator of non-alcoholic fatty liver disease (NAFLD) and alcohol-related liver disease (ALD), which may indicate a breakdown in proper inter-organelle communication. In this review, we discuss previous findings in mitochondrion–ER and mitochondrion–LD contact, focusing on their roles in lipid metabolism in hepatocytes. We also present evidence of a unique mitochondrion–LD contact structure in hepatocytes under various physiological and pathological conditions and propose a working hypothesis to speculate about the role of these structures in regulating the functions of mitochondria and LDs and their implications in NAFLD and ALD.
Collapse
|
103
|
Huang SF, Peng XF, Jiang L, Hu CY, Ye WC. LncRNAs as Therapeutic Targets and Potential Biomarkers for Lipid-Related Diseases. Front Pharmacol 2021; 12:729745. [PMID: 34421622 PMCID: PMC8371450 DOI: 10.3389/fphar.2021.729745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/26/2021] [Indexed: 12/30/2022] Open
Abstract
Lipid metabolism is an essential biological process involved in nutrient adjustment, hormone regulation, and lipid homeostasis. An irregular lifestyle and long-term nutrient overload can cause lipid-related diseases, including atherosclerosis, myocardial infarction (MI), obesity, and fatty liver diseases. Thus, novel tools for efficient diagnosis and treatment of dysfunctional lipid metabolism are urgently required. Furthermore, it is known that lncRNAs based regulation like sponging microRNAs (miRNAs) or serving as a reservoir for microRNAs play an essential role in the progression of lipid-related diseases. Accordingly, a better understanding of the regulatory roles of lncRNAs in lipid-related diseases would provide the basis for identifying potential biomarkers and therapeutic targets for lipid-related diseases. This review highlighted the latest advances on the potential biomarkers of lncRNAs in lipid-related diseases and summarised current knowledge on dysregulated lncRNAs and their potential molecular mechanisms. We have also provided novel insights into the underlying mechanisms of lncRNAs which might serve as potential biomarkers and therapeutic targets for lipid-related diseases. The information presented here may be useful for designing future studies and advancing investigations of lncRNAs as biomarkers for diagnosis, prognosis, and therapy of lipid-related diseases.
Collapse
Affiliation(s)
- Shi-Feng Huang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Xiao-Fei Peng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Lianggui Jiang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Ching Yuan Hu
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Wen-Chu Ye
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| |
Collapse
|
104
|
Schmidt S, Gallego SF, Zelnik ID, Kovalchuk S, Albæk N, Sprenger RR, Øverup C, Pewzner-Jung Y, Futerman AH, Lindholm MW, Jensen ON, Ejsing CS. Silencing of ceramide synthase 2 in hepatocytes modulates plasma ceramide biomarkers predictive of cardiovascular death. Mol Ther 2021; 30:1661-1674. [PMID: 34400330 PMCID: PMC9077316 DOI: 10.1016/j.ymthe.2021.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/26/2021] [Accepted: 08/08/2021] [Indexed: 12/15/2022] Open
Abstract
Emerging clinical data show that three ceramide molecules, Cer d18:1/16:0, Cer d18:1/24:1, and Cer d18:1/24:0, are biomarkers of a fatal outcome in patients with cardiovascular disease. This finding raises basic questions about their metabolic origin, their contribution to disease pathogenesis, and the utility of targeting the underlying enzymatic machinery for treatment of cardiometabolic disorders. Here, we outline the development of a potent N-acetylgalactosamine-conjugated antisense oligonucleotide engineered to silence ceramide synthase 2 specifically in hepatocytes in vivo. We demonstrate that this compound reduces the ceramide synthase 2 mRNA level and that this translates into efficient lowering of protein expression and activity as well as Cer d18:1/24:1 and Cer d18:1/24:0 levels in liver. Intriguingly, we discover that the hepatocyte-specific antisense oligonucleotide also triggers a parallel modulation of blood plasma ceramides, revealing that the biomarkers predictive of cardiovascular death are governed by ceramide biosynthesis in hepatocytes. Our work showcases a generic therapeutic framework for targeting components of the ceramide enzymatic machinery to disentangle their roles in disease causality and to explore their utility for treatment of cardiometabolic disorders.
Collapse
Affiliation(s)
- Steffen Schmidt
- Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, 2970 Hørsholm, Denmark
| | - Sandra F Gallego
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Iris Daphne Zelnik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sergey Kovalchuk
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Nanna Albæk
- Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, 2970 Hørsholm, Denmark
| | - Richard R Sprenger
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Charlotte Øverup
- Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, 2970 Hørsholm, Denmark
| | - Yael Pewzner-Jung
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marie W Lindholm
- Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, 2970 Hørsholm, Denmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| |
Collapse
|
105
|
Du Y, Wang J, Xiong J, Fang N, Ji WK. VPS13D interacts with VCP/p97 and negatively regulates endoplasmic reticulum-mitochondria interactions. Mol Biol Cell 2021; 32:1474-1486. [PMID: 34133214 PMCID: PMC8351740 DOI: 10.1091/mbc.e21-03-0097] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Membrane contact sites (MCSs) between the endoplasmic reticulum (ER) and mitochondria are emerging as critical hubs for diverse cellular events, and alterations in the extent of these contacts are linked to neurodegenerative diseases. However, the mechanisms that control ER-mitochondria interactions are so far elusive. Here, we demonstrate a key role of vacuolar protein sorting-associated protein 13D (VPS13D) in the negative regulation of ER-mitochondria MCSs. VPS13D suppression results in extensive ER-mitochondria tethering, a phenotype that can be substantially rescued by suppression of the tethering proteins VAPB and PTPIP51. VPS13D interacts with valosin-containing protein (VCP/p97) to control the level of ER-resident VAPB at contacts. VPS13D is required for the stability of p97. Functionally, VPS13D suppression leads to severe defects in mitochondrial morphology, mitochondrial cellular distribution, and mitochondrial DNA synthesis. Together, our results suggest that VPS13D negatively regulates the ER-mitochondria MCSs, partially through its interactions with VCP/p97.
Collapse
Affiliation(s)
- Yuanjiao Du
- Department of Biochemistry and Molecular Biology, School of Basic Medicine
| | - Jingru Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine
| | - Juan Xiong
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, and
| | - Na Fang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine
| | - Wei-Ke Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medicine
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
106
|
Borgese N, Iacomino N, Colombo SF, Navone F. The Link between VAPB Loss of Function and Amyotrophic Lateral Sclerosis. Cells 2021; 10:1865. [PMID: 34440634 PMCID: PMC8392409 DOI: 10.3390/cells10081865] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
The VAP proteins are integral adaptor proteins of the endoplasmic reticulum (ER) membrane that recruit a myriad of interacting partners to the ER surface. Through these interactions, the VAPs mediate a large number of processes, notably the generation of membrane contact sites between the ER and essentially all other cellular membranes. In 2004, it was discovered that a mutation (p.P56S) in the VAPB paralogue causes a rare form of dominantly inherited familial amyotrophic lateral sclerosis (ALS8). The mutant protein is aggregation-prone, non-functional and unstable, and its expression from a single allele appears to be insufficient to support toxic gain-of-function effects within motor neurons. Instead, loss-of-function of the single wild-type allele is required for pathological effects, and VAPB haploinsufficiency may be the main driver of the disease. In this article, we review the studies on the effects of VAPB deficit in cellular and animal models. Several basic cell physiological processes are affected by downregulation or complete depletion of VAPB, impinging on phosphoinositide homeostasis, Ca2+ signalling, ion transport, neurite extension, and ER stress. In the future, the distinction between the roles of the two VAP paralogues (A and B), as well as studies on motor neurons generated from induced pluripotent stem cells (iPSC) of ALS8 patients will further elucidate the pathogenic basis of p.P56S familial ALS, as well as of other more common forms of the disease.
Collapse
Affiliation(s)
- Nica Borgese
- CNR Institute of Neuroscience, Via Follereau 3, Bldg U28, 20854 Vedano al Lambro, Italy; (N.I.); (S.F.C.)
| | | | | | - Francesca Navone
- CNR Institute of Neuroscience, Via Follereau 3, Bldg U28, 20854 Vedano al Lambro, Italy; (N.I.); (S.F.C.)
| |
Collapse
|
107
|
James C, Kehlenbach RH. The Interactome of the VAP Family of Proteins: An Overview. Cells 2021; 10:cells10071780. [PMID: 34359948 PMCID: PMC8306308 DOI: 10.3390/cells10071780] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Membrane contact sites (MCS) are sites of close apposition of two organelles that help in lipid transport and synthesis, calcium homeostasis and several other biological processes. The VAMP-associated proteins (VAPs) VAPA, VAPB, MOSPD2 and the recently described MOSPD1 and MOSPD3 are tether proteins of MCSs that are mainly found at the endoplasmic reticulum (ER). VAPs interact with various proteins with a motif called FFAT (two phenylalanines in an acidic tract), recruiting the associated organelle to the ER. In addition to the conventional FFAT motif, the recently described FFNT (two phenylalanines in a neutral tract) and phospho-FFAT motifs contribute to the interaction with VAPs. In this review, we summarize and compare the recent interactome studies described for VAPs, including in silico and proximity labeling methods. Collectively, the interaction repertoire of VAPs is very diverse and highlights the complexity of interactions mediated by the different FFAT motifs to the VAPs.
Collapse
|
108
|
de la Mora E, Dezi M, Di Cicco A, Bigay J, Gautier R, Manzi J, Polidori J, Castaño-Díez D, Mesmin B, Antonny B, Lévy D. Nanoscale architecture of a VAP-A-OSBP tethering complex at membrane contact sites. Nat Commun 2021; 12:3459. [PMID: 34103503 PMCID: PMC8187361 DOI: 10.1038/s41467-021-23799-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
Membrane contact sites (MCS) are subcellular regions where two organelles appose their membranes to exchange small molecules, including lipids. Structural information on how proteins form MCS is scarce. We designed an in vitro MCS with two membranes and a pair of tethering proteins suitable for cryo-tomography analysis. It includes VAP-A, an ER transmembrane protein interacting with a myriad of cytosolic proteins, and oxysterol-binding protein (OSBP), a lipid transfer protein that transports cholesterol from the ER to the trans Golgi network. We show that VAP-A is a highly flexible protein, allowing formation of MCS of variable intermembrane distance. The tethering part of OSBP contains a central, dimeric, and helical T-shape region. We propose that the molecular flexibility of VAP-A enables the recruitment of partners of different sizes within MCS of adjustable thickness, whereas the T geometry of the OSBP dimer facilitates the movement of the two lipid-transfer domains between membranes.
Collapse
Affiliation(s)
- Eugenio de la Mora
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France
- Sorbonne Université, Paris, France
| | - Manuela Dezi
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.
- Sorbonne Université, Paris, France.
| | - Aurélie Di Cicco
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France
- Sorbonne Université, Paris, France
| | - Joëlle Bigay
- CNRS UMR 7275, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Romain Gautier
- CNRS UMR 7275, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - John Manzi
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France
- Sorbonne Université, Paris, France
| | - Joël Polidori
- CNRS UMR 7275, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | | | - Bruno Mesmin
- CNRS UMR 7275, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Bruno Antonny
- CNRS UMR 7275, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.
| | - Daniel Lévy
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.
- Sorbonne Université, Paris, France.
| |
Collapse
|
109
|
Artibani M, Masuda K, Hu Z, Rauher PC, Mallett G, Wietek N, Morotti M, Chong K, KaramiNejadRanjbar M, Zois CE, Dhar S, El-Sahhar S, Campo L, Blagden SP, Damato S, Pathiraja PN, Nicum S, Gleeson F, Laios A, Alsaadi A, Santana Gonzalez L, Motohara T, Albukhari A, Lu Z, Bast RC, Harris AL, Ejsing CS, Klemm RW, Yau C, Sauka-Spengler T, Ahmed AA. Adipocyte-like signature in ovarian cancer minimal residual disease identifies metabolic vulnerabilities of tumor-initiating cells. JCI Insight 2021; 6:147929. [PMID: 33945502 PMCID: PMC8262282 DOI: 10.1172/jci.insight.147929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Similar to tumor-initiating cells (TICs), minimal residual disease (MRD) is capable of reinitiating tumors and causing recurrence. However, the molecular characteristics of solid tumor MRD cells and drivers of their survival have remained elusive. Here we performed dense multiregion transcriptomics analysis of paired biopsies from 17 ovarian cancer patients before and after chemotherapy. We reveal that while MRD cells share important molecular signatures with TICs, they are also characterized by an adipocyte-like gene expression signature and a portion of them had undergone epithelial-mesenchymal transition (EMT). In a cell culture MRD model, MRD-mimic cells showed the same phenotype and were dependent on fatty acid oxidation (FAO) for survival and resistance to cytotoxic agents. These findings identify EMT and FAO as attractive targets to eradicate MRD in ovarian cancer and make a compelling case for the further testing of FAO inhibitors in treating MRD.
Collapse
Affiliation(s)
- Mara Artibani
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, and
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
- Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Kenta Masuda
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, and
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Zhiyuan Hu
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, and
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Pascal C. Rauher
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Garry Mallett
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, and
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
- Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Nina Wietek
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, and
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
- Department of Gynaecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford, United Kingdom
| | - Matteo Morotti
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, and
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
- Department of Gynaecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford, United Kingdom
| | - Kay Chong
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, and
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Mohammad KaramiNejadRanjbar
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, and
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Christos E. Zois
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Sunanda Dhar
- Department of Histopathology, Oxford University Hospitals, Oxford, United Kingdom
| | - Salma El-Sahhar
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, and
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Leticia Campo
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Sarah P. Blagden
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Stephen Damato
- Department of Histopathology, Oxford University Hospitals, Oxford, United Kingdom
| | - Pubudu N. Pathiraja
- Department of Gynaecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford, United Kingdom
| | - Shibani Nicum
- Department of Gynaecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford, United Kingdom
| | - Fergus Gleeson
- Department of Radiology, Churchill Hospital, Oxford University Hospitals, Oxford, United Kingdom
| | - Alexandros Laios
- Department of Gynaecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford, United Kingdom
| | - Abdulkhaliq Alsaadi
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, and
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Laura Santana Gonzalez
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, and
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Takeshi Motohara
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Ashwag Albukhari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zhen Lu
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert C. Bast
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Adrian L. Harris
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Christer S. Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Robin W. Klemm
- Department of Physiology, Anatomy and Genetics, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Christopher Yau
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology Medicine and Health, the University of Manchester, Manchester, United Kingdom
| | - Tatjana Sauka-Spengler
- Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Ahmed Ashour Ahmed
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, and
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
- Department of Gynaecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford, United Kingdom
- Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
110
|
Aoyama-Ishiwatari S, Hirabayashi Y. Endoplasmic Reticulum-Mitochondria Contact Sites-Emerging Intracellular Signaling Hubs. Front Cell Dev Biol 2021; 9:653828. [PMID: 34095118 PMCID: PMC8172986 DOI: 10.3389/fcell.2021.653828] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023] Open
Abstract
It has become apparent that our textbook illustration of singular isolated organelles is obsolete. In reality, organelles form complex cooperative networks involving various types of organelles. Light microscopic and ultrastructural studies have revealed that mitochondria-endoplasmic reticulum (ER) contact sites (MERCSs) are abundant in various tissues and cell types. Indeed, MERCSs have been proposed to play critical roles in various biochemical and signaling functions such as Ca2+ homeostasis, lipid transfer, and regulation of organelle dynamics. While numerous proteins involved in these MERCS-dependent functions have been reported, how they coordinate and cooperate with each other has not yet been elucidated. In this review, we summarize the functions of mammalian proteins that localize at MERCSs and regulate their formation. We also discuss potential roles of the MERCS proteins in regulating multiple organelle contacts.
Collapse
Affiliation(s)
| | - Yusuke Hirabayashi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
111
|
Boucher DM, Vijithakumar V, Ouimet M. Lipid Droplets as Regulators of Metabolism and Immunity. IMMUNOMETABOLISM 2021; 3. [DOI: 10.20900/immunometab20210021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2025]
Abstract
Abstract
A hallmark of sterile and nonsterile inflammation is the increased accumulation of cytoplasmic lipid droplets (LDs) in non-adipose cells. LDs are ubiquitous organelles specialized in neutral lipid storage and hydrolysis. Originating in the ER, LDs are comprised of a core of neutral lipids (cholesterol esters, triglycerides) surrounded by a phospholipid monolayer and several LD-associated proteins. The perilipin (PLIN1-5) family are the most abundant structural proteins present on the surface of LDs. While PLIN1 is primarily expressed in adipocytes, PLIN2 and PLIN3 are ubiquitously expressed. LDs also acquire a host of enzymes and proteins that regulate LD metabolism. Amongst these are neutral lipases and selective lipophagy factors that promote hydrolysis of LD-associated neutral lipid. In addition, LDs physically associate with other organelles such as mitochondria through inter-organelle membrane contact sites that facilitate lipid transport. Beyond serving as a source of energy storage, LDs participate in inflammatory and infectious diseases, regulating both innate and adaptive host immune responses. Here, we review recent studies on the role of LDs in the regulation of immunometabolism.
Collapse
Affiliation(s)
- Dominique M. Boucher
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Viyashini Vijithakumar
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Mireille Ouimet
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|
112
|
Michurina SS, Stafeev IS, Menshikov MY, Parfyonova YV. Mitochondrial dynamics keep balance of nutrient combustion in thermogenic adipocytes. Mitochondrion 2021; 59:157-168. [PMID: 34010673 DOI: 10.1016/j.mito.2021.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/02/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022]
Abstract
Non-shivering thermogenesis takes place in brown and beige adipocytes and facilitates cold tolerance and acclimation. However, thermogenesis in adipose tissue also was found to be activated in metabolic overload states for fast utilization of nutrients excess. This observation spurred research interest in mechanisms of thermogenesis regulation for metabolic overload and obesity prevention. One of proposed regulators of thermogenic efficiency in adipocytes is the dynamics of mitochondria, where thermogenesis takes place. Indeed, brown and beige adipocytes exhibit fragmented round-shaped mitochondria, while white adipocytes have elongated organelles with high ATP synthesis. Mitochondrial morphology can determine uncoupling protein 1 (UCP1) content, efficiency of catabolic pathways and electron transport chain, supplying thermogenesis. This review will highlight the co-regulation of mitochondrial dynamics and thermogenesis and formulate hypothetical ways for excessive nutrients burning in response to mitochondrial morphology manipulation.
Collapse
Affiliation(s)
- S S Michurina
- Lomonosov Moscow State University, 119234 Moscow, Russia; Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, 121500 Moscow, Russia.
| | - I S Stafeev
- Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, 121500 Moscow, Russia.
| | - M Y Menshikov
- Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, 121500 Moscow, Russia
| | - Ye V Parfyonova
- Lomonosov Moscow State University, 119234 Moscow, Russia; Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, 121500 Moscow, Russia
| |
Collapse
|
113
|
Li X, Long C, Cui Y, Tao F, Yu X, Lin W. Charge-Dependent Strategy Enables a Single Fluorescent Probe to Study the Interaction Relationship between Mitochondria and Lipid Droplets. ACS Sens 2021; 6:1595-1603. [PMID: 33755435 DOI: 10.1021/acssensors.0c02677] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cooperation between organelles is essential to maintain the normal operation of the cell. A lipid droplet (LD), a dynamic organelle, is specialized in lipid storage and can interact physically with mitochondria in several cell types. However, an appropriate method for in situ studying the interaction relationships of mitochondria-LDs is still lacking. Herein, a charge-dependent strategy is proposed for the first time by considering adequately the charge difference between mitochondria and LDs. According to the novel strategy, we have developed a unique fluorescent probe Mito-LD based on the cyclization and ring-opening conversion. Mito-LD could simultaneously stain mitochondria and LDs and emit a red and green fluorescence, respectively. More importantly, with the probe Mito-LD, the in situ interaction relationships of mitochondria-LDs were investigated in detail from LD accumulation, mitochondrial dysfunction, lower environmental temperatures, and four aspects of apoptosis. The experimental results showed that mitochondria played an important role in LD accumulation, and the numbers and size of LDs would increase after mitochondrial dysfunction that may be due to excess liposomes. In addition, as an energy storage organelle, LDs played an important role in helping to coordinate mitochondrial energy supply in response to cold. In addition, the Mito-LD revealed that the polarity of mitochondria was higher than that of LDs. In a word, the probe Mito-LD could serve as a potential tool for further exploring mitochondria-LD interaction mechanisms, and importantly, the charge-dependent strategy is valuable for designing robust new probes in imaging multiple organelles.
Collapse
Affiliation(s)
- Xuechen Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Daxue Road 3501, Changqing District, Jinan 250353, P. R. China
| | - Chenyuan Long
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Daxue Road 3501, Changqing District, Jinan 250353, P. R. China
| | - Yuezhi Cui
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Daxue Road 3501, Changqing District, Jinan 250353, P. R. China
| | - Furong Tao
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Daxue Road 3501, Changqing District, Jinan 250353, P. R. China
| | - Xiaoqiang Yu
- Center of Bio and Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
114
|
Taurine-Mediated IDOL Contributes to Resolution of Streptococcus uberis Infection. Infect Immun 2021; 89:IAI.00788-20. [PMID: 33593888 DOI: 10.1128/iai.00788-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolic alterations occur in pathogenic infections, but the role of lipid metabolism in the progression of bacterial mastitis is unclear. Cross talk between lipid droplets (LDs) and invading bacteria occurs, and targeting of de novo lipogenesis inhibits pathogen reproduction. In this study, we investigate the role(s) of lipid metabolism in mammary cells during Streptococcus uberis infection. Our results indicate that S. uberis induces the synthesis of fatty acids and production of LDs. Importantly, taurine reduces fatty acid synthesis, the abundance of LDs and the in vitro bacterial load of S. uberis These changes are mediated, at least partly, by the E3 ubiquitin ligase IDOL, which is associated with the degradation of low-density lipoprotein receptors (LDLRs). We have identified a critical role for IDOL-mediated fatty acid synthesis in bacterial infection, and we suggest that taurine may be an effective prophylactic or therapeutic strategy for preventing S. uberis mastitis.
Collapse
|
115
|
Choudhary V, Schneiter R. A Unique Junctional Interface at Contact Sites Between the Endoplasmic Reticulum and Lipid Droplets. Front Cell Dev Biol 2021; 9:650186. [PMID: 33898445 PMCID: PMC8060488 DOI: 10.3389/fcell.2021.650186] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Lipid droplets (LDs) constitute compartments dedicated to the storage of metabolic energy in the form of neutral lipids. LDs originate from the endoplasmic reticulum (ER) with which they maintain close contact throughout their life cycle. These ER-LD junctions facilitate the exchange of both proteins and lipids between these two compartments. In recent years, proteins that are important for the proper formation of LDs and localize to ER-LD junctions have been identified. This junction is unique as it is generally believed to invoke a transition from the ER bilayer membrane to a lipid monolayer that delineates LDs. Proper formation of this junction requires the ordered assembly of proteins and lipids at specialized ER subdomains. Without such a well-ordered assembly of LD biogenesis factors, neutral lipids are synthesized throughout the ER membrane, resulting in the formation of aberrant LDs. Such ectopically formed LDs impact ER and lipid homeostasis, resulting in different types of lipid storage diseases. In response to starvation, the ER-LD junction recruits factors that tether the vacuole to these junctions to facilitate LD degradation. In addition, LDs maintain close contacts with peroxisomes and mitochondria for metabolic channeling of the released fatty acids toward beta-oxidation. In this review, we discuss the function of different components that ensure proper functioning of LD contact sites, their role in lipogenesis and lipolysis, and their relation to lipid storage diseases.
Collapse
Affiliation(s)
- Vineet Choudhary
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
116
|
Rosado A, Bayer EM. Geometry and cellular function of organelle membrane interfaces. PLANT PHYSIOLOGY 2021; 185:650-662. [PMID: 33793898 PMCID: PMC8133572 DOI: 10.1093/plphys/kiaa079] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/17/2020] [Indexed: 05/09/2023]
Abstract
A vast majority of cellular processes take root at the surface of biological membranes. By providing a two-dimensional platform with limited diffusion, membranes are, by nature, perfect devices to concentrate signaling and metabolic components. As such, membranes often act as "key processors" of cellular information. Biological membranes are highly dynamic and deformable and can be shaped into curved, tubular, or flat conformations, resulting in differentiated biophysical properties. At membrane contact sites, membranes from adjacent organelles come together into a unique 3D configuration, forming functionally distinct microdomains, which facilitate spatially regulated functions, such as organelle communication. Here, we describe the diversity of geometries of contact site-forming membranes in different eukaryotic organisms and explore the emerging notion that their shape, 3D architecture, and remodeling jointly define their cellular activity. The review also provides selected examples highlighting changes in membrane contact site architecture acting as rapid and local responses to cellular perturbations, and summarizes our current understanding of how those structural changes confer functional specificity to those cellular territories.
Collapse
Affiliation(s)
- Abel Rosado
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Emmanuelle M Bayer
- Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d’Ornon, France
- Author for communication:
| |
Collapse
|
117
|
Interactions of Lipid Droplets with the Intracellular Transport Machinery. Int J Mol Sci 2021; 22:ijms22052776. [PMID: 33803444 PMCID: PMC7967230 DOI: 10.3390/ijms22052776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/27/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022] Open
Abstract
Historically, studies of intracellular membrane trafficking have focused on the secretory and endocytic pathways and their major organelles. However, these pathways are also directly implicated in the biogenesis and function of other important intracellular organelles, the best studied of which are peroxisomes and lipid droplets. There is a large recent body of work on these organelles, which have resulted in the introduction of new paradigms regarding the roles of membrane trafficking organelles. In this review, we discuss the roles of membrane trafficking in the life cycle of lipid droplets. This includes the complementary roles of lipid phase separation and proteins in the biogenesis of lipid droplets from endoplasmic reticulum (ER) membranes, and the attachment of mature lipid droplets to membranes by lipidic bridges and by more conventional protein tethers. We also discuss the catabolism of neutral lipids, which in part results from the interaction of lipid droplets with cytosolic molecules, but with important roles for both macroautophagy and microautophagy. Finally, we address their eventual demise, which involves interactions with the autophagocytotic machinery. We pay particular attention to the roles of small GTPases, particularly Rab18, in these processes.
Collapse
|
118
|
Wang J, Fang N, Xiong J, Du Y, Cao Y, Ji WK. An ESCRT-dependent step in fatty acid transfer from lipid droplets to mitochondria through VPS13D-TSG101 interactions. Nat Commun 2021; 12:1252. [PMID: 33623047 PMCID: PMC7902631 DOI: 10.1038/s41467-021-21525-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Upon starvation, cells rewire their metabolism, switching from glucose-based metabolism to mitochondrial oxidation of fatty acids, which require the transfer of FAs from lipid droplets (LDs) to mitochondria at mitochondria−LD membrane contact sites (MCSs). However, factors responsible for FA transfer at these MCSs remain uncharacterized. Here, we demonstrate that vacuolar protein sorting-associated protein 13D (VPS13D), loss-of-function mutations of which cause spastic ataxia, coordinates FA trafficking in conjunction with the endosomal sorting complex required for transport (ESCRT) protein tumor susceptibility 101 (TSG101). The VPS13 adaptor-binding domain of VPS13D and TSG101 directly remodels LD membranes in a cooperative manner. The lipid transfer domain of human VPS13D binds glycerophospholipids and FAs in vitro. Depletion of VPS13D, TSG101, or ESCRT-III proteins inhibits FA trafficking from LDs to mitochondria. Our findings suggest that VPS13D mediates the ESCRT-dependent remodeling of LD membranes to facilitate FA transfer at mitochondria-LD contacts. Metabolic rewiring requires the mobilization of fatty acids (FA) from lipid droplets (LDs) at membrane contact sites (MCSs), although the details of FA transfer remain unclear. Here, the authors show that VPS13D and the ESCRT complex remodel LD membranes to promote FA trafficking to mitochondria.
Collapse
Affiliation(s)
- Jingru Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Na Fang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Xiong
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanjiao Du
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei-Ke Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
119
|
Smolič T, Tavčar P, Horvat A, Černe U, Halužan Vasle A, Tratnjek L, Kreft ME, Scholz N, Matis M, Petan T, Zorec R, Vardjan N. Astrocytes in stress accumulate lipid droplets. Glia 2021; 69:1540-1562. [PMID: 33609060 PMCID: PMC8248329 DOI: 10.1002/glia.23978] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/14/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
When the brain is in a pathological state, the content of lipid droplets (LDs), the lipid storage organelles, is increased, particularly in glial cells, but rarely in neurons. The biology and mechanisms leading to LD accumulation in astrocytes, glial cells with key homeostatic functions, are poorly understood. We imaged fluorescently labeled LDs by microscopy in isolated and brain tissue rat astrocytes and in glia-like cells in Drosophila brain to determine the (sub)cellular localization, mobility, and content of LDs under various stress conditions characteristic for brain pathologies. LDs exhibited confined mobility proximal to mitochondria and endoplasmic reticulum that was attenuated by metabolic stress and by increased intracellular Ca2+ , likely to enhance the LD-organelle interaction imaged by electron microscopy. When de novo biogenesis of LDs was attenuated by inhibition of DGAT1 and DGAT2 enzymes, the astrocyte cell number was reduced by ~40%, suggesting that in astrocytes LD turnover is important for cell survival and/or proliferative cycle. Exposure to noradrenaline, a brain stress response system neuromodulator, and metabolic and hypoxic stress strongly facilitated LD accumulation in astrocytes. The observed response of stressed astrocytes may be viewed as a support for energy provision, but also to be neuroprotective against the stress-induced lipotoxicity.
Collapse
Affiliation(s)
- Tina Smolič
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Tavčar
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Anemari Horvat
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Urška Černe
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Halužan Vasle
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Larisa Tratnjek
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Nicole Scholz
- Division of General Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Maja Matis
- Medical Faculty, Institute of Cell Biology, University of Münster, Münster, Germany.,Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
120
|
Wang L, Liu J, Miao Z, Pan Q, Cao W. Lipid droplets and their interactions with other organelles in liver diseases. Int J Biochem Cell Biol 2021; 133:105937. [PMID: 33529713 DOI: 10.1016/j.biocel.2021.105937] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 02/01/2023]
Abstract
Lipid droplets are cellular organelles used for lipid storage with a hydrophobic core of neutral lipids enclosed by a phospholipid monolayer. Besides presenting as giant single organelles in fat tissue, lipid droplets are also widely present as a multitude of small structures in hepatocytes, where they play key roles in health and disease of the liver. In addition to lipid storage, lipid droplets are also directly involved in lipid metabolism, membrane biosynthesis, cell signaling, inflammation, pathogen-host interaction and cancer development. In addition, they interact with other cellular organelles to regulate cellular biology. It is fair to say that the exact functions of lipid droplets in cellular physiology remain largely obscure. Thus prompted, here we aim to analyze the corpus of contemporary biomedical literature to create a framework as to how the role of lipid droplets in hepatocyte physiology and pathophysiology should be understood. The resulting framework should help understanding the interaction of lipid droplets with other organelles in important liver diseases, including fatty liver disease, viral hepatitis and liver cancer and direct further research directions.
Collapse
Affiliation(s)
- Ling Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Jiaye Liu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Zhijiang Miao
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands.
| | - Wanlu Cao
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
121
|
Sprenger RR, Hermansson M, Neess D, Becciolini LS, Sørensen SB, Fagerberg R, Ecker J, Liebisch G, Jensen ON, Vance DE, Færgeman NJ, Klemm RW, Ejsing CS. Lipid molecular timeline profiling reveals diurnal crosstalk between the liver and circulation. Cell Rep 2021; 34:108710. [PMID: 33535053 DOI: 10.1016/j.celrep.2021.108710] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Accepted: 01/08/2021] [Indexed: 12/18/2022] Open
Abstract
Diurnal regulation of whole-body lipid metabolism plays a vital role in metabolic health. Although changes in lipid levels across the diurnal cycle have been investigated, the system-wide molecular responses to both short-acting fasting-feeding transitions and longer-timescale circadian rhythms have not been explored in parallel. Here, we perform time-series multi-omics analyses of liver and plasma revealing that the majority of molecular oscillations are entrained by adaptations to fasting, food intake, and the postprandial state. By developing algorithms for lipid structure enrichment analysis and lipid molecular crosstalk between tissues, we find that the hepatic phosphatidylethanolamine (PE) methylation pathway is diurnally regulated, giving rise to two pools of oscillating phosphatidylcholine (PC) molecules in the circulation, which are coupled to secretion of either very low-density lipoprotein (VLDL) or high-density lipoprotein (HDL) particles. Our work demonstrates that lipid molecular timeline profiling across tissues is key to disentangling complex metabolic processes and provides a critical resource for the study of whole-body lipid metabolism.
Collapse
Affiliation(s)
- Richard R Sprenger
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Martin Hermansson
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Ditte Neess
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Lena Sokol Becciolini
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Signe Bek Sørensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Rolf Fagerberg
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Josef Ecker
- ZIEL-Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Freising, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Dennis E Vance
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB, Canada
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Robin W Klemm
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
122
|
Klemm RW, Carvalho P. Principles of organelle spatial organization and interactions. Mol Biol Cell 2021; 31:401-402. [PMID: 32163349 PMCID: PMC8734309 DOI: 10.1091/mbc.e20-01-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Robin W Klemm
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, UK
| |
Collapse
|
123
|
Exogenous Fatty Acids Modulate ER Lipid Composition and Metabolism in Breast Cancer Cells. Cells 2021; 10:cells10010175. [PMID: 33467111 PMCID: PMC7830208 DOI: 10.3390/cells10010175] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Lipid metabolism is a fundamental hallmark of all tumors, especially of breast cancer. Few studies describe the different lipid metabolisms and sensitivities to the microenvironment of breast cancer cell subtypes that influence the proliferation, aggressiveness, and success of therapy. This study describes the impact of lipid microenvironment on endoplasmic reticulum (ER) membrane and metabolic activity in two breast cancer cell lines with Luminal A and triple-negative breast cancer (TNBC) features. (2) Methods: We investigated the peculiar lipid phenotype of a TNBC cell line, MDA-MB-231, and a Luminal A cell line, MCF7, and their different sensitivity to exogenous fatty acids (i.e., palmitic acid (PA) and docosahexaenoic acid (DHA)). Moreover, we verified the impact of exogenous fatty acids on ER lipid composition. (3) Results: The data obtained demonstrate that MDA-MB-231 cells are more sensitive to the lipid microenvironment and that both PA and DHA are able to remodel their ER membranes with consequences on resident enzyme activity. On the contrary, MCF7 cells are less sensitive to PA, whereas they incorporate DHA, although less efficiently than MDA-MB-231 cells. (4) Conclusions: This study sustains the importance of lipid metabolism as an innovative hallmark to discriminate breast cancer subclasses and to develop personalized and innovative pharmacological strategies. The different sensitivities to the lipid environment shown by MCF7 and MDA-MB-231 cells might be related to cell malignancy and chemoresistance onset. In the future, this new approach could lead to a substantial decrease both in deleterious side effects for the patients and in the cost of entire therapeutic treatments coupled with increased therapy efficiency.
Collapse
|
124
|
Klemm RW. Getting in Touch Is an Important Step: Control of Metabolism at Organelle Contact Sites. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:2515256421993708. [PMID: 37366381 PMCID: PMC10243586 DOI: 10.1177/2515256421993708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 06/28/2023]
Abstract
Metabolic pathways are often spread over several organelles and need to be functionally integrated by controlled organelle communication. Physical organelle contact-sites have emerged as critical hubs in the regulation of cellular metabolism, but the molecular understanding of mechanisms that mediate formation or regulation of organelle interfaces was until recently relatively limited. Mitochondria are central organelles in anabolic and catabolic pathways and therefore interact with a number of other cellular compartments including the endoplasmic reticulum (ER) and lipid droplets (LDs). An interesting set of recent work has shed new light on the molecular basis forming these contact sites. This brief overview describes the discovery of unanticipated functions of contact sites between the ER, mitochondria and LDs in de novo synthesis of storage lipids of brown and white adipocytes. Interestingly, the factors involved in mediating the interaction between these organelles are subject to unexpected modes of regulation through newly uncovered Phospho-FFAT motifs. These results suggest dynamic regulation of contact sites between organelles and indicate that spatial organization of organelles within the cell contributes to the control of metabolism.
Collapse
Affiliation(s)
- Robin W. Klemm
- Department of Physiology,
Anatomy and Genetics, University of Oxford, UK
| |
Collapse
|
125
|
Xu J, Huang X. Lipid Metabolism at Membrane Contacts: Dynamics and Functions Beyond Lipid Homeostasis. Front Cell Dev Biol 2020; 8:615856. [PMID: 33425923 PMCID: PMC7786193 DOI: 10.3389/fcell.2020.615856] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/30/2020] [Indexed: 01/12/2023] Open
Abstract
Membrane contact sites (MCSs), regions where the membranes of two organelles are closely apposed, play critical roles in inter-organelle communication, such as lipid trafficking, intracellular signaling, and organelle biogenesis and division. First identified as “fraction X” in the early 90s, MCSs are now widely recognized to facilitate local lipid synthesis and inter-organelle lipid transfer, which are important for maintaining cellular lipid homeostasis. In this review, we discuss lipid metabolism and related cellular and physiological functions in MCSs. We start with the characteristics of lipid synthesis and breakdown at MCSs. Then we focus on proteins involved in lipid synthesis and turnover at these sites. Lastly, we summarize the cellular function of lipid metabolism at MCSs beyond mere lipid homeostasis, including the physiological meaning and relevance of MCSs regarding systemic lipid metabolism. This article is part of an article collection entitled: Coupling and Uncoupling: Dynamic Control of Membrane Contacts.
Collapse
Affiliation(s)
- Jiesi Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
126
|
Cui L, Liu P. Two Types of Contact Between Lipid Droplets and Mitochondria. Front Cell Dev Biol 2020; 8:618322. [PMID: 33385001 PMCID: PMC7769837 DOI: 10.3389/fcell.2020.618322] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Lipid droplets (LDs) and mitochondria are essential organelles involved in cellular lipid metabolism and energy homeostasis. Accumulated studies have revealed that the physical contact between these two organelles is important for their functions. Current understanding of the contact between cellular organelles is highly dynamic, fitting a "kiss-and-run" model. The same pattern of contact between LDs and mitochondria has been reported and several proteins are found to mediate this contact, such as perilipin1 (PLIN1) and PLIN5. Another format of the contact has also been found and termed anchoring. LD-anchored mitochondria (LDAM) are identified in oxidative tissues including brown adipose tissue (BAT), skeletal muscle, and heart muscle, and this anchoring between these two organelles is conserved from mouse to monkey. Moreover, this anchoring is generated during the brown/beige adipocyte differentiation. In this review, we will summarize previous studies on the interaction between LDs and mitochondria, categorize the types of the contacts into dynamic and stable/anchored, present their similarities and differences, discuss their potential distinct molecular mechanism, and finally propose a working hypothesis that may explain why and how cells use two patterns of contact between LDs and mitochondria.
Collapse
Affiliation(s)
- Liujuan Cui
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
127
|
Bosch M, Parton RG, Pol A. Lipid droplets, bioenergetic fluxes, and metabolic flexibility. Semin Cell Dev Biol 2020; 108:33-46. [DOI: 10.1016/j.semcdb.2020.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/13/2020] [Accepted: 02/27/2020] [Indexed: 12/18/2022]
|
128
|
Almeida C, Amaral MD. A central role of the endoplasmic reticulum in the cell emerges from its functional contact sites with multiple organelles. Cell Mol Life Sci 2020; 77:4729-4745. [PMID: 32313974 PMCID: PMC11104799 DOI: 10.1007/s00018-020-03523-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023]
Abstract
Early eukaryotic cells emerged from the compartmentalization of metabolic processes into specific organelles through the development of an endomembrane system (ES), a precursor of the endoplasmic reticulum (ER), which was essential for their survival. Recently, substantial evidence emerged on how organelles communicate among themselves and with the plasma membrane (PM) through contact sites (CSs). From these studies, the ER-the largest single structure in eukaryotic cells-emerges as a central player communicating with all organelles to coordinate cell functions and respond to external stimuli to maintain cellular homeostasis. Herein we review the functional insights into the ER-CSs with other organelles in a physiological perspective. We hypothesize that, in addition to the primitive role by the ES in the appearance of proto-eukaryotes, its successor-the ER-emerges as the key coordinator of inter-organelle/PM communication. The ER thus appears to be the 'maestro' driving eukaryotic cell evolution by incorporating new functions/organelles, while remaining the real coordinator overarching cellular functions and orchestrating them with the external milieu.
Collapse
Affiliation(s)
- Celso Almeida
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, University of Lisboa, Campo Grande, C8 bdg, 1749-016, Lisbon, Portugal.
| | - Margarida D Amaral
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, University of Lisboa, Campo Grande, C8 bdg, 1749-016, Lisbon, Portugal.
| |
Collapse
|
129
|
Gemmink A, Daemen S, Brouwers B, Hoeks J, Schaart G, Knoops K, Schrauwen P, Hesselink MKC. Decoration of myocellular lipid droplets with perilipins as a marker for in vivo lipid droplet dynamics: A super-resolution microscopy study in trained athletes and insulin resistant individuals. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158852. [PMID: 33160079 DOI: 10.1016/j.bbalip.2020.158852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/30/2022]
Abstract
In many different cell types neutral lipids can be stored in lipid droplets (LDs). Nowadays, LDs are viewed as dynamic organelles, which store and release fatty acids depending on energy demand (LD dynamics). Proteins like perilipin 2 (PLIN2) and PLIN5 decorate the LD membrane and are determinants of LD lipolysis and fat oxidation, thus affecting LD dynamics. Trained athletes and type 2 diabetes (T2D) patients both have high levels of intramyocellular lipid (IMCL). While IMCL content scales negatively with insulin resistance, athletes are highly insulin sensitive in contrast to T2D patients, the so-called athlete's paradox. Differences in LD dynamics may be an underlying factor explaining the athlete's paradox. We aimed to quantify PLIN2 and PLIN5 content at individual LDs as a reflection of the ability to switch between fatty acid release and storage depending on energy demand. Thus, we developed a novel fluorescent super-resolution microscopy approach and found that PLIN2 protein abundance at the LD surface was higher in T2D patients than in athletes. Localization of adipocyte triglyceride lipase (ATGL) to the LD surface was lower in LDs abundantly decorated with PLIN2. While PLIN5 abundance at the LD surface was similar in athletes and T2D patients, we have observed previously that the number of PLIN5 decorated LDs was higher in athletes, indicating more LDs in close association with mitochondria. Thus, in athletes interaction of LDs with mitochondria was more pronounced and LDs have the protein machinery to be more dynamic, while in T2D patients the LD pool is more inert. This observation contributes to our understanding of the athlete's paradox.
Collapse
Affiliation(s)
- Anne Gemmink
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD Maastricht, the Netherlands
| | - Sabine Daemen
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD Maastricht, the Netherlands
| | - Bram Brouwers
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD Maastricht, the Netherlands
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD Maastricht, the Netherlands
| | - Gert Schaart
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD Maastricht, the Netherlands
| | - Kèvin Knoops
- Microscopy Core Lab, FHML and M4I Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD Maastricht, the Netherlands
| | - Matthijs K C Hesselink
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD Maastricht, the Netherlands.
| |
Collapse
|
130
|
Friend or Foe: Lipid Droplets as Organelles for Protein and Lipid Storage in Cellular Stress Response, Aging and Disease. Molecules 2020; 25:molecules25215053. [PMID: 33143278 PMCID: PMC7663626 DOI: 10.3390/molecules25215053] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Lipid droplets (LDs) were considered as a mere lipid storage organelle for a long time. Recent evidence suggests that LDs are in fact distinct and dynamic organelles with a specialized proteome and functions in many cellular roles. As such, LDs contribute to cellular signaling, protein and lipid homeostasis, metabolic diseases and inflammation. In line with the multitude of functions, LDs interact with many cellular organelles including mitochondria, peroxisomes, lysosomes, the endoplasmic reticulum and the nucleus. LDs are highly mobile and dynamic organelles and impaired motility disrupts the interaction with other organelles. The reduction of interorganelle contacts results in a multitude of pathophysiologies and frequently in neurodegenerative diseases. Contacts not only supply lipids for β-oxidation in mitochondria and peroxisomes, but also may include the transfer of toxic lipids as well as misfolded and harmful proteins to LDs. Furthermore, LDs assist in the removal of protein aggregates when severe proteotoxic stress overwhelms the proteasomal system. During imbalance of cellular lipid homeostasis, LDs also support cellular detoxification. Fine-tuning of LD function is of crucial importance and many diseases are associated with dysfunctional LDs. We summarize the current understanding of LDs and their interactions with organelles, providing a storage site for harmful proteins and lipids during cellular stress, aging inflammation and various disease states.
Collapse
|
131
|
Di Mattia T, Martinet A, Ikhlef S, McEwen AG, Nominé Y, Wendling C, Poussin-Courmontagne P, Voilquin L, Eberling P, Ruffenach F, Cavarelli J, Slee J, Levine TP, Drin G, Tomasetto C, Alpy F. FFAT motif phosphorylation controls formation and lipid transfer function of inter-organelle contacts. EMBO J 2020; 39:e104369. [PMID: 33124732 PMCID: PMC7705450 DOI: 10.15252/embj.2019104369] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Abstract
Organelles are physically connected in membrane contact sites. The endoplasmic reticulum possesses three major receptors, VAP‐A, VAP‐B, and MOSPD2, which interact with proteins at the surface of other organelles to build contacts. VAP‐A, VAP‐B, and MOSPD2 contain an MSP domain, which binds a motif named FFAT (two phenylalanines in an acidic tract). In this study, we identified a non‐conventional FFAT motif where a conserved acidic residue is replaced by a serine/threonine. We show that phosphorylation of this serine/threonine is critical for non‐conventional FFAT motifs (named Phospho‐FFAT) to be recognized by the MSP domain. Moreover, structural analyses of the MSP domain alone or in complex with conventional and Phospho‐FFAT peptides revealed new mechanisms of interaction. Based on these new insights, we produced a novel prediction algorithm, which expands the repertoire of candidate proteins with a Phospho‐FFAT that are able to create membrane contact sites. Using a prototypical tethering complex made by STARD3 and VAP, we showed that phosphorylation is instrumental for the formation of ER‐endosome contacts, and their sterol transfer function. This study reveals that phosphorylation acts as a general switch for inter‐organelle contacts.
Collapse
Affiliation(s)
- Thomas Di Mattia
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U 1258, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Arthur Martinet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U 1258, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Souade Ikhlef
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, CNRS, Valbonne, France
| | - Alastair G McEwen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U 1258, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Yves Nominé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U 1258, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Corinne Wendling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U 1258, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Pierre Poussin-Courmontagne
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U 1258, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Laetitia Voilquin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U 1258, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Pascal Eberling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U 1258, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Frank Ruffenach
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U 1258, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Jean Cavarelli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U 1258, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - John Slee
- UCL Institute of Ophthalmology, London, UK
| | | | - Guillaume Drin
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, CNRS, Valbonne, France
| | - Catherine Tomasetto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U 1258, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Fabien Alpy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U 1258, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
132
|
Silva BSC, DiGiovanni L, Kumar R, Carmichael RE, Kim PK, Schrader M. Maintaining social contacts: The physiological relevance of organelle interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118800. [PMID: 32712071 PMCID: PMC7377706 DOI: 10.1016/j.bbamcr.2020.118800] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/12/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023]
Abstract
Membrane-bound organelles in eukaryotic cells form an interactive network to coordinate and facilitate cellular functions. The formation of close contacts, termed "membrane contact sites" (MCSs), represents an intriguing strategy for organelle interaction and coordinated interplay. Emerging research is rapidly revealing new details of MCSs. They represent ubiquitous and diverse structures, which are important for many aspects of cell physiology and homeostasis. Here, we provide a comprehensive overview of the physiological relevance of organelle contacts. We focus on mitochondria, peroxisomes, the Golgi complex and the plasma membrane, and discuss the most recent findings on their interactions with other subcellular organelles and their multiple functions, including membrane contacts with the ER, lipid droplets and the endosomal/lysosomal compartment.
Collapse
Affiliation(s)
- Beatriz S C Silva
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Laura DiGiovanni
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Rechal Kumar
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Ruth E Carmichael
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK.
| | - Peter K Kim
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK.
| |
Collapse
|
133
|
Xu L, Wang X, Zhou J, Qiu Y, Shang W, Liu JP, Wang L, Tong C. Miga-mediated endoplasmic reticulum-mitochondria contact sites regulate neuronal homeostasis. eLife 2020; 9:56584. [PMID: 32648543 PMCID: PMC7556861 DOI: 10.7554/elife.56584] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/09/2020] [Indexed: 01/13/2023] Open
Abstract
Endoplasmic reticulum (ER)-mitochondria contact sites (ERMCSs) are crucial for multiple cellular processes such as calcium signaling, lipid transport, and mitochondrial dynamics. However, the molecular organization, functions, regulation of ERMCS, and the physiological roles of altered ERMCSs are not fully understood in higher eukaryotes. We found that Miga, a mitochondrion located protein, markedly increases ERMCSs and causes severe neurodegeneration upon overexpression in fly eyes. Miga interacts with an ER protein Vap33 through its FFAT-like motif and an amyotrophic lateral sclerosis (ALS) disease related Vap33 mutation considerably reduces its interaction with Miga. Multiple serine residues inside and near the Miga FFAT motif were phosphorylated, which is required for its interaction with Vap33 and Miga-mediated ERMCS formation. The interaction between Vap33 and Miga promoted further phosphorylation of upstream serine/threonine clusters, which fine-tuned Miga activity. Protein kinases CKI and CaMKII contribute to Miga hyperphosphorylation. MIGA2, encoded by the miga mammalian ortholog, has conserved functions in mammalian cells. We propose a model that shows Miga interacts with Vap33 to mediate ERMCSs and excessive ERMCSs lead to neurodegeneration.
Collapse
Affiliation(s)
- Lingna Xu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xi Wang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jia Zhou
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yunyi Qiu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Weina Shang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University College of Medicine, Hangzhou, China
| | - Liquan Wang
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Tong
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Institute of Ageing Research, Hangzhou Normal University College of Medicine, Hangzhou, China.,The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
134
|
Wang W, Li L, Wang X. Therapeutic targets during mitochondrial lipid metabolism. Cell Biol Toxicol 2020; 36:205-208. [PMID: 32548662 DOI: 10.1007/s10565-020-09543-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 06/11/2020] [Indexed: 01/01/2023]
Affiliation(s)
- William Wang
- Zhongshan Hospital Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Fudan University, Shanghai, China
| | - Liyang Li
- Zhongshan Hospital Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Fudan University, Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
135
|
Cho KF, Branon TC, Rajeev S, Svinkina T, Udeshi ND, Thoudam T, Kwak C, Rhee HW, Lee IK, Carr SA, Ting AY. Split-TurboID enables contact-dependent proximity labeling in cells. Proc Natl Acad Sci U S A 2020; 117:12143-12154. [PMID: 32424107 PMCID: PMC7275672 DOI: 10.1073/pnas.1919528117] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proximity labeling catalyzed by promiscuous enzymes, such as TurboID, have enabled the proteomic analysis of subcellular regions difficult or impossible to access by conventional fractionation-based approaches. Yet some cellular regions, such as organelle contact sites, remain out of reach for current PL methods. To address this limitation, we split the enzyme TurboID into two inactive fragments that recombine when driven together by a protein-protein interaction or membrane-membrane apposition. At endoplasmic reticulum-mitochondria contact sites, reconstituted TurboID catalyzed spatially restricted biotinylation, enabling the enrichment and identification of >100 endogenous proteins, including many not previously linked to endoplasmic reticulum-mitochondria contacts. We validated eight candidates by biochemical fractionation and overexpression imaging. Overall, split-TurboID is a versatile tool for conditional and spatially specific proximity labeling in cells.
Collapse
Affiliation(s)
- Kelvin F Cho
- Cancer Biology Program, Stanford University, Stanford, CA 94305
| | - Tess C Branon
- Department of Genetics, Stanford University, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Sanjana Rajeev
- Department of Genetics, Stanford University, Stanford, CA 94305
| | | | | | - Themis Thoudam
- Research Institute of Aging and Metabolism, Kyungpook National University, 37224 Daegu, South Korea
| | - Chulhwan Kwak
- Department of Chemistry, Seoul National University, 08826 Seoul, South Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology, 44919 Ulsan, South Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, 08826 Seoul, South Korea
- School of Biological Sciences, Seoul National University, 08826 Seoul, South Korea
| | - In-Kyu Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, 37224 Daegu, South Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, 41944 Daegu, South Korea
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University, 41944 Daegu, South Korea
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Alice Y Ting
- Department of Genetics, Stanford University, Stanford, CA 94305;
- Department of Biology, Stanford University, Stanford, CA 94305
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
136
|
Zung N, Schuldiner M. New horizons in mitochondrial contact site research. Biol Chem 2020; 401:793-809. [PMID: 32324151 DOI: 10.1515/hsz-2020-0133] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022]
Abstract
Contact sites, areas where two organelles are held in close proximity through the action of molecular tethers, enable non-vesicular communication between compartments. Mitochondria have been center stage in the contact site field since the discovery of the first contact between mitochondria and the endoplasmic reticulum (ER) over 60 years ago. However, only now, in the last decade, has there been a burst of discoveries regarding contact site biology in general and mitochondrial contacts specifically. The number and types of characterized contacts increased dramatically, new molecular mechanisms enabling contact formation were discovered, additional unexpected functions for contacts were shown, and their roles in cellular and organismal physiology were emphasized. Here, we focus on mitochondria as we highlight the most recent developments, future goals and unresolved questions in the field.
Collapse
Affiliation(s)
- Naama Zung
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
137
|
The biology of lipid droplet-bound mitochondria. Semin Cell Dev Biol 2020; 108:55-64. [PMID: 32446655 DOI: 10.1016/j.semcdb.2020.04.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022]
Abstract
Proper regulation of cellular lipid storage and oxidation is indispensable for the maintenance of cellular energy homeostasis and health. Mitochondrial function has been shown to be a main determinant of functional lipid storage and oxidation, which is of particular interest for the adipose tissue, as it is the main site of triacylglyceride storage in lipid droplets (LDs). Recent studies have identified a subpopulation of mitochondria attached to LDs, peridroplet mitochondria (PDM) that can be separated from cytoplasmic mitochondria (CM) by centrifugation. PDM have distinct bioenergetics, proteome, cristae organization and dynamics that support LD build-up, however their role in adipose tissue biology remains largely unexplored. Therefore, understanding the molecular basis of LD homeostasis and their relationship to mitochondrial function and attachment in adipocytes is of major importance.
Collapse
|
138
|
Zhang L, Li F, Guo Q, Duan Y, Wang W, Zhong Y, Yang Y, Yin Y. Leucine Supplementation: A Novel Strategy for Modulating Lipid Metabolism and Energy Homeostasis. Nutrients 2020; 12:E1299. [PMID: 32370170 PMCID: PMC7282259 DOI: 10.3390/nu12051299] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Lipid metabolism is an important and complex biochemical process involved in the storage of energy and maintenance of normal biological functions. Leucine, a branched amino acid, has anti-obesity effects on glucose tolerance, lipid metabolism, and insulin sensitivity. Leucine also modulates mitochondrial dysfunction, representing a new strategy to target aging, neurodegenerative disease, obesity, diabetes, and cardiovascular disease. Although various studies have been carried out, much uncertainty still exists and further studies are required to fully elucidate the relationship between leucine and lipid metabolism. This review offers an up-to-date report on leucine, as key roles in both lipid metabolism and energy homeostasis in vivo and in vitro by acceleration of fatty acid oxidation, lipolysis, activation of the adenosine 5'-monophosphate-activated protein kinase (AMPK)-silent information regulator of transcription 1 (SIRT1)-proliferator-activated receptor γ coactivator-1α (PGC-1α) pathway, synthesis, and/or secretion of adipokines and stability of the gut microbiota.
Collapse
Affiliation(s)
- Lingyu Zhang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
| | - Wenlong Wang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha 410018, China
| | - Yinzhao Zhong
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou 510642, China;
| | - Yuhuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
| |
Collapse
|
139
|
Lundquist PK, Shivaiah KK, Espinoza-Corral R. Lipid droplets throughout the evolutionary tree. Prog Lipid Res 2020; 78:101029. [PMID: 32348789 DOI: 10.1016/j.plipres.2020.101029] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/11/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
Intracellular lipid droplets are utilized for lipid storage and metabolism in organisms as evolutionarily diverse as animals, fungi, plants, bacteria, and archaea. These lipid droplets demonstrate great diversity in biological functions and protein and lipid compositions, yet fundamentally share common molecular and ultrastructural characteristics. Lipid droplet research has been largely fragmented across the diversity of lipid droplet classes and sub-classes. However, we suggest that there is great potential benefit to the lipid community in better integrating the lipid droplet research fields. To facilitate such integration, we survey the protein and lipid compositions, functional roles, and mechanisms of biogenesis across the breadth of lipid droplets studied throughout the natural world. We depict the big picture of lipid droplet biology, emphasizing shared characteristics and unique differences seen between different classes. In presenting the known diversity of lipid droplets side-by-side it becomes necessary to offer for the first time a consistent system of categorization and nomenclature. We propose a division into three primary classes that reflect their sub-cellular location: i) cytoplasmic lipid droplets (CYTO-LDs), that are present in the eukaryotic cytoplasm, ii) prokaryotic lipid droplets (PRO-LDs), that exist in the prokaryotic cytoplasm, and iii) plastid lipid droplets (PL-LDs), that are found in plant plastids, organelles of photosynthetic eukaryotes. Within each class there is a remarkable array of sub-classes displaying various sizes, shapes and compositions. A more integrated lipid droplet research field will provide opportunities to better build on discoveries and accelerate the pace of research in ways that have not been possible.
Collapse
Affiliation(s)
- Peter K Lundquist
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA.
| | - Kiran-Kumar Shivaiah
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Roberto Espinoza-Corral
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
140
|
Keenan SN, Watt MJ, Montgomery MK. Inter-organelle Communication in the Pathogenesis of Mitochondrial Dysfunction and Insulin Resistance. Curr Diab Rep 2020; 20:20. [PMID: 32306181 DOI: 10.1007/s11892-020-01300-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Impairments in mitochondrial function in patients with insulin resistance and type 2 diabetes have been disputed for decades. This review aims to briefly summarize the current knowledge on mitochondrial dysfunction in metabolic tissues and to particularly focus on addressing a new perspective of mitochondrial dysfunction, the altered capacity of mitochondria to communicate with other organelles within insulin-resistant tissues. RECENT FINDINGS Organelle interactions are temporally and spatially formed connections essential for normal cell function. Recent studies have shown that mitochondria interact with various cellular organelles, such as the endoplasmic reticulum, lysosomes and lipid droplets, forming inter-organelle junctions. We will discuss the current knowledge on alterations in these mitochondria-organelle interactions in insulin resistance and diabetes, with a focus on changes in mitochondria-lipid droplet communication as a major player in ectopic lipid accumulation, lipotoxicity and insulin resistance.
Collapse
Affiliation(s)
- Stacey N Keenan
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Matthew J Watt
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Magdalene K Montgomery
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
141
|
Dhiman R, Caesar S, Thiam AR, Schrul B. Mechanisms of protein targeting to lipid droplets: A unified cell biological and biophysical perspective. Semin Cell Dev Biol 2020; 108:4-13. [PMID: 32201131 DOI: 10.1016/j.semcdb.2020.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/23/2020] [Accepted: 03/13/2020] [Indexed: 12/22/2022]
Abstract
Lipid droplets (LDs), or oil bodies in plants, are specialized organelles that primarily serve as hubs of cellular metabolic energy storage and consumption. These ubiquitous cytoplasmic organelles are derived from the endoplasmic reticulum (ER) and consist of a hydrophobic neutral lipid core - mainly consisting of triglycerides and sterol esters - that is encircled by a phospholipid monolayer. The dynamic metabolic functions of the LDs are mainly executed and regulated by proteins on the monolayer surface. However, its unique architecture puts some structural constraints on the types of proteins that can associate with LDs. The lipid monolayer is decorated with either peripheral proteins or with integral membrane proteins that adopt a monotopic topology. Due to its oil-water interface, which is energetically costly, the LD surface happens to be favorable to the recruitment of many proteins involved in metabolic but also non-metabolic functions. We only started very recently to understand biophysical and biochemical principles controlling protein targeting to LDs. This review aims to summarize the most recent findings regarding this topic and proposes directions that will potentially lead to a better understanding of LD surface characteristics, as compared to bilayer membranes, and how that impacts protein-LD interactions.
Collapse
Affiliation(s)
- Ravi Dhiman
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Faculty of Medicine, Saarland University, 66421 Homburg, Saar, Germany
| | - Stefanie Caesar
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Faculty of Medicine, Saarland University, 66421 Homburg, Saar, Germany
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France.
| | - Bianca Schrul
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Faculty of Medicine, Saarland University, 66421 Homburg, Saar, Germany.
| |
Collapse
|
142
|
Affiliation(s)
- Maria Bohnert
- Institute of Cell Dynamics and Imaging, University of Münster
- Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster
| |
Collapse
|
143
|
Abstract
Lipid droplets have a unique structure among organelles consisting of a dense hydrophobic core of neutral lipids surrounded by a single layer of phospholipids decorated with various proteins. Often labeled merely as passive fat storage repositories, they in fact have a remarkably dynamic life cycle. Being formed within the endoplasmic reticulum membrane, lipid droplets rapidly grow, shrink, traverse the cytosol, and engage in contacts with other organelles to exchange proteins and lipids. Their lipid and protein composition changes dynamically in response to cellular states and nutrient availability. Remarkably, their biogenesis is induced when cells experience various forms of nutrient, energy, and redox imbalances, including lipid excess and complete nutrient deprivation. Cancer cells are continuously exposed to nutrient and oxygen fluctuations and have the capacity to switch between alternative nutrient acquisition and metabolic pathways in order to strive even during severe stress. Their supply of lipids is ensured by a series of nutrient uptake and scavenging mechanisms, upregulation of de novo lipid synthesis, repurposing of their structural lipids via enzymatic remodeling, or lipid recycling through autophagy. Importantly, most of these pathways of lipid acquisition converge at lipid droplets, which combine different lipid fluxes and control their usage based on specific cellular needs. It is thus not surprising that lipid droplet breakdown is an elaborately regulated process that occurs via a complex interplay of neutral lipases and autophagic degradation. Cancer cells employ lipid droplets to ensure energy production and redox balance, modulate autophagy, drive membrane synthesis, and control its composition, thereby minimizing stress and fostering tumor progression. As regulators of (poly)unsaturated fatty acid trafficking, lipid droplets are also emerging as modulators of lipid peroxidation and sensitivity to ferroptosis. Clearly, dysregulated lipid droplet turnover may also be detrimental to cancer cells, which should provide potential therapeutic opportunities in the future. In this review, we explore how lipid droplets consolidate lipid acquisition and trafficking pathways in order to match lipid supply with the requirements for cancer cell survival, growth, and metastasis.
Collapse
|