101
|
Zhang J, Li Y, Yang Y, Huang J, Sun Y, Zhang X, Kong X. A novel iTreg-related signature for prognostic prediction in lung adenocarcinoma. Cancer Sci 2024; 115:109-124. [PMID: 38015097 PMCID: PMC10823293 DOI: 10.1111/cas.16015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/09/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer. Most patients are diagnosed at an advanced stage, therefore it is crucial to identify novel prognostic biomarkers for LUAD. As important regulatory cells, inducible regulatory T cells (iTregs) play a vital role in immune suppression and are important for the maintenance of immune homeostasis. This study explored the prognostic value and therapeutic effects of iTreg-related genes in LUAD. Data for LUAD patients, including immune infiltration data, RNA sequencing data, and clinical features, were acquired from The Cancer Genome Atlas, Gene Expression Omnibus, and Tumor Immune Single-cell Hub 2 databases. Immune-related subgroups with different infiltration patterns and iTreg-related genes were identified through univariate and multivariate Cox regression analyses and weighted correlation network analysis. Functional enrichment analyses were performed to explore the underlying mechanisms of iTreg-related genes. A prognostic risk signature was constructed using Cox regression analysis with the least absolute shrinkage and selection operator penalty. The ESTIMATE algorithm was applied to determine the immune status of LUAD patients. We applied the constructed signature to predict chemosensitivity and performed single-cell RNA sequencing analysis. The infiltration of iTregs was identified as an independent factor for predicting patient outcomes. We constructed a prognostic signature based on seven iTreg-related genes (GIMAP5, SLA, MS4A7, ZNF366, POU2AF1, MRPL12, and COL5A1), which was applied to subdivide patients into high- and low-risk subgroups. Our results revealed that patients in the iTreg-related low-risk subgroup had a better prognosis and possibly greater sensitivity to traditional chemotherapy. Our study provides a novel iTreg-related signature to elucidate the mechanisms underlying LUAD prognosis and promote individualized chemotherapy treatment.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Thoracic SurgeryHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Yan Li
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Yue Yang
- Institute of Cancer Prevention and Treatment, Harbin Medical UniversityHarbinHeilongjiangChina
| | - Jian Huang
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Yue Sun
- The Academic Department of Science and TechnologyHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Xi Zhang
- Department of AnaesthesiologyHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Xianglong Kong
- Department of Thoracic SurgeryHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| |
Collapse
|
102
|
Lee H, Kim J. A Gene Selection Method Considering Measurement Errors. J Comput Biol 2024; 31:71-82. [PMID: 38010511 DOI: 10.1089/cmb.2023.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
The analysis of gene expression data has made significant contributions to understanding disease mechanisms and developing new drugs and therapies. In such analysis, gene selection is often required for identifying informative and relevant genes and removing redundant and irrelevant ones. However, this is not an easy task as gene expression data have inherent challenges such as ultra-high dimensionality, biological noise, and measurement errors. This study focuses on the measurement errors in gene selection problems. Typically, high-throughput experiments have their own intrinsic measurement errors, which can result in an increase of falsely discovered genes. To alleviate this problem, this study proposes a gene selection method that takes into account measurement errors using generalized liner measurement error models. The method consists of iterative filtering and selection steps until convergence, leading to fewer false positives and providing stable results under measurement errors. The performance of the proposed method is demonstrated through simulation studies and applied to a lung cancer data set.
Collapse
Affiliation(s)
- Hajoung Lee
- Department of Statistics, Sungkyunkwan University, Seoul, South Korea
| | - Jaejik Kim
- Department of Statistics, Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
103
|
Prades-Sagarra E, Laarakker F, Dissy J, Lieuwes NG, Biemans R, Dubail M, Fouillade C, Yaromina A, Dubois LJ. Caffeic Acid Phenethyl Ester (CAPE), a natural polyphenol to increase the therapeutic window for lung adenocarcinomas. Radiother Oncol 2024; 190:110021. [PMID: 38000688 DOI: 10.1016/j.radonc.2023.110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND AND PURPOSE Lung cancers are highly resistant to radiotherapy, necessitating the use of high doses, which leads to radiation toxicities such as radiation pneumonitis and fibrosis. Caffeic Acid Phenethyl Ester (CAPE) has been suggested to have anti-proliferative and pro-apoptotic effects in tumour cells, while radioprotective anti-inflammatory and anti-oxidant effects in the normal tissue. We investigated the radiosensitizing and radioprotective effects of CAPE in lung cancer cell lines and normal tissue in vitro and ex vivo, respectively. MATERIALS AND METHODS The cytotoxic and radiosensitizing effects of CAPE in lung cancer were investigated using viability and clonogenic survival assays. The radioprotective effects of CAPE were assessed in vitro and ex vivo using precision cut lung slices (PCLS). Potential underlying molecular mechanisms of CAPE focusing on cell cycle, cell metabolism, mitochondrial function and pro-inflammatory markers were investigated. RESULTS Treatment with CAPE decreased cell viability in a dose-dependent manner (IC50 57.6 ± 16.6 μM). Clonogenic survival assays showed significant radiosensitization by CAPE in lung adenocarcinoma lines (p < 0.05), while no differences were found in non-adenocarcinoma lines (p ≥ 0.13). Cell cycle analysis showed an increased S-phase (p < 0.05) after incubation with CAPE in the majority of cell lines. Metabolic profiling showed that CAPE shifted cellular respiration towards glycolysis (p < 0.01), together with mitochondrial membrane depolarization (p < 0.01). CAPE induced a decrease in NF-κB activity in adenocarcinomas and decreased pro-inflammatory gene expression in PCLS. CONCLUSION The combination of CAPE and radiotherapy may be a potentially effective approach to increase the therapeutic window in lung cancer patients.
Collapse
Affiliation(s)
- E Prades-Sagarra
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - F Laarakker
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - J Dissy
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - N G Lieuwes
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - R Biemans
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - M Dubail
- Institut Curie, Inserm U1021-CNRS UMR 3347, University Paris-Saclay, PSL University, Centre Universitaire, 91405 Orsay Cedex, France
| | - C Fouillade
- Institut Curie, Inserm U1021-CNRS UMR 3347, University Paris-Saclay, PSL University, Centre Universitaire, 91405 Orsay Cedex, France
| | - A Yaromina
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - L J Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
104
|
Mo G, Long X, Cao L, Tang Y, Yan Y, Guo T. A Six-gene Prognostic Model Based on Neutrophil Extracellular Traps (NETs)-related Gene Signature for Lung Adenocarcinoma. Comb Chem High Throughput Screen 2024; 27:1969-1983. [PMID: 38357943 DOI: 10.2174/0113862073282003240119064337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is one of the most common malignant cancers. Neutrophil extracellular traps (NETs) have been discovered to play a crucial role in the pathogenesis of LUAD. We aimed to establish an innovative prognostic model for LUAD based on the distinct expression patterns of NETs-related genes. METHODS The TCGA LUAD dataset was utilized as the training set, while GSE31210, GSE37745, and GSE50081 were undertaken as the verification sets. The patients were grouped into clusters based on the expression signature of NETs-related genes. Differentially expressed genes between clusters were identified through the utilization of the random forest and LASSO algorithms. The NETs score model for LUAD prognosis was developed by multiplying the expression levels of specific genes with their corresponding LASSO coefficients and then summing them. The validity of the model was confirmed by analysis of the survival curves and ROC curves. Additionally, immune infiltration, GSEA, mutation analysis, and drug analysis were conducted. Silencing ABCC2 in A549 cells was achieved to investigate its effect. RESULTS We identified six novel NETs-related genes, namely UPK1B, SFTA3, GGTLC1, SCGB3A1, ABCC2, and NTS, and developed a NETs score signature, which exhibited a significant correlation with the clinicopathological and immune traits of the LUAD patients. High-risk patients showed inhibition of immune-related processes. Mutation patterns exhibited variability among the different groups. AZD3759, lapatinib, and dasatinib have been identified as potential candidates for LUAD treatment. Moreover, the downregulation of ABCC2 resulted in the induction of apoptosis and suppression of migration and invasion in A549 cells. CONCLUSION Altogether, this study has identified a novel NET-score signature based on six novel NET-related genes to predict the prognosis of LUAD and ABCC2 and has also explored a new method for personalized chemo-/immuno-therapy of LUAD.
Collapse
Affiliation(s)
- Guiyan Mo
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410005, Hunan, China
| | - Xuan Long
- Department of Respiratory and Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Limin Cao
- Department of Respiratory and Critical Care Medicine, Lianyungang Second People's Hospital, Lianyungang, 222000, Jiangsu, China
| | - Yuling Tang
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410005, Hunan, China
| | - Yusheng Yan
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410005, Hunan, China
| | - Ting Guo
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410005, Hunan, China
| |
Collapse
|
105
|
Wang Y, Zhang T, He X. Advances in the role of microRNAs associated with the PI3K/AKT signaling pathway in lung cancer. Front Oncol 2023; 13:1279822. [PMID: 38169723 PMCID: PMC10758458 DOI: 10.3389/fonc.2023.1279822] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Cancer has long been a topic of great interest in society and a major factor affecting human health. Breast, prostate, lung, and colorectal cancers are the top four tumor types with the greatest incidence rates in 2020, according to the most recent data on global cancer incidence. Among these, lung cancer had the highest fatality rate. Extensive research has shown that microRNAs, through different signaling pathways, play crucial roles in cancer development. It is considered that the PI3K/AKT signaling pathway plays a significant role in the development of lung cancer. MicroRNAs can act as a tumor suppressor or an oncogene by altering the expression of important proteins in this pathway, such as PTEN and AKT. In order to improve the clinical translational benefit of microRNAs in lung cancer research, we have generalized and summarized the way of action of microRNAs linked with the PI3/AKT signaling pathway in this review through literature search and data analysis.
Collapse
Affiliation(s)
- Yanting Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Respiratory and Critical Illness Medicine, Gannan Medical University’s First Affiliated Hospital, Ganzhou, China
| | - Tao Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Xin He
- Department of Respiratory and Critical Illness Medicine, Gannan Medical University’s First Affiliated Hospital, Ganzhou, China
- Jiangxi Provincial Branch of China Clinical Medical Research Center for Geriatric Diseases, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
106
|
Wang J, Wang H, Xu J, Song Q, Zhou B, Shangguan J, Xue M, Wang Y. Identification of protein signatures for lung cancer subtypes based on BPSO method. PLoS One 2023; 18:e0294243. [PMID: 38060494 PMCID: PMC10703216 DOI: 10.1371/journal.pone.0294243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
The objective of this study was to identify protein biomarkers that can distinguish between LUAD and LUSC, critical for personalized treatment plans. The proteomic profiling data of LUAD and LUSC samples from TCPA database, along with phenotype and survival information from TCGA database were downloaded and preprocessed for analysis. We used BPSO feature selection method and identified 10 candidate protein biomarkers that have better classifying performance, as analyzed by t-SNE and PCA algorithms. To explore the causalities among these proteins and their associations with tumor subtypes, we conducted the PCStable algorithm to construct a regulatory network. Results indicated that 4 proteins, MIG6, CD26, NF2, and INPP4B, were directly linked to the lung cancer subtypes and may be useful in guiding therapeutic decision-making. Besides, spearman correlation, Cox proportional hazard model and Kaplan-Meier curve was employed to validate the biological significance of the candidate proteins. In summary, our study highlights the importance of protein biomarkers in the classification of lung cancer subtypes and the potential of computational methods for identifying key biomarkers and understanding their underlying biological mechanisms.
Collapse
Affiliation(s)
- Jihan Wang
- Department of Basic Medicine, School of Medicine, Xi’an International University, Xi’an, 710077, China
| | - Hanping Wang
- Department of Basic Medicine, School of Medicine, Xi’an International University, Xi’an, 710077, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi’an, 710077, China
| | - Jing Xu
- Department of Basic Medicine, School of Medicine, Xi’an International University, Xi’an, 710077, China
| | - Qiying Song
- Department of Basic Medicine, School of Medicine, Xi’an International University, Xi’an, 710077, China
| | - Baozhen Zhou
- Department of Basic Medicine, School of Medicine, Xi’an International University, Xi’an, 710077, China
| | - Jingbo Shangguan
- Department of Basic Medicine, School of Medicine, Xi’an International University, Xi’an, 710077, China
| | - Mengju Xue
- Department of Basic Medicine, School of Medicine, Xi’an International University, Xi’an, 710077, China
| | - Yangyang Wang
- School of Electronics and Information, Northwestern Polytechnical University, Xi’an, 710129, China
| |
Collapse
|
107
|
Ao YQ, Gao J, Jiang JH, Wang HK, Wang S, Ding JY. Comprehensive landscape and future perspective of long noncoding RNAs in non-small cell lung cancer: it takes a village. Mol Ther 2023; 31:3389-3413. [PMID: 37740493 PMCID: PMC10727995 DOI: 10.1016/j.ymthe.2023.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/01/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a distinct subtype of RNA that lack protein-coding capacity but exert significant influence on various cellular processes. In non-small cell lung cancer (NSCLC), dysregulated lncRNAs act as either oncogenes or tumor suppressors, contributing to tumorigenesis and tumor progression. LncRNAs directly modulate gene expression, act as competitive endogenous RNAs by interacting with microRNAs or proteins, and associate with RNA binding proteins. Moreover, lncRNAs can reshape the tumor immune microenvironment and influence cellular metabolism, cancer cell stemness, and angiogenesis by engaging various signaling pathways. Notably, lncRNAs have shown great potential as diagnostic or prognostic biomarkers in liquid biopsies and therapeutic strategies for NSCLC. This comprehensive review elucidates the significant roles and diverse mechanisms of lncRNAs in NSCLC. Furthermore, we provide insights into the clinical relevance, current research progress, limitations, innovative research approaches, and future perspectives for targeting lncRNAs in NSCLC. By summarizing the existing knowledge and advancements, we aim to enhance the understanding of the pivotal roles played by lncRNAs in NSCLC and stimulate further research in this field. Ultimately, unraveling the complex network of lncRNA-mediated regulatory mechanisms in NSCLC could potentially lead to the development of novel diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Yong-Qiang Ao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Gao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia-Hao Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hai-Kun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Shuai Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jian-Yong Ding
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
108
|
Wang M, He T, Meng D, Lv W, Ye J, Cheng L, Hu J. BZW2 Modulates Lung Adenocarcinoma Progression through Glycolysis-Mediated IDH3G Lactylation Modification. J Proteome Res 2023; 22:3854-3865. [PMID: 37955350 DOI: 10.1021/acs.jproteome.3c00518] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Histone lactylation (Hla) is a metabolically stress-related histone modification that featured in specific gene expression regulation. However, the role of Hla in the pathogenesis of lung adenocarcinoma (LUAD) remains unexplored. Through bioinformatics analysis, we found that BZW2 exhibited an elevated level of expression in LUAD tissues, which was associated with a poor prognosis. Flow cytometry and TUNEL assay were used to analyze the apoptosis of LUAD cells and tissues, respectively. The effect of the cell function experiment on the LUAD cell phenotype was analyzed. An XF 96 Extracellular Flux Analyzer measured the ECAR value, and kits were used to detect lactate production and glucose consumption. Animal experiments were performed for further verification. Cell experiments showed that BZW2 fostered the malignant progression of LUAD by promoting glycolysis-mediated lactate production and lactylation of IDH3G. In a compelling in vivo validation, the inhibition of Hla could suppress the malignant progression of LUAD. Knockdown of BZW2 combined with 2-DG treatment significantly repressed tumor growth in mice. BZW2 could regulate the progression of LUAD through glycolysis-mediated IDH3G lactylation, offering a theoretical basis for the targeted treatment of LUAD with glycolysis and Hla.
Collapse
Affiliation(s)
- Ming Wang
- Zhejiang University, Hangzhou 310058, China
- Department of Thoracic Surgery, Shulan (Hangzhou) Hospital, Hangzhou 310000, China
- Zhejiang Shuren University, Hangzhou 310015, China
| | - Tianyu He
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Di Meng
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Wang Lv
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Jiayue Ye
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Ling Cheng
- Academician Expert Workstation of Zhejiang Luo Xi Medical Technology Co., Ltd, Shaoxing City 312030, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Hangzhou 310000, China
| |
Collapse
|
109
|
Cortés-Jofré M, Madera M, Tirado-Amador L, Asenjo-Lobos C, Bonfill-Cosp X. Treatments for non-small cell lung cancer: a systematic quality assessment of clinical practice guidelines. Clin Transl Oncol 2023; 25:3541-3555. [PMID: 37254015 DOI: 10.1007/s12094-023-03223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/19/2023] [Indexed: 06/01/2023]
Abstract
AIM To evaluate the methodological quality of clinical practice guidelines (CPGs) on treatments for non-small cell lung cancer (NSCLC). METHODS We searched MEDLINE, CPG developer websites, lung cancer societies, and oncology organizations to identify CPGs providing recommendations on treatments for NSCLC. The methodological quality for each CPG was determined independently by three appraisers using the AGREE II (Appraisal of Guidelines for Research and Evaluation II) instrument. RESULTS Twenty-two CPGs met the eligibility criteria. The median scores per AGREE II domain were: scope and purpose 90.7% (64.8-100%), stakeholder involvement 76.9% (27.8-96.3%); rigor of development 80.9% (27.1-92.4%); clarity of presentation 89.8% (50-100%); applicability 46.5% (12.5-87.5%); and editorial independence 91.7% (27.8-100%). Most of the CPGs (54.5%) were rated as "recommended with modifications" for clinical use. CONCLUSIONS Overall, the methodological quality of CPGs proving recommendations on the management of NSCLC is moderate, but there is still room for improvement in their development and implementation.
Collapse
Affiliation(s)
- Marcela Cortés-Jofré
- Doctoral Program in Research Methodology and Public Health, Universitat Autònoma de Barcelona, Barcelona, Spain
- Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Meisser Madera
- Faculty of Dentistry, Department of Research, Universidad de Cartagena, Cartagena, Colombia.
| | - Lesbia Tirado-Amador
- Programa de Odontología, Grupo GINOUS, Universidad del Sinú, Cartagena, Colombia
| | - Claudia Asenjo-Lobos
- Centro de Estudios Clínicos, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad de Desarrollo, Santiago, Chile
| | - Xavier Bonfill-Cosp
- Iberoamerican Cochrane Center, Institute of Biomedical Research Sant Pau (IIB Sant Pau), Barcelona, Spain
- Public Health and Clinical Epidemiology Service, Hospital de la Santa Creu i Sant Pau, CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| |
Collapse
|
110
|
Li Y, Tang D, Zhang J, Ou W, Sun X, Yang Q, Wu J. LncRNA SPRY4-IT1 regulates 16HBE cell malignant transformation induced by particulate matter through DUSP6-ERK1/2-Chk1 signaling pathway. CHEMOSPHERE 2023; 344:140358. [PMID: 37797900 DOI: 10.1016/j.chemosphere.2023.140358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Particulate matter (PM), one of the most serious air contaminants, could easily pass through the airway and deposit at the deep alveoli. Thus, it might trigger respiratory diseases like inflammation, asthma and lung cancer on human. Long non-coding RNAs (lncRNAs) are considered as important regulator in promotion and progression of diverse cancers. However, the molecular mechanism of lncRNAs mediating PM-induced lung carcinogenesis remains unclear. In this study, we established a 16HBE malignant transformed cell induced by PM (Cells were treated with 20 μg/ml PM, which named PM-T cells) and explored the roles and mechanisms of lncRNAs in the malignant transformation induced by PM. Compared with 16HBE cells, various biological functions were changed in PM-T cells, such as cell proliferation, migration, cell cycle and apoptosis. LncRNA SPRY4-IT1 was significant down-regulated expression and associated with these biological effects. Our results showed that lncRNA SPRY4-IT1 overexpression reversed these functional changes mentioned above. The further studies indicated that lncRNA SPRY4-IT1 involved in PM-induced cell transformation by modulating Chk1 expression via negative regulation of DUSP6-ERK1/2. In conclusion, our studies suggested that lncRNA SPRY4-IT1 played the role as a tumor suppressor gene and might mediate 16HBE cells malignant transformation induced by PM through regulating DUSP6-ERK1/2-Chk1 signaling pathway.
Collapse
Affiliation(s)
- Yanli Li
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Dan Tang
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Jian Zhang
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Wanting Ou
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Xuan Sun
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Qiaoyuan Yang
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Jianjun Wu
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
111
|
Gan Y, Liu Z, Tang Z, Yao X, Zeng B, Zhu H. Efficacy of neoadjuvant therapy for lung squamous cell carcinoma and lung adenocarcinoma: A retrospective comparative study. Oncol Lett 2023; 26:546. [PMID: 38020306 PMCID: PMC10660168 DOI: 10.3892/ol.2023.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Preoperative neoadjuvant therapy is widely used in cancer treatment; however, its efficacy in different subtypes of non-small cell lung cancer (NSCLC) is unknown. The present study compared the clinical efficacy of preoperative neoadjuvant therapy for two major NSCLC subtypes. Patients with NSCLC who underwent preoperative neoadjuvant therapy between January 2016 and August 2022 were reviewed. Patients were stratified according to histology and treatment strategy. Retrospective analysis was performed by comparing the basic clinical characteristics of the patients, clinicopathological characteristics of the tumors, imaging data and pathological responses to treatment. A total of 36 cases of lung squamous cell carcinoma (LUSC) and 31 cases of lung adenocarcinoma (LUAD) were included. After neoadjuvant chemotherapy combined with immunotherapy, the pathological response rates were higher for patients with LUSC than LUAD, but there was no statistically significant difference between the two subgroups (P=0.06). However, the pathological complete response rates after neoadjuvant chemotherapy combined with immunotherapy were significantly higher for LUSC than those after chemotherapy alone (P=0.01). These preliminary findings suggested that preoperative chemotherapy combined with immunotherapy could improve the pathological response of patients, particularly in those with LUSC. The present study provided new insights into the treatment of NSCLC.
Collapse
Affiliation(s)
- Yi Gan
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhihao Liu
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhiwei Tang
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaojing Yao
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Bo Zeng
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Haoshuai Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
112
|
Yin T, Liu K, Shen Y, Wang Y, Wang Q, Long T, Li J, Cheng L. Alteration of serum bile acids in non-small cell lung cancer identified by a validated LC-MS/MS method. J Cancer Res Clin Oncol 2023; 149:17285-17296. [PMID: 37815661 DOI: 10.1007/s00432-023-05434-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/16/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Bile acids (BA) are important metabolites and serve as signaling molecules, which are involve in multiple cancer-related signaling pathways. METHODS A validated LC-MS/MS approach was applied in a case-control study with 220 non-small cell lung cancer (NSCLC) patients and 244 matched healthy controls. The concentrations of seven common types of BAs in serum were determined and compared. Subgroup analyses based on demographic factor, lifestyle, pathologic types and tumor stage were conducted. Machine learning analysis was performed for NSCLC classification. RESULTS Serum levels of primary BAs, including cholic acid (CA), taurocholic acid (TCA) and glycocholic acid (GCA), were upregulated, while lithocholic acid (LCA), a type of secondary BA, was downregulated in NSCLC patients compared with healthy controls in overall analysis. Higher level of chenodeoxycholic acid (CDCA) and lower level of ursodeoxycholic acid (UDCA) were observed in female, elder, overweight patients, as well as patients without alcohol use in comparison with controls. CDCA and CA levels were higher only in lung adenocarcinoma (LUAD), and UDCA and DCA levels were lower only in squamous cell carcinoma (LUSC), while the concentrations of TCA, GCA, and LCA were altered prevalently in LUAD and LUSC patients. For discrimination of NSCLC from healthy people, the area under the receiver operating characteristics (ROC) curve of the models through support vector machine (SVM) approach was 0.91 (95% CI 0.88-0.94) in the training set and 0.84 (95% CI 0.78-0.91) in the validation set, respectively. CONCLUSIONS Serum BAs were altered in NSCLC patients compared with controls, among which primary BAs were elevated and secondary BAs were decreased. Moreover, distinct patterns of BA alterations were revealed between LUAD patients and LUSC patients.
Collapse
Affiliation(s)
- Tongxin Yin
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ke Liu
- Department of Laboratory Medicine, Wuhan No. 1 Hospital, Wuhan, 430022, China
| | - Ying Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiankun Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tingting Long
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
113
|
Zang K, Wang M, Zhu X, Yao B, Huang Y. A novel necroptosis signature for predicting survival in lung adenocarcinoma. BMC Med Genomics 2023; 16:305. [PMID: 38017445 PMCID: PMC10685572 DOI: 10.1186/s12920-023-01748-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND To explore the necroptosis-related genes (NRGs) signature and its predictive values in lung adenocarcinoma (LUAD). METHODS The training cohort consisted of tumor samples from The Cancer Genome Atlas, and the validation set comprised data from the Gene Expression Omnibus. Univariate and multivariate Cox regression analyses were applied to identify the prognostic NRG signature as an independent molecular indicator. Correlation analysis was used for the association assessment between the NRG signature and immune checkpoint molecules. RESULTS NRGs involved in necroptosis and immune NOD-like receptor signaling. The NRG signature based on eight NRGs can divide tumors into high-risk and low-risk groups, which was significantly associated with worse survival. Multivariate Cox regression analysis showed that this NRG signature remained an independent prognostic indicator. Stratification analyses demonstrated that this NRG signature was still effective for predicting survival in each stratum of age, gender, and tumor stage. The ROC curve showed a good predictive ability using the NRG signature in the validation cohort (AUC = 0.81). The NRG signature was related to immune checkpoint molecules PD - 1, PD-L1, and PD-L2. CONCLUSIONS The NRG signature could be a novel predictor of the prognosis and may become a potential therapeutic target in LUAD.
Collapse
Affiliation(s)
- Kui Zang
- Department of ICU, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huai'an, No.1, Huanghe West Road, Huaiyin District, 223300, China
| | - Min Wang
- Department of ICU, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huai'an, No.1, Huanghe West Road, Huaiyin District, 223300, China
| | - Xingxing Zhu
- Department of ICU, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huai'an, No.1, Huanghe West Road, Huaiyin District, 223300, China
| | - Bin Yao
- Department of ICU, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huai'an, No.1, Huanghe West Road, Huaiyin District, 223300, China
| | - Ying Huang
- Department of ICU, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huai'an, No.1, Huanghe West Road, Huaiyin District, 223300, China.
| |
Collapse
|
114
|
Zhang H, Xu Z. Gut-lung axis: role of the gut microbiota in non-small cell lung cancer immunotherapy. Front Oncol 2023; 13:1257515. [PMID: 38074650 PMCID: PMC10701269 DOI: 10.3389/fonc.2023.1257515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/03/2023] [Indexed: 11/02/2024] Open
Abstract
Immunotherapy for non-small cell lung cancer (NSCLC) has advanced considerably over the past two decades. In particular, immune checkpoint inhibitors are widely used for treating NSCLC. However, the overall cure and survival rates of patients with NSCLC remain low. Therefore, continuous investigation into complementary treatments is necessary to expand the clinical advantages of immunotherapy to a larger cohort of patients with NSCLC. Recently, the distinctive role of the gut microbiota (GM) in the initiation, progression, and dissemination of cancer has attracted increasing attention. Emerging evidence indicates a close relationship between the gut and lungs, known as the gut-lung axis (GLA). In this review, we aim to provide a comprehensive summary of the current knowledge regarding the connection between the GM and the outcomes of immunotherapy in NSCLC, with particular focus on the recent understanding of GLA. Overall, promising GM-based therapeutic strategies have been observed to improve the effectiveness or reduce the toxicity of immunotherapy in patients with NSCLC, thus advancing the utilization of microbiota precision medicine.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ziyuan Xu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
115
|
Liu J, Shao N, Qiu H, Zhao J, Chen C, Wan J, He Z, Zhao X, Xu L. Intestinal microbiota: A bridge between intermittent fasting and tumors. Biomed Pharmacother 2023; 167:115484. [PMID: 37708691 DOI: 10.1016/j.biopha.2023.115484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
Intestinal microbiota and their metabolites are essential for maintaining intestinal health, regulating inflammatory responses, and enhancing the body's immune function. An increasing number of studies have shown that the intestinal microbiota is tightly tied to tumorigenesis and intervention effects. Intermittent fasting (IF) is a method of cyclic dietary restriction that can improve energy metabolism, prolong lifespan, and reduce the progression of various diseases, including tumors. IF can affect the energy metabolism of tumor cells, inhibit tumor cell growth, improve the function of immune cells, and promote an anti-tumor immune response. Interestingly, recent research has further revealed that the intestinal microbiota can be impacted by IF, in particular by changes in microbial composition and metabolism. These findings suggest the complexity of the IF as a promising tumor intervention strategy, which merits further study to better understand and encourage the development of clinical tumor intervention strategies. In this review, we aimed to outline the characteristics of the intestinal microbiota and its mechanisms in different tumors. Of note, we summarized the impact of IF on intestinal microbiota and discussed its potential association with tumor suppressive effects. Finally, we proposed some key scientific issues that need to be addressed and envision relevant research prospects, which might provide a theoretical basis and be helpful for the application of IF and intestinal microbiota as new strategies for clinical interventions in the future.
Collapse
Affiliation(s)
- Jing Liu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Nan Shao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Hui Qiu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jiajia Wan
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhixu He
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Guizhou University Medical College, Guiyang 550025, Guizhou Province, China.
| | - Lin Xu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
116
|
Tvilum M, Lutz CM, Knap MM, Hoffmann L, Khalil AA, Holt MI, Kandi M, Schmidt HH, Appelt AL, Alber M, Møller DS. Different benefits of adaptive radiotherapy for different histologies of NSCLC. Acta Oncol 2023; 62:1426-1432. [PMID: 37796133 DOI: 10.1080/0284186x.2023.2260944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Adenocarcinoma (AC) and squamous cell carcinoma (SCC) are the most frequent histological subtypes of non-small cell lung cancer (NSCLC). The aim of this study was to investigate how patients with AC and SCC benefit from image-guided adaptive radiotherapy (ART) with tumour match. MATERIAL AND METHODS Consecutive patients diagnosed with AC or SCC of the lung treated with definitive chemo-radiotherapy before and after the implementation of ART and tumour match were retrospectively included for analyses. Data collection included baseline patient and treatment characteristics in addition to clinical data on radiation pneumonitis (RP), failure, and survival. Patients were divided into four categories based on their histology and treatment before (n = 173 [89 AC and 84 SCC]) and after implementation of ART (n = 240 [141 AC and 99 SCC]). RESULTS Median follow-up was 5.7 years for AC and 6.3 years for SCC. Mean lung dose decreased for both histologies with ART, whereas mean heart dose only decreased for patients with AC. Incidences of grade 3 and 5 RP decreased for both histologies with ART. Loco-regional failure (LRF) rates decreased significantly for patients with SCC after ART (p = .04), no significant difference was observed for AC. Overall survival (OS) increased significantly for SCC after ART (p < .01): the 2-year OS increased from 31.0% (95% confidence interval [CI] [22.5-42.6]) to 54.5% (95% CI [45.6-65.3]). No significant effect on OS was observed for patients with AC. CONCLUSION ART and tumour match in the radiotherapeutic treatment of patients with locally advanced NSCLC primarily led to decreased LRF and improved OS for patients with SCC.
Collapse
Affiliation(s)
- Marie Tvilum
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Lone Hoffmann
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Maria Kandi
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Ane L Appelt
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Leeds Cancer Centre, St James's University Hospital, Leeds, UK
| | - Markus Alber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg University Hospital, Heidelberg, Germany
| | - Ditte S Møller
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
117
|
Zhang N, Liu Z, Lai X, Liu S, Wang Y. Silencing of CD147 inhibits cell proliferation, migration, invasion, lipid metabolism dysregulation and promotes apoptosis in lung adenocarcinoma via blocking the Rap1 signaling pathway. Respir Res 2023; 24:253. [PMID: 37880644 PMCID: PMC10601207 DOI: 10.1186/s12931-023-02532-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/05/2023] [Indexed: 10/27/2023] Open
Abstract
OBJECTIVE CD147 is an important glycoprotein that participates in the progression of diverse cancers. This study aims to explore the specific function of CD147 in lung adenocarcinoma (LUAD) and to reveal related downstream molecular mechanisms. METHODS Followed by silencing of CD147, the viability, migration, invasion, and apoptosis of LUAD cells were measured by CCK8, wound healing, transwell assay, and flow cytometer, respectively. The expression of CD147 and two markers of lipid metabolism (FASN and ACOX1) were detected by qRT-PCR. A xenograft tumor model was constructed to investigate the function of CD147 in vivo. Then transcriptome sequencing was performed to explore the potential mechanisms. After measuring the expression of Rap1 and p-p38 MAPK/p38 MAPK by western blot, the changes of CD147 and lipid metabolism markers (FASN, ACOX1) was detected by Immunohistochemistry. Moreover, a Rap1 activator and a Rap1 inhibitor were applied for feedback functional experiments. RESULTS CD147 was up-regulated in LUAD cells, and its silencing inhibited cell proliferation, migration, invasion, lipid metabolism dysregulation and promoted apoptosis, while overexpression of CD147 showed the opposite results. Silencing of CD147 also inhibited the growth of tumor xenografts in mice. Transcriptome sequencing revealed 834 up-regulated differentially expressed genes (DEGs) and 602 down-regulated DEGs. After functional enrichment, the Rap1 signaling pathway was selected as a potential target, which was then verified to be blocked by CD147 silencing. In addition, the treatment of Rap1 activator weakened the inhibiting effects of si-CD147 on the proliferation, migration, invasion, and lipid metabolism in LUAD cells, while the intervention of RAP1 inhibitor showed the opposite results. CONCLUSIONS Silencing of CD147 inhibited the proliferation, migration, invasion, lipid metabolism dysregulation and promoted apoptosis of LUAD cells through blocking the Rap1 signaling pathway.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Gastroenterology, Ganzhou People's Hospital, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou City, 341000, Jiangxi Province, China
| | - Zhouzhong Liu
- Department of Oncology, Ganzhou People's Hospital, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou City, 341000, Jiangxi Province, China
| | - Xuwang Lai
- Department of Oncology, Ganzhou People's Hospital, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou City, 341000, Jiangxi Province, China
| | - Shubin Liu
- Department of Oncology, Ganzhou People's Hospital, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou City, 341000, Jiangxi Province, China
| | - Yuli Wang
- Department of Oncology, Ganzhou People's Hospital, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou City, 341000, Jiangxi Province, China.
| |
Collapse
|
118
|
Castillo-Peña A, Molina-Pinelo S. Landscape of tumor and immune system cells-derived exosomes in lung cancer: mediators of antitumor immunity regulation. Front Immunol 2023; 14:1279495. [PMID: 37915578 PMCID: PMC10616833 DOI: 10.3389/fimmu.2023.1279495] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023] Open
Abstract
The immune system plays a critical role in cancer, including lung cancer, which is the leading cause of cancer-related deaths worldwide. Immunotherapy, particularly immune checkpoint blockade, has revolutionized the treatment of lung cancer, but a large subset of patients either do not respond or develop resistance. Exosomes, essential mediators of cell-to-cell communication, exert a profound influence on the tumor microenvironment and the interplay between cancer and the immune system. This review focuses on the role of tumor-derived exosomes and immune cells-derived exosomes in the crosstalk between these cell types, influencing the initiation and progression of lung cancer. Depending on their cell of origin and microenvironment, exosomes can contain immunosuppressive or immunostimulatory molecules that can either promote or inhibit tumor growth, thus playing a dual role in the disease. Furthermore, the use of exosomes in lung cancer immunotherapy is discussed. Their potential applications as cell-free vaccines and drug delivery systems make them an attractive option for lung cancer treatment. Additionally, exosomal proteins and RNAs emerge as promising biomarkers that could be employed for the prediction, diagnosis, prognosis and monitoring of the disease. In summary, this review assesses the relationship between exosomes, lung cancer, and the immune system, shedding light on their potential clinical applications and future perspectives.
Collapse
Affiliation(s)
- Alejandro Castillo-Peña
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, University of Seville, Seville, Spain
| | - Sonia Molina-Pinelo
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, University of Seville, Seville, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
| |
Collapse
|
119
|
Gao R, Zheng X, Jiang A, He W, Liu T. Modulating β-catenin/BCL9 interaction with cell-membrane-camouflaged carnosic acid to inhibit Wnt pathway and enhance tumor immune response. Front Immunol 2023; 14:1274223. [PMID: 37881428 PMCID: PMC10594212 DOI: 10.3389/fimmu.2023.1274223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
Introduction Lung adenocarcinoma (LUAD) therapies are plagued by insufficient immune infiltration and suboptimal immune responses in patients, which are closely associated with the hyperactive Wnt/β-catenin pathway. Suppressing this signaling holds considerable promise as a potential tumor therapy for LUAD, but Wnt suppressor development is hindered by concerns regarding toxicity and adverse effects due to insufficient targeting of tumors. Methods We have synthesized a tumor-specific biomimetic Wnt pathway suppressor, namely CM-CA, by encapsulating carnosic acid within Lewis lung carcinoma (LLC) cell membranes. It possesses nano-size, allowing for a straightforward preparation process, and exhibits the ability to selectively target the Wnt/β-catenin pathway in lung adenocarcinoma cells. To evaluate its in vivo efficacy, we utilized the LLC Lewis homograft model, and further validated its mechanism of action through immunohistochemistry staining and transcriptome sequencing analyses. Results The findings from the animal experiments demonstrated that CM-CA effectively suppressed the Wnt/β-catenin signaling pathway and impeded cellular proliferation, leading to notable tumor growth inhibition in a biologically benign manner. Transcriptome sequencing analyses revealed that CM-CA promoted T cell infiltration and bolstered the immune response within tumor tissues. Conclusion The utilization of CM-CA presents a novel and auspicious approach to achieve tumor suppression and augment the therapeutic response rate in LUAD, while also offering a strategy for the development of Wnt/β-catenin inhibitors with biosafety profile.
Collapse
Affiliation(s)
- Ruqing Gao
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Medicine, Nanchang University, Nanchang, China
| | - Xiaoqiang Zheng
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Aimin Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wangxiao He
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tianya Liu
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
120
|
Wang Q, Zhang L, Su Z, Li W, Jia Y, Zhang J. Serum exosomal m6A demethylase FTO promotes gefitinib resistance in non-small cell lung cancer by up-regulating FLRT3, PTGIS and SIRPα expression. Pulm Pharmacol Ther 2023; 82:102227. [PMID: 37330168 DOI: 10.1016/j.pupt.2023.102227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/10/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
This study investigates the molecular mechanism of FTO m6A demethylase in non-small cell lung cancer (NSCLC) and gefitinib resistance using GEO and TCGA databases. Differentially expressed genes (DEGs) were screened from RNA-seq data sets of serum exosomes of gefitinib-resistant NSCLC patients in the GEO database and the NSCLC data set in the GEPIA2 database. From this analysis, FTO m6A demethylase was found to be significantly upregulated in the serum exosomes of gefitinib-resistant NSCLC patients. To identify downstream genes affected by FTO m6A demethylase, weighted correlation network analysis and differential expression analysis were performed, resulting in the identification of three key downstream genes (FLRT3, PTGIS, and SIRPA). Using these genes, the authors constructed a prognostic risk assessment model. Patients with high-risk scores exhibited a significantly worse prognosis. The model could predict the prognosis of NSCLC with high accuracy measured by AUC values of 0.588, 0.608, and 0.603 at 1, 3, and 5 years respectively. Furthermore, m6A sites were found in FLRT3, PTGIS, and SIRPA genes, and FTO was significantly positively correlated with the expression of these downstream genes. Overall, FTO m6A demethylase promotes gefitinib resistance in NSCLC patients by upregulating downstream FLRT3, PTGIS, and SIRPA expression, with these three downstream genes serving as strong prognostic indicators.
Collapse
Affiliation(s)
- Qi Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Lin Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Zhenzhong Su
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Wei Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Yuxi Jia
- Orthopedic Research Center, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China.
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China.
| |
Collapse
|
121
|
Wang Y, Liu S, Li J, Yin T, Liu Y, Wang Q, Liu X, Cheng L. Comprehensive serum N-glycan profiling identifies a biomarker panel for early diagnosis of non-small-cell lung cancer. Proteomics 2023; 23:e2300140. [PMID: 37474491 DOI: 10.1002/pmic.202300140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
Aberrant serum N-glycan profiles have been observed in multiple cancers including non-small-cell lung cancer (NSCLC), yet the potential of N-glycans in the early diagnosis of NSCLC remains to be determined. In this study, serum N-glycan profiles of 275 NSCLC patients and 309 healthy controls were characterized by MALDI-TOF-MS. The levels of serum N-glycans and N-glycosylation patterns were compared between NSCLC and control groups. In addition, a panel of N-glycan biomarkers for NSCLC diagnosis was established and validated using machine learning algorithms. As a result, a total of 54 N-glycan structures were identified in human serum. Compared with healthy controls, 29 serum N-glycans were increased or decreased in NSCLC patients. N-glycan abundance in different histological types or clinical stages of NSCLC presented differentiated changes. Furthermore, an optimal biomarker panel of eight N-glycans was constructed based on logistic regression, with an AUC of 0.86 in the validation set. Notably, this model also showed a desirable capacity in distinguishing early-stage patients from healthy controls (AUC = 0.88). In conclusion, our work highlights the abnormal N-glycan profiles in NSCLC and provides supports potential application of N-glycan biomarker panel in clinical NSCLC detection.
Collapse
Affiliation(s)
- Yi Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongxin Yin
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qiankun Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
122
|
Wu R, Ma R, Duan X, Zhang J, Li K, Yu L, Zhang M, Liu P, Wang C. Identification of specific prognostic markers for lung squamous cell carcinoma based on tumor progression, immune infiltration, and stem index. Front Immunol 2023; 14:1236444. [PMID: 37841237 PMCID: PMC10570622 DOI: 10.3389/fimmu.2023.1236444] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Lung squamous cell carcinoma (LUSC) is a unique subform of nonsmall cell lung cancer (NSCLC). The lack of specific driver genes as therapeutic targets leads to worse prognoses in patients with LUSC, even with chemotherapy, radiotherapy, or immune checkpoint inhibitors. Furthermore, research on the LUSC-specific prognosis genes is lacking. This study aimed to develop a comprehensive LUSC-specific differentially expressed genes (DEGs) signature for prognosis correlated with tumor progression, immune infiltration,and stem index. Methods RNA sequencing data for LUSC and lung adenocarcinoma (LUAD) were extracted from The Cancer Genome Atlas (TCGA) data portal, and DEGs analyses were conducted in TCGA-LUSC and TCGA-LUAD cohorts to identify specific DEGs associated with LUSC. Functional analysis and protein-protein interaction network were performed to annotate the roles of LUSC-specific DEGs and select the top 100 LUSC-specific DEGs. Univariate Cox regression and least absolute shrinkage and selection operator regression analyses were performed to select prognosis-related DEGs. Results Overall, 1,604 LUSC-specific DEGs were obtained, and a validated seven-gene signature was constructed comprising FGG, C3, FGA, JUN, CST3, CPSF4, and HIST1H2BH. FGG, C3, FGA, JUN, and CST3 were correlated with poor LUSC prognosis, whereas CPSF4 and HIST1H2BH were potential positive prognosis markers in patients with LUSC. Receiver operating characteristic analysis further confirmed that the genetic profile could accurately estimate the overall survival of LUSC patients. Analysis of immune infiltration demonstrated that the high risk (HR) LUSC patients exhibited accelerated tumor infiltration, relative to low risk (LR) LUSC patients. Molecular expressions of immune checkpoint genes differed significantly between the HR and LR cohorts. A ceRNA network containing 19 lncRNAs, 50 miRNAs, and 7 prognostic DEGs was constructed to demonstrate the prognostic value of novel biomarkers of LUSC-specific DEGs based on tumor progression, stemindex, and immune infiltration. In vitro experimental models confirmed that LUSC-specific DEG FGG expression was significantly higher in tumor cells and correlated with immune tumor progression, immune infiltration, and stem index. In vitro experimental models confirmed that LUSC-specific DEG FGG expression was significantly higher in tumor cells and correlated with immune tumor progression, immune infiltration, and stem index. Conclusion Our study demonstrated the potential clinical implication of the 7- DEGs signature for prognosis prediction of LUSC patients based on tumor progression, immune infiltration, and stem index. And the FGG could be an independent prognostic biomarker of LUSC promoting cell proliferation, migration, invasion, THP-1 cell infiltration, and stem cell maintenance.
Collapse
Affiliation(s)
- Rihan Wu
- School of Life Science, Inner Mongolia University, Hohhot, China
- The Department of Oncology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ru Ma
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Xiaojun Duan
- School of Life Science, Inner Mongolia University, Hohhot, China
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Jiandong Zhang
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Kexin Li
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Lei Yu
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Mingyang Zhang
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Pengxia Liu
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Changshan Wang
- School of Life Science, Inner Mongolia University, Hohhot, China
| |
Collapse
|
123
|
Lin X, Liu YH, Zhang HQ, Wu LW, Li Q, Deng J, Zhang Q, Yang Y, Zhang C, Li YL, Hu J. DSCC1 interacts with HSP90AB1 and promotes the progression of lung adenocarcinoma via regulating ER stress. Cancer Cell Int 2023; 23:208. [PMID: 37742009 PMCID: PMC10518103 DOI: 10.1186/s12935-023-03047-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/29/2023] [Indexed: 09/25/2023] Open
Abstract
Lung cancer is a leading cause of cancer-related deaths, and the most common type is lung adenocarcinoma (LUAD). LUAD is frequently diagnosed in people who never smoked, patients are always diagnosed at advanced inoperable stages, and the prognosis is ultimately poor. Thus, there is an urgent need for the development of novel targeted therapeutics to suppress LUAD progression. In this study, we demonstrated that the expression of DNA replication and sister chromatid cohesion 1 (DSCC1) was higher in LUAD samples than normal tissues, and the overexpression of DSCC1 or its coexpressed genes were highly correlated with poor outcomes of LUAD patients, highlighting DSCC1 might be involved in LUAD progression. Furthermore, the expression of DSCC1 was positively correlated with multiple genetic mutations which drive cancer development, including TP53, TTN, CSMD, and etc. More importantly, DSCC1 could promote the cell proliferation, stemness, EMT, and metastatic potential of LUAD cells. In addition, DSCC1 interacted with HSP90AB1 and promoted the progression of LUAD via regulating ER stress. Meanwhile, DSCC1 expression negatively correlated with immune cell infiltration in lung cancer, and DSCC1 positively regulated the expression of PD-L1 in LUAD cells. Collectively, this study revealed that DSCC1 is a novel therapeutic target to treat LUAD and a biomarker for predicting the efficiency of PD-1/PD-L1 blockade treatment.
Collapse
Affiliation(s)
- Xu Lin
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ye-Han Liu
- School of Medicine, Hangzhou City University, No.51 Huzhou Street, Hangzhou, Zhejiang, 310015, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huan-Qi Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lin-Wen Wu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Department of Clinical Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qi Li
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jun Deng
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qingyi Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuhong Yang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chong Zhang
- School of Medicine, Hangzhou City University, No.51 Huzhou Street, Hangzhou, Zhejiang, 310015, China.
| | - Yang-Ling Li
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
- Department of Clinical Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
124
|
Shen J, Sun N, Wang J, Zens P, Kunzke T, Buck A, Prade VM, Wang Q, Feuchtinger A, Hu R, Berezowska S, Walch A. Patterns of Carbon-Bound Exogenous Compounds Impact Disease Pathophysiology in Lung Cancer Subtypes in Different Ways. ACS NANO 2023; 17:16396-16411. [PMID: 37639684 PMCID: PMC10510585 DOI: 10.1021/acsnano.2c11161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Carbon-bound exogenous compounds, such as polycyclic aromatic hydrocarbons (PAHs), tobacco-specific nitrosamines, aromatic amines, and organohalogens, are known to affect both tumor characteristics and patient outcomes in lung squamous cell carcinoma (LUSC); however, the roles of these compounds in lung adenocarcinoma (LUAD) remain unclear. We analyzed 11 carbon-bound exogenous compounds in LUAD and LUSC samples using in situ high mass-resolution matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry imaging and performed a cluster analysis to compare the patterns of carbon-bound exogenous compounds between these two lung cancer subtypes. Correlation analyses were conducted to investigate associations among exogenous compounds, endogenous metabolites, and clinical data, including patient survival outcomes and smoking behaviors. Additionally, we examined differences in exogenous compound patterns between normal and tumor tissues. Our analyses revealed that PAHs, aromatic amines, and organohalogens were more abundant in LUAD than in LUSC, whereas the tobacco-specific nitrosamine nicotine-derived nitrosamine ketone was more abundant in LUSC. Patients with LUAD and LUSC could be separated according to carbon-bound exogenous compound patterns detected in the tumor compartment. The same compounds had differential impacts on patient outcomes, depending on the cancer subtype. Correlation and network analyses indicated substantial differences between LUAD and LUSC metabolomes, associated with substantial differences in the patterns of the carbon-bound exogenous compounds. These data suggest that the contributions of these carcinogenic compounds to cancer biology may differ according to the cancer subtypes.
Collapse
Affiliation(s)
- Jian Shen
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
- Nanxishan
Hospital of Guangxi Zhuang Autonomous Region, Institute of Pathology, Guilin 541002, People’s Republic of China
| | - Na Sun
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Jun Wang
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Philipp Zens
- Institute
of Tissue Medicine and Pathology, University
of Bern, Murtenstrasse 31, Bern 3008, Switzerland
- Graduate
School for Health Sciences, University of
Bern, Mittelstrasse 43, Bern 3012, Switzerland
| | - Thomas Kunzke
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Achim Buck
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Verena M. Prade
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Qian Wang
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Annette Feuchtinger
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Ronggui Hu
- Center
for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200030, People’s
Republic of China
| | - Sabina Berezowska
- Institute
of Tissue Medicine and Pathology, University
of Bern, Murtenstrasse 31, Bern 3008, Switzerland
- Department
of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Axel Walch
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| |
Collapse
|
125
|
Dong L, Zhang L, Zhao X, Zou H, Lin S, Zhu X, Cao J, Zhou C, Yu Z, Zhu Y, Chai K, Li M, Li Q. LncRNA CYP4A22-AS1 promotes the progression of lung adenocarcinoma through the miR-205-5p/EREG and miR-34c-5p/BCL-2 axes. Cancer Cell Int 2023; 23:194. [PMID: 37670265 PMCID: PMC10478502 DOI: 10.1186/s12935-023-03036-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/19/2023] [Indexed: 09/07/2023] Open
Abstract
OBJECTIVES Lung adenocarcinoma (LUAD) exhibits a higher fatality rate among all cancer types worldwide, yet the precise mechanisms underlying its initiation and progression remain unknown. Mounting evidence suggests that long non-coding RNAs (lncRNAs) exert significant regulatory roles in cancer development and progression. Nevertheless, the precise involvement of lncRNA CYP4A22-AS1 in LUAD remains incompletely comprehended. METHODS Bioinformatics analyses evaluated the expression level of CYP4A22-AS1 in lung adenocarcinoma and paracancer. The LUAD cell line with a high expression of CYP4A22-AS1 was constructed to evaluate the role of CYP4A22-AS1 in the proliferation and metastasis of LUAD by CCK8, scratch healing, transwell assays, and animal experiments. We applied transcriptome and microRNA sequencing to examine the mechanism of CYP4A22-AS1 enhancing the proliferation and metastasis of LUAD. Luciferase reporter gene analyses, west-blotting, and qRT-PCR were carried out to reveal the interaction between CYP4A22-AS1, miR-205-5p/EREG, and miR-34c-5p/BCL-2 axes. RESULTS CYP4A22-AS1 expression was significantly higher in LUAD tissues than in the adjacent tissues. Furthermore, we constructed a LUAD cell line with a high expression of CYP4A22-AS1 and noted that the high expression of CYP4A22-AS1 significantly enhanced the proliferation and metastasis of LUAD. We applied transcriptome and microRNA sequencing to examine the mechanism of CYP4A22-AS1 enhancing the proliferation and metastasis of LUAD. CYP4A22-AS1 increased the expression of EREG and BCL-2 by reducing the expression of miR-205-5p and miR-34-5p and activating the downstream signaling pathway of EGFR and the anti-apoptotic signaling pathway of BCL-2, thereby triggering the proliferation and metastasis of LUAD. The transfection of miR-205-5p and miR-34-5p mimics inhibited the role of CYP4A22-AS1 in enhancing tumor progression. CONCLUSION This study elucidates the molecular mechanism whereby CYP4A22-AS1 overexpression promotes LUAD progression through the miR-205-5p/EREG and miR-34c-5p/BCL-2 axes.
Collapse
Affiliation(s)
- Liyao Dong
- College of Life Science, Sichuan Normal University, Chengdu, 610101, Sichuan, China
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Lin Zhang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical College, Chengde, 067000, Hebei, China
| | - Xinyun Zhao
- College of Life Science, Sichuan Normal University, Chengdu, 610101, Sichuan, China
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Hongling Zou
- College of Life Science, Sichuan Normal University, Chengdu, 610101, Sichuan, China
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Sisi Lin
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Xinping Zhu
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Jili Cao
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Chun Zhou
- People's Liberation Army Joint Logistic Support Force 903th Hospital, Hangzhou, 330000, Zhejiang, China
| | - Zhihong Yu
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Yongqiang Zhu
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Kequn Chai
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Mingqian Li
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China.
| | - Qun Li
- College of Life Science, Sichuan Normal University, Chengdu, 610101, Sichuan, China.
| |
Collapse
|
126
|
Teng J, Liu Y, Xia J, Luo Y, Zou H, Wang H. Impact of time-to-treatment initiation on survival in single primary non-small cell lung Cancer: A population-based study. Heliyon 2023; 9:e19750. [PMID: 37810045 PMCID: PMC10559072 DOI: 10.1016/j.heliyon.2023.e19750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Background Understanding the effects of a delayed time-to-treatment initiation(TTI) for non-small cell lung cancer (NSCLC) is vital. Methods We analyzed NSCLC data from the Surveillance, Epidemiology, and End Results database, focusing on lung adenocarcinoma (LUAD) and lung squamous carcinoma (LUSC). TTI was studied as both continuous and dichotomous variables. Restricted cubic splines were employed to identify potential nonlinear dependency between the hazard ratio (HR) and TTI. Propensity score matching was used to ensure a balanced patient allocation, and then survival differences between groups were assessed using Kaplan-Meier analysis and competing risk models. We used overall survival (OS) as the primary outcome and cancer-specific cumulative mortality (CSCM) as a complementary indicator. Finally, sensitivity analyses were performed on censored data. Results A total of 80,020 with NSCLC were analyzed. TTI was assessed as a continuous variable, showing a noticeable increase in the HR for stage I to II NSCLC with TTI >1 month. Conversely, the trend for stage III to IV NSCLC was the opposite. In stage I LUAD, the 'early' group demonstrated a higher OS compared to the 'delayed' group (Log-rank P = 0.002), while there was no significant difference in CSCM (Fine-gray P = 0.321). In stage I LUSC, there was no significant difference in OS(Log-rank P = 0.260), but the 'early' group had a lower CSCM (Fine-gray P = 0.018). For stage II-IV NSCLC, the 'delayed' group did not exhibit a negative impact on OS or CSCM. The sensitivity analysis further supported the results of the main analysis. Conclusion Prolongation of TTI ≥31 days has a negative impact on OS or CSCM in stage I NSCLC only. Further exploration and validation are needed to determine whether these results can be used as evidence for a 'safe' TTI threshold setting for future NSCLC.
Collapse
Affiliation(s)
- Jun Teng
- Respiratory Disease Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, Beijing, China
| | - Yan Liu
- Respiratory Disease Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, Beijing, China
| | - Junyan Xia
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, Beijing, China
| | - Yi Luo
- Respiratory Disease Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, Beijing, China
| | - Heng Zou
- Respiratory Disease Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, Beijing, China
| | - Hongwu Wang
- Respiratory Disease Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, Beijing, China
| |
Collapse
|
127
|
Deng F, Liu Z, Fang W, Niu L, Chu X, Cheng Q, Zhang Z, Zhou R, Yang G. MRI radiomics for brain metastasis sub-pathology classification from non-small cell lung cancer: a machine learning, multicenter study. Phys Eng Sci Med 2023; 46:1309-1320. [PMID: 37460894 DOI: 10.1007/s13246-023-01300-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/04/2023] [Indexed: 09/07/2023]
Abstract
The objective of this study is to develop a machine-learning model that can accurately distinguish between different histologic types of brain lesions in patients with non-small cell lung cancer (NSCLC) when it is not safe or feasible to perform a biopsy. To achieve this goal, the study utilized data from two patient cohorts: 116 patients from Xiangya Hospital and 35 patients from Yueyang Central Hospital. A total of eight machine learning algorithms, including Xgboost, were compared. Additionally, a 3-dimensional convolutional neural network was trained using transfer learning to further evaluate the performance of these models. The SHapley Additive exPlanations (SHAP) method was developed to determine the most important features in the best-performing model after hyperparameter optimization. The results showed that the area under the curve (AUC) for the classification of brain lesions as either lung adenocarcinoma or squamous carcinoma ranged from 0.60 to 0.87. The model based on single radiomics features extracted from contrast-enhanced T1 MRI and utilizing the Xgboost algorithm demonstrated the highest performance (AUC: 0.85) in the internal validation set and adequate performance (AUC: 0.80) in the independent external validation set. The SHAP values also revealed the impact of individual features on the classification results. In conclusion, the use of a radiomics model incorporating contrast-enhanced T1 MRI, Xgboost, and SHAP algorithms shows promise in accurately and interpretably identifying brain lesions in patients with NSCLC.
Collapse
Affiliation(s)
- Fuxing Deng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhiyuan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wei Fang
- Department of Radiology, Yueyang Central Hospital, Yueyang, 414000, China
| | - Lishui Niu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Quan Cheng
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zijian Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Guang Yang
- National Heart and Lung Institute, Imperial College London, London, UK
- Cardiovascular Research Centre, Royal Brompton Hospital, London, UK
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| |
Collapse
|
128
|
Mu D, Tang H, Teng G, Li X, Zhang Y, Gao G, Wang D, Bai L, Lian X, Wen M, Jiang L, Wu S, Jiang H, Zhu C. Differences of genomic alterations and heavy metals in non-small cell lung cancer with different histological subtypes. J Cancer Res Clin Oncol 2023; 149:9999-10013. [PMID: 37256381 PMCID: PMC10423170 DOI: 10.1007/s00432-023-04929-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/23/2023] [Indexed: 06/01/2023]
Abstract
PURPOSE This study aimed to explore the correlations among heavy metals concentration, histologic subtypes and molecular characteristics in patients with non-small cell lung cancer (NSCLC). METHODS In this study, an NGS panel of 82 tumor-associated genes was used to identify genomic alternations in 180 newly diagnosed patients with NSCLC. The concentrations of 18 heavy metals in the serum samples were detected by inductively coupled plasma emission spectrometry (ICP-MS). RESULTS A total of 243 somatic mutations of 25 mutant genes were identified in 115 of 148 patients with LUAD and 45 somatic mutations of 15 mutant genes were found in 24 of 32 patients with LUSC. The genomic alternations, somatic interactions, traditional serum biomarkers, and heavy metals were markedly different between patients with LUAD and LUSC. Moreover, patients with LUSC were significantly positively correlated with Ba, but not LUAD. Lastly, patients with EGFR mutations presented significant negative correlations with Cd and Sr, whereas patients with TP53 mutations showed a significant positive correlation with Pb. CONCLUSION The genomic alternations, somatic interactions, traditional serum biomarkers, and heavy metals were different between patients with LUAC and LUSC, and heavy metals (e.g., Ba, Pb, and Cd) may contribute to the tumorigenesis of NSCLC with different histological and molecular subtypes.
Collapse
Affiliation(s)
- Die Mu
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Hui Tang
- Shanghai Zhangjiang Institute of Medical Innovation, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, 200135, China
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Gen Teng
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Xinyang Li
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Yarui Zhang
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Ge Gao
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Dongjuan Wang
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Lu Bai
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Xiangyao Lian
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Ming Wen
- Shanghai Zhangjiang Institute of Medical Innovation, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, 200135, China
| | - Lisha Jiang
- Shanghai Zhangjiang Institute of Medical Innovation, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, 200135, China
| | - Shouxin Wu
- Shanghai Zhangjiang Institute of Medical Innovation, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, 200135, China
| | - Huihui Jiang
- Shanghai Zhangjiang Institute of Medical Innovation, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, 200135, China.
| | - Cuimin Zhu
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, China.
| |
Collapse
|
129
|
Luo J, Mei Z, Lin S, Xing X, Qian X, Lin H. Integrative pan-cancer analysis reveals the importance of PAQR family in lung cancer. J Cancer Res Clin Oncol 2023; 149:10149-10160. [PMID: 37266662 DOI: 10.1007/s00432-023-04922-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND The progestin and adipoQ receptors (PAQRs) family contains 11 genes involved in the regulation of metabolism and cancer development. However, a comprehensive understanding of the role of PAQRs in cancer remains largely scarce, and the associations between their expression levels and immune signatures also need to be researched. METHODS Here, we applied pan-cancer analysis to explore the associations between PAQRs expression and survival, tumor microenvironment (TME), and drug sensitivity from the UCSC Xena and CellMiner databases. Besides, we further studied the expression, survival and somatic mutations of PAQRs in lung cancer (LC) from TCGA database. RESULTS The results showed that PAQRs had significant heterogeneity with some upregulation and some downregulation in most tumors. Specifically, compared with PAQR3/5/6/9 and MMD2, ADIPOR1/2, PAQR4/7/8 and MMD had higher levels of average expression in all tumor types. PAQRs expression was greatly correlated with survival, immune subtypes, TME, and drug sensitivity. Furthermore, this research concentrated on analyzing the relationship of PAQRs expression with LC prognosis, and proved that ADIPOR2, PAQR4/9 and MMD were independent prognostic factors for LC patients. Finally, based on somatic mutation data, the genetic mutations in LC patients were majorly missense mutations, and TP53 and TTN had the top two highest mutation frequencies. CONCLUSION Collectively, PAQRs may serve as robust biomarkers to predict the prognosis and guide immunotherapy of tumors, especially LC, which enables novel ways for improving cancer treatment.
Collapse
Affiliation(s)
- Jingru Luo
- Medical Oncology, The Second Affiliated Hospital of Hainan Medical University, No. 368, Yehai Avenue, Longhua District, Haikou, 570100, Hainan, China
| | - Zhenxin Mei
- Medical Oncology, The Second Affiliated Hospital of Hainan Medical University, No. 368, Yehai Avenue, Longhua District, Haikou, 570100, Hainan, China
| | - Shu Lin
- Medical Oncology, The Second Affiliated Hospital of Hainan Medical University, No. 368, Yehai Avenue, Longhua District, Haikou, 570100, Hainan, China
| | - Xin Xing
- Medical Oncology, The Second Affiliated Hospital of Hainan Medical University, No. 368, Yehai Avenue, Longhua District, Haikou, 570100, Hainan, China
| | - Xiaoying Qian
- Medical Oncology, The Second Affiliated Hospital of Hainan Medical University, No. 368, Yehai Avenue, Longhua District, Haikou, 570100, Hainan, China.
| | - Haifeng Lin
- Medical Oncology, The Second Affiliated Hospital of Hainan Medical University, No. 368, Yehai Avenue, Longhua District, Haikou, 570100, Hainan, China.
| |
Collapse
|
130
|
Zhou B, Yang Y, Pang X, Shi J, Jiang T, Zheng X. Quercetin inhibits DNA damage responses to induce apoptosis via SIRT5/PI3K/AKT pathway in non-small cell lung cancer. Biomed Pharmacother 2023; 165:115071. [PMID: 37390710 DOI: 10.1016/j.biopha.2023.115071] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023] Open
Abstract
SIRT5 is a mitochondrial NAD+ -dependent lysine deacylase. Downregulation of SIRT5 has been linked to several primary cancers and DNA damage. In clinical therapy for non-small cell lung cancer (NSCLC), the Feiyiliu Mixture (FYLM) is an experience and effective Chinese herb prescription. And we found that quercetin is an important ingredient in the FYLM. However, whether quercetin regulates DNA damage repair (DDR) and induces apoptosis through SIRT5 in NSCLC remains unknown. The present study revealed that quercetin directly binds to SIRT5 and inhibits the phosphorylation of PI3K/AKT through the interaction between SIRT5 and PI3K, thus inhibiting the repair process of homologous recombination (HR) and non-homologous end-joining (NHEJ) in NSCLC, which raise mitotic catastrophe and apoptosis. Our study provided a novel mechanism of action of quercetin in the treatment of NSCLC.
Collapse
Affiliation(s)
- Baochen Zhou
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, China
| | - Ye Yang
- Qingdao Central Hospital, Qingdao 266042, China
| | - Xuemeng Pang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jingjing Shi
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ting Jiang
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, China
| | - Xin Zheng
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, China.
| |
Collapse
|
131
|
Wiebe M, Haston C, Lamey M, Narayan A, Rajapakshe R. The effect of spatial resolution on deep learning classification of lung cancer histopathology. BJR Open 2023; 5:20230008. [PMID: 37953867 PMCID: PMC10636338 DOI: 10.1259/bjro.20230008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 11/14/2023] Open
Abstract
Objective The microscopic analysis of biopsied lung nodules represents the gold-standard for definitive diagnosis of lung cancer. Deep learning has achieved pathologist-level classification of non-small cell lung cancer histopathology images at high resolutions (0.5-2 µm/px), and recent studies have revealed tomography-histology relationships at lower spatial resolutions. Thus, we tested whether patterns for histological classification of lung cancer could be detected at spatial resolutions such as those offered by ultra-high-resolution CT. Methods We investigated the performance of a deep convolutional neural network (inception-v3) to classify lung histopathology images at lower spatial resolutions than that of typical pathology. Models were trained on 2167 histopathology slides from The Cancer Genome Atlas to differentiate between lung cancer tissues (adenocarcinoma (LUAD) and squamous-cell carcinoma (LUSC)), and normal dense tissue. Slides were accessed at 2.5 × magnification (4 µm/px) and reduced resolutions of 8, 16, 32, 64, and 128 µm/px were simulated by applying digital low-pass filters. Results The classifier achieved area under the curve ≥0.95 for all classes at spatial resolutions of 4-16 µm/px, and area under the curve ≥0.95 for differentiating normal tissue from the two cancer types at 128 µm/px. Conclusions Features for tissue classification by deep learning exist at spatial resolutions below what is typically viewed by pathologists. Advances in knowledge We demonstrated that a deep convolutional network could differentiate normal and cancerous lung tissue at spatial resolutions as low as 128 µm/px and LUAD, LUSC, and normal tissue as low as 16 µm/px. Our data, and results of tomography-histology studies, indicate that these patterns should also be detectable within tomographic data at these resolutions.
Collapse
Affiliation(s)
| | - Christina Haston
- University of British Columbia, Okanagan Campus, Kelowna, BC, Canada
| | | | | | | |
Collapse
|
132
|
Puri M, Gawri K, Dawar R. Therapeutic strategies for BRAF mutation in non-small cell lung cancer: a review. Front Oncol 2023; 13:1141876. [PMID: 37645429 PMCID: PMC10461310 DOI: 10.3389/fonc.2023.1141876] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Lung cancer is the leading cause of cancer related deaths. Among the two broad types of lung cancer, non-small cell lung cancer accounts for 85% of the cases. The study of the genetic alteration has facilitated the development of targeted therapeutic interventions. Some of the molecular alterations which are important targets for drug therapy include Kirsten rat sarcoma (KRAS), Epidermal Growth Factor Receptor (EGFR), V-RAF murine sarcoma viral oncogene homolog B (BRAF), anaplastic lymphoma kinase gene (ALK). In the setting of extensive on-going clinical trials, it is imperative to periodically review the advancements and the newer drug therapies being available. Among all mutations, BRAF mutation is common with incidence being 8% overall and 1.5 - 4% in NSCLC. Here, we have summarized the BRAF mutation types and reviewed the various drug therapy available - for both V600 and nonV600 group; the mechanism of resistance to BRAF inhibitors and strategies to overcome it; the significance of comprehensive profiling of concurrent mutations, and the role of immune checkpoint inhibitor in BRAF mutated NSCLC. We have also included the currently ongoing clinical trials and recent advancements including combination therapy that would play a role in improving the overall survival and outcome of NSCLC.
Collapse
Affiliation(s)
- Megha Puri
- Department of Internal Medicine, Saint Peter’s University Hospital, New Brunswick, NJ, United States
| | - Kunal Gawri
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Buffalo, Buffalo, NY, United States
| | - Richa Dawar
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL, United States
| |
Collapse
|
133
|
Zou Y, Zheng H, Ning Y, Yang Y, Wen Q, Fan S. New insights into the important roles of phase seperation in the targeted therapy of lung cancer. Cell Biosci 2023; 13:150. [PMID: 37580790 PMCID: PMC10426191 DOI: 10.1186/s13578-023-01101-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023] Open
Abstract
Lung cancer is a complex and heterogeneous disease characterized by abnormal growth and proliferation of lung cells. It is the leading cause of cancer-related deaths worldwide, accounting for approximately 18% of all cancer deaths. In recent years, targeted therapy has emerged as a promising approach to treat lung cancer, which involves the use of drugs that selectively target specific molecules or signaling pathways that are critical for the growth and survival of cancer cells. Liquid-liquid phase separation (LLPS) is a fundamental biological process that occurs when proteins and other biomolecules separate into distinct liquid phases in cells. LLPS is essential for various cellular functions, including the formation of membraneless organelles, the regulation of gene expression, and the response to stress and other stimuli. Recent studies have shown that LLPS plays a crucial role in targeted therapy of lung cancer, including the sequestration of oncogenic proteins and the development of LLPS-based drug delivery systems. Understanding the mechanisms of LLPS in these processes could provide insights into new therapeutic strategies to overcome drug resistance in lung cancer cells.
Collapse
Affiliation(s)
- Ying Zou
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yue Ning
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yang Yang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
134
|
Sungthong R, Khine HEE, Sumkhemthong S, Chanvorachote P, Tansawat R, Chaotham C. How do prolonged anchorage-free lifetimes strengthen non-small-cell lung cancer cells to evade anoikis? - A link with altered cellular metabolomics. Biol Res 2023; 56:44. [PMID: 37542350 PMCID: PMC10403914 DOI: 10.1186/s40659-023-00456-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/14/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Malignant cells adopt anoikis resistance to survive anchorage-free stresses and initiate cancer metastasis. It is still unknown how varying periods of anchorage loss contribute to anoikis resistance, cell migration, and metabolic reprogramming of cancerous cells. RESULTS Our study demonstrated that prolonging the anchorage-free lifetime of non-small-cell lung cancer NCI-H460 cells for 7 days strengthened anoikis resistance, as shown by higher half-life and capability to survive and grow without anchorage, compared to wild-type cells or those losing anchorage for 3 days. While the prolonged anchorage-free lifetime was responsible for the increased aggressive feature of survival cells to perform rapid 3-dimensional migration during the first 3 h of a transwell assay, no significant influence was observed with 2-dimensional surface migration detected at 12 and 24 h by a wound-healing method. Metabolomics analysis revealed significant alteration in the intracellular levels of six (oxalic acid, cholesterol, 1-ethylpyrrolidine, 1-(3-methylbutyl)-2,3,4,6-tetramethylbenzene, β-alanine, and putrescine) among all 37 identified metabolites during 7 days without anchorage. Based on significance values, enrichment ratios, and impact scores of all metabolites and their associated pathways, three principal metabolic activities (non-standard amino acid metabolism, cell membrane biosynthesis, and oxidative stress response) offered potential links with anoikis resistance. CONCLUSIONS These findings further our insights into the evolution of anoikis resistance in lung cancer cells and identify promising biomarkers for early lung cancer diagnosis.
Collapse
Affiliation(s)
- Rungroch Sungthong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Hnin Ei Ei Khine
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rossarin Tansawat
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
135
|
Lang Y, Kong X, Liu B, Jin X, Chen L, Xu S. microRNA-651-5p affects the proliferation, migration, and invasion of lung cancer cells by regulating Calmodulin 2 expression. THE CLINICAL RESPIRATORY JOURNAL 2023; 17:754-763. [PMID: 37470336 PMCID: PMC10435939 DOI: 10.1111/crj.13665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
OBJECTIVE Lung cancer is prevalent worldwide and a leading contributor to tumor death. This research intends to explore the molecular mechanism of the microRNA-651-5p (miR-651-5p)/Calmodulin 2 (CALM2) axis in the proliferation, migration, and invasion of lung cancer cells. METHODS Lung cancer tissues and para-cancerous tissues were collected. The expression levels of miR-651-5p and CALM2 in lung cancer tissues and cells were tested, and the connection between miR-651-5p expression and clinicopathological characteristics of lung cancer patients was further analyzed. The binding sites between miR-651-5p and CALM2 were analyzed and validated. Lung cancer cell proliferation, migration, invasion, and apoptosis were examined. RESULTS miR-651-5p was lowly expressed in lung cancer tissues and cells. miR-651-5p expression had no correlation with patients' age and gender but had a correlation with patients' tumor size, TNM stage, and lymph node metastasis. Overexpression of miR-651-5p repressed proliferative, migratory, and invasive behaviors of lung cancer cells. miR-651-5p targeted and negatively regulated CALM2 expression, and CALM2 reversed the inhibiting effects of miR-651-5p on lung cancer cell malignant behaviors, including proliferation, migration, and invasion. CONCLUSION This study expounds that miR-651-5p affects the proliferation, migration, and invasion of lung cancer cells by regulating CALM2 expression.
Collapse
Affiliation(s)
- Yaoguo Lang
- Department of Thoracic SurgeryHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Xianglong Kong
- Department of Thoracic SurgeryHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Benkun Liu
- Department of Thoracic SurgeryHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Xiangyuan Jin
- Department of Thoracic SurgeryHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Lantao Chen
- Department of Thoracic SurgeryHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Shidong Xu
- Department of Thoracic SurgeryHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| |
Collapse
|
136
|
Pustylnyak VO, Alekseenok EY, Perevalova AM, Kozlov VV, Gulyaeva LF. Tumor suppressor PTEN regulation by tobacco smoke in lung squamous-cell carcinoma based on bioinformatics analysis. Heliyon 2023; 9:e19044. [PMID: 37609416 PMCID: PMC10440530 DOI: 10.1016/j.heliyon.2023.e19044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN), is a tumor suppressor inactivated in a variety of human cancers. PTEN alteration correlates with lung squamous-cell carcinoma (LUSC) histology. However, it is still unclear how tobacco smoke regulates PTEN in LUSC tissues. In this study, we used free online databases and online tools to analyze PTEN expression and the role of smoking on PTEN alteration in patients with LUSC. We validated bioinformatics data by performing RT-PCR analysis using LUSC patient samples. Our results showed a correlation between the downregulation of PTEN in LUSC tissues compared to normal tissues and smoking exposure. In silico results using online platforms suggest that hsa-mir-301a down-regulates PTEN expression level in smoking patients with LUSC. RT-PCR analysis demonstrated that the PTEN expression was significantly decreased, whereas expression of hsa-mir-301a was up-regulated in the smoker cohort of LUSC tissue compared to adjacent non-cancerous tissues. A significant negative correlation between PTEN and hsa-mir-301a levels was observed in tumour tissues in our cohort of LUSC patients. Our results suggest that the downregulation PTEN gene caused by tobacco smoke-mediated increase of hsa-mir-301a may play an important role in LUSC tumorigenesis.
Collapse
Affiliation(s)
- Vladimir O. Pustylnyak
- Novosibirsk State University, 630090, Novosibirsk, Russia
- Federal Research Center of Fundamental and Translational Medicine, 630117, Novosibirsk, Russia
| | - Efim Y. Alekseenok
- Federal Research Center of Fundamental and Translational Medicine, 630117, Novosibirsk, Russia
| | | | - Vadim V. Kozlov
- Federal Research Center of Fundamental and Translational Medicine, 630117, Novosibirsk, Russia
- Novosibirsk Regional Oncology Center, 630108, Novosibirsk, Russia
| | - Lyudmila F. Gulyaeva
- Novosibirsk State University, 630090, Novosibirsk, Russia
- Federal Research Center of Fundamental and Translational Medicine, 630117, Novosibirsk, Russia
| |
Collapse
|
137
|
Zhang J, Liu X, Zhang G, Wu J, Liu Z, Liu C, Wang H, Miao S, Deng L, Cao K, Shang M, Zhu Q, Sun P. To explore the effect of kaempferol on non-small cell lung cancer based on network pharmacology and molecular docking. Front Pharmacol 2023; 14:1148171. [PMID: 37533633 PMCID: PMC10392700 DOI: 10.3389/fphar.2023.1148171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/27/2023] [Indexed: 08/04/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a common pathological type of lung cancer, which has a serious impact on human life, health, psychology and life. At present, chemotherapy, targeted therapy and other methods commonly used in clinic are prone to drug resistance and toxic side effects. Natural extracts of traditional Chinese medicine (TCM) have attracted wide attention in cancer treatment because of their small toxic and side effects. Kaempferol is a flavonoid from natural plants, which has been proved to have anticancer properties in many cancers such as lung cancer, but the exact molecular mechanism is still unclear. Therefore, on the basis of in vitro experiments, we used network pharmacology and molecular docking methods to study the potential mechanism of kaempferol in the treatment of non-small cell lung cancer. The target of kaempferol was obtained from the public database (PharmMapper, Swiss target prediction), and the target of non-small cell lung cancer was obtained from the disease database (Genecards and TTD). At the same time, we collected gene chips GSE32863 and GSE75037 in conjunction with GEO database to obtain differential genes. By drawing Venn diagram, we get the intersection target of kaempferol and NSCLC. Through enrichment analysis, PI3K/AKT is identified as the possible key signal pathway. PIK3R1, AKT1, EGFR and IGF1R were selected as key targets by topological analysis and molecular docking, and the four key genes were further verified by analyzing the gene and protein expression of key targets. These findings provide a direction for further research of kaempferol in the treatment of NSCLC.
Collapse
Affiliation(s)
- Junli Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangqi Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoying Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Junling Wu
- Department of Scientific Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | | | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui Wang
- Daiyue District Maternal and Child Health Hospital, Tai’an, Shandong, China
| | - Shuxin Miao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Deng
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kuan Cao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miwei Shang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingjun Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peng Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
138
|
Shi S, Wu T, Ma Z, Zhang X, Xu K, Tian Q, Gao L, Yin X, Xu S, Yang S. Serum-derived extracellular vesicles promote the growth and metastasis of non-small cell lung cancer by delivering the m6A methylation regulator HNRNPC through the regulation of DLGAP5. J Cancer Res Clin Oncol 2023; 149:4639-4651. [PMID: 36175801 DOI: 10.1007/s00432-022-04375-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE Serum-derived extracellular vesicles (EVs) have been reported to play an important role in non-small cell lung cancer (NSCLC). The current study sought to explore the effect of serum-EVs delivering m6A methylation regulator heterogeneous nuclear ribonucleoprotein C (HNRNPC) on the development of NSCLC through the regulation of discs large-associated protein 5 (DLGAP5). METHODS NSCLC-related RNA-Seq and clinical data were first obtained from the TCGA database to screen differentially expressed m6A-related regulators, which were intersected with the differential genes in NSCLC-related microarray GSE43458 obtained from the GEO database for survival analysis and clinical correlation analysis. Correlation between HNRNPC and DLGAP5 expression was evaluated. Serum-EVs were isolated and identified, and the uptake of EVs by A549 cells was visualized using fluorescence microscopy. In vivo xenograft tumor models and tumor metastasis models were constructed in nude mice to observe growth and metastasis of NSCLC cells. RESULTS HNRNPC was associated with poor prognosis and metastasis of NSCLC, and further implicated in the regulation of DNA replication and cell cycle-related pathways. HNRNPC might promote the growth and metastasis of NSCLC by identifying m6A modification of DLGAP5 mRNA. Serum-EVs delivered HNRNPC to NSCLC cells in vitro. In vivo experimentation further confirmed that serum-EVs could deliver HNRNPC to promote the growth and metastasis of NSCLC cells in nude mice. CONCLUSIONS Our findings highlight that serum-EVs can deliver HNRNPC to NSCLC cells, wherein HNRNPC recognizes the m6A modification of DLGAP5 mRNA, thus ultimately promoting NSCLC growth and metastasis.
Collapse
Affiliation(s)
- Shanshan Shi
- First Hospital of Qinhuangdao, No. 258, Wenhua Road, Haigang District, Qinhuangdao, 066000, Hebei Province, People's Republic of China
| | - Tong Wu
- Graduate School of Zunyi Medical University, No. 6, Xuefu West Road, Xinpuxin District, Zunyi, 563003, Guizhou Province, People's Republic of China
| | - Zechen Ma
- Medical College, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xiudi Zhang
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Ke Xu
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Qi Tian
- First Hospital of Qinhuangdao, No. 258, Wenhua Road, Haigang District, Qinhuangdao, 066000, Hebei Province, People's Republic of China
| | - Liming Gao
- First Hospital of Qinhuangdao, No. 258, Wenhua Road, Haigang District, Qinhuangdao, 066000, Hebei Province, People's Republic of China
| | - Xiaobo Yin
- First Hospital of Qinhuangdao, No. 258, Wenhua Road, Haigang District, Qinhuangdao, 066000, Hebei Province, People's Republic of China
| | - Shufeng Xu
- First Hospital of Qinhuangdao, No. 258, Wenhua Road, Haigang District, Qinhuangdao, 066000, Hebei Province, People's Republic of China.
| | - Shengbo Yang
- Graduate School of Zunyi Medical University, No. 6, Xuefu West Road, Xinpuxin District, Zunyi, 563003, Guizhou Province, People's Republic of China.
| |
Collapse
|
139
|
Wang Y, Gao X, Ru X, Sun P, Wang J. The Weight-Based Feature Selection (WBFS) Algorithm Classifies Lung Cancer Subtypes Using Proteomic Data. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1003. [PMID: 37509950 PMCID: PMC10378569 DOI: 10.3390/e25071003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
Feature selection plays an important role in improving the performance of classification or reducing the dimensionality of high-dimensional datasets, such as high-throughput genomics/proteomics data in bioinformatics. As a popular approach with computational efficiency and scalability, information theory has been widely incorporated into feature selection. In this study, we propose a unique weight-based feature selection (WBFS) algorithm that assesses selected features and candidate features to identify the key protein biomarkers for classifying lung cancer subtypes from The Cancer Proteome Atlas (TCPA) database and we further explored the survival analysis between selected biomarkers and subtypes of lung cancer. Results show good performance of the combination of our WBFS method and Bayesian network for mining potential biomarkers. These candidate signatures have valuable biological significance in tumor classification and patient survival analysis. Taken together, this study proposes the WBFS method that helps to explore candidate biomarkers from biomedical datasets and provides useful information for tumor diagnosis or therapy strategies.
Collapse
Affiliation(s)
- Yangyang Wang
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710129, China
| | - Xiaoguang Gao
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710129, China
| | - Xinxin Ru
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710129, China
| | - Pengzhan Sun
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710129, China
| | - Jihan Wang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
140
|
Sampaio JG, Pressete CG, Costa AV, Martins FT, de Almeida Lima GD, Ionta M, Teixeira RR. Methoxylated Cinnamic Esters with Antiproliferative and Antimetastatic Effects on Human Lung Adenocarcinoma Cells. Life (Basel) 2023; 13:1428. [PMID: 37511803 PMCID: PMC10381754 DOI: 10.3390/life13071428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Lung cancer is the leading cause of cancer mortality worldwide, and malignant melanomas are highly lethal owing to their elevated metastatic potential. Despite improvements in therapeutic approaches, cancer treatments are not completely effective. Thus, new drug candidates are continuously sought. We synthesized mono- and di-methoxylated cinnamic acid esters and investigated their antitumor potential. A cell viability assay was performed to identify promising substances against A549 (non-small-cell lung cancer) and SK-MEL-147 (melanoma) cells. (E)-2,5-dimethoxybenzyl 3-(4-methoxyphenyl)acrylate (4m), a monomethoxylated cinnamic acid derivative, was identified as the lead antitumor compound, and its antitumor potential was deeply investigated. Various approaches were employed to investigate the antiproliferative (clonogenic assay and cell cycle analysis), proapoptotic (annexin V assay), and antimigratory (wound-healing and adhesion assays) activities of 4m on A549 cells. In addition, western blotting was performed to explore its mechanism of action. We demonstrated that 4m inhibits the proliferation of A549 by promoting cyclin B downregulation and cell cycle arrest at G2/M. Antimigratory and proapoptotic activities of 4m on A549 were also observed. The antitumor potential of 4m involved its ability to modulate the mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway once phosphorylated-ERK expression was considerably reduced in response to treatment. Our findings demonstrate that 4m is a promising anticancer drug candidate.
Collapse
Affiliation(s)
- João Graciano Sampaio
- Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Departamento de Química, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Carolina Girotto Pressete
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas 37130-000, MG, Brazil
| | - Adilson Vidal Costa
- Departamento de Química e Física, Universidade Federal do Espírito Santo, Guararema, Alegre 29500-000, ES, Brazil
| | - Felipe Terra Martins
- Departamento de Química, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil
| | - Graziela Domingues de Almeida Lima
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas 37130-000, MG, Brazil
| | - Marisa Ionta
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas 37130-000, MG, Brazil
| | - Róbson Ricardo Teixeira
- Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Departamento de Química, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| |
Collapse
|
141
|
Xu X, Ma L, Zhang X, Guo S, Guo W, Wang Y, Qiu S, Tian X, Miao Y, Yu Y, Wang J. A positive feedback circuit between RN7SK snRNA and m 6A readers is essential for tumorigenesis. Mol Ther 2023; 31:1615-1635. [PMID: 36566349 PMCID: PMC10277899 DOI: 10.1016/j.ymthe.2022.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 12/26/2022] Open
Abstract
N6-Methyladenosine (m6A) RNA modification, methylation at the N6 position of adenosine, plays critical roles in tumorigenesis. m6A readers recognize m6A modifications and thus act as key executors for the biological consequences of RNA methylation. However, knowledge about the regulatory mechanism(s) of m6A readers is extremely limited. In this study, RN7SK was identified as a small nuclear RNA that interacts with m6A readers. m6A readers recognized and facilitated secondary structure formation of m6A-modified RN7SK, which in turn prevented m6A reader mRNA degradation from exonucleases. Thus, a positive feedback circuit between RN7SK and m6A readers is established in tumor cells. From findings on the interaction with RN7SK, new m6A readers, such as EWS RNA binding protein 1 (EWSR1) and KH RNA binding domain containing, signal transduction-associated 1 (KHDRBS1), were identified and shown to boost Wnt/β-catenin signaling and tumorigenesis by suppressing translation of Cullin1 (CUL1). Moreover, several Food and Drug Administration-approved small molecules were demonstrated to reduce RN7SK expression and inhibit tumorigenesis. Together, these findings reveal a common regulatory mechanism of m6A readers and indicate that targeting RN7SK has strong potential for tumor treatment.
Collapse
Affiliation(s)
- Xin Xu
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China
| | - Lifang Ma
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China
| | - Xiao Zhang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China
| | - Susu Guo
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China
| | - Wanxin Guo
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China
| | - Yikun Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China
| | - Shiyu Qiu
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China
| | - Xiaoting Tian
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China
| | - Yayou Miao
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China
| | - Yongchun Yu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241, West Huaihai Rd, Shanghai 200030, China; College of Medical Technology, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin ER Rd, Shanghai 200025, China.
| |
Collapse
|
142
|
Wang B, Song Y, Chen Z, Su X, Yang X, Wei Z, Chen J, Chen C, Li M. A retrospective study of postoperative targeted therapy in ALK-positive lung cancer. Sci Rep 2023; 13:8317. [PMID: 37221218 DOI: 10.1038/s41598-023-34397-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/28/2023] [Indexed: 05/25/2023] Open
Abstract
In this study, we aim to investigate the therapeutic effect and safety of ALK inhibitor in ALK-positive lung cancer patients. 59 patients with ALK-positive lung cancer from August 2013 to August 2022 were retrospectively recruited. The basic information, pathological type, clinical stage and treatment strategy were collected. These patients were divided into two groups, including 29 patients of conventional adjuvant chemotherapy, and 30 cases of targeted therapy. The patients in the targeted therapy group underwent adjuvant targeted therapy with crizotinib for 2 years. The observation indicators include curative effects and adverse events. The disease-free survival (DFS) and overall survival (OS) were also analyzed. We analyzed the pathological stages after adjuvant chemotherapy and targeted therapy in lung cancer, no significant difference in the p stage N and T was found between the two therapeutic groups. However, the DFS events, DFS median time and OS median time showed significant improvement in the targeted therapy group when compared with adjuvant chemotherapy (all P < 0.05). Besides, the patients under both therapeutic regimens presented some adverse events, among them elevated aspartate transaminase/alanine aminotransferase was the most common adverse event in all the patients, followed by nausea and vomiting. Our study identified that crizotinib-based postoperative targeted therapy helps improve the prognosis of patients with ALK-positive lung cancer, confirming that postoperative targeted therapy can be considered an effective and feasible therapeutic alternative.
Collapse
Affiliation(s)
- Bin Wang
- Department of Oncology, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, 400016, China
| | - Yang Song
- Department of Oncology, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Zhuo Chen
- Department of Oncology, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Xiaona Su
- Department of Oncology, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Xin Yang
- Department of Pathology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhi Wei
- Information Section, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Junxia Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, 400016, China
| | - Chuan Chen
- Department of Oncology, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China.
| | - Mengxia Li
- Department of Oncology, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China.
| |
Collapse
|
143
|
Shen M, Lu C, Gao J. Prognostic influence of PD-1/PD-L1 suppressors in combination with chemotherapeutic agents for non-small cell pulmonary carcinoma: system review and meta-analysis. Front Oncol 2023; 13:1137913. [PMID: 37152014 PMCID: PMC10154692 DOI: 10.3389/fonc.2023.1137913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Background Lung cancer is a common malignant tumor, which is seriously harmful to human life and health. Nowadays, it has gradually become one of the best treatments for non-small cell lung cancer (NSCLC) to combine immunotherapy and chemotherapy, and its clinical efficacy is preliminary. Nevertheless, substantial differences exist between various studies and various indicators. Despite their unconvincing results, high-quality research evidence is needed to support them. In this case, further correlative studies are necessary to investigate the prognostic outcomes of PD-1/PD-L1 suppressors in combination with chemotherapeutic drugs in NSCLC. Methods The online public databases were searchable for the clinical trials that consisted of NSCLC patients who had concluded their chemotherapy and who had accepted PD-1/PD-L1 suppressors. The time-span of the search spanned from the beginning to the end of the database. Two investigators retrieved the data independently. RevMan 5.3 statistical software was utilized for the assessment of bias risk. The software followed the Cochrane Handbook 5.3 guidelines. Results There were seven clinically controlled studies with 2781 NSCLC samples finally included in this study. A meta-analysis of the post-treatment overall response rate (ORR) was undertaken. A remarkably higher ORR rate was observed in the study group (p<0.05). Study participants had a noticeably longer PFS (HR=0.61, 95% CI=0.54-0.70, P<0.00001). Study participants had markedly longer overall survival (OS) (HR=0.651, 95% CI=0.52-0.82, P<0.05). The incidence of adverse events (AEs) of Grade 3 or above was not clinically clearly different (P>0.05), as demonstrated by the incidence of AEs. The funnel plots were separately charted in accordance with ORR rate, PFE, OS, and Grade 3 AEs. The majority of the funnel plots were symmetrical and a minority of funnel plots were asymmetrical, indicating the heterogeneity of research and the limited evidence available may lead to some publication bias in the contained literature. Conclusion The combined PD-1/PD-L1 inhibitors with conventional chemotherapy can dramatically elevate the prognosis of NSCLC patients, obviously enhancing the ORR rate and prolonging their PFS and OS. Furthermore, it was found that adding PD-1/PD-L1 inhibitors to conventional chemotherapy did not result in any additional adverse effects.
Collapse
Affiliation(s)
| | - Chunxia Lu
- Department of Respiratory and critical care, Qidong People’s Hospital/Qidong Liver Cancer Institute/Affiliated Qidong Hospital of Nantong University, Qidong, China
| | | |
Collapse
|
144
|
Khadela A, Postwala H, Rana D, Dave H, Ranch K, Boddu SHS. A review of recent advances in the novel therapeutic targets and immunotherapy for lung cancer. Med Oncol 2023; 40:152. [PMID: 37071269 DOI: 10.1007/s12032-023-02005-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/22/2023] [Indexed: 04/19/2023]
Abstract
Lung cancer is amongst the most pervasive malignancies having high mortality rates. It is broadly grouped into non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC). The concept of personalized medicine has overshadowed the conventional chemotherapy given to all patients with lung cancer. The targeted therapy is given to a particular population having specific mutations to help in the better management of lung cancer. The targeting pathways for NSCLC include the epidermal growth factor receptor, vascular endothelial growth factor receptor, MET (Mesenchymal epithelial transition factor) oncogene, Kirsten rat sarcoma viral oncogene (KRAS), and anaplastic lymphoma kinase (ALK). SCLC targeting pathway includes Poly (ADP-ribose) polymerases (PARP) inhibitors, checkpoint kinase 1 (CHK 1) pathway, WEE1 pathway, Ataxia Telangiectasia and Rad3-related (ATR)/Ataxia telangiectasia mutated (ATM), and Delta-like canonical Notch ligand 3 (DLL-Immune checkpoint inhibitors like programmed cell death protein 1 (PD-1)/ programmed death-ligand 1 (PD-L1) inhibitors and Cytotoxic T-lymphocyte-associated antigen-4 (CTLA4) blockade are also utilized in the management of lung cancer. Many of the targeted therapies are still under development and require clinical trials to establish their safety and efficacy. This review summarizes the mechanism of molecular targets and immune-mediated targets, recently approved drugs, and their clinical trials for lung cancer.
Collapse
Affiliation(s)
- Avinash Khadela
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| | - Humzah Postwala
- Pharm.D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Deval Rana
- Pharm.D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Hetvi Dave
- Pharm.D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Ketan Ranch
- Department of Pharmaceutics and Pharm. Technology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, P.O. Box 346, Ajman, United Arab Emirates
| |
Collapse
|
145
|
Zhang Y, Li Y, Han Y, Li M, Li X, Fan F, Liu H, Li S. Experimental study of EGFR-TKI aumolertinib combined with ionizing radiation in EGFR mutated NSCLC brain metastases tumor. Eur J Pharmacol 2023; 945:175571. [PMID: 36804545 DOI: 10.1016/j.ejphar.2023.175571] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023]
Abstract
Aumolertinib is an irreversible third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), although it has been administered for the treatment of epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC). However, it is unclear whether aumolertinib combined with ionizing radiation (IR) has potential therapeutic effects in treating brain metastases (BM) tumors from NSCLC. This study explored the anti-tumor effects of aumolertinib combined with IR in epidermal growth factor receptor mutated (EGFRm) NSCLC BM tumors. First, we established a xenograft model of NSCLC BM tumors in BALB/c nude mice and assessed the anti-tumor effects of this combination. Furthermore, we examined the concentrations of aumolertinib in brain tissue and blood using liquid chromatography-mass spectrometry (LC-MS); after that, we used CCK-8, colony formation, flow cytometry assay, and immunofluorescence staining to detect the effects of aumolertinib combined with IR upon PC-9 and NCI-H1975 cells, such as cell proliferation, survival, apoptosis, cycle distribution, the situation of DNA damage, and the expression levels of relevant proteins which were detected via western blotting; finally, we chose a clinical case with which to explore the clinical benefits to the EGFRm NSCLC BM patient after the treatment of the aforementioned combination. The experiments of NSCLC BM tumor animal models demonstrated that the combination enhanced the therapeutic effects and increased the intracranial accumulation of aumolertinib; the combination can inhibit cell proliferation and survival, delay the repair of DNA damage, and increase the rates of cell apoptosis and aumolertinib abrogated G2/M phase arrest, which the IR induced; the clinical study verified that the combination demonstrated better patient benefits. In conclusion, our study demonstrated that combining aumolertinib and IR has promising anti-tumor effects in EGFR-mutant NSCLC and that this combined treatment modality may be employed as a potential therapeutic strategy for EGFR-mutant NSCLC BM patients clinically.
Collapse
Affiliation(s)
- Yaoshuai Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Yongping Li
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Yuehua Han
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Min Li
- School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Xian Li
- School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Fangtian Fan
- School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China.
| | - Shanshan Li
- School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China.
| |
Collapse
|
146
|
Lucà S, Franco R, Napolitano A, Soria V, Ronchi A, Zito Marino F, Della Corte CM, Morgillo F, Fiorelli A, Luciano A, Palma G, Arra C, Battista S, Cerchia L, Fedele M. PATZ1 in Non-Small Cell Lung Cancer: A New Biomarker That Negatively Correlates with PD-L1 Expression and Suppresses the Malignant Phenotype. Cancers (Basel) 2023; 15:2190. [PMID: 37046851 PMCID: PMC10093756 DOI: 10.3390/cancers15072190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Non-small cell lung cancer (NSCLC), the leading cause of cancer death worldwide, is still an unmet medical problem due to the lack of both effective therapies against advanced stages and markers to allow a diagnosis of the disease at early stages before its progression. Immunotherapy targeting the PD-1/PD-L1 checkpoint is promising for many cancers, including NSCLC, but its success depends on the tumor expression of PD-L1. PATZ1 is an emerging cancer-related transcriptional regulator and diagnostic/prognostic biomarker in different malignant tumors, but its role in lung cancer is still obscure. Here we investigated expression and role of PATZ1 in NSCLC, in correlation with NSCLC subtypes and PD-L1 expression. A cohort of 104 NSCLCs, including lung squamous cell carcinomas (LUSCs) and adenocarcinomas (LUADs), was retrospectively analyzed by immunohistochemistry for the expression of PATZ1 and PD-L1. The results were correlated with each other and with the clinical characteristics, showing on the one hand a positive correlation between the high expression of PATZ1 and the LUSC subtype and, on the other hand, a negative correlation between PATZ1 and PD-L1, validated at the mRNA level in independent NSCLC datasets. Consistently, two NSCLC cell lines transfected with a PATZ1-overexpressing plasmid showed PD-L1 downregulation, suggesting a role for PATZ1 in the negative regulation of PD-L1. We also showed that PATZ1 overexpression inhibits NSCLC cell proliferation, migration, and invasion, and that Patz1-knockout mice develop LUAD. Overall, this suggests that PATZ1 may act as a tumor suppressor in NSCLC.
Collapse
Affiliation(s)
- Stefano Lucà
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Antonella Napolitano
- Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80145 Naples, Italy
| | - Valeria Soria
- Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80145 Naples, Italy
| | - Andrea Ronchi
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Federica Zito Marino
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Carminia Maria Della Corte
- Department of Precision Medicine, Medical Oncology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Floriana Morgillo
- Department of Precision Medicine, Medical Oncology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Alfonso Fiorelli
- Translational Medical and Surgical Science, Thoracic Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Antonio Luciano
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy
| | - Giuseppe Palma
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy
| | - Claudio Arra
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy
| | - Sabrina Battista
- Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80145 Naples, Italy
| | - Laura Cerchia
- Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80145 Naples, Italy
| | - Monica Fedele
- Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80145 Naples, Italy
| |
Collapse
|
147
|
Sun S, Zou Y, Xu N, Wang K, Rong S, Lv J, Hu B, Mai Y, Zhu D, Ding L. Long non-coding RNA ATB expedites non-small cell lung cancer progression by the miR-200b/fibronectin 1 axis. J Clin Lab Anal 2023; 37:e24822. [PMID: 36806318 PMCID: PMC10020841 DOI: 10.1002/jcla.24822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) ATB belongs to an active modulator in multiple cancers, but its expression along with potential underlying non-small cell lung cancer (NSCLC) is obscure. Our study aimed to investigate the role and potential mechanism of LncRNA ATB in NSCLC. METHODS LncRNA ATB expression in NSCLC tissues and cell lines was detected by qRT-PCR. Effects of LncRNA ATB on NSCLC cell proliferation, migration and invasion were assessed by MTS, colony formation and transwell assays. The connection among LncRNA ATB, miR-200b and fibronectin 1 (FN1) was determined by bioformatics prediction and luciferase reporter assay. RESULTS In this research, upregulation of LncRNA ATB was discovered in NSCLC tissue samples and cell lines. LncRNA ATB was positively related to advanced tumor phase as well as lymph node metastasis. Cell function assays reflected LncRNA ATB expedited NSCLC cells proliferation, migration and invasion. LncRNA ATB promoted fibronectin 1 (FN1) expression via inhibiting miR-200b. Furthermore, LncRNA ATB depletion suppressed NSCLC cells proliferation, migration and invasion, while miR-200b inhibitor or pcDNA-FN1 rescued these effects. CONCLUSION In summary, our outcomes elucidated that LncRNA ATB/miR-200b axis expedited NSCLC cells proliferation, migration and invasion by up-regulating FN1.
Collapse
Affiliation(s)
- Shifang Sun
- Department of Geriatrics MedicineThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| | - Yifan Zou
- Department of Geriatrics MedicineThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| | - Ningjie Xu
- School of MedicineNingbo UniversityNingboChina
| | - Kaiyue Wang
- Department of Geriatrics MedicineThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| | - Shanshan Rong
- Department of Geriatrics MedicineThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| | - Jiarong Lv
- Department of Geriatrics MedicineThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| | - Bin Hu
- School of MedicineNingbo UniversityNingboChina
| | - Yifeng Mai
- Department of Geriatrics MedicineThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| | - Decai Zhu
- Department of Geriatrics MedicineThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| | - Liren Ding
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Zhejiang University Medical CollegeHangzhouChina
| |
Collapse
|
148
|
Liu B, Ma H, Liu X, Xing W. CircSCN8A suppresses malignant progression and induces ferroptosis in non-small cell lung cancer by regulating miR-1290/ACSL4 axis. Cell Cycle 2023; 22:758-776. [PMID: 36482742 PMCID: PMC10026894 DOI: 10.1080/15384101.2022.2154543] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (CircRNAs) are reported to exert vital regulatory roles in the occurrence and development of various human malignancies, including non-small cell lung cancer (NSCLC). Bioinformatics methods identified the down-regulation of circSCN8A (circBase ID: hsa_circ_0026337) in NSCLC tissues. However, its biological functions and molecular mechanisms in NSCLC remain unknown. In this study, we found that circSCN8A expression was down-regulated in NSCLC tissues and cells. Low circSCN8A expression was positively associated with aggressive clinicopathological characteristics and poor prognosis in NSCLC patients. CircSCN8A suppressed cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro and blocked tumor growth in vivo. Moreover, circSCN8A promoted cell ferroptosis in NSCLC. Mechanistically, circSCN8A acted as a competing endogenous RNA (ceRNA) by sponging miR-1290 to enhance the expression of long-chain acyl-CoA synthetase-4 (ACSL4). Furthermore, the knockdown of ACSL4 or overexpression of miR-1290 reversed the effect of circSCN8A on facilitating ferroptosis and inhibiting cell proliferation and metastasis. In summary, circSCN8A represses cell proliferation and metastasis in NSCLC by regulating the miR-1290/ACSL4 axis to induce ferroptosis. Thus, circSCN8A may represent a promising therapeutic target against NSCLC.
Collapse
Affiliation(s)
- Baoxing Liu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Haibo Ma
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xingyu Liu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wenqun Xing
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
149
|
Liu X, Wang Y, Zhou G, Zhou J, Tian Z, Xu J. circGRAMD1B contributes to migration, invasion and epithelial-mesenchymal transition of lung adenocarcinoma cells via modulating the expression of SOX4. Funct Integr Genomics 2023; 23:75. [PMID: 36867268 DOI: 10.1007/s10142-023-00972-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 03/04/2023]
Abstract
Lung adenocarcinoma (LUAD) represents the subtype of non-small-cell lung cancer (NSCLC), with the high morbidity over the world. Mounting studies have highlighted the important roles of circular RNAs (circRNA) in cancers, including LUAD. This study mainly focused on revealing the role of circGRAMD1B and its relevant regulatory mechanism in LUAD cells. RT-qPCR and Western blot were conducted to detect the expression of target genes. Function assays were performed to determine the effect of related genes on migration, invasion, and epithelial-mesenchymal transition (EMT) of LUAD cells. Mechanism analyses were conducted to figure out the specific mechanism with regard to circGRAMD1B and its downstream molecules as well. Based on the experimental results, circGRAMD1B was upregulated in LUAD cells and promoted the migration, invasion, and EMT of LUAD cells. Mechanically, circGRAMD1B sponged miR-4428 to upregulate the expression of SOX4. In addition, SOX4 activated the expression of MEX3A at the transcriptional level, thereby modulating PI3K/AKT pathway to facilitate LUAD cell malignant behaviors. In conclusion, circGRAMD1B is discovered to modulate miR-4428/SOX4/MEX3A axis to further activate PI3K/AKT pathway, finally boosting migration, invasion, and EMT of LUAD cells.
Collapse
Affiliation(s)
- Xingjun Liu
- Department of Thoracic Surgery, Shanxi Bethune Hospital, No. 99 Longcheng St, Taiyuan, 030032, Shanxi, China
| | - Yi Wang
- Department of Respiratory and Critical Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Guixing Zhou
- Department of Respiratory and Critical Care Medicine, Tengzhou Central People's Hospital, Zaozhuang, 277500, Shandong, China
| | - Jinbo Zhou
- Department of Respiratory and Critical Care Medicine, Tengzhou Central People's Hospital, Zaozhuang, 277500, Shandong, China
| | - Zhongmin Tian
- Department of Respiratory and Critical Care Medicine, Tengzhou Central People's Hospital, Zaozhuang, 277500, Shandong, China
| | - Jie Xu
- Department of Respiratory and Critical Care Medicine, Tengzhou Central People's Hospital, Zaozhuang, 277500, Shandong, China.
| |
Collapse
|
150
|
Szmajda-Krygier D, Krygier A, Żebrowska-Nawrocka M, Pietrzak J, Świechowski R, Wosiak A, Jeleń A, Balcerczak E. Differential Expression of AP-2 Transcription Factors Family in Lung Adenocarcinoma and Lung Squamous Cell Carcinoma-A Bioinformatics Study. Cells 2023; 12:cells12040667. [PMID: 36831334 PMCID: PMC9954805 DOI: 10.3390/cells12040667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Members of the activator protein 2 (AP-2) transcription factor (TF) family are known to play a role in both physiological processes and cancer development. The family comprises five DNA-binding proteins encoded by the TFAP2A to TFAP2E genes. Numerous scientific reports describe differential expression of these TF and their genes in various types of cancer, identifying among them a potential oncogene or suppressor like TFAP2A or TFAP2C. Other reports suggest their influence on disease development and progression, as well as response to treatment. Not all members of this AP-2 family have been comprehensively studied thus far. The aim of the present article is to gather and discuss knowledge available in bioinformatics databases regarding all five members of this family and to differentiate them in relation to the two most common lung cancer subtypes: adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). In addition, to assess the difference in levels depending on a number of clinicopathological factors, the impact on patient survival and interactions with tumor-infiltrating immune cells. This article may help to identify the target for further original research that may contribute to the discovery of new diagnostic biomarkers and define the molecular differences between LUAD and LUSC, which may affect the therapy effectiveness improvement and longer survival.
Collapse
|