101
|
Myers J, Xiao J, Mathura R, Shofty B, Pirtle V, Adkinson J, Allawala AB, Anand A, Gadot R, Najera R, Rey HG, Mathew SJ, Bijanki K, Banks G, Watrous A, Bartoli E, Heilbronner SR, Provenza N, Goodman WK, Pouratian N, Hayden BY, Sheth SA. Intracranial Directed Connectivity Links Subregions of the Prefrontal Cortex to Major Depression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.07.24311546. [PMID: 39148826 PMCID: PMC11326344 DOI: 10.1101/2024.08.07.24311546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Understanding the neural basis of major depressive disorder (MDD) is vital to guiding neuromodulatory treatments. The available evidence supports the hypothesis that MDD is fundamentally a disease of cortical disinhibition, where breakdowns of inhibitory neural systems lead to diminished emotion regulation and intrusive ruminations. Recent research also points towards network changes in the brain, especially within the prefrontal cortex (PFC), as primary sources of MDD etiology. However, due to limitations in spatiotemporal resolution and clinical opportunities for intracranial recordings, this hypothesis has not been directly tested. We recorded intracranial EEG from the dorsolateral (dlPFC), orbitofrontal (OFC), and anterior cingulate cortices (ACC) in neurosurgical patients with MDD. We measured daily fluctuations in self-reported depression severity alongside directed connectivity between these PFC subregions. We focused primarily on delta oscillations (1-3 Hz), which have been linked to GABAergic inhibitory control and intracortical communication. Depression symptoms worsened when connectivity within the left vs. right PFC became imbalanced. In the left hemisphere, all directed connectivity towards the ACC, from the dlPFC and OFC, was positively correlated with depression severity. In the right hemisphere, directed connectivity between the OFC and dlPFC increased with depression severity as well. This is the first evidence that delta oscillations flowing between prefrontal subregions transiently increase intensity when people are experiencing more negative mood. These findings support the overarching hypothesis that MDD worsens with prefrontal disinhibition.
Collapse
Affiliation(s)
- John Myers
- Baylor College of Medicine, Department of Neurosurgery
| | - Jiayang Xiao
- Baylor College of Medicine, Department of Neurosurgery
| | | | - Ben Shofty
- Baylor College of Medicine, Department of Neurosurgery
| | | | | | | | - Adrish Anand
- Baylor College of Medicine, Department of Neurosurgery
| | - Ron Gadot
- Baylor College of Medicine, Department of Neurosurgery
| | | | - Hernan G. Rey
- Baylor College of Medicine, Department of Neurosurgery
| | - Sanjay J. Mathew
- Baylor College of Medicine, Department of Psychiatry and Behavioral Science
| | - Kelly Bijanki
- Baylor College of Medicine, Department of Neurosurgery
| | - Garrett Banks
- Baylor College of Medicine, Department of Neurosurgery
| | | | | | | | | | - Wayne K. Goodman
- University of Texas: Southwestern, Department of Neurological Surgery
| | - Nader Pouratian
- University of Texas: Southwestern, Department of Neurological Surgery
| | | | | |
Collapse
|
102
|
Lee SY, Kozalakis K, Baftizadeh F, Campagnola L, Jarsky T, Koch C, Anastassiou CA. Cell-class-specific electric field entrainment of neural activity. Neuron 2024; 112:2614-2630.e5. [PMID: 38838670 PMCID: PMC11309920 DOI: 10.1016/j.neuron.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 12/14/2023] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Electric fields affect the activity of neurons and brain circuits, yet how this happens at the cellular level remains enigmatic. Lack of understanding of how to stimulate the brain to promote or suppress specific activity significantly limits basic research and clinical applications. Here, we study how electric fields impact subthreshold and spiking properties of major cortical neuronal classes. We find that neurons in the rodent and human cortex exhibit strong, cell-class-dependent entrainment that depends on stimulation frequency. Excitatory pyramidal neurons, with their slower spike rate, entrain to both slow and fast electric fields, while inhibitory classes like Pvalb and Sst (with their fast spiking) predominantly phase-lock to fast fields. We show that this spike-field entrainment is the result of two effects: non-specific membrane polarization occurring across classes and class-specific excitability properties. Importantly, these properties are present across cortical areas and species. These findings allow for the design of selective and class-specific neuromodulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Costas A Anastassiou
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Center for Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
103
|
Sadeghzadeh S, Swaminathan A, Bhanot P, Steeman S, Xu A, Shah V, Purger DA, Buch VP. Emerging Outlook on Personalized Neuromodulation for Depression: Insights From Tractography-Based Targeting. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:754-764. [PMID: 38679323 DOI: 10.1016/j.bpsc.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/07/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Deep brain stimulation has shown promise in treating individual patients with treatment-resistant depression, but larger-scale trials have been less successful. Here, we created what is, to our knowledge, the largest meta-analysis with individual patient data to date to explore whether the use of tractography enhances the efficacy of deep brain stimulation for treatment-resistant depression. METHODS We systematically reviewed 1823 articles, selecting 32 that contributed data from 366 patients. We stratified the individual patient data based on stimulation target and use of tractography. Using 2-way type III analysis of variance, Welch's 2-sample t tests, and mixed-effects linear regression models, we evaluated changes in depression severity 1 year (9-15 months) postoperatively and at last follow-up (4 weeks to 8 years) as assessed by depression scales. RESULTS Tractography was used for medial forebrain bundle (MFB) (n = 17 tractography/32 total), subcallosal cingulate (SCC) (n = 39 tractography/241 total), and ventral capsule/ventral striatum (n = 3 tractography/41 total) targets; it was not used for bed nucleus of stria terminalis (n = 11), lateral habenula (n = 10), and inferior thalamic peduncle (n = 1). Across all patients, tractography significantly improved mean depression scores at 1 year (p < .001) and last follow-up (p = .009). Within the target cohorts, tractography improved depression scores at 1 year for both MFB and SCC, though significance was met only at the α = 0.1 level (SCC: β = 15.8%, p = .09; MFB: β = 52.4%, p = .10). Within the tractography cohort, patients with MFB tractography showed greater improvement than patients with SCC tractography (72.42 ± 7.17% vs. 54.78 ± 4.08%) at 1 year (p = .044). CONCLUSIONS Our findings underscore the promise of tractography in deep brain stimulation for treatment-resistant depression as a method for personalization of therapy, supporting its inclusion in future trials.
Collapse
Affiliation(s)
- Sina Sadeghzadeh
- Department of Neurosurgery, Stanford University, Stanford, California.
| | | | - Priya Bhanot
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Samantha Steeman
- Department of Neurosurgery, Stanford University, Stanford, California
| | - Audrey Xu
- Department of Neurosurgery, Stanford University, Stanford, California
| | - Vaibhavi Shah
- Department of Neurosurgery, Stanford University, Stanford, California
| | - David A Purger
- Department of Neurosurgery, Stanford University, Stanford, California
| | - Vivek P Buch
- Department of Neurosurgery, Stanford University, Stanford, California.
| |
Collapse
|
104
|
Zhang PF, You WY, Gao YJ, Wu XB. Activation of pyramidal neurons in the infralimbic cortex alleviates LPS-induced depressive-like behavior in mice. Brain Res Bull 2024; 214:111008. [PMID: 38866373 DOI: 10.1016/j.brainresbull.2024.111008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
The infralimbic (IL) cortex dysfunction has been implicated in major depressive disorder (MDD), yet the precise cellular and molecular mechanisms remain poorly understood. In this study, we investigated the role of layer V pyramidal neurons in a mouse model of MDD induced by repeated lipopolysaccharide (LPS) administration. Our results demonstrate that three days of systemic LPS administration induced depressive-like behavior and upregulated mRNA levels of interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-β (TGF-β) in the IL cortex. Electrophysiological recordings revealed a significant decrease in the intrinsic excitability of layer V pyramidal neurons in the IL following systemic LPS exposure. Importantly, chemogenetic activation of IL pyramidal neurons ameliorated LPS-induced depressive-like behavior. Additionally, LPS administration significantly increased microglial activity in the IL, as evidenced by a greater number of Ionized calcium binding adaptor molecule-1 (IBA-1)-positive cells. Morphometric analysis further unveiled enlarged soma, decreased branch numbers, and shorter branch lengths of microglial cells in the IL cortex following LPS exposure. Moreover, the activation of pyramidal neurons by clozapine-N-oxide increased the microglia branch length but did not change branch number or cytosolic area. These results collectively suggest that targeted activation of pyramidal neurons in the IL cortex mitigates microglial response and ameliorates depressive-like behaviors induced by systemic LPS administration. Therefore, our findings offer potential therapeutic targets for the development of interventions aimed at alleviating depressive symptoms by modulating IL cortical circuitry and microglial activity.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China
| | - Wen-Yong You
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China.
| | - Xiao-Bo Wu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China.
| |
Collapse
|
105
|
Ferro MD, Proctor CM, Gonzalez A, Jayabal S, Zhao E, Gagnon M, Slézia A, Pas J, Dijk G, Donahue MJ, Williamson A, Raymond J, Malliaras GG, Giocomo L, Melosh NA. NeuroRoots, a bio-inspired, seamless brain machine interface for long-term recording in delicate brain regions. AIP ADVANCES 2024; 14:085109. [PMID: 39130131 PMCID: PMC11309783 DOI: 10.1063/5.0216979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024]
Abstract
Scalable electronic brain implants with long-term stability and low biological perturbation are crucial technologies for high-quality brain-machine interfaces that can seamlessly access delicate and hard-to-reach regions of the brain. Here, we created "NeuroRoots," a biomimetic multi-channel implant with similar dimensions (7 μm wide and 1.5 μm thick), mechanical compliance, and spatial distribution as axons in the brain. Unlike planar shank implants, these devices consist of a number of individual electrode "roots," each tendril independent from the other. A simple microscale delivery approach based on commercially available apparatus minimally perturbs existing neural architectures during surgery. NeuroRoots enables high density single unit recording from the cerebellum in vitro and in vivo. NeuroRoots also reliably recorded action potentials in various brain regions for at least 7 weeks during behavioral experiments in freely-moving rats, without adjustment of electrode position. This minimally invasive axon-like implant design is an important step toward improving the integration and stability of brain-machine interfacing.
Collapse
Affiliation(s)
- Marc D. Ferro
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| | - Christopher M. Proctor
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Alexander Gonzalez
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94304, USA
| | - Sriram Jayabal
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94304, USA
| | - Eric Zhao
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| | - Maxwell Gagnon
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94304, USA
| | - Andrea Slézia
- Multimodal Neurotechnology Group, Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Magyar tudósok körútja 2., Hungary
| | - Jolien Pas
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, 13541 Gardanne, France
| | - Gerwin Dijk
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, 13541 Gardanne, France
| | - Mary J. Donahue
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60221, Sweden
| | | | - Jennifer Raymond
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94304, USA
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Lisa Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94304, USA
| | - Nicholas A. Melosh
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
106
|
Siegel JS, Subramanian S, Perry D, Kay BP, Gordon EM, Laumann TO, Reneau TR, Metcalf NV, Chacko RV, Gratton C, Horan C, Krimmel SR, Shimony JS, Schweiger JA, Wong DF, Bender DA, Scheidter KM, Whiting FI, Padawer-Curry JA, Shinohara RT, Chen Y, Moser J, Yacoub E, Nelson SM, Vizioli L, Fair DA, Lenze EJ, Carhart-Harris R, Raison CL, Raichle ME, Snyder AZ, Nicol GE, Dosenbach NUF. Psilocybin desynchronizes the human brain. Nature 2024; 632:131-138. [PMID: 39020167 PMCID: PMC11291293 DOI: 10.1038/s41586-024-07624-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/29/2024] [Indexed: 07/19/2024]
Abstract
A single dose of psilocybin, a psychedelic that acutely causes distortions of space-time perception and ego dissolution, produces rapid and persistent therapeutic effects in human clinical trials1-4. In animal models, psilocybin induces neuroplasticity in cortex and hippocampus5-8. It remains unclear how human brain network changes relate to subjective and lasting effects of psychedelics. Here we tracked individual-specific brain changes with longitudinal precision functional mapping (roughly 18 magnetic resonance imaging visits per participant). Healthy adults were tracked before, during and for 3 weeks after high-dose psilocybin (25 mg) and methylphenidate (40 mg), and brought back for an additional psilocybin dose 6-12 months later. Psilocybin massively disrupted functional connectivity (FC) in cortex and subcortex, acutely causing more than threefold greater change than methylphenidate. These FC changes were driven by brain desynchronization across spatial scales (areal, global), which dissolved network distinctions by reducing correlations within and anticorrelations between networks. Psilocybin-driven FC changes were strongest in the default mode network, which is connected to the anterior hippocampus and is thought to create our sense of space, time and self. Individual differences in FC changes were strongly linked to the subjective psychedelic experience. Performing a perceptual task reduced psilocybin-driven FC changes. Psilocybin caused persistent decrease in FC between the anterior hippocampus and default mode network, lasting for weeks. Persistent reduction of hippocampal-default mode network connectivity may represent a neuroanatomical and mechanistic correlate of the proplasticity and therapeutic effects of psychedelics.
Collapse
Affiliation(s)
- Joshua S Siegel
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA.
| | - Subha Subramanian
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Demetrius Perry
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Benjamin P Kay
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - T Rick Reneau
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Nicholas V Metcalf
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Ravi V Chacko
- Department of Emergency Medicine, Advocate Christ Health Care, Oak Lawn, IL, USA
| | - Caterina Gratton
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | | | - Samuel R Krimmel
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Julie A Schweiger
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Dean F Wong
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - David A Bender
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Kristen M Scheidter
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Forrest I Whiting
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Jonah A Padawer-Curry
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA
| | - Russell T Shinohara
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Endeavor, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yong Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia Moser
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Steven M Nelson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Luca Vizioli
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Eric J Lenze
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Robin Carhart-Harris
- Department of Neurology, University of California, San Francisco, CA, USA
- Centre for Psychedelic Research, Imperial College London, London, UK
| | - Charles L Raison
- Usona Institute, Fitchburg, WI, USA
- Department of Psychiatry, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
| | - Marcus E Raichle
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| | - Abraham Z Snyder
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Ginger E Nicol
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
107
|
Manuweera T, Karunakaran K, Baechler C, Rosales J, Kleckner AS, Rosenblatt P, Ciner A, Kleckner IR. Barriers and Facilitators for Participation in Brain Magnetic Resonance Imaging (MRI) Scans in Cancer Research: A Feasibility and Acceptability Analysis. RESEARCH SQUARE 2024:rs.3.rs-4595719. [PMID: 39070661 PMCID: PMC11276008 DOI: 10.21203/rs.3.rs-4595719/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Purpose A growing body of research suggests that the brain is implicated in cognitive impairment, fatigue, neuropathy, pain, nausea, sleep disturbances, distress, and other prevalent and burdensome symptoms of cancer and its treatments. Despite anecdotal evidence of difficulties using gold-standard magnetic resonance imaging (MRI) to study the brain, no studies have systematically reported reasons that patients with cancer do or do not complete research MRI scans, making it difficult to understand the role of the brain related to these symptoms. The goal of this study was to investigate these reasons and to suggest possible solutions. Methods We analyzed data from 72 patients with cancer (mostly breast and gastrointestinal) from 3 studies: MRI was mandatory in Study 1; MRI was optional in Studies 2-3. Patients provided reasons for completing or not completing optional research MRI scans. Results The percentage of scans completed when MRI was mandatory was 76%, and when optional, it was 36%. The most common reasons for not completing optional scans were claustrophobia (40%), safety contraindications (11%), discomfort (5%), a busy MRI schedule (5%), and the scanner being too far away (4%). Older patients were more likely to complete at least one scan (log(odds) = 0.09/year, p = 0.02). Conclusion Although brain MRI is feasible for many patients with cancer, it can be difficult or not feasible for patients with claustrophobia, safety issues, busy schedules, or transportation issues. Improving communication, comfort, and access to a scanner may help. Reducing inequities related to study participation can improve research supportive care research.
Collapse
|
108
|
Hamilton AR, Vishwanath A, Weintraub NC, Cowen SL, Heien ML. Dopamine Release Dynamics in the Nucleus Accumbens Are Modulated by the Timing of Electrical Stimulation Pulses When Applied to the Medial Forebrain Bundle and Medial Prefrontal Cortex. ACS Chem Neurosci 2024; 15:2643-2653. [PMID: 38958080 PMCID: PMC11287657 DOI: 10.1021/acschemneuro.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Electrical brain stimulation has been used in vivo and in vitro to investigate neural circuitry. Historically, stimulation parameters such as amplitude, frequency, and pulse width were varied to investigate their effects on neurotransmitter release and behavior. These experiments have traditionally employed fixed-frequency stimulation patterns, but it has previously been found that neurons are more precisely tuned to variable input. Introducing variability into the interpulse interval of stimulation pulses will inform on how dopaminergic release can be modulated by variability in pulse timing. Here, dopaminergic release in rats is monitored in the nucleus accumbens (NAc), a key dopaminergic center which plays a role in learning and motivation, by fast-scan cyclic voltammetry. Dopaminergic release in the NAc could also be modulated by stimulation region due to differences in connectivity. We targeted two regions for stimulation─the medial forebrain bundle (MFB) and the medial prefrontal cortex (mPFC)─due to their involvement in reward processing and projections to the NAc. Our goal is to investigate how variable interpulse interval stimulation patterns delivered to these regions affect the time course of dopamine release in the NAc. We found that stimulating the MFB with these variable stimulation patterns saw a highly responsive, frequency-driven dopaminergic response. In contrast, variable stimulation patterns applied to the mPFC were not as sensitive to the variable frequency changes. This work will help inform on how stimulation patterns can be tuned specifically to the stimulation region to improve the efficiency of electrical stimulation and control dopamine release.
Collapse
Affiliation(s)
- Andrea R. Hamilton
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ, USA
| | | | - Nathan C. Weintraub
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Stephen L. Cowen
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - M. Leandro Heien
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
109
|
Daneshzand M, Guerin B, Kotlarz P, Chou T, Dougherty DD, Edlow BL, Nummenmaa A. Model-based navigation of transcranial focused ultrasound neuromodulation in humans: Application to targeting the amygdala and thalamus. Brain Stimul 2024; 17:958-969. [PMID: 39094682 PMCID: PMC11367617 DOI: 10.1016/j.brs.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Transcranial focused ultrasound (tFUS) neuromodulation has shown promise in animals but is challenging to translate to humans because of the thicker skull that heavily scatters ultrasound waves. OBJECTIVE We develop and disseminate a model-based navigation (MBN) tool for acoustic dose delivery in the presence of skull aberrations that is easy to use by non-specialists. METHODS We pre-compute acoustic beams for thousands of virtual transducer locations on the scalp of the subject under study. We use the hybrid angular spectrum solver mSOUND, which runs in ∼4 s per solve per CPU yielding pre-computation times under 1 h for scalp meshes with up to 4000 faces and a parallelization factor of 5. We combine this pre-computed set of beam solutions with optical tracking, thus allowing real-time display of the tFUS beam as the operator freely navigates the transducer around the subject' scalp. We assess the impact of MBN versus line-of-sight targeting (LOST) positioning in simulations of 13 subjects. RESULTS Our navigation tool has a display refresh rate of ∼10 Hz. In our simulations, MBN increased the acoustic dose in the thalamus and amygdala by 8-67 % compared to LOST and avoided complete target misses that affected 10-20 % of LOST cases. MBN also yielded a lower variability of the deposited dose across subjects than LOST. CONCLUSIONS MBN may yield greater and more consistent (less variable) ultrasound dose deposition than transducer placement with line-of-sight targeting, and thus could become a helpful tool to improve the efficacy of tFUS neuromodulation.
Collapse
Affiliation(s)
- Mohammad Daneshzand
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Bastien Guerin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Parker Kotlarz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Tina Chou
- Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA
| | - Darin D Dougherty
- Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA
| | - Brian L Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
110
|
Arubuolawe OO, Folorunsho IL, Busari AK, Ibeneme C, Diala AB, Afolabi VI, Harry NM, Anona K, Obitulata-Ugwu VO, Kuye OA, Anugwom GO. Combination of Transcranial Magnetic Stimulation and Ketamine in Treatment-Resistant Depression: A Systematic Review. Cureus 2024; 16:e64712. [PMID: 39156335 PMCID: PMC11327889 DOI: 10.7759/cureus.64712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Treatment-resistant depression (TRD) is a significant challenge in psychiatric practice, affecting a substantial proportion of patients with major depressive disorder (MDD). Traditional treatment modalities often fall short, necessitating the exploration of alternative therapies. This literature review examines the combined use of Transcranial Magnetic Stimulation (TMS) and ketamine in treating TRD. The objective of this study is to evaluate the efficacy, safety, and potential synergies of combining TMS and ketamine in the treatment of TRD. A comprehensive literature search was conducted using PubMed and Google Scholar databases from 2014 to 2024. The search terms included combinations of "Transcranial Magnetic Stimulation," "Ketamine," "Depression," "Major Depressive Disorder," "Treatment-Resistant Depression," and "Combination." After screening for relevance and applying inclusion and exclusion criteria, six studies were selected for review, including three case reports, a retrospective study, a pilot study, and a review study. The selected studies demonstrated that the combination of TMS and ketamine resulted in substantial and sustained improvement in depressive symptoms for patients with TRD. Case reports and retrospective studies highlighted significant reductions in depression severity and improvements in psychosocial functioning. The combination therapy showed a higher efficacy compared to monotherapies of either TMS or ketamine alone. Notably, adverse effects were generally mild and transient, with no severe adverse events reported in most studies. In conclusion, the combination of TMS and ketamine presents a promising treatment modality for patients with TRD, offering significant improvements in depressive symptoms and better outcomes compared to traditional monotherapies. However, the heterogeneity in study designs and small sample sizes underline the need for larger, randomized controlled trials to establish standardized protocols and further validate these findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kenechukwu Anona
- Psychiatry and Behavioral Sciences, University of Ibadan, Ibadan, NGA
| | | | - Olubukola A Kuye
- Psychiatry, Obafemi Awolowo College of Health Sciences, Ago Iwoye, NGA
| | - Gibson O Anugwom
- Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, USA
| |
Collapse
|
111
|
Malamud J, Lewis G, Moutoussis M, Duffy L, Bone J, Srinivasan R, Lewis G, Huys QJM. The selective serotonin reuptake inhibitor sertraline alters learning from aversive reinforcements in patients with depression: evidence from a randomized controlled trial. Psychol Med 2024; 54:2719-2731. [PMID: 38629200 DOI: 10.1017/s0033291724000837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs) are first-line pharmacological treatments for depression and anxiety. However, little is known about how pharmacological action is related to cognitive and affective processes. Here, we examine whether specific reinforcement learning processes mediate the treatment effects of SSRIs. METHODS The PANDA trial was a multicentre, double-blind, randomized clinical trial in UK primary care comparing the SSRI sertraline with placebo for depression and anxiety. Participants (N = 655) performed an affective Go/NoGo task three times during the trial and computational models were used to infer reinforcement learning processes. RESULTS There was poor task performance: only 54% of the task runs were informative, with more informative task runs in the placebo than in the active group. There was no evidence for the preregistered hypothesis that Pavlovian inhibition was affected by sertraline. Exploratory analyses revealed that in the sertraline group, early increases in Pavlovian inhibition were associated with improvements in depression after 12 weeks. Furthermore, sertraline increased how fast participants learned from losses and faster learning from losses was associated with more severe generalized anxiety symptoms. CONCLUSIONS The study findings indicate a relationship between aversive reinforcement learning mechanisms and aspects of depression, anxiety, and SSRI treatment, but these relationships did not align with the initial hypotheses. Poor task performance limits the interpretability and likely generalizability of the findings, and highlights the critical importance of developing acceptable and reliable tasks for use in clinical studies. FUNDING This article presents research supported by NIHR Program Grants for Applied Research (RP-PG-0610-10048), the NIHR BRC, and UCL, with additional support from IMPRS COMP2PSYCH (JM, QH) and a Wellcome Trust grant (QH).
Collapse
Affiliation(s)
- Jolanda Malamud
- Applied Computational Psychiatry Lab, Mental Health Neuroscience Department, Division of Psychiatry and Max Planck Centre for Computational Psychiatry and Ageing Research, Queen Square Institute of Neurology, University College London, London, UK
| | - Gemma Lewis
- Division of Psychiatry, University College London, London, UK
| | - Michael Moutoussis
- Max Planck UCL Centre for Computational Psychiatry & Ageing Research, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London, UK
| | - Larisa Duffy
- Division of Psychiatry, University College London, London, UK
| | - Jessica Bone
- Division of Psychiatry, University College London, London, UK
- Research Department of Behavioural Science and Health, Institute of Epidemiology, University College London, London, UK
| | | | - Glyn Lewis
- Division of Psychiatry, University College London, London, UK
| | - Quentin J M Huys
- Applied Computational Psychiatry Lab, Mental Health Neuroscience Department, Division of Psychiatry and Max Planck Centre for Computational Psychiatry and Ageing Research, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
112
|
Stephenson C, Philipp-Muller A, Moghimi E, Nashed JY, Cook DJ, Shirazi A, Milev R, Alavi N. Effects of cognitive behavioural therapy and exposure-response prevention on brain activation in obsessive-compulsive disorder patients: systematic review and meta-analysis. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01852-6. [PMID: 38935215 DOI: 10.1007/s00406-024-01852-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Current psychotherapeutic treatments for OCD, while effective, have complex outcomes with mixed efficacy. Previous research has observed baseline brain activation patterns in OCD patients, elucidating some of the implications of this disorder. Observing the effects of evidence-based psychotherapeutics for OCD on brain activation (through MRI) may provide a more comprehensive outline of pathology. This systematic review and meta-analysis evaluated the effects of cognitive behavioural therapy (CBT) with exposure-response prevention (ERP) on brain activation in OCD patients. Academic databases were systematically searched, and the outcomes evaluated included changes in brain activation and symptom severity between baseline and post-treatment. Patients (n = 193) had confirmed OCD diagnosis and underwent protocolized CBT with ERP programs delivered by trained therapists. Participants in the CBT with ERP programs demonstrated significant improvements in symptom severity (Cohen's d = - 1.91). In general, CBT with ERP resulted in decreased activation post-treatment in the frontal (Cohen's d = 0.40), parietal (Cohen's d = 0.79), temporal (Cohen's d = 1.02), and occipital lobe (Cohen's d = 0.76), and cerebellum (Cohen's d = - 0.78). The findings support CBT with ERP's ability to improve brain activation abnormalities in OCD patients. By identifying regions that improved activation levels, psychotherapy programs may benefit from the addition of function-specific features that could improve treatment outcomes.
Collapse
|
113
|
Gärtner M, Weigand A, Meiering MS, Weigner D, Carstens L, Keicher C, Hertrampf R, Beckmann C, Mennes M, Wunder A, Grimm S. Negative emotionality shapes the modulatory effects of ketamine and lamotrigine in subregions of the anterior cingulate cortex. Transl Psychiatry 2024; 14:258. [PMID: 38890270 PMCID: PMC11189565 DOI: 10.1038/s41398-024-02977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Neuroimaging studies have identified the anterior cingulate cortex (ACC) as one of the major targets of ketamine in the human brain, which may be related to ketamine's antidepressant (AD) mechanisms of action. However, due to different methodological approaches, different investigated populations, and varying measurement timepoints, results are not consistent, and the functional significance of the observed brain changes remains a matter of open debate. Inhibition of glutamate release during acute ketamine administration by lamotrigine provides the opportunity to gain additional insight into the functional significance of ketamine-induced brain changes. Furthermore, the assessment of trait negative emotionality holds promise to link findings in healthy participants to potential AD mechanisms of ketamine. In this double-blind, placebo-controlled, randomized, single dose, parallel-group study, we collected resting-state fMRI data before, during, and 24 h after ketamine administration in a sample of 75 healthy male and female participants who were randomly allocated to one of three treatment conditions (ketamine, ketamine with lamotrigine pre- treatment, placebo). Spontaneous brain activity was extracted from two ventral and one dorsal subregions of the ACC. Our results showed activity decreases during the administration of ketamine in all three ACC subregions. However, only in the ventral subregions of the ACC this effect was attenuated by lamotrigine. 24 h after administration, ACC activity returned to baseline levels, but group differences were observed between the lamotrigine and the ketamine group. Trait negative emotionality was closely linked to activity changes in the subgenual ACC after ketamine administration. These results contribute to an understanding of the functional significance of ketamine effects in different subregions of the ACC by combining an approach to modulate glutamate release with the assessment of multiple timepoints and associations with trait negative emotionality in healthy participants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andreas Wunder
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Simone Grimm
- Medical School Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
114
|
Fujimoto SH, Fujimoto A, Elorette C, Seltzer A, Andraka E, Verma G, Janssen WGM, Fleysher L, Folloni D, Choi KS, Russ BE, Mayberg HS, Rudebeck PH. Deep brain stimulation induces white matter remodeling and functional changes to brain-wide networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598710. [PMID: 38915600 PMCID: PMC11195276 DOI: 10.1101/2024.06.13.598710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Deep brain stimulation (DBS) is an emerging therapeutic option for treatment resistant neurological and psychiatric disorders, most notably depression. Despite this, little is known about the anatomical and functional mechanisms that underlie this therapy. Here we targeted stimulation to the white matter adjacent to the subcallosal anterior cingulate cortex (SCC-DBS) in macaques, modeling the location in the brain proven effective for depression. We demonstrate that SCC-DBS has a selective effect on white matter macro- and micro-structure in the cingulum bundle distant to where stimulation was delivered. SCC-DBS also decreased functional connectivity between subcallosal and posterior cingulate cortex, two areas linked by the cingulum bundle and implicated in depression. Our data reveal that white matter remodeling as well as functional effects contribute to DBS's therapeutic efficacy.
Collapse
Affiliation(s)
- Satoka H. Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Atsushi Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Catherine Elorette
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Adela Seltzer
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Emma Andraka
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Gaurav Verma
- Nash Family Center for Advanced Circuit Therapeutics, Mount Sinai West Hospital; New York, NY 10019, USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - William GM Janssen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Lazar Fleysher
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Davide Folloni
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Mount Sinai West Hospital; New York, NY 10019, USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Brian E. Russ
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute; Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University at Langone; New York, NY 10016, USA
| | - Helen S. Mayberg
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Nash Family Center for Advanced Circuit Therapeutics, Mount Sinai West Hospital; New York, NY 10019, USA
| | - Peter H. Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| |
Collapse
|
115
|
Lu B, Chen X, Xavier Castellanos F, Thompson PM, Zuo XN, Zang YF, Yan CG. The power of many brains: Catalyzing neuropsychiatric discovery through open neuroimaging data and large-scale collaboration. Sci Bull (Beijing) 2024; 69:1536-1555. [PMID: 38519398 DOI: 10.1016/j.scib.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Recent advances in open neuroimaging data are enhancing our comprehension of neuropsychiatric disorders. By pooling images from various cohorts, statistical power has increased, enabling the detection of subtle abnormalities and robust associations, and fostering new research methods. Global collaborations in imaging have furthered our knowledge of the neurobiological foundations of brain disorders and aided in imaging-based prediction for more targeted treatment. Large-scale magnetic resonance imaging initiatives are driving innovation in analytics and supporting generalizable psychiatric studies. We also emphasize the significant role of big data in understanding neural mechanisms and in the early identification and precise treatment of neuropsychiatric disorders. However, challenges such as data harmonization across different sites, privacy protection, and effective data sharing must be addressed. With proper governance and open science practices, we conclude with a projection of how large-scale imaging resources and collaborations could revolutionize diagnosis, treatment selection, and outcome prediction, contributing to optimal brain health.
Collapse
Affiliation(s)
- Bin Lu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Francisco Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York 10016, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg 10962, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
| | - Xi-Nian Zuo
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; National Basic Science Data Center, Beijing 100190, China
| | - Yu-Feng Zang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310004, China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou 310030, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairment, Hangzhou 311121, China
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China; International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
116
|
Tang WSW, Lau NXM, Krishnan MN, Chin YC, Ho CSH. Depression and Eye Disease-A Narrative Review of Common Underlying Pathophysiological Mechanisms and their Potential Applications. J Clin Med 2024; 13:3081. [PMID: 38892791 PMCID: PMC11172702 DOI: 10.3390/jcm13113081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Background: Depression has been shown to be associated with eye diseases, including dry eye disease (DED), cataracts, glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR). This narrative review explores potential pathophysiological connections between depression and eye disease, as well as its potential correlations with ocular parameters. Methods: A literature search was conducted in August 2022 in PUBMED, EMBASE, and PsycINFO. Published articles related to the subject were consolidated and classified according to respective eye diseases and pathophysiological mechanisms. Results: The literature reviewed suggests that common pathophysiological states like inflammation and neurodegeneration may contribute to both depression and certain eye diseases, while somatic symptoms and altered physiology, such as disruptions in circadian rhythm due to eye diseases, can also influence patients' mood states. Grounded in the shared embryological, anatomical, and physiological features between the eye and the brain, depression is also correlated to changes observed in non-invasive ophthalmological imaging modalities, such as changes in the retinal nerve fibre layer and retinal microvasculature. Conclusions: There is substantial evidence of a close association between depression and eye diseases. Understanding the underlying concepts can inform further research on treatment options and monitoring of depression based on ocular parameters.
Collapse
Affiliation(s)
- Wymann Shao Wen Tang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Nicole Xer Min Lau
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | | | - You Chuen Chin
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Raffles Medical Group, Singapore 188770, Singapore
| | - Cyrus Su Hui Ho
- Department of Psychological Medicine, National University of Singapore, Singapore 119077, Singapore
- Department of Psychological Medicine, National University Hospital, Singapore 119228, Singapore
| |
Collapse
|
117
|
Liu HL, Sun J, Meng SF, Sun N. Physiotherapy for patients with depression: Recent research progress. World J Psychiatry 2024; 14:635-643. [PMID: 38808078 PMCID: PMC11129148 DOI: 10.5498/wjp.v14.i5.635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/15/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
Depression, a common mental illness, seriously affects the health of individuals and has deleterious effects on society. The prevention and treatment of depression has drawn the attention of many researchers and has become an important social issue. The treatment strategies for depression include drugs, psychotherapy, and physiotherapy. Drug therapy is ineffective in some patients and psychotherapy has treatment limitations. As a reliable adjuvant therapy, physiotherapy compensates for the shortcomings of drug and psychotherapy and effectively reduces the disease recurrence rate. Physiotherapy is more scientific and rigorous, its methods are diverse, and to a certain extent, provides more choices for the treatment of depression. Physiotherapy can relieve symptoms in many ways, such as by improving the levels of neurobiochemical molecules, inhibiting the inflammatory response, regulating the neuroendocrine system, and increasing neuroplasticity. Physiotherapy has biological effects similar to those of antidepressants and may produce a superimposed impact when combined with other treatments. This article summarizes the findings on the use of physiotherapy to treat patients with depression over the past five years. It also discusses several methods of physiotherapy for treating depression from the aspects of clinical effect, mechanism of action, and disadvantages, thereby serving as a reference for the in-depth development of physiotherapy research.
Collapse
Affiliation(s)
- Hui-Ling Liu
- Department of Mental Health, First Clinical Medical College of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
- Department of Rehabilitation, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Jing Sun
- Department of Rehabilitation, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Shi-Feng Meng
- Department of Rehabilitation, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Ning Sun
- Department of Mental Health, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| |
Collapse
|
118
|
Amemori S, Graybiel AM, Amemori KI. Cingulate microstimulation induces negative decision-making via reduced top-down influence on primate fronto-cingulo-striatal network. Nat Commun 2024; 15:4201. [PMID: 38760337 PMCID: PMC11101474 DOI: 10.1038/s41467-024-48375-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/26/2024] [Indexed: 05/19/2024] Open
Abstract
The dorsolateral prefrontal cortex (dlPFC) is crucial for regulation of emotion that is known to aid prevention of depression. The broader fronto-cingulo-striatal (FCS) network, including cognitive dlPFC and limbic cingulo-striatal regions, has been associated with a negative evaluation bias often seen in depression. The mechanism by which dlPFC regulates the limbic system remains largely unclear. Here we have successfully induced a negative bias in decision-making in female primates performing a conflict decision-making task, by directly microstimulating the subgenual cingulate cortex while simultaneously recording FCS local field potentials (LFPs). The artificially induced negative bias in decision-making was associated with a significant decrease in functional connectivity from cognitive to limbic FCS regions, represented by a reduction in Granger causality in beta-range LFPs from the dlPFC to the other regions. The loss of top-down directional influence from cognitive to limbic regions, we suggest, could underlie negative biases in decision-making as observed in depressive states.
Collapse
Affiliation(s)
- Satoko Amemori
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Ann M Graybiel
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ken-Ichi Amemori
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.
| |
Collapse
|
119
|
Fitzgerald PB, Hoy K, Richardson KE, Gainsford K, Segrave R, Herring SE, Daskalakis ZJ, Bittar RG. No Consistent Antidepressant Effects of Deep Brain Stimulation of the Bed Nucleus of the Stria Terminalis. Brain Sci 2024; 14:499. [PMID: 38790480 PMCID: PMC11118510 DOI: 10.3390/brainsci14050499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Applying deep brain stimulation (DBS) to several brain regions has been investigated in attempts to treat highly treatment-resistant depression, with variable results. Our initial pilot data suggested that the bed nucleus of the stria terminalis (BNST) could be a promising therapeutic target. OBJECTIVE The aim of this study was to gather blinded data exploring the efficacy of applying DBS to the BNST in patients with highly refractory depression. METHOD Eight patients with chronic severe treatment-resistant depression underwent DBS to the BNST. A randomised, double-blind crossover study design with fixed stimulation parameters was followed and followed by a period of open-label stimulation. RESULTS During the double-blind crossover phase, no consistent antidepressant effects were seen with any of the four stimulation parameters applied, and no patients achieved response or remission criteria during the blinded crossover phase or during a subsequent period of three months of blinded stimulation. Stimulation-related side effects, especially agitation, were reported by a number of patients and were reversible with adjustment of the stimulation parameters. CONCLUSIONS The results of this study do not support the application of DBS to the BNST in patients with highly resistant depression or ongoing research utilising stimulation at this brain site. The blocked randomised study design utilising fixed stimulation parameters was poorly tolerated by the participants and does not appear suitable for assessing the efficacy of DBS at this location.
Collapse
Affiliation(s)
- Paul B. Fitzgerald
- School of Medicine and Psychology, Australian National University, Canberra, ACT 2601, Australia
| | - Kate Hoy
- Bionics Institute of Australia, East Melbourne, Melbourne, VIC 3002, Australia; (K.H.); (S.E.H.)
| | - Karyn E. Richardson
- BrainPark, Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC 3168, Australia; (K.E.R.)
| | - Kirsten Gainsford
- School of Medicine and Psychology, Australian National University, Canberra, ACT 2601, Australia
| | - Rebecca Segrave
- BrainPark, Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC 3168, Australia; (K.E.R.)
- Monash Biomedical Imaging, Monash University, Clayton, VIC 3168, Australia
| | - Sally E. Herring
- Bionics Institute of Australia, East Melbourne, Melbourne, VIC 3002, Australia; (K.H.); (S.E.H.)
| | - Zafiris J. Daskalakis
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Richard G. Bittar
- Precision Brain Spine and Pain Centre, Melbourne, VIC 3109, Australia
- Faculty of Health, Deakin University, Melbourne, VIC 3000, Australia
| |
Collapse
|
120
|
Adegoke T, Subramanian S, Daunis D, Bick S, Ward HB. A Case of Treatment-Resistant Depression Complicated by Traumatic Brain Injury and Seizure: Implications for Interventional Treatment and Psychiatric Training. Harv Rev Psychiatry 2024; 32:117-125. [PMID: 38728571 PMCID: PMC11525772 DOI: 10.1097/hrp.0000000000000394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Affiliation(s)
- Timothy Adegoke
- From Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN (Drs. Adegoke, Daunis, and Ward); Harvard Medical School, Departments of Psychiatry and Neurology, Beth Israel Deaconess Medical Center, Boston, MA (Dr. Subramanian); Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN (Dr. Bick)
| | | | | | | | | |
Collapse
|
121
|
Bo K, Kraynak TE, Kwon M, Sun M, Gianaros PJ, Wager TD. A systems identification approach using Bayes factors to deconstruct the brain bases of emotion regulation. Nat Neurosci 2024; 27:975-987. [PMID: 38519748 DOI: 10.1038/s41593-024-01605-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/15/2024] [Indexed: 03/25/2024]
Abstract
Cognitive reappraisal is fundamental to cognitive therapies and everyday emotion regulation. Analyses using Bayes factors and an axiomatic systems identification approach identified four reappraisal-related components encompassing distributed neural activity patterns across two independent functional magnetic resonance imaging (fMRI) studies (n = 182 and n = 176): (1) an anterior prefrontal system selectively involved in cognitive reappraisal; (2) a fronto-parietal-insular system engaged by both reappraisal and emotion generation, demonstrating a general role in appraisal; (3) a largely subcortical system activated during negative emotion generation but unaffected by reappraisal, including amygdala, hypothalamus and periaqueductal gray; and (4) a posterior cortical system of negative emotion-related regions downregulated by reappraisal. These systems covaried with individual differences in reappraisal success and were differentially related to neurotransmitter binding maps, implicating cannabinoid and serotonin systems in reappraisal. These findings challenge 'limbic'-centric models of reappraisal and provide new systems-level targets for assessing and enhancing emotion regulation.
Collapse
Affiliation(s)
- Ke Bo
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Thomas E Kraynak
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mijin Kwon
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Michael Sun
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Peter J Gianaros
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
122
|
Dam S, Batail JM, Robert GH, Drapier D, Maurel P, Coloigner J. Structural Brain Connectivity and Treatment Improvement in Mood Disorder. Brain Connect 2024; 14:239-251. [PMID: 38534988 DOI: 10.1089/brain.2023.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Background: The treatment of depressive episodes is well established, with clearly demonstrated effectiveness of antidepressants and psychotherapies. However, more than one-third of depressed patients do not respond to treatment. Identifying the brain structural basis of treatment-resistant depression could prevent useless pharmacological prescriptions, adverse events, and lost therapeutic opportunities. Methods: Using diffusion magnetic resonance imaging, we performed structural connectivity analyses on a cohort of 154 patients with mood disorder (MD) and 77 sex- and age-matched healthy control (HC) participants. To assess illness improvement, the patients with MD went through two clinical interviews at baseline and at 6-month follow-up and were classified based on the Clinical Global Impression-Improvement score into improved or not-improved (NI). First, the threshold-free network-based statistics (NBS) was conducted to measure the differences in regional network architecture. Second, nonparametric permutations tests were performed on topological metrics based on graph theory to examine differences in connectome organization. Results: The threshold-free NBS revealed impaired connections involving regions of the basal ganglia in patients with MD compared with HC. Significant increase of local efficiency and clustering coefficient was found in the lingual gyrus, insula, and amygdala in the MD group. Compared with the NI, the improved displayed significantly reduced network integration and segregation, predominately in the default-mode regions, including the precuneus, middle temporal lobe, and rostral anterior cingulate. Conclusions: This study highlights the involvement of regions belonging to the basal ganglia, the fronto-limbic network, and the default mode network, leading to a better understanding of MD disease and its unfavorable outcome.
Collapse
Affiliation(s)
- Sébastien Dam
- Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes, France
| | - Jean-Marie Batail
- Academic Psychiatry Department, Centre Hospitalier Guillaume Régnier, Rennes, France
- CIC 1414, CHU de Rennes, INSERM, Rennes, France
| | - Gabriel H Robert
- Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes, France
- Academic Psychiatry Department, Centre Hospitalier Guillaume Régnier, Rennes, France
- CIC 1414, CHU de Rennes, INSERM, Rennes, France
| | - Dominique Drapier
- Academic Psychiatry Department, Centre Hospitalier Guillaume Régnier, Rennes, France
- CIC 1414, CHU de Rennes, INSERM, Rennes, France
| | - Pierre Maurel
- Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes, France
| | - Julie Coloigner
- Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes, France
| |
Collapse
|
123
|
Pirrung CJH, Singh G, Hogeveen J, Quinn D, Cavanagh JF. Hypoactivation of ventromedial frontal cortex in major depressive disorder: an MEG study of the Reward Positivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590159. [PMID: 38712114 PMCID: PMC11071387 DOI: 10.1101/2024.04.18.590159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background The Reward Positivity (RewP) is sensitive and specific electrophysiological marker of reward receipt. These characteristics make it a compelling candidate marker of dysfunctional reward processing in major depressive disorder. We previously proposed that the RewP is a nexus of multiple aspects of reward variance, and that a diminished RewP in depression might only reflect a deficit in some of this variance. Specifically, we predicted a diminished ventromedial contribution in depression in the context of maintained reward learning. Methods Here we collected magnetoencephalographic (MEG) recordings of reward receipt in 43 individuals with major depressive disorder (MDD group) and 38 healthy controls (CTL group). MEG allows effective source estimation due to the absence of volume conduction that compromises electroencephalographic recordings. Results The MEG RewP analogue was generated by a broad set of cortical areas, yet only right ventromedial and right ventral temporal areas were diminished in MDD. These areas correlated with a principal component of anhedonia derived from multiple questionnaires. Compellingly, BA25 was the frontal region with the largest representation in both of these effects. Conclusions These findings not only advance our understanding underlying the computation of the RewP, but they also dovetail with convergent findings from other types of functional source imaging in depression, as well as from deep brain stimulation treatments. Together, these discoveries suggest that the RewP may be a valuable marker for objective assessment of reward affect and its disruption in major depression.
Collapse
|
124
|
Patel E, Ramaiah P, Mamaril-Davis JC, Bauer IL, Koujah D, Seideman T, Kelbert J, Nosova K, Bina RW. Outcome differences between males and females undergoing deep brain stimulation for treatment-resistant depression: systematic review and individual patient data meta-analysis. J Affect Disord 2024; 351:481-488. [PMID: 38296058 DOI: 10.1016/j.jad.2024.01.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Treatment-resistant depression (TRD) occurs more commonly in women. Deep brain stimulation (DBS) is an emerging treatment for TRD, and its efficacy continues to be explored. However, differences in treatment outcomes between males and females have yet to be explored in formal analysis. METHODS A PRISMA-compliant systematic review of DBS for TRD studies was conducted. Patient-level data were independently extracted by two authors. Treatment response was defined as a 50 % or greater reduction in depression score. Percent change in depression scores by gender were evaluated using random-effects analyses. RESULTS Of 737 records, 19 studies (129 patients) met inclusion criteria. The mean reduction in depression score for females was 57.7 % (95 % CI, 64.33 %-51.13 %), whereas for males it was 35.2 % (95 % CI, 45.12 %-25.23 %) (p < 0.0001). Females were more likely to respond to DBS for TRD when compared to males (OR = 2.44, 95 % CI 1.06, 1.95). These differences varied in significance when stratified by DBS anatomical target, age, and timeframe for responder classification. LIMITATIONS Studies included were open-label trials with small sample sizes. CONCLUSIONS Our findings suggest that females with TRD respond at higher rates to DBS treatment than males. Further research is needed to elucidate the implications of these results, which may include connectomic sexual dimorphism, depression phenotype variations, or unrecognized symptom reporting differences. Methodological standardization of outcome scales, granular demographic data, and individual subject outcomes would allow for more robust comparisons between trials.
Collapse
Affiliation(s)
- Ekta Patel
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Priya Ramaiah
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | | | - Isabel L Bauer
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Dalia Koujah
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Travis Seideman
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - James Kelbert
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Kristin Nosova
- Department of Neurosurgery, Banner University Medical Center/University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Robert W Bina
- Department of Neurosurgery, Banner University Medical Center/University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA.
| |
Collapse
|
125
|
Russo S, Claar L, Marks L, Krishnan G, Furregoni G, Zauli FM, Hassan G, Solbiati M, d’Orio P, Mikulan E, Sarasso S, Rosanova M, Sartori I, Bazhenov M, Pigorini A, Massimini M, Koch C, Rembado I. Thalamic feedback shapes brain responses evoked by cortical stimulation in mice and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578243. [PMID: 38352535 PMCID: PMC10862802 DOI: 10.1101/2024.01.31.578243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Cortical stimulation with single pulses is a common technique in clinical practice and research. However, we still do not understand the extent to which it engages subcortical circuits which contribute to the associated evoked potentials (EPs). Here we find that cortical stimulation generates remarkably similar EPs in humans and mice, with a late component similarly modulated by the subject's behavioral state. We optogenetically dissect the underlying circuit in mice, demonstrating that the late component of these EPs is caused by a thalamic hyperpolarization and rebound. The magnitude of this late component correlates with the bursting frequency and synchronicity of thalamic neurons, modulated by the subject's behavioral state. A simulation of the thalamo-cortical circuit highlights that both intrinsic thalamic currents as well as cortical and thalamic GABAergic neurons contribute to this response profile. We conclude that the cortical stimulation engages cortico-thalamo-cortical circuits highly preserved across different species and stimulation modalities.
Collapse
Affiliation(s)
- Simone Russo
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan 20157, Italy
- Department of Philosophy ‘Piero Martinetti’, University of Milan, Milan, Italy
- Brain and Consciousness, Allen Institute, Seattle, United States
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Leslie Claar
- Brain and Consciousness, Allen Institute, Seattle, United States
| | - Lydia Marks
- Brain and Consciousness, Allen Institute, Seattle, United States
| | - Giri Krishnan
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Giulia Furregoni
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan 20157, Italy
| | - Flavia Maria Zauli
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan 20157, Italy
- Department of Philosophy ‘Piero Martinetti’, University of Milan, Milan, Italy
- ASST Grande Ospedale Metropolitano Niguarda, “C. Munari” Epilepsy Surgery Centre, Department of Neuroscience, Italy
| | - Gabriel Hassan
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan 20157, Italy
- Department of Philosophy ‘Piero Martinetti’, University of Milan, Milan, Italy
| | - Michela Solbiati
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan 20157, Italy
- ASST Grande Ospedale Metropolitano Niguarda, “C. Munari” Epilepsy Surgery Centre, Department of Neuroscience, Italy
| | - Piergiorgio d’Orio
- ASST Grande Ospedale Metropolitano Niguarda, “C. Munari” Epilepsy Surgery Centre, Department of Neuroscience, Italy
- University of Parma, Parma 43121, Italy
| | - Ezequiel Mikulan
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan 20157, Italy
| | - Simone Sarasso
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan 20157, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan 20157, Italy
| | - Ivana Sartori
- ASST Grande Ospedale Metropolitano Niguarda, “C. Munari” Epilepsy Surgery Centre, Department of Neuroscience, Italy
| | - Maxim Bazhenov
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andrea Pigorini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan 20122, Italy
- UOC Maxillo-facial Surgery and dentistry, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan 20157, Italy
- Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan 20122, Italy
- Azrieli Program in Brain, Mind and Consciousness, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario M5G 1M1, Canada
| | - Christof Koch
- Brain and Consciousness, Allen Institute, Seattle, United States
| | - Irene Rembado
- Brain and Consciousness, Allen Institute, Seattle, United States
| |
Collapse
|
126
|
Patrick EE, Fleeting CR, Patel DR, Casauay JT, Patel A, Shepherd H, Wong JK. Modeling the volume of tissue activated in deep brain stimulation and its clinical influence: a review. Front Hum Neurosci 2024; 18:1333183. [PMID: 38660012 PMCID: PMC11039793 DOI: 10.3389/fnhum.2024.1333183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Deep brain stimulation (DBS) is a neuromodulatory therapy that has been FDA approved for the treatment of various disorders, including but not limited to, movement disorders (e.g., Parkinson's disease and essential tremor), epilepsy, and obsessive-compulsive disorder. Computational methods for estimating the volume of tissue activated (VTA), coupled with brain imaging techniques, form the basis of models that are being generated from retrospective clinical studies for predicting DBS patient outcomes. For instance, VTA models are used to generate target-and network-based probabilistic stimulation maps that play a crucial role in predicting DBS treatment outcomes. This review defines the methods for calculation of tissue activation (or modulation) including ones that use heuristic and clinically derived estimates and more computationally involved ones that rely on finite-element methods and biophysical axon models. We define model parameters and provide a comparison of commercial, open-source, and academic simulation platforms available for integrated neuroimaging and neural activation prediction. In addition, we review clinical studies that use these modeling methods as a function of disease. By describing the tissue-activation modeling methods and highlighting their application in clinical studies, we provide the neural engineering and clinical neuromodulation communities with perspectives that may influence the adoption of modeling methods for future DBS studies.
Collapse
Affiliation(s)
- Erin E. Patrick
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States
| | - Chance R. Fleeting
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Drashti R. Patel
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Jed T. Casauay
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Aashay Patel
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Hunter Shepherd
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Joshua K. Wong
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
127
|
Seas A, Noor MS, Choi KS, Veerakumar A, Obatusin M, Dahill-Fuchel J, Tiruvadi V, Xu E, Riva-Posse P, Rozell CJ, Mayberg HS, McIntyre CC, Waters AC, Howell B. Subcallosal cingulate deep brain stimulation evokes two distinct cortical responses via differential white matter activation. Proc Natl Acad Sci U S A 2024; 121:e2314918121. [PMID: 38527192 PMCID: PMC10998591 DOI: 10.1073/pnas.2314918121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
Subcallosal cingulate (SCC) deep brain stimulation (DBS) is an emerging therapy for refractory depression. Good clinical outcomes are associated with the activation of white matter adjacent to the SCC. This activation produces a signature cortical evoked potential (EP), but it is unclear which of the many pathways in the vicinity of SCC is responsible for driving this response. Individualized biophysical models were built to achieve selective engagement of two target bundles: either the forceps minor (FM) or cingulum bundle (CB). Unilateral 2 Hz stimulation was performed in seven patients with treatment-resistant depression who responded to SCC DBS, and EPs were recorded using 256-sensor scalp electroencephalography. Two distinct EPs were observed: a 120 ms symmetric response spanning both hemispheres and a 60 ms asymmetrical EP. Activation of FM correlated with the symmetrical EPs, while activation of CB was correlated with the asymmetrical EPs. These results support prior model predictions that these two pathways are predominantly activated by clinical SCC DBS and provide first evidence of a link between cortical EPs and selective fiber bundle activation.
Collapse
Affiliation(s)
- Andreas Seas
- Department of Biomedical Engineering, Duke University, Durham, NC27708
- Department of Neurosurgery, Duke University, Durham, NC27708
| | - M. Sohail Noor
- Department of Biomedical Engineering, Duke University, Durham, NC27708
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH10900
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA30329
| | - Ashan Veerakumar
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA30329
| | - Mosadoluwa Obatusin
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA30329
| | - Jacob Dahill-Fuchel
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Vineet Tiruvadi
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA30329
| | - Elisa Xu
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA30329
| | - Christopher J. Rozell
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA30332
| | - Helen S. Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA30329
| | - Cameron C. McIntyre
- Department of Biomedical Engineering, Duke University, Durham, NC27708
- Department of Neurosurgery, Duke University, Durham, NC27708
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH10900
| | - Allison C. Waters
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA30329
| | - Bryan Howell
- Department of Biomedical Engineering, Duke University, Durham, NC27708
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH10900
| |
Collapse
|
128
|
Johnson KA, Okun MS, Scangos KW, Mayberg HS, de Hemptinne C. Deep brain stimulation for refractory major depressive disorder: a comprehensive review. Mol Psychiatry 2024; 29:1075-1087. [PMID: 38287101 PMCID: PMC11348289 DOI: 10.1038/s41380-023-02394-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024]
Abstract
Deep brain stimulation (DBS) has emerged as a promising treatment for select patients with refractory major depressive disorder (MDD). The clinical effectiveness of DBS for MDD has been demonstrated in meta-analyses, open-label studies, and a few controlled studies. However, randomized controlled trials have yielded mixed outcomes, highlighting challenges that must be addressed prior to widespread adoption of DBS for MDD. These challenges include tracking MDD symptoms objectively to evaluate the clinical effectiveness of DBS with sensitivity and specificity, identifying the patient population that is most likely to benefit from DBS, selecting the optimal patient-specific surgical target and stimulation parameters, and understanding the mechanisms underpinning the therapeutic benefits of DBS in the context of MDD pathophysiology. In this review, we provide an overview of the latest clinical evidence of MDD DBS effectiveness and the recent technological advancements that could transform our understanding of MDD pathophysiology, improve the clinical outcomes for MDD DBS, and establish a path forward to develop more effective neuromodulation therapies to alleviate depressive symptoms.
Collapse
Affiliation(s)
- Kara A Johnson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Katherine W Scangos
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Coralie de Hemptinne
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
- Department of Neurology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
129
|
Leserri S, Segura-Amil A, Nowacki A, Debove I, Petermann K, Schäppi L, Preti MG, Van De Ville D, Pollo C, Walther S, Nguyen TAK. Linking connectivity of deep brain stimulation of nucleus accumbens area with clinical depression improvements: a retrospective longitudinal case series. Eur Arch Psychiatry Clin Neurosci 2024; 274:685-696. [PMID: 37668723 PMCID: PMC10994999 DOI: 10.1007/s00406-023-01683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
Treatment-resistant depression is a severe form of major depressive disorder and deep brain stimulation is currently an investigational treatment. The stimulation's therapeutic effect may be explained through the functional and structural connectivities between the stimulated area and other brain regions, or to depression-associated networks. In this longitudinal, retrospective study, four female patients with treatment-resistant depression were implanted for stimulation in the nucleus accumbens area at our center. We analyzed the structural and functional connectivity of the stimulation area: the structural connectivity was investigated with probabilistic tractography; the functional connectivity was estimated by combining patient-specific stimulation volumes and a normative functional connectome. These structural and functional connectivity profiles were then related to four clinical outcome scores. At 1-year follow-up, the remission rate was 66%. We observed a consistent structural connectivity to Brodmann area 25 in the patient with the longest remission phase. The functional connectivity analysis resulted in patient-specific R-maps describing brain areas significantly correlated with symptom improvement in this patient, notably the prefrontal cortex. But the connectivity analysis was mixed across patients, calling for confirmation in a larger cohort and over longer time periods.
Collapse
Affiliation(s)
- Simona Leserri
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- ARTORG Center for Biomedical Engineering Research, University Bern, Bern, Switzerland
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alba Segura-Amil
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- ARTORG Center for Biomedical Engineering Research, University Bern, Bern, Switzerland
| | - Andreas Nowacki
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ines Debove
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Katrin Petermann
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lea Schäppi
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Maria Giulia Preti
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Department of Radiology and Medical InformaticsFaculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dimitri Van De Ville
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Department of Radiology and Medical InformaticsFaculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - T A Khoa Nguyen
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- ARTORG Center for Biomedical Engineering Research, University Bern, Bern, Switzerland.
- ARTORG IGT, Murtenstrasse 50, 3008, Bern, Switzerland.
| |
Collapse
|
130
|
Ranjan M, Mahoney JJ, Rezai AR. Neurosurgical neuromodulation therapy for psychiatric disorders. Neurotherapeutics 2024; 21:e00366. [PMID: 38688105 PMCID: PMC11070709 DOI: 10.1016/j.neurot.2024.e00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Psychiatric disorders are among the leading contributors to global disease burden and disability. A significant portion of patients with psychiatric disorders remain treatment-refractory to best available therapy. With insights from the neurocircuitry of psychiatric disorders and extensive experience of neuromodulation with deep brain stimulation (DBS) in movement disorders, DBS is increasingly being considered to modulate the neural network in psychiatric disorders. Currently, obsessive-compulsive disorder (OCD) is the only U.S. FDA (United States Food and Drug Administration) approved DBS indication for psychiatric disorders. Medically refractory depression, addiction, and other psychiatric disorders are being explored for DBS neuromodulation. Studies evaluating DBS for psychiatric disorders are promising but lack larger, controlled studies. This paper presents a brief review and the current state of DBS and other neurosurgical neuromodulation therapies for OCD and other psychiatric disorders. We also present a brief review of MR-guided Focused Ultrasound (MRgFUS), a novel form of neurosurgical neuromodulation, which can target deep subcortical structures similar to DBS, but in a noninvasive fashion. Early experiences of neurosurgical neuromodulation therapies, including MRgFUS neuromodulation are encouraging in psychiatric disorders; however, they remain investigational. Currently, DBS and VNS are the only FDA approved neurosurgical neuromodulation options in properly selected cases of OCD and depression, respectively.
Collapse
Affiliation(s)
- Manish Ranjan
- Department of Neurosurgery, WVU Rockefeller Neuroscience Institute, Morgantown, WV, USA.
| | - James J Mahoney
- Department of Behavioral Medicine and Psychiatry, WVU Rockefeller Neuroscience Institute, Morgantown, WV, USA; Department of Neuroscience, WVU Rockefeller Neuroscience Institute, Morgantown, WV, USA
| | - Ali R Rezai
- Department of Neurosurgery, WVU Rockefeller Neuroscience Institute, Morgantown, WV, USA; Department of Neuroscience, WVU Rockefeller Neuroscience Institute, Morgantown, WV, USA
| |
Collapse
|
131
|
Aderinto N, Olatunji G, Muili A, Kokori E, Edun M, Akinmoju O, Yusuf I, Ojo D. A narrative review of non-invasive brain stimulation techniques in neuropsychiatric disorders: current applications and future directions. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2024; 60:50. [DOI: 10.1186/s41983-024-00824-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/24/2024] [Indexed: 01/03/2025] Open
Abstract
Abstract
Background
Neuropsychiatric disorders significantly burden individuals and society, necessitating the exploration of innovative treatment approaches. Non-invasive brain stimulation techniques have emerged as promising interventions for these disorders, offering potential therapeutic benefits with minimal side effects. This narrative review provides a comprehensive overview of non-invasive brain stimulation techniques' current applications and future directions in managing neuropsychiatric disorders.
Methods
A thorough search of relevant literature was conducted to identify studies investigating non-invasive brain stimulation techniques in neuropsychiatric disorders. The selected studies were critically reviewed, and their findings were synthesised to provide a comprehensive overview of the current state of knowledge in the field.
Results
The review highlights the current applications of non-invasive brain stimulation techniques in neuropsychiatric disorders, including major depressive disorder, Parkinson's disease, schizophrenia, insomnia, and cognitive impairments. It presents evidence supporting the efficacy of these techniques in modulating brain activity, alleviating symptoms, and enhancing cognitive functions. Furthermore, the review addresses challenges such as interindividual variability, optimal target site selection, and standardisation of protocols. It also discusses potential future directions, including exploring novel target sites, personalised stimulation protocols, integrating with other treatment modalities, and identifying biomarkers for treatment response.
Conclusion
Non-invasive brain stimulation techniques offer promising avenues for managing neuropsychiatric disorders. Further research is necessary to optimise stimulation protocols, establish standardised guidelines, and identify biomarkers for treatment response. The findings underscore the potential of non-invasive brain stimulation techniques as valuable additions to the armamentarium of neuropsychiatric treatments.
Collapse
|
132
|
Hamani C, Davidson B, Lipsman N, Abrahao A, Nestor SM, Rabin JS, Giacobbe P, Pagano RL, Campos ACP. Insertional effect following electrode implantation: an underreported but important phenomenon. Brain Commun 2024; 6:fcae093. [PMID: 38707711 PMCID: PMC11069120 DOI: 10.1093/braincomms/fcae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/08/2023] [Accepted: 03/26/2024] [Indexed: 05/07/2024] Open
Abstract
Deep brain stimulation has revolutionized the treatment of movement disorders and is gaining momentum in the treatment of several other neuropsychiatric disorders. In almost all applications of this therapy, the insertion of electrodes into the target has been shown to induce some degree of clinical improvement prior to stimulation onset. Disregarding this phenomenon, commonly referred to as 'insertional effect', can lead to biased results in clinical trials, as patients receiving sham stimulation may still experience some degree of symptom amelioration. Similar to the clinical scenario, an improvement in behavioural performance following electrode implantation has also been reported in preclinical models. From a neurohistopathologic perspective, the insertion of electrodes into the brain causes an initial trauma and inflammatory response, the activation of astrocytes, a focal release of gliotransmitters, the hyperexcitability of neurons in the vicinity of the implants, as well as neuroplastic and circuitry changes at a distance from the target. Taken together, it would appear that electrode insertion is not an inert process, but rather triggers a cascade of biological processes, and, as such, should be considered alongside the active delivery of stimulation as an active part of the deep brain stimulation therapy.
Collapse
Affiliation(s)
- Clement Hamani
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Benjamin Davidson
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Agessandro Abrahao
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Sean M Nestor
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Jennifer S Rabin
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto M5G 1V7, Canada
| | - Peter Giacobbe
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP CEP 01308-060, Brazil
| | - Ana Carolina P Campos
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP CEP 01308-060, Brazil
| |
Collapse
|
133
|
Unadkat P, Quevedo J, Soares J, Fenoy A. Opportunities and challenges for the use of deep brain stimulation in the treatment of refractory major depression. DISCOVER MENTAL HEALTH 2024; 4:9. [PMID: 38483709 PMCID: PMC10940557 DOI: 10.1007/s44192-024-00062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
Major Depressive Disorder continues to remain one of the most prevalent psychiatric diseases globally. Despite multiple trials of conventional therapies, a subset of patients fail to have adequate benefit to treatment. Deep brain stimulation (DBS) is a promising treatment in this difficult to treat population and has shown strong antidepressant effects across multiple cohorts. Nearly two decades of work have provided insights into the potential for chronic focal stimulation in precise brain targets to modulate pathological brain circuits that are implicated in the pathogenesis of depression. In this paper we review the rationale that prompted the selection of various brain targets for DBS, their subsequent clinical outcomes and common adverse events reported. We additionally discuss some of the pitfalls and challenges that have prevented more widespread adoption of this technology as well as future directions that have shown promise in improving therapeutic efficacy of DBS in the treatment of depression.
Collapse
Affiliation(s)
- Prashin Unadkat
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY, USA
| | - Joao Quevedo
- Center of Excellence On Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, (UT Health), Houston, TX, USA
| | - Jair Soares
- Center of Excellence On Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, (UT Health), Houston, TX, USA
| | - Albert Fenoy
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY, USA.
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY, USA.
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine, Feinstein Institutes for Medical Research, Northwell Health, 805 Northern Boulevard, Suite 100, Great Neck, NY, 11021, USA.
| |
Collapse
|
134
|
Lee SY, Kozalakis K, Baftizadeh F, Campagnola L, Jarsky T, Koch C, Anastassiou CA. Cell class-specific electric field entrainment of neural activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.14.528526. [PMID: 36824721 PMCID: PMC9948976 DOI: 10.1101/2023.02.14.528526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Electric fields affect the activity of neurons and brain circuits, yet how this interaction happens at the cellular level remains enigmatic. Lack of understanding on how to stimulate the human brain to promote or suppress specific activity patterns significantly limits basic research and clinical applications. Here we study how electric fields impact the subthreshold and spiking properties of major cortical neuronal classes. We find that cortical neurons in rodent neocortex and hippocampus as well as human cortex exhibit strong and cell class-dependent entrainment that depends on the stimulation frequency. Excitatory pyramidal neurons with their typically slower spike rate entrain to slow and fast electric fields, while inhibitory classes like Pvalb and SST with their fast spiking predominantly phase lock to fast fields. We show this spike-field entrainment is the result of two effects: non-specific membrane polarization occurring across classes and class-specific excitability properties. Importantly, these properties of spike-field and class-specific entrainment are present in cells across cortical areas and species (mouse and human). These findings open the door to the design of selective and class-specific neuromodulation technologies.
Collapse
Affiliation(s)
- Soo Yeun Lee
- Allen Institute for Brain Science, Seattle, Washington 98101, USA
| | - Konstantinos Kozalakis
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | | | - Luke Campagnola
- Allen Institute for Brain Science, Seattle, Washington 98101, USA
| | - Tim Jarsky
- Allen Institute for Brain Science, Seattle, Washington 98101, USA
| | - Christof Koch
- Allen Institute for Brain Science, Seattle, Washington 98101, USA
| | - Costas A Anastassiou
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
- Center for Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
- Lead contact:
| |
Collapse
|
135
|
Yuruk D, Ozger C, Garzon JF, Nakonezny PA, Vande Voort JL, Croarkin PE. A retrospective, naturalistic study of deep brain stimulation and vagal nerve stimulation in young patients. Brain Behav 2024; 14:e3452. [PMID: 38468454 PMCID: PMC10928335 DOI: 10.1002/brb3.3452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/15/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024] Open
Abstract
INTRODUCTION Invasive neuromodulation interventions such as deep brain stimulation (DBS) and vagal nerve stimulation (VNS) are important treatments for movement disorders and epilepsy, but literature focused on young patients treated with DBS and VNS is limited. This retrospective study aimed to examine naturalistic outcomes of VNS and DBS treatment of epilepsy and dystonia in children, adolescents, and young adults. METHODS We retrospectively assessed patient demographic and outcome data that were obtained from electronic health records. Two researchers used the Clinical Global Impression scale to retrospectively rate the severity of neurologic and psychiatric symptoms before and after patients underwent surgery to implant DBS electrodes or a VNS device. Descriptive and inferential statistics were used to examine clinical effects. RESULTS Data from 73 patients were evaluated. Neurologic symptoms improved for patients treated with DBS and VNS (p < .001). Patients treated with DBS did not have a change in psychiatric symptoms, whereas psychiatric symptoms worsened for patients treated with VNS (p = .008). The frequency of postoperative complications did not differ between VNS and DBS groups. CONCLUSION Young patients may have distinct vulnerabilities for increased psychiatric symptoms during treatment with invasive neuromodulation. Child and adolescent psychiatrists should consider a more proactive approach and greater engagement with DBS and VNS teams that treat younger patients.
Collapse
Affiliation(s)
- Deniz Yuruk
- Research Fellow in the Department of Psychiatry and PsychologyMayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and ScienceRochesterMinnesotaUSA
| | - Can Ozger
- Department of Psychiatry and PsychologyMayo Clinic Children's Research Center, and Mayo Clinic Depression Center, Mayo ClinicRochesterMinnesotaUSA
| | - Juan F. Garzon
- Research Fellow in the Department of Psychiatry and PsychologyMayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and ScienceRochesterMinnesotaUSA
| | - Paul A. Nakonezny
- Department Of Population And Data SciencesUT Southwestern Medical CenterDallasTexasUSA
| | - Jennifer L. Vande Voort
- Department of Psychiatry and PsychologyMayo Clinic Children's Research Center, and Mayo Clinic Depression Center, Mayo ClinicRochesterMinnesotaUSA
| | - Paul E. Croarkin
- Department of Psychiatry and PsychologyMayo Clinic Children's Research Center, and Mayo Clinic Depression Center, Mayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
136
|
Francis-Oliveira J, Higa GSV, Viana FJC, Cruvinel E, Carlos-Lima E, da Silva Borges F, Zampieri TT, Rebello FP, Ulrich H, De Pasquale R. TREK-1 inhibition promotes synaptic plasticity in the prelimbic cortex. Exp Neurol 2024; 373:114652. [PMID: 38103709 DOI: 10.1016/j.expneurol.2023.114652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Synaptic plasticity is one of the putative mechanisms involved in the maturation of the prefrontal cortex (PFC) during postnatal development. Early life stress (ELS) affects the shaping of cortical circuitries through impairment of synaptic plasticity supporting the onset of mood disorders. Growing evidence suggests that dysfunctional postnatal maturation of the prelimbic division (PL) of the PFC might be related to the emergence of depression. The potassium channel TREK-1 has attracted particular interest among many factors that modulate plasticity, concerning synaptic modifications that could underlie mood disorders. Studies have found that ablation of TREK-1 increases the resilience to depression, while rats exposed to ELS exhibit higher TREK-1 levels in the PL. TREK-1 is regulated by multiple intracellular transduction pathways including the ones activated by metabotropic receptors. In the hippocampal neurons, TREK-1 interacts with the serotonergic system, one of the main factors involved in the action of antidepressants. To investigate possible mechanisms related to the antidepressant role of TREK-1, we used brain slice electrophysiology to evaluate the effects of TREK-1 pharmacological blockade on synaptic plasticity at PL circuitry. We extended this investigation to animals subjected to ELS. Our findings suggest that in non-stressed animals, TREK-1 activity is required for the reduction of synaptic responses mediated by the 5HT1A receptor activation. Furthermore, we demonstrate that TREK-1 blockade promotes activity-dependent long-term depression (LTD) when acting in synergy with 5HT1A receptor stimulation. On the other hand, in ELS animals, TREK-1 blockade reduces synaptic transmission and facilitates LTD expression. These results indicate that TREK-1 inhibition stimulates synaptic plasticity in the PL and this effect is more pronounced in animals subjected to ELS during postnatal development.
Collapse
Affiliation(s)
- José Francis-Oliveira
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, SP 05508-900, Brazil; Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, SP 09210-580, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Estevão Carlos-Lima
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Fernando da Silva Borges
- Department of Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Thais Tessari Zampieri
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Fernanda Pereira Rebello
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, SP 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil.
| |
Collapse
|
137
|
Ledesma-Corvi S, Jornet-Plaza J, Gálvez-Melero L, García-Fuster MJ. Novel rapid treatment options for adolescent depression. Pharmacol Res 2024; 201:107085. [PMID: 38309382 DOI: 10.1016/j.phrs.2024.107085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
There is an urgent need for novel fast-acting antidepressants for adolescent treatment-resistant depression and/or suicidal risk, since the selective serotonin reuptake inhibitors that are clinically approved for that age (i.e., fluoxetine or escitalopram) take weeks to work. In this context, one of the main research lines of our group is to characterize at the preclinical level novel approaches for rapid-acting antidepressants for adolescence. The present review summarizes the potential use in adolescence of non-pharmacological options, such as neuromodulators (electroconvulsive therapy and other innovative types of brain stimulation), as well as pharmacological options, including consciousness-altering drugs (mainly ketamine but also classical psychedelics) and cannabinoids (i.e., cannabidiol), with promising fast-acting responses. Following a brief analytical explanation of adolescent depression, we present a general introduction for each therapeutical approach together with the clinical evidence supporting its potential beneficial use in adolescence (mainly extrapolated from prior successful examples for adults), to then report recent and/or ongoing preclinical studies that will aid in improving the inclusion of these therapies in the clinic, by considering potential sex-, age-, and dose-related differences, and/or other factors that might affect efficacy or long-term safety. Finally, we conclude the review by providing future avenues to maximize treatment response, including the need for more clinical studies and the importance of designing and/or testing novel treatment options that are safe and fast-acting for adolescent depression.
Collapse
Affiliation(s)
- Sandra Ledesma-Corvi
- Neuropharmacology Research Group, IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Jordi Jornet-Plaza
- Neuropharmacology Research Group, IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Laura Gálvez-Melero
- Neuropharmacology Research Group, IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - M Julia García-Fuster
- Neuropharmacology Research Group, IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain; Department of Medicine, University of the Balearic Islands, Palma, Spain.
| |
Collapse
|
138
|
Yao H, Wang X, Chi J, Chen H, Liu Y, Yang J, Yu J, Ruan Y, Xiang X, Pi J, Xu JF. Exploring Novel Antidepressants Targeting G Protein-Coupled Receptors and Key Membrane Receptors Based on Molecular Structures. Molecules 2024; 29:964. [PMID: 38474476 DOI: 10.3390/molecules29050964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Major Depressive Disorder (MDD) is a complex mental disorder that involves alterations in signal transmission across multiple scales and structural abnormalities. The development of effective antidepressants (ADs) has been hindered by the dominance of monoamine hypothesis, resulting in slow progress. Traditional ADs have undesirable traits like delayed onset of action, limited efficacy, and severe side effects. Recently, two categories of fast-acting antidepressant compounds have surfaced, dissociative anesthetics S-ketamine and its metabolites, as well as psychedelics such as lysergic acid diethylamide (LSD). This has led to structural research and drug development of the receptors that they target. This review provides breakthroughs and achievements in the structure of depression-related receptors and novel ADs based on these. Cryo-electron microscopy (cryo-EM) has enabled researchers to identify the structures of membrane receptors, including the N-methyl-D-aspartate receptor (NMDAR) and the 5-hydroxytryptamine 2A (5-HT2A) receptor. These high-resolution structures can be used for the development of novel ADs using virtual drug screening (VDS). Moreover, the unique antidepressant effects of 5-HT1A receptors in various brain regions, and the pivotal roles of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and tyrosine kinase receptor 2 (TrkB) in regulating synaptic plasticity, emphasize their potential as therapeutic targets. Using structural information, a series of highly selective ADs were designed based on the different role of receptors in MDD. These molecules have the favorable characteristics of rapid onset and low adverse drug reactions. This review offers researchers guidance and a methodological framework for the structure-based design of ADs.
Collapse
Affiliation(s)
- Hanbo Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Xiaodong Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaxin Chi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Haorong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiayi Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaqi Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xufu Xiang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
139
|
Johnson KA, Dosenbach NUF, Gordon EM, Welle CG, Wilkins KB, Bronte-Stewart HM, Voon V, Morishita T, Sakai Y, Merner AR, Lázaro-Muñoz G, Williamson T, Horn A, Gilron R, O'Keeffe J, Gittis AH, Neumann WJ, Little S, Provenza NR, Sheth SA, Fasano A, Holt-Becker AB, Raike RS, Moore L, Pathak YJ, Greene D, Marceglia S, Krinke L, Tan H, Bergman H, Pötter-Nerger M, Sun B, Cabrera LY, McIntyre CC, Harel N, Mayberg HS, Krystal AD, Pouratian N, Starr PA, Foote KD, Okun MS, Wong JK. Proceedings of the 11th Annual Deep Brain Stimulation Think Tank: pushing the forefront of neuromodulation with functional network mapping, biomarkers for adaptive DBS, bioethical dilemmas, AI-guided neuromodulation, and translational advancements. Front Hum Neurosci 2024; 18:1320806. [PMID: 38450221 PMCID: PMC10915873 DOI: 10.3389/fnhum.2024.1320806] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
The Deep Brain Stimulation (DBS) Think Tank XI was held on August 9-11, 2023 in Gainesville, Florida with the theme of "Pushing the Forefront of Neuromodulation". The keynote speaker was Dr. Nico Dosenbach from Washington University in St. Louis, Missouri. He presented his research recently published in Nature inn a collaboration with Dr. Evan Gordon to identify and characterize the somato-cognitive action network (SCAN), which has redefined the motor homunculus and has led to new hypotheses about the integrative networks underpinning therapeutic DBS. The DBS Think Tank was founded in 2012 and provides an open platform where clinicians, engineers, and researchers (from industry and academia) can freely discuss current and emerging DBS technologies, as well as logistical and ethical issues facing the field. The group estimated that globally more than 263,000 DBS devices have been implanted for neurological and neuropsychiatric disorders. This year's meeting was focused on advances in the following areas: cutting-edge translational neuromodulation, cutting-edge physiology, advances in neuromodulation from Europe and Asia, neuroethical dilemmas, artificial intelligence and computational modeling, time scales in DBS for mood disorders, and advances in future neuromodulation devices.
Collapse
Affiliation(s)
- Kara A. Johnson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
- Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Nico U. F. Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Evan M. Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Cristin G. Welle
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, United States
| | - Kevin B. Wilkins
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Helen M. Bronte-Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Takashi Morishita
- Department of Neurosurgery, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Yuki Sakai
- ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Amanda R. Merner
- Center for Bioethics, Harvard Medical School, Boston, MA, United States
| | - Gabriel Lázaro-Muñoz
- Center for Bioethics, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
| | - Theresa Williamson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States
| | - Andreas Horn
- Department of Neurology, Center for Brain Circuit Therapeutics, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, United States
- MGH Neurosurgery and Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | | | | | - Aryn H. Gittis
- Biological Sciences and Center for Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Simon Little
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Nicole R. Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Division of Neurology, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network (UHN), University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Toronto, ON, Canada
| | - Abbey B. Holt-Becker
- Restorative Therapies Group Implantables, Research, and Core Technology, Medtronic Inc., Minneapolis, MN, United States
| | - Robert S. Raike
- Restorative Therapies Group Implantables, Research, and Core Technology, Medtronic Inc., Minneapolis, MN, United States
| | - Lisa Moore
- Boston Scientific Neuromodulation Corporation, Valencia, CA, United States
| | | | - David Greene
- NeuroPace, Inc., Mountain View, CA, United States
| | - Sara Marceglia
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Lothar Krinke
- Newronika SPA, Milan, Italy
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Hagai Bergman
- Edmond and Lily Safar Center (ELSC) for Brain Research and Department of Medical Neurobiology (Physiology), Institute of Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurosurgery, Hadassah Medical Center, Jerusalem, Israel
| | - Monika Pötter-Nerger
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Laura Y. Cabrera
- Neuroethics, Department of Engineering Science and Mechanics, Philosophy, and Bioethics, and the Rock Ethics Institute, Pennsylvania State University, State College, PA, United States
| | - Cameron C. McIntyre
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
- Department of Neurosurgery, Duke University, Durham, NC, United States
| | - Noam Harel
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Helen S. Mayberg
- Department of Neurology, Neurosurgery, Psychiatry, and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Andrew D. Krystal
- Departments of Psychiatry and Behavioral Science and Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Nader Pouratian
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Philip A. Starr
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Kelly D. Foote
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Michael S. Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
- Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Joshua K. Wong
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
- Department of Neurology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
140
|
van Rheede JJ, Alagapan S, Denison TJ, Riva-Posse P, Rozell CJ, Mayberg HS, Waters AC, Sharott A. Cortical signatures of sleep are altered following effective deep brain stimulation for depression. Transl Psychiatry 2024; 14:103. [PMID: 38378677 PMCID: PMC10879134 DOI: 10.1038/s41398-024-02816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Deep brain stimulation (DBS) of the subcallosal cingulate cortex (SCC) is an experimental therapy for treatment-resistant depression (TRD). Chronic SCC DBS leads to long-term changes in the electrophysiological dynamics measured from local field potential (LFP) during wakefulness, but it is unclear how it impacts sleep-related brain activity. This is a crucial gap in knowledge, given the link between depression and sleep disturbances, and an emerging interest in the interaction between DBS, sleep, and circadian rhythms. We therefore sought to characterize changes in electrophysiological markers of sleep associated with DBS treatment for depression. We analyzed key electrophysiological signatures of sleep-slow-wave activity (SWA, 0.5-4.5 Hz) and sleep spindles-in LFPs recorded from the SCC of 9 patients who responded to DBS for TRD. This allowed us to compare the electrophysiological changes before and after 24 weeks of therapeutically effective SCC DBS. SWA power was highly correlated between hemispheres, consistent with a global sleep state. Furthermore, SWA occurred earlier in the night after chronic DBS and had a more prominent peak. While we found no evidence for changes to slow-wave power or stability, we found an increase in the density of sleep spindles. Our results represent a first-of-its-kind report on long-term electrophysiological markers of sleep recorded from the SCC in patients with TRD, and provides evidence of earlier NREM sleep and increased sleep spindle activity following clinically effective DBS treatment. Future work is needed to establish the causal relationship between long-term DBS and the neural mechanisms underlying sleep.
Collapse
Affiliation(s)
- Joram J van Rheede
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Sankaraleengam Alagapan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Timothy J Denison
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Institute for Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher J Rozell
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Allison C Waters
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew Sharott
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
141
|
Wu Q, Zhou J, Fang W, Jiang WH, Pu XY, Chen HH, Xu XQ, Hu H, Wu FY. Structural and Functional Brain Changes After Glucocorticoid Therapy in Thyroid-Associated Ophthalmopathy. J Clin Endocrinol Metab 2024; 109:649-658. [PMID: 37864850 DOI: 10.1210/clinem/dgad626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/24/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVE To investigate the brain structural and functional alterations in patients with thyroid-associated ophthalmopathy (TAO) before and after glucocorticoid therapy, using voxel-based morphometry (VBM) as well as resting-state functional magnetic resonance imaging (MRI) with amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo). METHODS Between 2019 and 2022, 32 patients with TAO and 23 healthy controls underwent pre-therapy MRI in Nanjing, China. Intravenous glucocorticoid therapy was administered to all patients. At 3 months after end of therapy, 26 patients were available for rescanned MRI. VBM, ALFF, and ReHo were used to evaluate the brain structural and functional differences. RESULTS Before therapy, TAO patients showed significantly decreased gray matter volume (GMV) in the left orbital part of superior frontal gyrus (ORBsup) and medial superior frontal gyrus (SFGmed) than healthy controls. Patients had higher ALFF values in bilateral gyrus rectus and olfactory cortex and lower values in bilateral cuneus. Patients also showed decreased ReHo values in bilateral lingual gyrus. After therapy, increased GMV in the left anterior cingulate gyrus and SFGmed, increased ALFF values in bilateral cuneus and superior occipital gyrus, and increased ReHo values in bilateral SFGmed were found in TAO patients compared to the pre-therapy cohort. Compared to controls, decreased GMV in left ORBsup was observed in post-therapy TAO patients. CONCLUSION Our results indicated that TAO might cause functional and structural deficits in the visual and emotional regions of the brain, with recovery in the former and partial restoration in the latter after effective glucocorticoid therapy. These findings may lead to deeper understanding of the pathophysiological mechanism behind TAO.
Collapse
Affiliation(s)
- Qian Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Jiang Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Wei Fang
- Department of Radiology, Taicang Affiliated Hospital of Soochow University, Taicang 215006, China
| | - Wen-Hao Jiang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Xiong-Ying Pu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Huan-Huan Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Hao Hu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| |
Collapse
|
142
|
Hurley ME, Sonig A, Herrington J, Storch EA, Lázaro-Muñoz G, Blumenthal-Barby J, Kostick-Quenet K. Ethical considerations for integrating multimodal computer perception and neurotechnology. Front Hum Neurosci 2024; 18:1332451. [PMID: 38435745 PMCID: PMC10904467 DOI: 10.3389/fnhum.2024.1332451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Background Artificial intelligence (AI)-based computer perception technologies (e.g., digital phenotyping and affective computing) promise to transform clinical approaches to personalized care in psychiatry and beyond by offering more objective measures of emotional states and behavior, enabling precision treatment, diagnosis, and symptom monitoring. At the same time, passive and continuous nature by which they often collect data from patients in non-clinical settings raises ethical issues related to privacy and self-determination. Little is known about how such concerns may be exacerbated by the integration of neural data, as parallel advances in computer perception, AI, and neurotechnology enable new insights into subjective states. Here, we present findings from a multi-site NCATS-funded study of ethical considerations for translating computer perception into clinical care and contextualize them within the neuroethics and neurorights literatures. Methods We conducted qualitative interviews with patients (n = 20), caregivers (n = 20), clinicians (n = 12), developers (n = 12), and clinician developers (n = 2) regarding their perspective toward using PC in clinical care. Transcripts were analyzed in MAXQDA using Thematic Content Analysis. Results Stakeholder groups voiced concerns related to (1) perceived invasiveness of passive and continuous data collection in private settings; (2) data protection and security and the potential for negative downstream/future impacts on patients of unintended disclosure; and (3) ethical issues related to patients' limited versus hyper awareness of passive and continuous data collection and monitoring. Clinicians and developers highlighted that these concerns may be exacerbated by the integration of neural data with other computer perception data. Discussion Our findings suggest that the integration of neurotechnologies with existing computer perception technologies raises novel concerns around dignity-related and other harms (e.g., stigma, discrimination) that stem from data security threats and the growing potential for reidentification of sensitive data. Further, our findings suggest that patients' awareness and preoccupation with feeling monitored via computer sensors ranges from hypo- to hyper-awareness, with either extreme accompanied by ethical concerns (consent vs. anxiety and preoccupation). These results highlight the need for systematic research into how best to implement these technologies into clinical care in ways that reduce disruption, maximize patient benefits, and mitigate long-term risks associated with the passive collection of sensitive emotional, behavioral and neural data.
Collapse
Affiliation(s)
- Meghan E. Hurley
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Anika Sonig
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - John Herrington
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Eric A. Storch
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Gabriel Lázaro-Muñoz
- Center for Bioethics, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry and Behavioral Sciences, Massachusetts General Hospital, Boston, MA, United States
| | | | - Kristin Kostick-Quenet
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
143
|
O'Keeffe AB, Merla A, Ashkan K. Deep brain stimulation of the subthalamic nucleus in Parkinson disease 2013-2023: where are we a further 10 years on? Br J Neurosurg 2024:1-9. [PMID: 38323603 DOI: 10.1080/02688697.2024.2311128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Deep brain stimulation has been in clinical use for 30 years and during that time it has changed markedly from a small-scale treatment employed by only a few highly specialized centers into a widespread keystone approach to the management of disorders such as Parkinson's disease. In the intervening decades, many of the broad principles of deep brain stimulation have remained unchanged, that of electrode insertion into stereotactically targeted brain nuclei, however the underlying technology and understanding around the approach have progressed markedly. Some of the most significant advances have taken place over the last decade with the advent of artificial intelligence, directional electrodes, stimulation/recording implantable pulse generators and the potential for remote programming among many other innovations. New therapeutic targets are being assessed for their potential benefits and a surge in the number of deep brain stimulation implantations has given birth to a flourishing scientific literature surrounding the pathophysiology of brain disorders such as Parkinson's disease. Here we outline the developments of the last decade and look to the future of deep brain stimulation to attempt to discern some of the most promising lines of inquiry in this fast-paced and rapidly evolving field.
Collapse
Affiliation(s)
| | - Anca Merla
- King's College Hospital Department of Neurosurgery, Kings College Hospital, Denmark
| | - Keyoumars Ashkan
- King's College Hospital Department of Neurosurgery, Kings College Hospital, Denmark
| |
Collapse
|
144
|
Voineskos AN, Hawco C, Neufeld NH, Turner JA, Ameis SH, Anticevic A, Buchanan RW, Cadenhead K, Dazzan P, Dickie EW, Gallucci J, Lahti AC, Malhotra AK, Öngür D, Lencz T, Sarpal DK, Oliver LD. Functional magnetic resonance imaging in schizophrenia: current evidence, methodological advances, limitations and future directions. World Psychiatry 2024; 23:26-51. [PMID: 38214624 PMCID: PMC10786022 DOI: 10.1002/wps.21159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Functional neuroimaging emerged with great promise and has provided fundamental insights into the neurobiology of schizophrenia. However, it has faced challenges and criticisms, most notably a lack of clinical translation. This paper provides a comprehensive review and critical summary of the literature on functional neuroimaging, in particular functional magnetic resonance imaging (fMRI), in schizophrenia. We begin by reviewing research on fMRI biomarkers in schizophrenia and the clinical high risk phase through a historical lens, moving from case-control regional brain activation to global connectivity and advanced analytical approaches, and more recent machine learning algorithms to identify predictive neuroimaging features. Findings from fMRI studies of negative symptoms as well as of neurocognitive and social cognitive deficits are then reviewed. Functional neural markers of these symptoms and deficits may represent promising treatment targets in schizophrenia. Next, we summarize fMRI research related to antipsychotic medication, psychotherapy and psychosocial interventions, and neurostimulation, including treatment response and resistance, therapeutic mechanisms, and treatment targeting. We also review the utility of fMRI and data-driven approaches to dissect the heterogeneity of schizophrenia, moving beyond case-control comparisons, as well as methodological considerations and advances, including consortia and precision fMRI. Lastly, limitations and future directions of research in the field are discussed. Our comprehensive review suggests that, in order for fMRI to be clinically useful in the care of patients with schizophrenia, research should address potentially actionable clinical decisions that are routine in schizophrenia treatment, such as which antipsychotic should be prescribed or whether a given patient is likely to have persistent functional impairment. The potential clinical utility of fMRI is influenced by and must be weighed against cost and accessibility factors. Future evaluations of the utility of fMRI in prognostic and treatment response studies may consider including a health economics analysis.
Collapse
Affiliation(s)
- Aristotle N Voineskos
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nicholas H Neufeld
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Stephanie H Ameis
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cundill Centre for Child and Youth Depression and McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Alan Anticevic
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristin Cadenhead
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Erin W Dickie
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Julia Gallucci
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anil K Malhotra
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Dost Öngür
- McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Todd Lencz
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Deepak K Sarpal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lindsay D Oliver
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
145
|
Brannigan JFM, Fry A, Opie NL, Campbell BCV, Mitchell PJ, Oxley TJ. Endovascular Brain-Computer Interfaces in Poststroke Paralysis. Stroke 2024; 55:474-483. [PMID: 38018832 DOI: 10.1161/strokeaha.123.037719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Stroke is a leading cause of paralysis, most frequently affecting the upper limbs and vocal folds. Despite recent advances in care, stroke recovery invariably reaches a plateau, after which there are permanent neurological impairments. Implantable brain-computer interface devices offer the potential to bypass permanent neurological lesions. They function by (1) recording neural activity, (2) decoding the neural signal occurring in response to volitional motor intentions, and (3) generating digital control signals that may be used to control external devices. While brain-computer interface technology has the potential to revolutionize neurological care, clinical translation has been limited. Endovascular arrays present a novel form of minimally invasive brain-computer interface devices that have been deployed in human subjects during early feasibility studies. This article provides an overview of endovascular brain-computer interface devices and critically evaluates the patient with stroke as an implant candidate. Future opportunities are mapped, along with the challenges arising when decoding neural activity following infarction. Limitations arise when considering intracerebral hemorrhage and motor cortex lesions; however, future directions are outlined that aim to address these challenges.
Collapse
Affiliation(s)
- Jamie F M Brannigan
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom (J.F.M.B.)
| | - Adam Fry
- Synchron, Inc, New York, NY (A.F., N.L.O., T.J.O.)
| | - Nicholas L Opie
- Synchron, Inc, New York, NY (A.F., N.L.O., T.J.O.)
- Vascular Bionics Laboratory, Department of Medicine, The University of Melbourne, Victoria, Australia (N.L.O., T.J.O.)
| | - Bruce C V Campbell
- Department of Neurology (B.C.V.C.), The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
- Melbourne Brain Centre (B.C.V.C.), The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Peter J Mitchell
- Department of Radiology (P.J.M.), The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Thomas J Oxley
- Synchron, Inc, New York, NY (A.F., N.L.O., T.J.O.)
- Vascular Bionics Laboratory, Department of Medicine, The University of Melbourne, Victoria, Australia (N.L.O., T.J.O.)
| |
Collapse
|
146
|
van Houtum LAEM, Wever MCM, van Schie CC, Janssen LHC, Wentholt WGM, Tollenaar MS, Will GJ, Elzinga BM. Sticky criticism? Affective and neural responses to parental criticism and praise in adolescents with depression. Psychol Med 2024; 54:507-516. [PMID: 37553965 DOI: 10.1017/s0033291723002131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
BACKGROUND Parent-adolescent interactions, particularly parental criticism and praise, have previously been identified as factors relevant to self-concept development and, when negative, to adolescent depression. Yet, whether adolescents with depression show aberrant emotional and neural reactivity to parental criticism and praise is understudied. METHODS Adolescents with depression (n = 20) and healthy controls (n = 59) received feedback supposedly provided by their mother or father in the form of negative ('untrustworthy'), neutral ('chaotic'), and positive ('respectful') personality evaluations while in an MRI-scanner. After each feedback word, adolescents reported their mood. Beforehand, adolescents had rated whether these personality evaluations matched their self-views. RESULTS In both groups, mood decreased after criticism and increased after praise. Adolescents with depression reported blunted mood responses after praise, whereas there were no mood differences after criticism. Neuroimaging analyses revealed that adolescents with depression (v. healthy controls) exhibited increased activity in response to criticism in the subgenual anterior cingulate cortex, temporal pole, hippocampus, and parahippocampal gyrus. Praise consistent with adolescents' self-views improved mood independent of depression status, while criticism matching self-views resulted in smaller mood increases in adolescents with depression (v. healthy controls). Exploratory analyses indicated that adolescents with depression recalled criticism (v. praise) more. CONCLUSIONS Adolescents with depression might be especially attentive to parental criticism, as indexed by increased sgACC and hippocampus activity, and memorize this criticism more. Together with lower positive impact of praise, these findings suggest that cognitive biases in adolescent depression may affect how parental feedback is processed, and may be fed into their self-views.
Collapse
Affiliation(s)
- Lisanne A E M van Houtum
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
| | - Mirjam C M Wever
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
| | - Charlotte C van Schie
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
- Illawarra Health and Medical Research Institute and School of Psychology, University of Wollongong, Wollongong, Australia
| | - Loes H C Janssen
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
| | - Wilma G M Wentholt
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
| | - Marieke S Tollenaar
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
| | - Geert-Jan Will
- Department of Clinical Psychology, Utrecht University, Utrecht, the Netherlands
| | - Bernet M Elzinga
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
| |
Collapse
|
147
|
Tong Y, Cho S, Coenen VA, Döbrössy MD. Input-output relation of midbrain connectomics in a rodent model of depression. J Affect Disord 2024; 345:443-454. [PMID: 37890539 DOI: 10.1016/j.jad.2023.10.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/13/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND The symptoms associated with depression are believed to arise from disruptions in information processing across brain networks. The ventral tegmental area (VTA) influences reward-based behavior, motivation, addiction, and psychiatric disorders, including depression. Deep brain stimulation (DBS) of the medial forebrain bundle (MFB), is an emerging therapy for treatment-resistant depression. Understanding the depression associated anatomical networks crucial for comprehending its antidepressant effects. METHODS Flinders Sensitive Line (FSL), a rodent model of depression and Sprague-Dawley rats (n = 10 each) were used in this study. We used monosynaptic tracing to map inputs of VTA efferent neurons: VTA-to-NAc nucleus accumbens (NAc) (both core and shell) and VTA-to-prefrontal cortex (PFC). Quantitative analysis explored afferent diversity and strengths. RESULTS VTA efferent neurons receive a variety of afferents with varying input weights and predominant neuromodulatory representation. Notably, NAc-core projecting VTA neurons showed stronger afferents from dorsal raphe, while NAc shell-projecting VTA neurons displayed lower input strengths from cortex, thalamus, zona incerta and pretectal area in FSL rats. NAc shell-projecting VTA neurons showed the most difference in connectivity across the experimental groups. LIMITATIONS Lack of functional properties of the anatomical connections is the major limitation of this study. Incomplete labeling and the cytotoxicity of the rabies virus should be made aware of. CONCLUSIONS These findings provide the first characterization of inputs to different VTA ascending projection neurons, shedding light on critical differences in the connectome of the midbrain-forebrain system. Moreover, these differences support potential network effects of these circuits in the context of MFB DBS neuromodulation for depression.
Collapse
Affiliation(s)
- Y Tong
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany; Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany
| | - S Cho
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany; Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - V A Coenen
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany; Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Center for Basics in Neuromodulation, University of Freiburg, 79106 Freiburg, Germany; IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, 79110 Freiburg, Germany
| | - M D Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany; Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany; Center for Basics in Neuromodulation, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
148
|
Ezzyat Y, Kragel JE, Solomon EA, Lega BC, Aronson JP, Jobst BC, Gross RE, Sperling MR, Worrell GA, Sheth SA, Wanda PA, Rizzuto DS, Kahana MJ. Functional and anatomical connectivity predict brain stimulation's mnemonic effects. Cereb Cortex 2024; 34:bhad427. [PMID: 38041253 PMCID: PMC10793570 DOI: 10.1093/cercor/bhad427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 12/03/2023] Open
Abstract
Closed-loop direct brain stimulation is a promising tool for modulating neural activity and behavior. However, it remains unclear how to optimally target stimulation to modulate brain activity in particular brain networks that underlie particular cognitive functions. Here, we test the hypothesis that stimulation's behavioral and physiological effects depend on the stimulation target's anatomical and functional network properties. We delivered closed-loop stimulation as 47 neurosurgical patients studied and recalled word lists. Multivariate classifiers, trained to predict momentary lapses in memory function, triggered the stimulation of the lateral temporal cortex (LTC) during the study phase of the task. We found that LTC stimulation specifically improved memory when delivered to targets near white matter pathways. Memory improvement was largest for targets near white matter that also showed high functional connectivity to the brain's memory network. These targets also reduced low-frequency activity in this network, an established marker of successful memory encoding. These data reveal how anatomical and functional networks mediate stimulation's behavioral and physiological effects, provide further evidence that closed-loop LTC stimulation can improve episodic memory, and suggest a method for optimizing neuromodulation through improved stimulation targeting.
Collapse
Affiliation(s)
- Youssef Ezzyat
- Dept. of Psychology, Wesleyan University, Middletown, CT 06459, USA
| | - James E Kragel
- Dept. of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Ethan A Solomon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley C Lega
- Dept. of Neurosurgery, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Joshua P Aronson
- Dept. of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Barbara C Jobst
- Dept. of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Robert E Gross
- Dept. of Neurosurgery, Emory University Hospital, Atlanta, GA 30322, USA
| | - Michael R Sperling
- Dept. of Neurology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Sameer A Sheth
- Dept. of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A Wanda
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel S Rizzuto
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Kahana
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
149
|
Allawala A, Bijanki KR, Oswalt D, Mathura RK, Adkinson J, Pirtle V, Shofty B, Robinson M, Harrison MT, Mathew SJ, Goodman WK, Pouratian N, Sheth SA, Borton DA. Prefrontal network engagement by deep brain stimulation in limbic hubs. Front Hum Neurosci 2024; 17:1291315. [PMID: 38283094 PMCID: PMC10813208 DOI: 10.3389/fnhum.2023.1291315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Prefrontal circuits in the human brain play an important role in cognitive and affective processing. Neuromodulation therapies delivered to certain key hubs within these circuits are being used with increasing frequency to treat a host of neuropsychiatric disorders. However, the detailed neurophysiological effects of stimulation to these hubs are largely unknown. Here, we performed intracranial recordings across prefrontal networks while delivering electrical stimulation to two well-established white matter hubs involved in cognitive regulation and depression: the subcallosal cingulate (SCC) and ventral capsule/ventral striatum (VC/VS). We demonstrate a shared frontotemporal circuit consisting of the ventromedial prefrontal cortex, amygdala, and lateral orbitofrontal cortex where gamma oscillations are differentially modulated by stimulation target. Additionally, we found participant-specific responses to stimulation in the dorsal anterior cingulate cortex and demonstrate the capacity for further tuning of neural activity using current-steered stimulation. Our findings indicate a potential neurophysiological mechanism for the dissociable therapeutic effects seen across the SCC and VC/VS targets for psychiatric neuromodulation and our results lay the groundwork for personalized, network-guided neurostimulation therapy.
Collapse
Affiliation(s)
- Anusha Allawala
- School of Engineering, Brown University, Providence, RI, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Kelly R. Bijanki
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Denise Oswalt
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Raissa K. Mathura
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Joshua Adkinson
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Victoria Pirtle
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Ben Shofty
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, United States
| | - Meghan Robinson
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Matthew T. Harrison
- Division of Applied Mathematics, Brown University, Providence, RI, United States
| | - Sanjay J. Mathew
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Wayne K. Goodman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - David A. Borton
- School of Engineering, Brown University, Providence, RI, United States
- Department of Veterans Affairs, Center for Neurorestoration and Neurotechnology, Providence, RI, United States
| |
Collapse
|
150
|
Livi L. On Multiscaling of Parkinsonian Rest Tremor Signals and Their Classification. ADVANCES IN NEUROBIOLOGY 2024; 36:571-583. [PMID: 38468054 DOI: 10.1007/978-3-031-47606-8_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Self-similar stochastic processes and broad probability distributions are ubiquitous in nature and in many man-made systems. The brain is a particularly interesting example of (natural) complex system where those features play a pivotal role. In fact, the controversial yet experimentally validated "criticality hypothesis" explaining the functioning of the brain implies the presence of scaling laws for correlations. Recently, we have analyzed a collection of rest tremor velocity signals recorded from patients affected by Parkinson's disease, with the aim of determining and hence exploiting the presence of scaling laws. Our results show that multiple scaling laws are required in order to describe the dynamics of such signals, stressing the complexity of the underlying generating mechanism. We successively extracted numeric features by using the multifractal detrended fluctuation analysis procedure. We found that such features can be effective for discriminating classes of signals recorded in different experimental conditions. Notably, we show that the use of medication (L-DOPA) can be recognized with high accuracy.
Collapse
Affiliation(s)
- Lorenzo Livi
- Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|