101
|
Abstract
A recently discovered type of mammalian retinal ganglion cell encodes environmental light intensity and mediates non-image-forming visual behaviors, such as the pupillary reflex and circadian photoentrainment. These intrinsically photosensitive retinal ganglion cells (ipRGCs) generate endogenous, melanopsin-based photoresponses as well as extrinsic, rod/cone-driven responses. Because the ipRGCs' light responses and the behaviors they control are both remarkably tonic, these cells have been hypothesized to be capable of irradiance detection lasting throughout the day. I tested this hypothesis by obtaining multielectrode-array recordings from ipRGCs in a novel rat eyecup preparation that enhances the regeneration of rod/cone photopigments. I found that 10 h constant light could continuously evoke action potentials in these ganglion cells under conditions that stimulated (1) only melanopsin, (2) mainly the rod input, and (3) both intrinsic and extrinsic responses. In response to a 10 h stimulus with gradual intensity changes to simulate sunrise and sunset, ipRGC firing rates slowly increased during the "sunrise" phase and slowly decreased during the "sunset" phase. Furthermore, I recorded from putative ipRGCs of melanopsin-knock-out mice and found that these cells retained the ability to respond in a sustained fashion to 20 min light steps, indicating that melanopsin is not required for such tonic responses. In conclusion, ipRGCs can signal light continuously for at least 10 h and can probably track gradual irradiance changes over the course of the day. These results further suggest that the photoreceptors and ON bipolar cells presynaptic to ipRGCs may be able to respond to light continuously for 10 h.
Collapse
|
102
|
Matsuyama T, Yamashita T, Imamoto Y, Shichida Y. Photochemical properties of mammalian melanopsin. Biochemistry 2012; 51:5454-62. [PMID: 22670683 DOI: 10.1021/bi3004999] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melanopsin is the photoreceptor molecule of intrinsically photosensitive retinal ganglion cells, which serve as the input for various nonvisual behavior and physiological functions fundamental to organisms. The retina, therefore, possess a melanopsin-based nonvisual system in addition to the visual system based on the classical visual photoreceptor molecules. To elucidate the molecular properties of melanopsin, we have exogenously expressed mouse melanopsin in cultured cells. We were able to obtain large amounts of purified mouse melanopsin and conducted a comprehensive spectroscopic study of its photochemical properties. Melanopsin has an absorption maximum at 467 nm, and it converts to a meta intermediate having an absorption maximum at 476 nm. The melanopsin photoreaction is similar to that of squid rhodopsin, exhibiting bistability that results in a photosteady mixture of a resting state (melanopsin containing 11-cis-retinal) and an excited state (metamelanopsin containing all-trans-retinal) upon sustained irradiation. The absorption coefficient of melanopsin is 33000 ± 1000 M(-1) cm(-1), and its quantum yield of isomerization is 0.52; these values are also typical of invertebrate bistable pigments. Thus, the nonvisual system in the retina relies on a type of photoreceptor molecule different from that of the visual system. Additionally, we found a new state of melanopsin, containing 7-cis-retinal (extramelanopsin), which forms readily upon long-wavelength irradiation (yellow to red light) and photoconverts to metamelanopsin with short-wavelength (blue light) irradiation. Although it is unclear whether extramelanopsin would have any physiological role, it could potentially allow wavelength-dependent regulation of melanopsin functions.
Collapse
Affiliation(s)
- Take Matsuyama
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan
| | | | | | | |
Collapse
|
103
|
Blasic JR, Brown RL, Robinson PR. Light-dependent phosphorylation of the carboxy tail of mouse melanopsin. Cell Mol Life Sci 2012; 69:1551-62. [PMID: 22159583 PMCID: PMC4045631 DOI: 10.1007/s00018-011-0891-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/29/2011] [Accepted: 11/16/2011] [Indexed: 12/22/2022]
Abstract
Melanopsin-based phototransduction is involved in non-image forming light responses including circadian entrainment, pupil constriction, suppression of pineal melatonin synthesis, and direct photic regulation of sleep in vertebrates. Given that the functions of melanopsin involve the measurement and summation of total environmental luminance, there would appear to be no need for the rapid deactivation typical of other G-protein coupled receptors. In this study, however, we demonstrate that heterologously expressed mouse melanopsin is phosphorylated in a light-dependent manner, and that this phosphorylation is involved in regulating the rate of G-protein activation and the lifetime of melanopsin's active state. Furthermore, we provide evidence for light-dependent phosphorylation of melanopsin in the mouse retina using an in situ proximity ligation assay. Finally, we demonstrate that melanopsin preferentially interacts with the GRK2/3 family of G-protein coupled receptor kinases through co-immunoprecipitation assays. Based on the complement of G-protein receptor kinases present in the melanopsin-expressing retinal ganglion cells, GRK2 emerges as the best candidate for melanopsin's cognate GRK.
Collapse
Affiliation(s)
- Joseph R. Blasic
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland 21250
| | - R. Lane Brown
- Department of Veterinary & Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, WA 99164
| | - Phyllis R. Robinson
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland 21250
| |
Collapse
|
104
|
Sexton TJ, Golczak M, Palczewski K, Van Gelder RN. Melanopsin is highly resistant to light and chemical bleaching in vivo. J Biol Chem 2012; 287:20888-97. [PMID: 22547062 DOI: 10.1074/jbc.m111.325969] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Melanopsin is the photopigment of mammalian intrinsically photosensitive retinal ganglion cells, where it contributes to light entrainment of circadian rhythms, and to the pupillary light response. Previous work has shown that the melanopsin photocycle is independent of that used by rhodopsin (Tu, D. C., Owens, L. A., Anderson, L., Golczak, M., Doyle, S. E., McCall, M., Menaker, M., Palczewski, K., and Van Gelder, R. N. (2006) Inner retinal photoreception independent of the visual retinoid cycle. Proc. Natl. Acad. Sci. U.S.A. 103, 10426-10431). Here we determined the ability of apo-melanopsin, formed by ex vivo UV light bleaching, to use selected chromophores. We found that 9-cis-retinal, but not all-trans-retinal or 9-cis-retinol, is able to restore light-dependent ipRGC activity after bleaching. Melanopsin was highly resistant to both visible-spectrum photic bleaching and chemical bleaching with hydroxylamine under conditions that fully bleach rod and cone photoreceptor cells. These results suggest that the melanopsin photocycle can function independently of both rod and cone photocycles, and that apo-melanopsin has a strong preference for binding cis-retinal to generate functional pigment. The data support a model in which retinal is continuously covalently bound to melanopsin and may function through a reversible, bistable mechanism.
Collapse
Affiliation(s)
- Timothy J Sexton
- Department of Ophthalmology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
105
|
Differential expression of melanopsin isoforms Opn4L and Opn4S during postnatal development of the mouse retina. PLoS One 2012; 7:e34531. [PMID: 22496826 PMCID: PMC3320640 DOI: 10.1371/journal.pone.0034531] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/01/2012] [Indexed: 11/27/2022] Open
Abstract
Photosensitive retinal ganglion cells (pRGCs) respond to light from birth and represent the earliest known light detection system to develop in the mouse retina. A number of morphologically and functionally distinct subtypes of pRGCs have been described in the adult retina, and have been linked to different physiological roles. We have previously identified two distinct isoforms of mouse melanopsin, Opn4L and Opn4S, which are generated by alternate splicing of the Opn4 locus. These isoforms are differentially expressed in pRGC subtypes of the adult mouse retina, with both Opn4L and Opn4S detected in M1 type pRGCs, and only Opn4L detected in M2 type pRGCs. Here we investigate the developmental expression of Opn4L and Opn4S and show a differential profile of expression during postnatal development. Opn4S mRNA is detected at relatively constant levels throughout postnatal development, with levels of Opn4S protein showing a marked increase between P0 and P3, and then increasing progressively over time until adult levels are reached by P10. By contrast, levels of Opn4L mRNA and protein are low at birth and show a marked increase at P14 and P30 compared to earlier time points. We suggest that these differing profiles of expression are associated with the functional maturation of M1 and M2 subtypes of pRGCs. Based upon our data, Opn4S expressing M1 type pRGCs mature first and are the dominant pRGC subtype in the neonate retina, whereas increased expression of Opn4L and the maturation of M2 type pRGCs occurs later, between P10 and P14, at a similar time to the maturation of rod and cone photoreceptors. We suggest that the distinct functions associated with these cell types will develop at different times during postnatal development.
Collapse
|
106
|
Sand A, Schmidt TM, Kofuji P. Diverse types of ganglion cell photoreceptors in the mammalian retina. Prog Retin Eye Res 2012; 31:287-302. [PMID: 22480975 DOI: 10.1016/j.preteyeres.2012.03.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/16/2012] [Accepted: 03/19/2012] [Indexed: 01/01/2023]
Abstract
Photoreceptors carry out the first step in vision by capturing light and transducing it into electrical signals. Rod and cone photoreceptors efficiently translate photon capture into electrical signals by light activation of opsin-type photopigments. Until recently, the central dogma was that, for mammals, all phototransduction occurred in rods and cones. However, the recent discovery of a novel photoreceptor type in the inner retina has fundamentally challenged this view. These retinal ganglion cells are intrinsically photosensitive and mediate a broad range of physiological responses such as photoentrainment of the circadian clock, light regulation of sleep, pupillary light reflex, and light suppression of melatonin secretion. Intrinsically photosensitive retinal ganglion cells express melanopsin, a novel opsin-based signaling mechanism reminiscent of that found in invertebrate rhabdomeric photoreceptors. Melanopsin-expressing retinal ganglion cells convey environmental irradiance information directly to brain centers such as the hypothalamus, preoptic nucleus, and lateral geniculate nucleus. Initial studies suggested that these melanopsin-expressing photoreceptors were an anatomically and functionally homogeneous population. However, over the past decade or so, it has become apparent that these photoreceptors are distinguishable as individual subtypes on the basis of their morphology, molecular markers, functional properties, and efferent projections. These results have provided a novel classification scheme with five melanopsin photoreceptor subtypes in the mammalian retina, each presumably with differential input and output properties. In this review, we summarize the evidence for the structural and functional diversity of melanopsin photoreceptor subtypes and current controversies in the field.
Collapse
Affiliation(s)
- Andrea Sand
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
107
|
Viénot F, Brettel H, Dang TV, Le Rohellec J. Domain of metamers exciting intrinsically photosensitive retinal ganglion cells (ipRGCs) and rods. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2012; 29:A366-A376. [PMID: 22330402 DOI: 10.1364/josaa.29.00a366] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Any stimulus can be described as composed of two components-a fundamental color stimulus that controls the three cone responses and a metameric black that has no effect on cones but can drive photoreceptors other than cones [e.g., rods and melanopsin expressing retinal ganglion cells (ipRGCs)]. The Cohen and Kappauf [Am. J. Psychol. 95, 537 (1982)] method is extended to calculate the black metamer basis for a limited set of band spectra. Using seven colored LEDs, the method is exploited to produce real metamer illuminations that stimulate in parallel melanopsin expressing ipRGCs and rods, at most or at least. We have verified that the pupil diameter increases when the ipRGC and rod excitation is at a minimum. For 14 observers, the average relative increase is 12%.
Collapse
Affiliation(s)
- Françoise Viénot
- Centre de Recherche sur la Conservation des Collections, Muséum National d’Histoire Naturelle, 36 rue Geoffroy Saint-Hilaire, F-75005 Paris, France.
| | | | | | | |
Collapse
|
108
|
Owens L, Buhr E, Tu DC, Lamprecht TL, Lee J, Van Gelder RN. Effect of circadian clock gene mutations on nonvisual photoreception in the mouse. Invest Ophthalmol Vis Sci 2012; 53:454-60. [PMID: 22159024 DOI: 10.1167/iovs.11-8717] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Mice lacking rods and cones retain pupillary light reflexes that are mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs). Melanopsin is necessary and sufficient for this nonvisual photoreception. The mammalian inner retina also expresses the potential blue light photopigments cryptochromes 1 and 2. Previous studies have shown that outer retinal degenerate mice lacking cryptochromes have lower nonvisual photic sensitivity than retinal degenerate mice, suggesting a role for cryptochrome in inner retinal photoreception. METHODS Nonvisual photoreception (pupillary light responses, circadian entrainment, and in vitro sensitivity of intrinsically photosensitive retinal ganglion cells) were studied in wild-type, rd/rd, and circadian clock-mutant mice with and without rd/rd mutation. RESULTS Loss of cryptochrome in retinal degenerate mice reduces the sensitivity of the pupillary light response at all wavelengths but does not alter the form of the action spectrum, suggesting that cryptochrome does not function as a photopigment in the inner retina. The authors compounded the rd/rd retinal degeneration mutation with mutations in other essential circadian clock genes, mPeriod and Bmal1. Both mPeriod1⁻/⁻; mPeriod2⁻/⁻;rd/rd and Bmal1⁻/⁻;rd/rd mice showed significantly lower pupillary light sensitivity than rd/rd mice alone. A moderate amplitude (0.5 log) circadian rhythm of pupillary light responsiveness was observed in rd/rd mice. Multielectrode array recordings of ipRGC responses of mCryptochrome1⁻/⁻;mCryptochrome2⁻/⁻ and mPeriod1⁻/⁻;mPeriod2⁻/⁻ mice showed minimal sensitivity decrement compared with wild-type animals. mCryptochrome1⁻/⁻;mCryptochrome2⁻/⁻;rd/rd, mPeriod1⁻/⁻;mPeriod2⁻/⁻;rd/rd and Bmal1⁻/⁻;rd/rd mice all showed comparable weak behavioral synchronization to a 12-hour light/12-hour dark cycle. CONCLUSIONS The effect of cryptochrome loss on nonvisual photoreception is due to loss of the circadian clock nonspecifically. The circadian clock modulates the sensitivity of nonvisual photoreception.
Collapse
Affiliation(s)
- Leah Owens
- Department of Ophthalmology and Visual Sciences, Washington University Medical School, St. Louis, Missouri, USA
| | | | | | | | | | | |
Collapse
|
109
|
Abstract
In addition to rods and cones, the mammalian eye contains a third class of photoreceptor, the intrinsically photosensitive retinal ganglion cell (ipRGC). ipRGCs are heterogeneous irradiance-encoding neurons that primarily project to non-visual areas of the brain. Characteristics of ipRGC light responses differ significantly from those of rod and cone responses, including depolarization to light, slow on- and off-latencies, and relatively low light sensitivity. All ipRGCs use melanopsin (Opn4) as their photopigment. Melanopsin resembles invertebrate rhabdomeric photopigments more than vertebrate ciliary pigments and uses a G(q) signaling pathway, in contrast to the G(t) pathway used by rods and cones. ipRGCs can recycle chromophore in the absence of the retinal pigment epithelium and are highly resistant to vitamin A depletion. This suggests that melanopsin employs a bistable sequential photon absorption mechanism typical of rhabdomeric opsins.
Collapse
Affiliation(s)
| | - Ethan Buhr
- From the Departments of Ophthalmology and
| | - Russell N. Van Gelder
- From the Departments of Ophthalmology and
- Biological Structure, University of Washington School of Medicine, Seattle, Washington 98104
| |
Collapse
|
110
|
A distinct contribution of short-wavelength-sensitive cones to light-evoked activity in the mouse pretectal olivary nucleus. J Neurosci 2012; 31:16833-43. [PMID: 22090509 DOI: 10.1523/jneurosci.2505-11.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) combine inputs from outer-retinal rod/cone photoreceptors with their intrinsic phototransduction machinery to drive a wide range of so-called non-image-forming (NIF) responses to light. Defining the contribution of each photoreceptor class to evoked responses is vital for determining the degree to which our sensory capabilities depend on melanopsin and for optimizing NIF responses to benefit human health. We addressed this problem by recording electrophysiological responses in the mouse pretectal olivary nucleus (PON) (a target of ipRGCs and origin of the pupil light reflex) to a range of gradual and abrupt changes in light intensity. Dim stimuli drove minimal changes in PON activity, suggesting that rods contribute little under these conditions. To separate cone from melanopsin influences, we compared responses to short (460 nm) and longer (600/655 nm) wavelengths in mice carrying a red shifted cone population (Opn1mw®) or lacking melanopsin (Opn4⁻/⁻). Our data reveal a surprising difference in the quality of information available from medium- and short-wavelength-sensitive cones. The majority cone population (responsive to 600/655 nm) supported only transient changes in firing and responses to relatively sudden changes in light intensity. In contrast, cones uniquely sensitive to the shorter wavelength (S-cones) were better able to drive responses to gradual changes in illuminance, contributed a distinct off inhibition, and at least partially recapitulated the ability of melanopsin to sustain responses under continuous illumination. These data reveal a new role for S-cones unrelated to color vision and suggest renewed consideration of cone contributions to NIF vision at shorter wavelengths.
Collapse
|
111
|
Lucas RJ, Lall GS, Allen AE, Brown TM. How rod, cone, and melanopsin photoreceptors come together to enlighten the mammalian circadian clock. PROGRESS IN BRAIN RESEARCH 2012; 199:1-18. [PMID: 22877656 DOI: 10.1016/b978-0-444-59427-3.00001-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In mammals, a small number of retinal ganglion cells express melanopsin, an opsin photopigment, allowing them to be directly photoreceptive. A major function of these so-called intrinsically photosensitive retinal ganglion cells (ipRGCs) is to synchronize (entrain) endogenous circadian clocks to the external light:dark cycle. Thanks to their intrinsic light response, ipRGCs can support photoentrainment even when the other retinal photoreceptors (rods and cones) are absent or inactive. However, in the intact retina the ipRGC light response is a composite of extrinsic (rod/cone) and intrinsic (melanopsin) influences. As a result all three photoreceptor classes contribute to the retinal pathways providing light information to the clock. Here, we consider what each photoreceptor type contributes to the clock light response. We review electrophysiological and behavioral data pertinent to this question, primarily from laboratory rodents, drawing them together to provide a conceptual model in which each photoreceptor class plays a distinct role in encoding the light environment. We finally use this model to highlight some of the important outstanding questions in this field.
Collapse
Affiliation(s)
- Robert J Lucas
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| | - Gurprit S Lall
- Medway School of Pharmacy, University of Kent, Chatham, United Kingdom
| | - Annette E Allen
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Timothy M Brown
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
112
|
|
113
|
Schmidt TM, Do MTH, Dacey D, Lucas R, Hattar S, Matynia A. Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function. J Neurosci 2011; 31:16094-101. [PMID: 22072661 PMCID: PMC3267581 DOI: 10.1523/jneurosci.4132-11.2011] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/22/2011] [Accepted: 10/05/2011] [Indexed: 11/21/2022] Open
Abstract
Melanopsin imparts an intrinsic photosensitivity to a subclass of retinal ganglion cells (ipRGCs). Generally thought of as irradiance detectors, ipRGCs target numerous brain regions involved in non-image-forming vision. ipRGCs integrate their intrinsic, melanopsin-mediated light information with rod/cone signals relayed via synaptic connections to influence light-dependent behaviors. Early observations indicated diversity among these cells and recently several specific subtypes have been identified. These subtypes differ in morphological and physiological form, controlling separate functions that range from biological rhythm via circadian photoentrainment, to protective behavioral responses including pupil constriction and light avoidance, and even image-forming vision. In this Mini-Symposium review, we will discuss some recent findings that highlight the diversity in both form and function of these recently discovered atypical photoreceptors.
Collapse
Affiliation(s)
- Tiffany M. Schmidt
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael Tri H. Do
- F. M. Kirby Neurobiology Center Department of Neurology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115
| | - Dennis Dacey
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Robert Lucas
- Department of Neurobiology, The University of Manchester, Manchester, United Kingdom M13 9PT
| | - Samer Hattar
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218-2685, and
| | - Anna Matynia
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
114
|
González-Menéndez I, Contreras F, García-Fernández JM, Cernuda-Cernuda R. Perinatal development of melanopsin expression in the mouse retina. Brain Res 2011; 1419:12-8. [DOI: 10.1016/j.brainres.2011.08.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/17/2011] [Accepted: 08/24/2011] [Indexed: 01/21/2023]
|
115
|
Matos-Cruz V, Blasic J, Nickle B, Robinson PR, Hattar S, Halpern ME. Unexpected diversity and photoperiod dependence of the zebrafish melanopsin system. PLoS One 2011; 6:e25111. [PMID: 21966429 PMCID: PMC3178608 DOI: 10.1371/journal.pone.0025111] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 08/24/2011] [Indexed: 12/02/2022] Open
Abstract
Animals have evolved specialized photoreceptors in the retina and in extraocular tissues that allow them to measure light changes in their environment. In mammals, the retina is the only structure that detects light and relays this information to the brain. The classical photoreceptors, rods and cones, are responsible for vision through activation of rhodopsin and cone opsins. Melanopsin, another photopigment first discovered in Xenopus melanophores (Opn4x), is expressed in a small subset of retinal ganglion cells (RGCs) in the mammalian retina, where it mediates non-image forming functions such as circadian photoentrainment and sleep. While mammals have a single melanopsin gene (opn4), zebrafish show remarkable diversity with two opn4x-related and three opn4-related genes expressed in distinct patterns in multiple neuronal cell types of the developing retina, including bipolar interneurons. The intronless opn4.1 gene is transcribed in photoreceptors as well as in horizontal cells and produces functional photopigment. Four genes are also expressed in the zebrafish embryonic brain, but not in the photoreceptive pineal gland. We discovered that photoperiod length influences expression of two of the opn4-related genes in retinal layers involved in signaling light information to RGCs. Moreover, both genes are expressed in a robust diurnal rhythm but with different phases in relation to the light-dark cycle. The results suggest that melanopsin has an expanded role in modulating the retinal circuitry of fish.
Collapse
Affiliation(s)
- Vanessa Matos-Cruz
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Joseph Blasic
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Benjamin Nickle
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Phyllis R. Robinson
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Samer Hattar
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (MEH); (SH)
| | - Marnie E. Halpern
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (MEH); (SH)
| |
Collapse
|
116
|
Abstract
Neurons in the suprachiasmatic nucleus (SCN) function as part of a central timing circuit that drives daily changes in our behaviour and underlying physiology. A hallmark feature of SCN neuronal populations is that they are mostly electrically silent during the night, start to fire action potentials near dawn and then continue to generate action potentials with a slow and steady pace all day long. Sets of currents are responsible for this daily rhythm, with the strongest evidence for persistent Na(+) currents, L-type Ca(2+) currents, hyperpolarization-activated currents (I(H)), large-conductance Ca(2+) activated K(+) (BK) currents and fast delayed rectifier (FDR) K(+) currents. These rhythms in electrical activity are crucial for the function of the circadian timing system, including the expression of clock genes, and decline with ageing and disease. This article reviews our current understanding of the ionic and molecular mechanisms that drive the rhythmic firing patterns in the SCN.
Collapse
Affiliation(s)
- Christopher S Colwell
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, California 90024, USA.
| |
Collapse
|
117
|
Müller LPDS, Do MTH, Yau KW, He S, Baldridge WH. Tracer coupling of intrinsically photosensitive retinal ganglion cells to amacrine cells in the mouse retina. J Comp Neurol 2011; 518:4813-24. [PMID: 20963830 DOI: 10.1002/cne.22490] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are a subtype of ganglion cell in the mammalian retina that expresses the photopigment melanopsin and drives non-image-forming visual functions. Three morphological subtypes of ipRGCs (M1, M2, and M3) have been described based on their dendritic stratifications in the inner plexiform layer (IPL), but the question of their potential interactions via electrical coupling remains unsettled. In this study, we have addressed this question in the mouse retina by, injecting the tracer Neurobiotin into ipRGCs that had been genetically labelled with the fluorescent protein, tdTomato. We confirmed the presence of the M1-M3 subtypes of ipRGCs based on their distinct dendritic stratifications. All three subtypes were tracer coupled to putative amacrine cells situated within the ganglion cell layer (GCL) but not the inner nuclear layer (INL). The cells tracer coupled to the M1 and M2 cells were shown to be widefield GABA-immunoreactive amacrine cells. We found no evidence of homologous tracer coupling of ipRGCs or heterologous coupling to other types of ganglion cells.
Collapse
|
118
|
Schmidt TM, Chen SK, Hattar S. Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci 2011; 34:572-80. [PMID: 21816493 DOI: 10.1016/j.tins.2011.07.001] [Citation(s) in RCA: 355] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/29/2011] [Accepted: 07/02/2011] [Indexed: 10/18/2022]
Abstract
For decades, rods and cones were thought to be the only photoreceptors in the mammalian retina. However, a population of atypical photoreceptive retinal ganglion cells (RGCs) expresses the photopigment melanopsin and is intrinsically photosensitive (ipRGCs). These ipRGCs are crucial for relaying light information from the retina to the brain to control circadian photoentrainment, pupillary light reflex, and sleep. ipRGCs were initially described as a uniform population involved solely in signaling irradiance for non-image forming functions. Recent work, however, has uncovered that ipRGCs are unexpectedly diverse at the molecular, cellular and functional levels, and could even be involved in image formation. This review summarizes our current understanding of the diversity of ipRGCs and their various roles in modulating behavior.
Collapse
Affiliation(s)
- Tiffany M Schmidt
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | |
Collapse
|
119
|
Bramley JR, Wiles EM, Sollars PJ, Pickard GE. Carbenoxolone blocks the light-evoked rise in intracellular calcium in isolated melanopsin ganglion cell photoreceptors. PLoS One 2011; 6:e22721. [PMID: 21829491 PMCID: PMC3146487 DOI: 10.1371/journal.pone.0022721] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 07/05/2011] [Indexed: 12/03/2022] Open
Abstract
Background Retinal ganglion cells expressing the photopigment melanopsin are intrinsically photosensitive (ipRGCs). These ganglion cell photoreceptors send axons to several central targets involved in a variety of functions. Within the retina ipRGCs provide excitatory drive to dopaminergic amacrine cells via glutamatergic signals and ipRGCs are coupled to wide-field GABAergic amacrine cells via gap junctions. However, the extent to which ipRGCs are coupled to other retinal neurons in the ganglion cell layer via gap junctions is unclear. Carbenoxolone, a widely employed gap junction inhibitor, greatly reduces the number of retinal neurons exhibiting non-rod, non-cone mediated light-evoked Ca2+ signals suggesting extensive intercellular coupling between ipRGCs and non-ipRGCs in the ganglion cell layer. However, carbenoxolone may directly inhibit light-evoked Ca2+ signals in ipRGCs independent of gap junction blockade. Methodology/Principal Findings To test the possibility that carbenoxolone directly inhibits light-evoked Ca2+ responses in ipRGCs, the light-evoked rise in intracellular Ca2+ ([Ca2+]i) was examined using fura-2 imaging in isolated rat ipRGCs maintained in short-term culture in the absence and presence of carbenoxolone. Carbenoxolone at 50 and 100 µM concentrations completely abolished the light-evoked rise in [Ca2+]i in isolated ipRGCs. Recovery from carbenoxolone inhibition was variable. Conclusions/Significance We demonstrate that the light-evoked rise in [Ca2+]i in isolated mammalian ganglion cell photoreceptors is inhibited by carbenoxolone. Since the light-evoked increase in [Ca2+]i in isolated ipRGCs is almost entirely due to Ca2+ entry via L-type voltage-gated calcium channels and carbenoxolone does not inhibit light-evoked action potential firing in ipRGCs in situ, carbenoxolone may block the light-evoked increase in [Ca2+]i in ipRGCs by blocking L-type voltage-gated Ca2+ channels. The ability of carbenoxolone to block evoked Ca2+ responses must be taken into account when interpreting the effects of this pharmacological agent on retinal or other neuronal circuits, particularly if a change in [Ca2+]i is the output being measured.
Collapse
Affiliation(s)
- Jayne R. Bramley
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Erin M. Wiles
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Patricia J. Sollars
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Gary E. Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
120
|
Chen SK, Badea TC, Hattar S. Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature 2011; 476:92-5. [PMID: 21765429 PMCID: PMC3150726 DOI: 10.1038/nature10206] [Citation(s) in RCA: 315] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 05/18/2011] [Indexed: 12/04/2022]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin and regulate a wide array of light-dependent physiological processes1–11. Genetic ablation of ipRGCs eliminates circadian photoentrainment and severely disrupts the pupillary light reflex (PLR)12,13. Here we show that ipRGCs consist of distinct subpopulations that differentially express the Brn3b transcription factor, and can be functionally distinguished. Brn3b-negative M1 ipRGCs innervate the suprachiasmatic nucleus (SCN) of the hypothalamus, whereas Brn3b-positive ipRGCs innervate all other known brain targets, including the olivary pretectal nucleus. Consistent with these innervation patterns, selective ablation of Brn3b-positive ipRGCs severely disrupts the PLR, but does not impair circadian photoentrainment. Thus, we find that molecularly distinct subpopulations of M1 ipRGCs, which are morphologically and electrophysiologically similar, innervate different brain regions to execute specific light-induced functions.
Collapse
Affiliation(s)
- S-K Chen
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
121
|
Fast delayed rectifier potassium current: critical for input and output of the circadian system. J Neurosci 2011; 31:2746-55. [PMID: 21414897 DOI: 10.1523/jneurosci.5792-10.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ability to generate intrinsic circadian rhythms in electrical activity appears to be a key property of central pacemaker neurons and one essential to the function of the circadian timing system. Previous work has demonstrated that suprachiasmatic nucleus (SCN) neurons express the fast delayed rectifier (FDR) potassium current and raise questions about the function of this current. Here, we report that mice lacking both Kcnc1 and Kcnc2 genes [double knock-out (dKO)] fail to express the Kv3.1 and 3.2 channels in the SCN as well as exhibit a greatly reduced FDR current. SCN neurons from these dKO mice exhibit reduced spontaneous activity during the day as well as reduced NMDA-evoked excitatory responses during the night. Interestingly, the daily rhythm in PER2 expression in the SCN was not altered in the dKO mice, although the photic induction of c-Fos was attenuated. Behaviorally, the dKO mice exhibited extremely disrupted daily rhythms in wheel-running behavior. In a light/dark cycle, some of the dKO mice were arrhythmic, whereas others expressed a diurnal rhythm with low amplitude and significant activity during the day. When placed in constant darkness, the dKO mice exhibited low-amplitude, fragmented rhythms and attenuated light responses. Together, these data are consistent with the hypothesis that the FDR current is critical for the generation of robust circadian rhythms in behavior as well as the synchronization of the circadian system to the photic environment.
Collapse
|
122
|
Abstract
Down syndrome (DS) is a developmental disorder caused by a third chromosome 21 in humans (Trisomy 21), leading to neurological deficits and cognitive impairment. Studies in mouse models of DS suggest that cognitive deficits in the adult are associated with deficits in synaptic learning and memory mechanisms, but it is unclear whether alterations in the early wiring and refinement of neuronal circuits contribute to these deficits. Here, we show that early developmental refinement of visual circuits is perturbed in mouse models of Down syndrome. Specifically, we find excessive eye-specific segregation of retinal axons in the dorsal lateral geniculate nucleus. Indeed, the degree of refinement scales with defects in the "Down syndrome critical region" (DSCR) in a dose-dependent manner. We further identify Dscam (Down syndrome cell adhesion molecule), a gene within the DSCR, as a regulator of eye-specific segregation of retinogeniculate projections. Although Dscam is not the sole gene in the DSCR contributing to enhanced refinement in trisomy, Dscam dosage clearly regulates cell spacing and dendritic fasciculation in a specific class of retinal ganglion cells. Thus, altered developmental refinement of visual circuits that occurs before sensory experience is likely to contribute to visual impairment in individuals with Down syndrome.
Collapse
|
123
|
Light acts through melanopsin to alter retinal waves and segregation of retinogeniculate afferents. Nat Neurosci 2011; 14:827-9. [PMID: 21642974 PMCID: PMC3125440 DOI: 10.1038/nn.2845] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 04/22/2011] [Indexed: 11/09/2022]
|
124
|
Schmidt TM, Kofuji P. Structure and function of bistratified intrinsically photosensitive retinal ganglion cells in the mouse. J Comp Neurol 2011; 519:1492-504. [PMID: 21452206 PMCID: PMC3714856 DOI: 10.1002/cne.22579] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A subpopulation of retinal ganglion cells (RGCs) expresses the photopigment melanopsin, rendering these cells intrinsically photosensitive (ipRGCs). These cells are critical for competent circadian entrainment, pupillary light reflex, and other non-imaging-forming photic responses. Research has now demonstrated the presence of multiple subpopulations of ipRGC based on the dendritic stratification in the inner plexiform layer (IPL), those monostratified in the Off sublamina (M1), those monostratified in the On sublamina (M2,4,5), and those bistratified in both the On and the Off sublaminae (M3). Despite evidence that M1 and M2 cells are distinct subpopulations of ipRGC based on distinct morphological and physiological properties, the inclusion of M3 cells as a distinct subtype has remained controversial. Aside from the identification of M3 cells as a morphological subpopulation of ipRGC, to date there have been no functional descriptions of M3 cell physiology or synaptic inputs. Our data provide the first in-depth description of M3 cell structural and functional properties. We report that M3 cells form a morphologically heterogeneous population but one that is physiologically homogeneous with properties similar to those of M2 cells.
Collapse
Affiliation(s)
- Tiffany M Schmidt
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
125
|
McNeill DS, Sheely CJ, Ecker JL, Badea TC, Morhardt D, Guido W, Hattar S. Development of melanopsin-based irradiance detecting circuitry. Neural Dev 2011; 6:8. [PMID: 21418557 PMCID: PMC3070623 DOI: 10.1186/1749-8104-6-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 03/18/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most retinal ganglion cells (RGCs) convey contrast and motion information to visual brain centers. Approximately 2% of RGCs are intrinsically photosensitive (ipRGCs), express melanopsin and are necessary for light to modulate specific physiological processes in mice. The ipRGCs directly target the suprachiasmatic nucleus (SCN) to photoentrain circadian rhythms, and the olivary pretectal nucleus (OPN) to mediate the pupillary light response. How and when this ipRGC circuitry develops is unknown. RESULTS Here, we show that some ipRGCs follow a delayed developmental time course relative to other image-forming RGCs. Specifically, ipRGC neurogenesis extends beyond that of other RGCs, and ipRGCs begin innervating the SCN at postnatal ages, unlike most RGCs, which innervate their image-forming targets embryonically. Moreover, the appearance of ipRGC axons in the OPN coincides precisely with the onset of the pupillary light response. CONCLUSIONS Some ipRGCs differ not only functionally but also developmentally from RGCs that mediate pattern-forming vision.
Collapse
Affiliation(s)
- David S McNeill
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | | | | | |
Collapse
|
126
|
McDougal DH, Gamlin PD. The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex. Vision Res 2011; 50:72-87. [PMID: 19850061 DOI: 10.1016/j.visres.2009.10.012] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 10/12/2009] [Accepted: 10/13/2009] [Indexed: 11/15/2022]
Abstract
Historically, it was assumed that the light-evoked neural signals driving the human pupillary light reflex (PLR) originated exclusively from rod and cone photoreceptors. However, a novel melanopsin-containing photoreceptive cell class has recently been discovered in the mammalian retina. These intrinsically-photosensitive retinal ganglion cells (ipRGCs) project to the pretectum, the retinorecipient area of the brain responsible for the PLR. This study was therefore designed to examine the relative contribution of rod, cone and the melanopsin photoresponses of ipRGCs to the human PLR. We establish that the melanopsin photoresponse of ipRGCs contributes significantly to the maintenance of half maximal pupilloconstriction in response to light stimuli of 30s or longer, even at low photopic irradiances. Furthermore, we show that the melanopsin photoresponse contributes significantly to three-quarter maximal pupilloconstriction in response to light stimuli as short as 2s. We also demonstrate that cone photoresponses driving pupilloconstriction adapt considerably and contribute little after 30s, but rod photoresponses adapt less and contribute significantly to the maintenance of pupilloconstriction in response to steady-state light stimuli at irradiance levels which are below the threshold of the melanopsin photoresponse.
Collapse
Affiliation(s)
- David H McDougal
- Laboratory of Autonomic Neurosciences, Pennington Biomedical Research, Center, 6400 Perkins Road, Baton Rouge, LA 70808, United States
| | | |
Collapse
|
127
|
Zele AJ, Feigl B, Smith SS, Markwell EL. The circadian response of intrinsically photosensitive retinal ganglion cells. PLoS One 2011; 6:e17860. [PMID: 21423755 PMCID: PMC3056772 DOI: 10.1371/journal.pone.0017860] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 02/10/2011] [Indexed: 11/18/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGC) signal environmental
light level to the central circadian clock and contribute to the pupil light
reflex. It is unknown if ipRGC activity is subject to extrinsic (central) or
intrinsic (retinal) network-mediated circadian modulation during light
entrainment and phase shifting. Eleven younger persons (18–30 years) with
no ophthalmological, medical or sleep disorders participated. The activity of
the inner (ipRGC) and outer retina (cone photoreceptors) was assessed hourly
using the pupil light reflex during a 24 h period of constant environmental
illumination (10 lux). Exogenous circadian cues of activity, sleep, posture,
caffeine, ambient temperature, caloric intake and ambient illumination were
controlled. Dim-light melatonin onset (DLMO) was determined from salivary
melatonin assay at hourly intervals, and participant melatonin onset values were
set to 14 h to adjust clock time to circadian time. Here we demonstrate in
humans that the ipRGC controlled post-illumination pupil response has a
circadian rhythm independent of external light cues. This circadian variation
precedes melatonin onset and the minimum ipRGC driven pupil response occurs post
melatonin onset. Outer retinal photoreceptor contributions to the inner retinal
ipRGC driven post-illumination pupil response also show circadian variation
whereas direct outer retinal cone inputs to the pupil light reflex do not,
indicating that intrinsically photosensitive (melanopsin) retinal ganglion cells
mediate this circadian variation.
Collapse
Affiliation(s)
- Andrew J. Zele
- Institute of Health and Biomedical Innovation,
Queensland University of Technology, Brisbane, Australia
- School of Optometry, Queensland University of
Technology, Brisbane, Australia
- * E-mail: (AJZ); (BF)
| | - Beatrix Feigl
- Institute of Health and Biomedical Innovation,
Queensland University of Technology, Brisbane, Australia
- School of Optometry, Queensland University of
Technology, Brisbane, Australia
- * E-mail: (AJZ); (BF)
| | - Simon S. Smith
- Institute of Health and Biomedical Innovation,
Queensland University of Technology, Brisbane, Australia
- Centre for Accident Research and Road Safety
Queensland, Queensland University of Technology, Brisbane, Australia
| | - Emma L. Markwell
- Institute of Health and Biomedical Innovation,
Queensland University of Technology, Brisbane, Australia
- School of Optometry, Queensland University of
Technology, Brisbane, Australia
| |
Collapse
|
128
|
Heikkinen H, Vinberg F, Nymark S, Koskelainen A. Mesopic background lights enhance dark-adapted cone ERG flash responses in the intact mouse retina: a possible role for gap junctional decoupling. J Neurophysiol 2011; 105:2309-18. [PMID: 21389302 DOI: 10.1152/jn.00536.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The cone-driven flash responses of mouse electroretinogram (ERG) increase as much as twofold over the course of several minutes during adaptation to a rod-compressing background light. The origins of this phenomenon were investigated in the present work by recording preflash-isolated (M-)cone flash responses ex vivo in darkness and during application of various steady background lights. In this protocol, the cone stimulating flash was preceded by a preflash that maintains rods under saturation (hyperpolarized) to allow selective stimulation of the cones at varying background light levels. The light-induced growth was found to represent true enhancement of cone flash responses with respect to their dark-adapted state. It developed within minutes, and its overall magnitude was a graded function of the background light intensity. The threshold intensity of cone response growth was observed with lights in the low mesopic luminance region, at which rod responses are partly compressed. Maximal effect was reached at intensities sufficient to suppress ∼ 90% of the rod responses. Light-induced enhancement of the cone photoresponses was not sensitive to antagonists and agonists of glutamatergic transmission. However, applying gap junction blockers to the dark-adapted retina produced qualitatively similar changes in the cone flash responses as did background light and prevented further growth during subsequent light-adaptation. These results are consistent with the idea that cone ERG photoresponses are suppressed in the dark-adapted mouse retina by gap junctional coupling between rods and cones. This coupling would then be gradually and reversibly removed by mesopic background lights, allowing larger functional range for the cone light responses.
Collapse
Affiliation(s)
- H Heikkinen
- Aalto University School of Science, Department of Biomedical Engineering and Computational Science, PO Box 12200, FI-00076 Aalto, Finland.
| | | | | | | |
Collapse
|
129
|
Perez-Leighton CE, Schmidt TM, Abramowitz J, Birnbaumer L, Kofuji P. Intrinsic phototransduction persists in melanopsin-expressing ganglion cells lacking diacylglycerol-sensitive TRPC subunits. Eur J Neurosci 2011; 33:856-67. [PMID: 21261756 PMCID: PMC3076293 DOI: 10.1111/j.1460-9568.2010.07583.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In mammals, intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate various non-image-forming photic responses, such as circadian photoentrainment, pupillary light reflex and pineal melatonin suppression. ipRGCs directly respond to environmental light by activation of the photopigment melanopsin followed by the opening of an unidentified cation-selective channel. Studies in heterologous expression systems and in the native retina have strongly implicated diacylglycerol-sensitive transient receptor potential channels containing TRPC3, TRPC6 and TRPC7 subunits in melanopsin-evoked depolarization. Here we show that melanopsin-evoked electrical responses largely persist in ipRGCs recorded from early postnatal (P6-P8) and adult (P22-P50) mice lacking expression of functional TRPC3, TRPC6 or TRPC7 subunits. Multielectrode array (MEA) recordings performed at P6-P8 stages under conditions that prevent influences from rod/cone photoreceptors show comparable light sensitivity for the melanopsin-evoked responses in these mutant mouse lines in comparison to wild-type (WT) mice. Patch-clamp recordings from adult mouse ipRGCs lacking TRPC3 or TRPC7 subunits show intrinsic light-evoked responses equivalent to those recorded in WT mice. Persistence of intrinsic light-evoked responses was also noted in ipRGCs lacking TRPC6 subunits, although with significantly smaller magnitudes. These results demonstrate that the melanopsin-evoked depolarization in ipRGCs is not mediated by either TRPC3, TRPC6 or TRPC7 channel subunits alone. They also suggest that the melanopsin signaling pathway includes TRPC6-containing heteromeric channels in mature retinas.
Collapse
Affiliation(s)
| | - Tiffany M. Schmidt
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Joel Abramowitz
- Laboratory of Neurobiology, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health
| | - Lutz Birnbaumer
- Laboratory of Neurobiology, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health
| | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
130
|
Thompson S, Stasheff SF, Hernandez J, Nylen E, East JS, Kardon RH, Pinto LH, Mullins RF, Stone EM. Different inner retinal pathways mediate rod-cone input in irradiance detection for the pupillary light reflex and regulation of behavioral state in mice. Invest Ophthalmol Vis Sci 2011; 52:618-23. [PMID: 20847113 DOI: 10.1167/iovs.10-6146] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
PURPOSE Detection of light in the eye contributes both to spatial awareness (form vision) and to responses that acclimate an animal to gross changes in light (irradiance detection). This dual role means that eye disease that disrupts form vision can also adversely affect physiology and behavioral state. The purpose of this study was to investigate how inner retinal circuitry mediating rod-cone photoreceptor input contributes to functionally distinct irradiance responses and whether that might account for phenotypic diversity in retinal disease. METHODS The sensitivity of the pupillary light reflex and negative masking (activity suppression by light) was measured in wild-type mice with intact inner retinal circuitry, Nob4 mice that lack ON-bipolar cell function, and rd1 mice that lack rods and cones and, therefore, have no input to ON or OFF bipolar cells. RESULTS An expected increase in sensitivity to negative masking with loss of photoreceptor input in rd1 was duplicated in Nob4 mice. In contrast, sensitivity of the pupillary light reflex was more severely reduced in rd1 than in Nob4 mice. CONCLUSIONS Absence of ON-bipolar cell-mediated rod-cone input can fully explain the phenotype of outer retina degeneration for negative masking but not for the pupillary light reflex. Therefore, inner retinal pathways mediating rod-cone input are different for negative masking and the pupillary light reflex.
Collapse
Affiliation(s)
- Stewart Thompson
- Howard Hughes Medical Institute, Universityof Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Brown TM, Allen AE, Wynne J, Paul DL, Piggins HD, Lucas RJ. Visual responses in the lateral geniculate evoked by Cx36-independent rod pathways. Vision Res 2011; 51:280-7. [PMID: 20709095 PMCID: PMC3741614 DOI: 10.1016/j.visres.2010.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/09/2010] [Accepted: 08/09/2010] [Indexed: 11/26/2022]
Abstract
Emerging evidence indicates rods can communicate with retinal ganglion cells (RGCs) via pathways that do not involve gap-junctions. Here we investigated the significance of such pathways for central visual responses, using mice lacking a key gap junction protein (Cx36(-/-)) and carrying a mutation that disrupts cone phototransduction (Gnat2(cpfl3)). Electrophysiological recordings spanning the lateral geniculate revealed rod-mediated ON and OFF visual responses in virtually every cell from all major anatomical sub-compartments of this nucleus. Hence, we demonstrate that one or more classes of RGC receive input from Cx36-independent rod pathways and drive extensive ON and OFF responses across the visual thalamus.
Collapse
Affiliation(s)
- Timothy M Brown
- Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | | | | | | | | | | |
Collapse
|
132
|
Kumar S, Zhuo L. Quantitative analysis of pupillary light reflex by real-time autofluorescent imaging in a diabetic mouse model. Exp Eye Res 2011; 92:164-72. [PMID: 21272577 DOI: 10.1016/j.exer.2011.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 10/18/2022]
Abstract
Here we (i) introduce a novel laser-based quantitative method of measuring pupillary light reflex (PLR) and applied it for the in vivo PLR monitoring of early diabetic retinopathy (DR) in a mouse model, (ii) investigate if melanopsin-expressing retinal ganglion cells (mRGCs) are implicated in the early progression of DR and, if so, is there an impact on PLR and (iii) determine if changes in PLR precede the onset of retinal hypoperfusion. A base-line PLR measurement is captured from C57BL/6J wild type mice followed by a single intraperitoneal administration of 200 mg/kg streptozotocin (STZ) and citrate buffer (vehicle) for the "diabetic" (n=5) and "control" (n=5) mice respectively, the very next day. PLR measurements are repeated once a week for four weeks. The PLR data comprises retinal autofluorescence intensity (AFI) values sampled over a 5-min period under confocal excitation with 488 nm high intensity blue laser light. AFI is used here as an indirect measure of pupil size since the amount of excitation light entering and emission light leaving the eye is proportional to the pupil area. Immunohistochemistry (IHC) staining of mRGCs and RT-PCR of melanopsin mRNA are performed at the end-point. The vascular calibre of both control and STZ-treated diabetic mice is assessed via in vivo fluorescein angiography (FA) on day 0 (base-line), 1/2, 1 and 4 months post-STZ treatment. The PLR profile shows a more rapid pupil constriction and slower dilation in diabetic mice compared to the control. Changes in PLR coincide or even precede the onset of retinal hypoperfusion. Extensive dendritic network of the mRGCs in retinal whole-mounts and increased melanopsin mRNA from the whole eye are also observed in diabetic mice. These pathological changes to mRGCs during early DR may in turn contribute towards changes in PLR. We present here a quantitative method of measuring PLR which enables an early detection of DR with potential application in the clinical setting. In contrast to conventional measurements of PLR, we are able to calibrate the amount of light reaching the retina which is a crucial parameter in longitudinal studies.
Collapse
Affiliation(s)
- Saravana Kumar
- Institute of Bioengineering and Nanotechnology, The Nanos, #04-01, 31 Biopolis Way, Singapore 138669, Singapore
| | | |
Collapse
|
133
|
Brown TM, Wynne J, Piggins HD, Lucas RJ. Multiple hypothalamic cell populations encoding distinct visual information. J Physiol 2011; 589:1173-94. [PMID: 21224225 DOI: 10.1113/jphysiol.2010.199877] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Environmental illumination profoundly influences mammalian physiology and behaviour through actions on a master circadian oscillator in the suprachiasmatic nuclei (SCN) and other hypothalamic nuclei. The retinal and central mechanisms that shape daily patterns of light-evoked and spontaneous activity in this network of hypothalamic cells are still largely unclear. Similarly, the exact nature of the sensory information conveyed by such cells is unresolved. Here we set out to address these issues, through multielectrode recordings from the hypothalamus of red cone knockin mice (Opn1mwR). With this powerful mouse model, the photoreceptive origins of any response can be readily identified on the basis of their relative sensitivity to short and long wavelength light. Our experiments revealed that the firing pattern of many hypothalamic cells was influenced by changes in light levels and/or according to the steady state level of illumination. These ‘contrast' and ‘irradiance' responses were driven primarily by cone and melanopsin photoreceptors respectively, with rods exhibiting a much more subtle influence. Individual hypothalamic neurons differentially sampled from these information streams, giving rise to four distinct response types. The most common response phenotype in the SCN itself was sustained activation. Cells with this behaviour responded to all three photoreceptor classes in a manner consistent with their distinct contributions to circadian photoentrainment. These ‘sustained' cells were also unique in our sample in expressing circadian firing patterns with highest activity during the mid projected day. Surprisingly, we also found a minority of SCN neurons that lacked the melanopsin-derived irradiance signal and responded only to light transitions, allowing for the possibility that rod–cone contrast signals may be routed to SCN output targets without influencing neighbouring circadian oscillators. Finally, an array of cells extending throughout the periventricular hypothalamus and ventral thalamus were excited or inhibited solely according to the activity of melanopsin. These cells appeared to convey a filtered version of the visual signal, suitable for modulating physiology/behaviour purely according to environmental irradiance. In summary, these findings reveal unexpectedly widespread hypothalamic cell populations encoding distinct qualities of visual information.
Collapse
Affiliation(s)
- Timothy M Brown
- Faculty of Life Sciences, AV Hill Building, University of Manchester, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
134
|
Brown TM, Gias C, Hatori M, Keding SR, Semo M, Coffey PJ, Gigg J, Piggins HD, Panda S, Lucas RJ. Melanopsin contributions to irradiance coding in the thalamo-cortical visual system. PLoS Biol 2010; 8:e1000558. [PMID: 21151887 PMCID: PMC2998442 DOI: 10.1371/journal.pbio.1000558] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/27/2010] [Indexed: 11/18/2022] Open
Abstract
Photoreception in the mammalian retina is not restricted to rods and cones but extends to a subset of retinal ganglion cells expressing the photopigment melanopsin (mRGCs). These mRGCs are known to drive such reflex light responses as circadian photoentrainment and pupillomotor movements. By contrast, until now there has been no direct assessment of their contribution to conventional visual pathways. Here, we address this deficit. Using new reporter lines, we show that mRGC projections are much more extensive than previously thought and extend across the dorsal lateral geniculate nucleus (dLGN), origin of thalamo-cortical projection neurons. We continue to show that this input supports extensive physiological light responses in the dLGN and visual cortex in mice lacking rods+cones (a model of advanced retinal degeneration). Moreover, using chromatic stimuli to isolate melanopsin-derived responses in mice with an intact visual system, we reveal strong melanopsin input to the ∼40% of neurons in the LGN that show sustained activation to a light step. We demonstrate that this melanopsin input supports irradiance-dependent increases in the firing rate of these neurons. The implication that melanopsin is required to accurately encode stimulus irradiance is confirmed using melanopsin knockout mice. Our data establish melanopsin-based photoreception as a significant source of sensory input to the thalamo-cortical visual system, providing unique irradiance information and allowing visual responses to be retained even in the absence of rods+cones. These findings identify mRGCs as a potential origin for aspects of visual perception and indicate that they may support vision in people suffering retinal degeneration.
Collapse
Affiliation(s)
- Timothy M. Brown
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Carlos Gias
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Megumi Hatori
- The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Sheena R. Keding
- The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Ma'ayan Semo
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Peter J. Coffey
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - John Gigg
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Hugh D. Piggins
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Satchidananda Panda
- The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Robert J. Lucas
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
135
|
Abstract
Life on earth is subject to alternating cycles of day and night imposed by the rotation of the earth. Consequently, living things have evolved photodetective systems to synchronize their physiology and behavior with the external light-dark cycle. This form of photodetection is unlike the familiar "image vision," in that the basic information is light or darkness over time, independent of spatial patterns. "Nonimage" vision is probably far more ancient than image vision and is widespread in living species. For mammals, it has long been assumed that the photoreceptors for nonimage vision are also the textbook rods and cones. However, recent years have witnessed the discovery of a small population of retinal ganglion cells in the mammalian eye that express a unique visual pigment called melanopsin. These ganglion cells are intrinsically photosensitive and drive a variety of nonimage visual functions. In addition to being photoreceptors themselves, they also constitute the major conduit for rod and cone signals to the brain for nonimage visual functions such as circadian photoentrainment and the pupillary light reflex. Here we review what is known about these novel mammalian photoreceptors.
Collapse
Affiliation(s)
- Michael Tri Hoang Do
- Solomon H. Snyder Department of Neuroscience and Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
136
|
Matejů K, Sumová A, Bendová Z. Expression and light sensitivity of clock genes Per1 and Per2 and immediate-early gene c-fos within the retina of early postnatal Wistar rats. J Comp Neurol 2010; 518:3630-44. [PMID: 20589906 DOI: 10.1002/cne.22421] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mammalian retina contains a circadian clock that is composed of components similar to those of the master circadian clock within the suprachiasmatic nuclei of the hypothalamus. The aim of the present study was to elucidate whether, when, and where the transcripts of the clock genes Per1 and Per2 and the immediate early gene c-fos are spontaneously expressed and/or induced by light in the newborn rat retina. At postnatal day 1 (P1), P3, P5, and P10, Wistar rat pups were released into constant darkness, and a 30-minute light pulse was administered during the subjective day or during the first or second part of subjective night. Gene expression was determined 30 minutes, 1 hour, 2 hours, and 4 hours after the light pulse by in situ hybridization followed by emulsion autoradiography. Endogenous expression of Per1 was detected in the neuroblastic retina, and Per2 expression was detected in the inner part of the neuroblastic retina from birth. Light pulses induced c-fos expression in ganglion cells from P1. Until P5, the cells were localized in the dorsal part of the retina, but, at P10, they were already distributed across the entire retinal circumference. Light pulses also induced the expression of c-fos and Per1 in the retinal pigment epithelium until P3, but not afterward. Expression of the Per2 gene was not photoresponsive until P10. These data demonstrate that the rat retina is light-sensitive immediately after birth. During early postnatal development, the spatial distribution of spontaneous and light-induced gene expression within the retinal layers changes gradually.
Collapse
Affiliation(s)
- Kristýna Matejů
- Department of Neurohumoral Regulations, Institute of Physiology, Academy of Sciences of the Czech Republic v.v.i., Prague 14220, Czech Republic
| | | | | |
Collapse
|
137
|
Abstract
Melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs) form a light-sensitive system separate from rods and cones. Direct light stimulation of ipRGCs can regulate many nonimage-forming visual functions such as photoentrainment of circadian rhythms and pupil responses, and can intensify migraine headache in adults. In mice, ipRGCs are light responsive as early as the day of birth. In contrast, their eyelids do not open until 12-13 d after birth (P12-13), and light signaling from rods and cones does not begin until approximately P10. No physiological or behavioral function is established for ipRGCs in neonates before the onset of rod and cone signaling. Here we report that mouse pups as young as P6 will completely turn away from a light. Light-induced responses of ipRGCs could be readily recorded in retinas of pups younger than P9, and we found no evidence for rod- and cone-mediated visual signaling to the RGCs of these younger mice. These results confirm that negative phototaxis is evident before the onset of rod- and cone-mediated visual signaling, and well before the onset of image-forming vision. Negative phototaxis was absent in mice lacking melanopsin. We conclude that light activation of melanopsin ipRGCs is necessary and sufficient for negative phototaxis. These results strongly suggest that light activation of ipRGCs may regulate physiological functions such as sleep/wake cycles in preterm and neonatal infants.
Collapse
|
138
|
Hatori M, Panda S. The emerging roles of melanopsin in behavioral adaptation to light. Trends Mol Med 2010; 16:435-46. [PMID: 20810319 DOI: 10.1016/j.molmed.2010.07.005] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/10/2010] [Accepted: 07/13/2010] [Indexed: 12/14/2022]
Abstract
The adaptation of behavior and physiology to changes in the ambient light level is of crucial importance to life. These adaptations include the light modulation of neuroendocrine function and temporal alignment of physiology and behavior to the day:night cycle by the circadian clock. These non-image-forming (NIF) responses can function independent of rod and cone photoreceptors but depend on ocular light reception, suggesting the participation of novel photoreceptors in the eye. The discovery of melanopsin in intrinsically photosensitive retinal ganglion cells (ipRGCs) and genetic proof for its important role in major NIF responses have offered an exciting entry point to comprehend how mammals adapt to the light environment. Here, we review the recent advances in our understanding of the emerging roles of melanopsin and ipRGCs. These findings now offer new avenues to understand the role of ambient light in sleep, alertness, dependent physiologies and potential pharmacological intervention as well as lifestyle modifications to improve the quality of life.
Collapse
Affiliation(s)
- Megumi Hatori
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
139
|
Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 2010; 67:49-60. [PMID: 20624591 DOI: 10.1016/j.neuron.2010.05.023] [Citation(s) in RCA: 473] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2010] [Indexed: 11/20/2022]
Abstract
Using the photopigment melanopsin, intrinsically photosensitive retinal ganglion cells (ipRGCs) respond directly to light to drive circadian clock resetting and pupillary constriction. We now report that ipRGCs are more abundant and diverse than previously appreciated, project more widely within the brain, and can support spatial visual perception. A Cre-based melanopsin reporter mouse line revealed at least five subtypes of ipRGCs with distinct morphological and physiological characteristics. Collectively, these cells project beyond the known brain targets of ipRGCs to heavily innervate the superior colliculus and dorsal lateral geniculate nucleus, retinotopically organized nuclei mediating object localization and discrimination. Mice lacking classical rod-cone photoreception, and thus entirely dependent on melanopsin for light detection, were able to discriminate grating stimuli from equiluminant gray and had measurable visual acuity. Thus, nonclassical retinal photoreception occurs within diverse cell types and influences circuits and functions encompassing luminance as well as spatial information.
Collapse
|
140
|
Melanopsin-expressing retinal ganglion cells: implications for human diseases. Vision Res 2010; 51:296-302. [PMID: 20691201 DOI: 10.1016/j.visres.2010.07.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 07/27/2010] [Accepted: 07/27/2010] [Indexed: 11/21/2022]
Abstract
In the last decade, there was the seminal discovery of melanopsin-expressing retinal ganglion cells (mRGCs) as a new class of photoreceptors that subserve the photoentrainment of circadian rhythms and other non-image forming functions of the eye. Since then, there has been a growing research interest on these cells, mainly focused on animal models. Only recently, a few studies have started to address the relevance of the mRGC system in humans and related diseases. We recently discovered that mRGCs resist neurodegeneration in two inherited mitochondrial disorders that cause blindness, i.e. Leber hereditary optic neuropathy and dominant optic atrophy. The mechanism leading to mRGCs sparing in these blinding disorders, characterized by extensive and selective loss of RGCs, is currently unknown and under investigation. Other studies reported on mRGCs in glaucoma, on genetic variation of the melanopsin gene (OPN4) in seasonal affective disorder and on the role of mRGCs in migraineous photophobia. Our own data and studies from others have shown a significant reduction of mRGCs with aging. We anticipate that these studies will lead to many other investigations addressing the role of mRGCs and circadian photoreception in the pathogenesis of circadian and sleep abnormalities in neurodegenerative disorders.
Collapse
|
141
|
Berson DM, Castrucci AM, Provencio I. Morphology and mosaics of melanopsin-expressing retinal ganglion cell types in mice. J Comp Neurol 2010; 518:2405-22. [PMID: 20503419 PMCID: PMC2895505 DOI: 10.1002/cne.22381] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Melanopsin is the photopigment of intrinsically photosensitive retinal ganglion cells (ipRGCs). Melanopsin immunoreactivity reveals two dendritic plexuses within the inner plexiform layer (IPL) and morphologically heterogeneous retinal ganglion cells. Using enhanced immunohistochemistry, we provide a fuller description of murine cell types expressing melanopsin, their contribution to the plexuses of melanopsin dendrites, and mosaics formed by each type. M1 cells, corresponding to the originally described ganglion-cell photoreceptors, occupy the ganglion cell or inner nuclear layers. Their large, sparsely branched arbors (mean diameter 275 microm) monostratify at the outer limit of the OFF sublayer. M2 cells also have large, monostratified dendritic arbors (mean diameter 310 microm), but ramify in the inner third of the IPL, within the ON sublayer. There are approximately 900 M1 cells and 800 M2 cells per retina; each type comprises roughly 1-2% of all ganglion cells. The cell bodies of M1 cells are slightly smaller than those of M2 cells (mean diameters: 13 microm for M1, 15 microm for M2). Dendritic field overlap is extensive within each type (coverage factors approximately 3.8 for M1 and 4.6 for M2 cells). Rare bistratified cells deploy terminal dendrites within both melanopsin-immunoreactive plexuses. Because these are too sparsely distributed to permit complete retinal tiling, they lack a key feature of true ganglion cell types and may be anomalous hybrids of the M1 and M2 types. Finally, we observed weak melanopsin immunoreactivity in other ganglion cells, mostly with large somata, that may constitute one or more additional types of melanopsin-expressing cells.
Collapse
Affiliation(s)
- David M. Berson
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Ana Maria Castrucci
- Department of Biology, University of Virginia, Charlottesville, USA
- Departamento de Fisiologia, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
142
|
Dollet A, Albrecht U, Cooper HM, Dkhissi-Benyahya O. CONES ARE REQUIRED FOR NORMAL TEMPORAL RESPONSES TO LIGHT OF PHASE SHIFTS AND CLOCK GENE EXPRESSION. Chronobiol Int 2010; 27:768-81. [PMID: 20560710 DOI: 10.3109/07420521003695704] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Anna Dollet
- INSERM, U846, Stem Cell and Brain Research Institute, Department of Chronobiology, Bron, France
| | | | | | | |
Collapse
|
143
|
González-Menéndez I, Contreras F, Cernuda-Cernuda R, Provencio I, García-Fernández JM. Postnatal development and functional adaptations of the melanopsin photoreceptive system in the albino mouse retina. Invest Ophthalmol Vis Sci 2010; 51:4840-7. [PMID: 20435589 DOI: 10.1167/iovs.10-5253] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To study the melanopsin system of the albino CD1 mouse retina during postnatal development. METHODS Pups were kept under different ambient conditions: light/dark (LD) cycles, constant light (LL), constant darkness (DD), LL followed by LD, and DD followed by LL. Using immunohistochemistry, melanopsin-expressing cells were classified as M1 or M2 according to the location of their somata and dendritic processes and were counted. RESULTS Under LD cycles an increase in the number of immunoreactive cells was observed within the first week of postnatal development. When mice were maintained in DD, the increase in the number of immunopositive cells detected was significantly higher than that in LD. On the contrary, when mice were exposed to LL within the same period, no increase was detected. To determine whether the effect of LL during the early postnatal period was reversible, the authors studied animals born in LL and subsequently maintained under LD cycles. After 3 days in LD, these animals showed a significant increase in melanopsin cell number. However, after 1 month in LD, the number was similar to that of the LD controls. Surprisingly, when mice born in DD were exposed to LL, no decrease was detected, though the immunostaining was of low intensity. CONCLUSIONS The amount of melanopsin protein per cell varies, depending on ambient light conditions. Periods of darkness or, more likely, the sequence of light and dark periods occurring under the daily cycles might be necessary for the normal development of the melanopsin system.
Collapse
|
144
|
Moldavan MG, Allen CN. Retinohypothalamic tract synapses in the rat suprachiasmatic nucleus demonstrate short-term synaptic plasticity. J Neurophysiol 2010; 103:2390-9. [PMID: 20220078 DOI: 10.1152/jn.00695.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The master circadian pacemaker located in the suprachiasmatic nucleus (SCN) is entrained by light intensity-dependent signals transmitted via the retinohypothalamic tract (RHT). Short-term plasticity at glutamatergic RHT-SCN synapses was studied using stimulus frequencies that simulated the firing of light sensitive retinal ganglion cells. The evoked excitatory postsynaptic current (eEPSC) was recorded from SCN neurons located in hypothalamic brain slices. The eEPSC amplitude was stable during 0.08 Hz stimulation and exhibited frequency-dependent short-term synaptic depression (SD) during 0.5 to 100 Hz stimulus trains in 95 of 99 (96%) recorded neurons. During SD the steady-state eEPSC amplitude decreased, whereas the cumulative charge transfer increased in a frequency-dependent manner and saturated at 20 Hz. SD was similar during subjective day and night and decreased with increasing temperature. Paired-pulse stimulation (PPS) and voltage-dependent Ca(2+) channel (VDCC) blockers were used to characterize a presynaptic release mechanism. Facilitation was present in 30% and depression in 70% of studied neurons during PPS. Synaptic transmission was reduced by blocking both N- and P/Q-type presynaptic VDCCs, but only the N-type channel blocker significantly relieved SD. Aniracetam inhibited AMPA receptor desensitization but did not alter SD. Thus we concluded that SD is the principal form of short-term plasticity at RHT synapses, which presynaptically and frequency-dependently attenuates light-induced glutamatergic RHT synaptic transmission protecting SCN neurons against excessive excitation.
Collapse
Affiliation(s)
- Mykhaylo G Moldavan
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | | |
Collapse
|
145
|
Molnár Z, Taylor JSH. Shining a spotlight on headaches. Nat Neurosci 2010; 13:150-1. [PMID: 20104207 DOI: 10.1038/nn0210-150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zoltán Molnár
- The authors are in the Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | |
Collapse
|
146
|
A neural mechanism for exacerbation of headache by light. Nat Neurosci 2010; 13:239-45. [PMID: 20062053 PMCID: PMC2818758 DOI: 10.1038/nn.2475] [Citation(s) in RCA: 384] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 11/23/2009] [Indexed: 12/13/2022]
Abstract
The perception of migraine headache, which is mediated by nociceptive signals transmitted from the cranial dura mater to the brain, is uniquely exacerbated by exposure to light. Here we show that exacerbation of migraine headache by light is prevalent among blind persons who maintain non-image-forming photoregulation in the face of massive rod/cone degeneration. Using single-unit recording and neural tract-tracing in the rat, we identified dura-sensitive neurons in the posterior thalamus, whose activity was distinctly modulated by light, and whose axons projected extensively across layers I through V of somatosensory, visual and associative cortices. The cell bodies and dendrites of such dura/light-sensitive neurons were apposed by axons originating from retinal ganglion cells, predominantly from intrinsically-photosensitive retinal ganglion cells – the principle conduit of non-image-forming photoregulation. We propose that photoregulation of migraine headache is exerted by a non-image-forming retinal pathway that modulates the activity of dura-sensitive thalamocortical neurons.
Collapse
|
147
|
Bailes HJ, Lucas RJ. Melanopsin and inner retinal photoreception. Cell Mol Life Sci 2010; 67:99-111. [PMID: 19865798 PMCID: PMC11115928 DOI: 10.1007/s00018-009-0155-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/07/2009] [Accepted: 09/07/2009] [Indexed: 10/20/2022]
Abstract
Over the last ten years there has been growing acceptance that retinal photoreception among mammals extends beyond rods and cones to include a small number of intrinsically photosensitive retinal ganglion cells (ipRGCs). These ipRGCs are capable of responding to light in the absence of rod/cone input thanks to expression of an opsin photopigment called melanopsin. They are specialised for measuring ambient levels of light (irradiance) for a wide variety of so-called non-image-forming light responses. These include synchronisation of circadian clocks to light:dark cycles and the regulation of pupil size, sleep propensity and pineal melatonin production. Here, we provide a review of some of the landmark discoveries in this fast developing field, paying particular emphasis to recent findings and key areas for future investigation.
Collapse
Affiliation(s)
- Helena J Bailes
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | | |
Collapse
|
148
|
Dumitrescu ON, Pucci FG, Wong KY, Berson DM. Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: contacts with dopaminergic amacrine cells and melanopsin ganglion cells. J Comp Neurol 2009; 517:226-44. [PMID: 19731338 DOI: 10.1002/cne.22158] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A key principle of retinal organization is that distinct ON and OFF channels are relayed by separate populations of bipolar cells to different sublaminae of the inner plexiform layer (IPL). ON bipolar cell axons have been thought to synapse exclusively in the inner IPL (the ON sublamina) onto dendrites of ON-type amacrine and ganglion cells. However, M1 melanopsin-expressing ganglion cells and dopaminergic amacrine (DA) cells apparently violate this dogma. Both are driven by ON bipolar cells, but their dendrites stratify in the outermost IPL, within the OFF sublamina. Here, in the mouse retina, we show that some ON cone bipolar cells make ribbon synapses in the outermost OFF sublayer, where they costratify with and contact the dendrites of M1 and DA cells. Whole-cell recording and dye filling in retinal slices indicate that type 6 ON cone bipolars provide some of this ectopic ON channel input. Imaging studies in dissociated bipolar cells show that these ectopic ribbon synapses are capable of vesicular release. There is thus an accessory ON sublayer in the outer IPL.
Collapse
Affiliation(s)
- Olivia N Dumitrescu
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | | | | | | |
Collapse
|
149
|
Weng S, Wong KY, Berson DM. Circadian modulation of melanopsin-driven light response in rat ganglion-cell photoreceptors. J Biol Rhythms 2009; 24:391-402. [PMID: 19755584 DOI: 10.1177/0748730409343767] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) project to the suprachiasmatic nucleus (SCN) and are essential for normal photic entrainment of global circadian rhythms in physiology and behavior. The effect of light on the central clock is dependent on circadian phase, and the retina itself contains intrinsic circadian oscillators that can alter its sensitivity to light. This raises the possibility that the ipRGCs, and hence the photoentraining signals in the retinohypothalamic tract, are subject to circadian modulation. Although the ipRGC photopigment melanopsin reportedly exhibits circadian variations in expression, there has been no direct test of the hypothesis that ipRGC sensitivity is under circadian control. Here, the authors provide such a test by measuring the sensitivity of intrinsic photoresponses of rat ipRGCs at 4 circadian times (CTs) using multielectrode array recording. There was little if any circadian modulation in the threshold of intrinsic ipRGC photoresponses. However, very bright light evoked significantly more spiking early in the subjective night (CT12-13) than at other circadian phases. Thus, the gain of the melanopsin-driven response is slightly increased in the early night, at roughly the circadian phase when melanopsin synthesis is thought to be elevated. However, this gain change is probably too modest to contribute much to shape the phase response curve (PRC) for behavioral photoentrainment.
Collapse
Affiliation(s)
- Shijun Weng
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
150
|
Differential expression of two distinct functional isoforms of melanopsin (Opn4) in the mammalian retina. J Neurosci 2009; 29:12332-42. [PMID: 19793992 DOI: 10.1523/jneurosci.2036-09.2009] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Melanopsin is the photopigment that confers photosensitivity to a subset of retinal ganglion cells (pRGCs) that regulate many non-image-forming tasks such as the detection of light for circadian entrainment. Recent studies have begun to subdivide the pRGCs on the basis of morphology and function, but the origin of these differences is not yet fully understood. Here we report the identification of two isoforms of melanopsin from the mouse Opn4 locus, a previously described long isoform (Opn4L) and a novel short isoform (Opn4S) that more closely resembles the sequence and structure of rat and human melanopsins. Both isoforms, Opn4L and Opn4S, are expressed in the ganglion cell layer of the retina, traffic to the plasma membrane and form a functional photopigment in vitro. Quantitative PCR revealed that Opn4S is 40 times more abundant than Opn4L. The two variants encode predicted proteins of 521 and 466 aa and only differ in the length of their C-terminal tails. Antibodies raised to isoform-specific epitopes identified two discrete populations of melanopsin-expressing RGCs, those that coexpress Opn4L and Opn4S and those that express Opn4L only. Recent evidence suggests that pRGCs show a range of anatomical subtypes, which may reflect the functional diversity reported for mouse Opn4-mediated light responses. The distinct isoforms of Opn4 described in this study provide a potential molecular basis for generating this diversity, and it seems likely that their differential expression plays a role in generating the variety of pRGC light responses found in the mammalian retina.
Collapse
|