101
|
Abstract
In mechanotransduction, sensory receptors convert force into electrical signals to mediate such diverse functions as touch, pain, and hearing. In this issue of Cell, Zhang et al. present evidence that the fly NompC channel senses mechanical stimuli using its N-terminal tail as a tether between the cell membrane and microtubules.
Collapse
Affiliation(s)
- Zachary A Knecht
- National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02458, USA; Volen Center for Complex Systems, Department of Biology, Brandeis University, Waltham, MA 02458, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Paul A Garrity
- National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02458, USA; Volen Center for Complex Systems, Department of Biology, Brandeis University, Waltham, MA 02458, USA.
| |
Collapse
|
102
|
Ankyrin Repeats Convey Force to Gate the NOMPC Mechanotransduction Channel. Cell 2015; 162:1391-403. [PMID: 26359990 DOI: 10.1016/j.cell.2015.08.024] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/26/2015] [Accepted: 07/13/2015] [Indexed: 12/11/2022]
Abstract
How metazoan mechanotransduction channels sense mechanical stimuli is not well understood. The NOMPC channel in the transient receptor potential (TRP) family, a mechanotransduction channel for Drosophila touch sensation and hearing, contains 29 Ankyrin repeats (ARs) that associate with microtubules. These ARs have been postulated to act as a tether that conveys force to the channel. Here, we report that these N-terminal ARs form a cytoplasmic domain essential for NOMPC mechanogating in vitro, mechanosensitivity of touch receptor neurons in vivo, and touch-induced behaviors of Drosophila larvae. Duplicating the ARs elongates the filaments that tether NOMPC to microtubules in mechanosensory neurons. Moreover, microtubule association is required for NOMPC mechanogating. Importantly, transferring the NOMPC ARs to mechanoinsensitive voltage-gated potassium channels confers mechanosensitivity to the chimeric channels. These experiments strongly support a tether mechanism of mechanogating for the NOMPC channel, providing insights into the basis of mechanosensitivity of mechanotransduction channels.
Collapse
|
103
|
Tissue mechanics govern the rapidly adapting and symmetrical response to touch. Proc Natl Acad Sci U S A 2015; 112:E6955-63. [PMID: 26627717 DOI: 10.1073/pnas.1514138112] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interactions with the physical world are deeply rooted in our sense of touch and depend on ensembles of somatosensory neurons that invade and innervate the skin. Somatosensory neurons convert the mechanical energy delivered in each touch into excitatory membrane currents carried by mechanoelectrical transduction (MeT) channels. Pacinian corpuscles in mammals and touch receptor neurons (TRNs) in Caenorhabditis elegans nematodes are embedded in distinctive specialized accessory structures, have low thresholds for activation, and adapt rapidly to the application and removal of mechanical loads. Recently, many of the protein partners that form native MeT channels in these and other somatosensory neurons have been identified. However, the biophysical mechanism of symmetric responses to the onset and offset of mechanical stimulation has eluded understanding for decades. Moreover, it is not known whether applied force or the resulting indentation activate MeT channels. Here, we introduce a system for simultaneously recording membrane current, applied force, and the resulting indentation in living C. elegans (Feedback-controlled Application of mechanical Loads Combined with in vivo Neurophysiology, FALCON) and use it, together with modeling, to study these questions. We show that current amplitude increases with indentation, not force, and that fast stimuli evoke larger currents than slower stimuli producing the same or smaller indentation. A model linking body indentation to MeT channel activation through an embedded viscoelastic element reproduces the experimental findings, predicts that the TRNs function as a band-pass mechanical filter, and provides a general mechanism for symmetrical and rapidly adapting MeT channel activation relevant to somatosensory neurons across phyla and submodalities.
Collapse
|
104
|
Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans. Nat Commun 2015; 6:8264. [PMID: 26372413 PMCID: PMC4571289 DOI: 10.1038/ncomms9264] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 08/04/2015] [Indexed: 12/30/2022] Open
Abstract
A major challenge in neuroscience is to reliably activate individual neurons, particularly those in deeper brain regions. Current optogenetic approaches require invasive surgical procedures to deliver light of specific wavelengths to target cells to activate or silence them. Here, we demonstrate the use of low-pressure ultrasound as a non-invasive trigger to activate specific ultrasonically sensitized neurons in the nematode, Caenorhabditis elegans. We first show that wild-type animals are insensitive to low-pressure ultrasound and require gas-filled microbubbles to transduce the ultrasound wave. We find that neuron-specific misexpression of TRP-4, the pore-forming subunit of a mechanotransduction channel, sensitizes neurons to ultrasound stimulus, resulting in behavioural outputs. Furthermore, we use this approach to manipulate the function of sensory neurons and interneurons and identify a role for PVD sensory neurons in modifying locomotory behaviours. We suggest that this method can be broadly applied to manipulate cellular functions in vivo. Common optogenetic approaches require surgical procedures to deliver light of specific wavelengths to the target cells. Here the authors demonstrate the use of low-pressure ultrasound as a non-invasive trigger to activate specific neurons in Caenorhabditis elegans and find that the mechanotransduction channel TRP-4 sensitizes cells to the ultrasound stimulus.
Collapse
|
105
|
Glial Expression of the Caenorhabditis elegans Gene swip-10 Supports Glutamate Dependent Control of Extrasynaptic Dopamine Signaling. J Neurosci 2015; 35:9409-23. [PMID: 26109664 DOI: 10.1523/jneurosci.0800-15.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Glial cells play a critical role in shaping neuronal development, structure, and function. In a screen for Caenorhabditis elegans mutants that display dopamine (DA)-dependent, Swimming-Induced Paralysis (Swip), we identified a novel gene, swip-10, the expression of which in glia is required to support normal swimming behavior. swip-10 mutants display reduced locomotion rates on plates, consistent with our findings of elevated rates of presynaptic DA vesicle fusion using fluorescence recovery after photobleaching. In addition, swip-10 mutants exhibit elevated DA neuron excitability upon contact with food, as detected by in vivo Ca(2+) monitoring, that can be rescued by glial expression of swip-10. Mammalian glia exert powerful control of neuronal excitability via transporter-dependent buffering of extracellular glutamate (Glu). Consistent with this idea, swip-10 paralysis was blunted in mutants deficient in either vesicular Glu release or Glu receptor expression and could be phenocopied by mutations that disrupt the function of plasma membrane Glu transporters, most noticeably glt-1, the ortholog of mammalian astrocytic GLT1 (EAAT2). swip-10 encodes a protein containing a highly conserved metallo-β-lactamase domain, within which our swip-10 mutations are located and where engineered mutations disrupt Swip rescue. Sequence alignments identify the CNS-expressed gene MBLAC1 as a putative mammalian ortholog. Together, our studies provide evidence of a novel pathway in glial cells regulated by swip-10 that limits DA neuron excitability, DA secretion, and DA-dependent behaviors through modulation of Glu signaling.
Collapse
|
106
|
Forcing open TRP channels: Mechanical gating as a unifying activation mechanism. Biochem Biophys Res Commun 2015; 460:22-5. [PMID: 25998730 DOI: 10.1016/j.bbrc.2015.02.067] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/15/2015] [Indexed: 11/21/2022]
Abstract
Transient receptor potential (TRP) proteins are cation channels that comprise a superfamily of molecular sensors that enable animals to detect a wide variety of environmental stimuli. This versatility enables vertebrate and invertebrate TRP channels to function in a diversity of senses, ranging from vision to taste, smell, touch, hearing, proprioception and thermosensation. Moreover, many individual TRP channels are activated through a surprising range of sensory stimuli. The multitasking nature of TRP channels raises the question as to whether seemingly disparate activators gate TRPs through common strategies. In this regard, a recent major advance is the discovery that a phospholipase C (PLC)-dependent signaling cascade activates the TRP channels in Drosophila photoreceptor cells through generation of force in the lipid-bilayer. The premise of this review is that mechanical force is a unifying, common strategy for gating TRP channels. In addition to several TRP channels that function in mechanosensation and are gated by force applied to the cells, changes in temperature or alterations in the concentration of lipophilic second messengers through stimulation of signaling cascades, cause architectural modifications of the cell membrane, which in turn activate TRP channels through mechanical force. Consequently, TRPs are capable of functioning as stretch-activated channels, even in cases in which the stimuli that initiate the signaling cascades are not mechanical. We propose that most TRPs are actually mechanosensitive channels (MSCs), which undergo conformational changes in response to tension imposed on the lipid bilayer, resulting in channel gating.
Collapse
|
107
|
Guo Y, Wang Y, Wang Q, Wang Z. The role of PPK26 in Drosophila larval mechanical nociception. Cell Rep 2015; 9:1183-90. [PMID: 25457610 DOI: 10.1016/j.celrep.2014.10.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/12/2014] [Accepted: 10/09/2014] [Indexed: 11/27/2022] Open
Abstract
In Drosophila larvae, the class IV dendritic arborization (da) neurons are polymodal nociceptors. Here, we show that ppk26 (CG8546) plays an important role in mechanical nociception in class IV da neurons. Our immunohistochemical and functional results demonstrate that ppk26 is specifically expressed in class IV da neurons. Larvae with mutant ppk26 showed severe behavioral defects in a mechanical nociception behavioral test but responded to noxious heat stimuli comparably to wild-type larvae. In addition, functional studies suggest that ppk26 and ppk (also called ppk1) function in the same pathway, whereas piezo functions in a parallel pathway. Consistent with these functional results, we found that PPK and PPK26 are interdependent on each other for their cell surface localization. Our work indicates that PPK26 and PPK might form heteromeric DEG/ENaC channels that are essential for mechanotransduction in class IV da neurons.
Collapse
|
108
|
Campbell JC, Chin-Sang ID, Bendena WG. Mechanosensation circuitry in Caenorhabditis elegans: A focus on gentle touch. Peptides 2015; 68:164-74. [PMID: 25543196 DOI: 10.1016/j.peptides.2014.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 12/14/2014] [Accepted: 12/15/2014] [Indexed: 01/02/2023]
Abstract
Forward or reverse movement in Caenorhabditis elegans is the result of sequential contraction of muscle cells arranged along the body. In larvae, muscle cells are innervated by distinct classes of motorneurons. B motorneurons regulate forward movement and A motorneurons regulate backward movement. Ablation of the D motor neurons results in animals that are uncoordinated in either direction, which suggests that D motorneurons regulate the interaction between the two circuits. C. elegans locomotion is dictated by inputs from interneurons that regulate the activity of motorneurons which coordinate muscle contraction to facilitate forward or backwards movement. As C. elegans moves through the environment, sensory neurons interpret chemical and mechanical information which is relayed to the motor neurons that control locomotory direction. A mechanosensory input known as light nose touch can be simulated in the laboratory by touching the nose of the animal with a human eyebrow hair. The recoil reaction that follows from light nose touch appears to be primarily mediated by glutamate release from the polymodal sensory neuron ASH. Numerous glutamate receptor types are found in different neurons and interneurons which suggest that several pathways may regulate the aversive response. Based on the phenotypes of mutants in which neuropeptide processing is abolished, neuropeptides play a role in circuit regulation. The light touch response is also regulated by transient receptor channel proteins and degenerin/epithelial sodium channels which modulate the activity of sensory neurons involved in the nose touch response.
Collapse
Affiliation(s)
- Jason C Campbell
- Department of Biology, Biosciences Complex, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Ian D Chin-Sang
- Department of Biology, Biosciences Complex, Queen's University, Kingston, ON K7L 3N6, Canada
| | - William G Bendena
- Department of Biology, Biosciences Complex, Queen's University, Kingston, ON K7L 3N6, Canada; Centre for Neuroscience, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
109
|
Yang X, Wang S, Sheng Y, Zhang M, Zou W, Wu L, Kang L, Rizo J, Zhang R, Xu T, Ma C. Syntaxin opening by the MUN domain underlies the function of Munc13 in synaptic-vesicle priming. Nat Struct Mol Biol 2015; 22:547-54. [PMID: 26030875 DOI: 10.1038/nsmb.3038] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 05/01/2015] [Indexed: 11/09/2022]
Abstract
UNC-13-Munc13s have a central function in synaptic-vesicle priming through their MUN domains. However, it is unclear whether this function arises from the ability of the MUN domain to mediate the transition from the Munc18-1-closed syntaxin-1 complex to the SNARE complex in vitro. The crystal structure of the rat Munc13-1 MUN domain now reveals an elongated, arch-shaped architecture formed by α-helical bundles, with a highly conserved hydrophobic pocket in the middle. Mutation of two residues (NF) in this pocket abolishes the stimulation caused by the Munc13-1 MUN domain on SNARE-complex assembly and on SNARE-dependent proteoliposome fusion in vitro. Moreover, the same mutation in UNC-13 abrogates synaptic-vesicle priming in Caenorhabditis elegans neuromuscular junctions. These results support the notion that orchestration of syntaxin-1 opening and SNARE-complex assembly underlies the central role of UNC-13-Munc13s in synaptic-vesicle priming.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Sheng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mingshu Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wenjuan Zou
- Institute of Neuroscience, Zhejiang University, Hangzhou, China
| | - Lijie Wu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lijun Kang
- Institute of Neuroscience, Zhejiang University, Hangzhou, China
| | - Josep Rizo
- Department of Biophysics, Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rongguang Zhang
- 1] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. [2] Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tao Xu
- 1] Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China. [2] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. [3] College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
110
|
Coste B, Murthy SE, Mathur J, Schmidt M, Mechioukhi Y, Delmas P, Patapoutian A. Piezo1 ion channel pore properties are dictated by C-terminal region. Nat Commun 2015; 6:7223. [PMID: 26008989 PMCID: PMC4445471 DOI: 10.1038/ncomms8223] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 04/20/2015] [Indexed: 02/06/2023] Open
Abstract
Piezo1 and Piezo2 encode mechanically activated cation channels that function as mechanotransducers involved in vascular system development and touch sensing, respectively. Structural features of Piezos remain unknown. Mouse Piezo1 is bioinformatically predicted to have 30–40 transmembrane (TM) domains. Here, we find that nine of the putative inter-transmembrane regions are accessible from the extracellular side. We use chimeras between mPiezo1 and dPiezo to show that ion-permeation properties are conferred by C-terminal region. We further identify a glutamate residue within a conserved region adjacent to the last two putative TM domains of the protein, that when mutated, affects unitary conductance and ion selectivity, and modulates pore block. We propose that this amino acid is either in the pore or closely associates with the pore. Our results describe important structural motifs of this channel family and lay the groundwork for a mechanistic understanding of how Piezos are mechanically gated and conduct ions. Piezo ion channels function as mechanotransducers involved in vascular development and touch sensing, but their structural features remain unknown. Here the authors find that the C-terminal region of Piezo protein encompasses the pore and identify a glutamate residue within this region involved in ion conduction properties.
Collapse
Affiliation(s)
- Bertrand Coste
- 1] Aix Marseille Université, CNRS, CRN2M-UMR7286, 13344 Marseille, France [2] Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Swetha E Murthy
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jayanti Mathur
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Manuela Schmidt
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | - Patrick Delmas
- Aix Marseille Université, CNRS, CRN2M-UMR7286, 13344 Marseille, France
| | - Ardem Patapoutian
- 1] Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA [2] Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| |
Collapse
|
111
|
Dissection of C. elegans behavioral genetics in 3-D environments. Sci Rep 2015; 5:9564. [PMID: 25955271 PMCID: PMC4424945 DOI: 10.1038/srep09564] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 02/27/2015] [Indexed: 11/08/2022] Open
Abstract
The nematode Caenorhabditis elegans is a widely used model for genetic dissection of animal behaviors. Despite extensive technical advances in imaging methods, it remains challenging to visualize and quantify C. elegans behaviors in three-dimensional (3-D) natural environments. Here we developed an innovative 3-D imaging method that enables quantification of C. elegans behavior in 3-D environments. Furthermore, for the first time, we characterized 3-D-specific behavioral phenotypes of mutant worms that have defects in head movement or mechanosensation. This approach allowed us to reveal previously unknown functions of genes in behavioral regulation. We expect that our 3-D imaging method will facilitate new investigations into genetic basis of animal behaviors in natural 3-D environments.
Collapse
|
112
|
Ding G, Zou W, Zhang H, Xue Y, Cai Y, Huang G, Chen L, Duan S, Kang L. In vivo tactile stimulation-evoked responses in Caenorhabditis elegans amphid sheath glia. PLoS One 2015; 10:e0117114. [PMID: 25671616 PMCID: PMC4325002 DOI: 10.1371/journal.pone.0117114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/19/2014] [Indexed: 12/04/2022] Open
Abstract
Glial cells are important components of the nervous system. However, how they respond to physiological stimuli in vivo remains largely unknown. In this study, we investigated the electrophysiological activities and Ca2+ responses of the C. elegans amphid sheath glia (AMsh glia) to tactile stimulation in vivo. We recorded robust inward currents and Ca2+ elevation in the AMsh cell with the delivery of tactile stimuli of varying displacements to the nose tip of the worm. Compared to the adjacent mechanoreceptor ASH neuron, the AMsh cell showed greater sensitivity to tactile stimulation. Amiloride, an epithelial Na+ channel blocker, blocked the touch-induced currents and Ca2+ signaling in the ASH neuron, but not those in the AMsh cell. Taken together, our results revealed that AMsh glial cells actively respond to in vivo tactile stimulation and likely function cell-autonomously as mechanoreceptors.
Collapse
Affiliation(s)
- Gang Ding
- Department of Neurobiology, The Key Laboratory of Medical Neurobiology, The Ministry of Health of China, Zhejiang Provincial Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjuan Zou
- Department of Neurobiology, The Key Laboratory of Medical Neurobiology, The Ministry of Health of China, Zhejiang Provincial Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hu Zhang
- Department of Neurobiology, The Key Laboratory of Medical Neurobiology, The Ministry of Health of China, Zhejiang Provincial Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yadan Xue
- Department of Neurobiology, The Key Laboratory of Medical Neurobiology, The Ministry of Health of China, Zhejiang Provincial Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Cai
- Department of Neurobiology, The Key Laboratory of Medical Neurobiology, The Ministry of Health of China, Zhejiang Provincial Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pharmacology, Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Guifang Huang
- Department of Neurobiology, The Key Laboratory of Medical Neurobiology, The Ministry of Health of China, Zhejiang Provincial Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lufeng Chen
- Department of Pharmacology, Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Shumin Duan
- Department of Neurobiology, The Key Laboratory of Medical Neurobiology, The Ministry of Health of China, Zhejiang Provincial Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail: (SMD); (LJK)
| | - Lijun Kang
- Department of Neurobiology, The Key Laboratory of Medical Neurobiology, The Ministry of Health of China, Zhejiang Provincial Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail: (SMD); (LJK)
| |
Collapse
|
113
|
Abstract
Cilia are highly conserved for their structure and also for their sensory functions. They serve as antennae for extracellular information. Whether the cilia are motile or not, they respond to environmental mechanical and chemical stimuli and signal to the cell body. The information from extracellular stimuli is commonly converted to electrical signals through the repertoire of ion-conducting channels in the ciliary membrane resulting in changes in concentrations of ions, especially Ca2+, in the cilia. These changes, in turn, affect motility and signaling pathways in the cilia and cell body to carry on the signal transduction. We review here the activities of ion channels in cilia from protists to vertebrates.
Collapse
Affiliation(s)
- Steven J Kleene
- Department of Molecular and Cellular Physiology University of Cincinnati Cincinnati, OH 45267-0576 USA 1-513-558-6099 (phone) 1-513-558-5738 (fax)
| | - Judith L Van Houten
- Department of Biology University of Vermont Burlington, VT 05405, USA 1-802-656-0452 (phone) 1-802-656-2914 (FAX)
| |
Collapse
|
114
|
Kavlie RG, Fritz JL, Nies F, Göpfert MC, Oliver D, Albert JT, Eberl DF. Prestin is an anion transporter dispensable for mechanical feedback amplification in Drosophila hearing. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 201:51-60. [PMID: 25412730 PMCID: PMC4282873 DOI: 10.1007/s00359-014-0960-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/21/2014] [Accepted: 10/25/2014] [Indexed: 12/12/2022]
Abstract
In mammals, the membrane-based protein Prestin confers unique electromotile properties to cochlear outer hair cells, which contribute to the cochlear amplifier. Like mammals, the ears of insects, such as those of Drosophila melanogaster, mechanically amplify sound stimuli and have also been reported to express Prestin homologs. To determine whether the D. melanogaster Prestin homolog (dpres) is required for auditory amplification, we generated and analyzed dpres mutant flies. We found that dpres is robustly expressed in the fly’s antennal ear. However, dpres mutant flies show normal auditory nerve responses, and intact non-linear amplification. Thus we conclude that, in D. melanogaster, auditory amplification is independent of Prestin. This finding resonates with prior phylogenetic analyses, which suggest that the derived motor function of mammalian Prestin replaced, or amended, an ancestral transport function. Indeed, we show that dpres encodes a functional anion transporter. Interestingly, the acquired new motor function in the phylogenetic lineage leading to birds and mammals coincides with loss of the mechanotransducer channel NompC (=TRPN1), which has been shown to be required for auditory amplification in flies. The advent of Prestin (or loss of NompC, respectively) may thus mark an evolutionary transition from a transducer-based to a Prestin-based mechanism of auditory amplification.
Collapse
Affiliation(s)
- Ryan G Kavlie
- The Ear Institute, University College London, 332 Gray's Inn Road, London, WC1X 8EE, UK
| | | | | | | | | | | | | |
Collapse
|
115
|
Lindy AS, Parekh PK, Zhu R, Kanju P, Chintapalli SV, Tsvilovskyy V, Patterson RL, Anishkin A, van Rossum DB, Liedtke WB. TRPV channel-mediated calcium transients in nociceptor neurons are dispensable for avoidance behaviour. Nat Commun 2014; 5:4734. [PMID: 25178952 PMCID: PMC4164786 DOI: 10.1038/ncomms5734] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/17/2014] [Indexed: 12/21/2022] Open
Abstract
Animals need to sense and react to potentially dangerous environments. TRP ion channels participate in nociception, presumably via Ca2+ influx, in most animal species. However, the relationship between ion permeation and animals’ nocifensive behaviour is unknown. Here we use an invertebrate animal model with relevance for mammalian pain. We analyse the putative selectivity filter of OSM-9, a TRPV channel, in osmotic avoidance behaviour of Caenorhabditis elegans. Using mutagenized OSM-9 expressed in the head nociceptor neuron, ASH, we study nocifensive behaviour and Ca2+ influx. Within the selectivity filter, M601-F609, Y604G strongly reduces avoidance behaviour and eliminates Ca2+ transients. Y604F also abolishes Ca2+ transients in ASH, while sustaining avoidance behaviour, yet it disrupts behavioral plasticity. Homology modelling of the OSM-9 pore suggests that Y604 may assume a scaffolding role. Thus, aromatic residues in the OSM-9 selectivity filter are critical for pain behaviour and ion permeation. These findings have relevance for understanding evolutionary roots of mammalian nociception. TRPs are calcium-permeable channels involved in the sensing of damaging stimuli but the relationship between calcium influx and pain behaviour has been elusive. Here the authors find that the TRP channel OSM-9 functions as an ion channel in vivo in C. elegans, and establish residues that are critical for worm pain-like behaviour.
Collapse
Affiliation(s)
- Amanda S Lindy
- 1] Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA [2] Department of Neurology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Puja K Parekh
- Department of Neurology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Richard Zhu
- Department of Neurology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Patrick Kanju
- Department of Neurology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Sree V Chintapalli
- 1] Department of Membrane Biology and Physiology, University of California, Davis, California 95616, USA [2] Department of Biochemistry and Molecular Medicine, University of California, Davis, California 95616, USA
| | - Volodymyr Tsvilovskyy
- Department of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Randen L Patterson
- 1] Department of Membrane Biology and Physiology, University of California, Davis, California 95616, USA [2] Department of Biochemistry and Molecular Medicine, University of California, Davis, California 95616, USA
| | - Andriy Anishkin
- 1] Center for Computational Proteomics, The Pennsylvania State University, University Park, Pennsylvania 16801, USA [2] Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16801, USA
| | - Damian B van Rossum
- 1] Center for Computational Proteomics, The Pennsylvania State University, University Park, Pennsylvania 16801, USA [2] Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16801, USA
| | - Wolfgang B Liedtke
- 1] Department of Neurology, Duke University Medical Center, Durham, North Carolina 27710, USA [2] Duke University Clinics for Pain and Palliative Care, 932 Morreene Road, Durham, North Carolina 27705, USA [3] Departments of Anesthesiology and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA [4] Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
116
|
Dopamine modulation of avoidance behavior in Caenorhabditis elegans requires the NMDA receptor NMR-1. PLoS One 2014; 9:e102958. [PMID: 25089710 PMCID: PMC4121140 DOI: 10.1371/journal.pone.0102958] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 06/26/2014] [Indexed: 01/01/2023] Open
Abstract
The nematode C. elegans utilizes a relatively simple neural circuit to mediate avoidance responses to noxious stimuli such as the volatile odorant octanol. This avoidance behavior is modulated by dopamine. cat-2 mutant animals that are deficient in dopamine biosynthesis have an increased response latency to octanol compared to wild type animals, and this defect can be fully restored with the application of exogenous dopamine. Because this avoidance behavior is mediated by glutamatergic signaling between sensory neurons and premotor interneurons, we investigated the genetic interactions between dopaminergic signaling and ionotropic glutamate receptors. cat-2 mutant animals lacking either the GLR-1 or GLR-2 AMPA/kainate receptors displayed an increased response latency to octanol, which could be restored via exogenous dopamine. However, whereas cat-2 mutant animals lacking the NMR-1 NMDA receptor had increased response latency to octanol they were insensitive to exogenous dopamine. Mutants that lacked both AMPA/kainate and NMDA receptors were also insensitive to exogenous dopamine. Our results indicate that dopamine modulation of octanol avoidance requires NMR-1, consistent with NMR-1 as a potential downstream signaling target for dopamine.
Collapse
|
117
|
Mechanosensory molecules and circuits in C. elegans. Pflugers Arch 2014; 467:39-48. [PMID: 25053538 PMCID: PMC4281349 DOI: 10.1007/s00424-014-1574-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 06/30/2014] [Accepted: 07/02/2014] [Indexed: 01/28/2023]
Abstract
Mechanosensory neurons, whose activity is controlled by mechanical force, underlie the senses of touch, hearing, and proprioception, yet despite their importance, the molecular basis of mechanotransduction is poorly understood. Genetic studies in Caenorhabditis elegans have provided a useful approach for identifying potential components of mechanotransduction complexes that might be conserved in more complex organisms. This review describes the mechanosensory systems of C. elegans, including the sensory neurons and circuitry involved in body touch, nose touch, and proprioception. In addition, the roles of genes encoding known and potential mechanosensory receptors, including members of the broadly conserved transient receptor potential (TRP) and degerin/epithelial Na+ channel (DEG/ENaC) channel families, are discussed.
Collapse
|
118
|
O'Hagan R, Wang J, Barr MM. Mating behavior, male sensory cilia, and polycystins in Caenorhabditis elegans. Semin Cell Dev Biol 2014; 33:25-33. [PMID: 24977333 DOI: 10.1016/j.semcdb.2014.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 11/16/2022]
Abstract
The investigation of Caenorhabditis elegans males and the male-specific sensory neurons required for mating behaviors has provided insight into the molecular function of polycystins and mechanisms that are needed for polycystin ciliary localization. In humans, polycystin 1 and polycystin 2 are needed for kidney function; loss of polycystin function leads to autosomal dominant polycystic kidney disease (ADPKD). Polycystins localize to cilia in C. elegans and mammals, a finding that has guided research into ADPKD. The discovery that the polycystins form ciliary receptors in male-specific neurons needed for mating behaviors has also helped to unlock insights into two additional exciting new areas: the secretion of extracellular vesicles; and mechanisms of ciliary specialization. First, we will summarize the studies done in C. elegans regarding the expression, localization, and function of the polycystin 1 and 2 homologs, LOV-1 and PKD-2, and discuss insights gained from this basic research. Molecules that are co-expressed with the polycystins in the male-specific neurons may identify evolutionarily conserved molecular mechanisms for polycystin function and localization. We will discuss the finding that polycystins are secreted in extracellular vesicles that evoke behavioral change in males, suggesting that such vesicles provide a novel form of communication to conspecifics in the environment. In humans, polycystin-containing extracellular vesicles are secreted in urine and can be taken up by cilia, and quickly internalized. Therefore, communication by polycystin-containing extracellular vesicles may also use mechanisms that are evolutionarily conserved from nematode to human. Lastly, different cilia display structural and functional differences that specialize them for particular tasks, despite the fact that virtually all cilia are built by a conserved intraflagellar transport (IFT) mechanism and share some basic structural features. Comparative analysis of the male-specific cilia with the well-studied cilia of the amphid and phasmid neurons has allowed identification of molecules that specialize the male cilia. We will discuss the molecules that shape the male-specific cilia. The cell biology of cilia in male-specific neurons demonstrates that C. elegans can provide an excellent model of ciliary specialization.
Collapse
Affiliation(s)
- Robert O'Hagan
- Department of Genetics, Rutgers, The State University of New Jersey, 145 Bevier Rd., Piscataway, NJ 08854
| | - Juan Wang
- Department of Genetics, Rutgers, The State University of New Jersey, 145 Bevier Rd., Piscataway, NJ 08854
| | - Maureen M Barr
- Department of Genetics, Rutgers, The State University of New Jersey, 145 Bevier Rd., Piscataway, NJ 08854
| |
Collapse
|
119
|
Abstract
Progressive neurodegenerative diseases are among the most frequently occurring aging-associated human pathologies. In a screen for Caenorhabditis elegans mutant animals that lack their normal complement of dopaminergic neurons, we identified two strains with progressive loss of dopaminergic neurons during postembryonic life. Through whole-genome sequencing we show that both strains harbor dominant (d), gain-of-function mutations in the Transient Receptor Potential (TRP) mechanosensory channel trp-4, a member of the invertebrate and vertebrate TRPN-type of the TRP family channels. Gain-of-function mutations in TRP channels have not been previously implicated in dopaminergic neuronal degeneration. We show that trp-4(d) induces cell death in dopamine neurons through a defined, calcium-related downstream pathway.
Collapse
|
120
|
Doroquez DB, Berciu C, Anderson JR, Sengupta P, Nicastro D. A high-resolution morphological and ultrastructural map of anterior sensory cilia and glia in Caenorhabditis elegans. eLife 2014; 3:e01948. [PMID: 24668170 PMCID: PMC3965213 DOI: 10.7554/elife.01948] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 02/17/2014] [Indexed: 12/22/2022] Open
Abstract
Many primary sensory cilia exhibit unique architectures that are critical for transduction of specific sensory stimuli. Although basic ciliogenic mechanisms are well described, how complex ciliary structures are generated remains unclear. Seminal work performed several decades ago provided an initial but incomplete description of diverse sensory cilia morphologies in C. elegans. To begin to explore the mechanisms that generate these remarkably complex structures, we have taken advantage of advances in electron microscopy and tomography, and reconstructed three-dimensional structures of fifty of sixty sensory cilia in the C. elegans adult hermaphrodite at high resolution. We characterize novel axonemal microtubule organization patterns, clarify structural features at the ciliary base, describe new aspects of cilia-glia interactions, and identify structures suggesting novel mechanisms of ciliary protein trafficking. This complete ultrastructural description of diverse cilia in C. elegans provides the foundation for investigations into underlying ciliogenic pathways, as well as contributions of defined ciliary structures to specific neuronal functions. DOI: http://dx.doi.org/10.7554/eLife.01948.001.
Collapse
Affiliation(s)
- David B Doroquez
- Department of Biology, Brandeis University, Waltham, United States
- National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Cristina Berciu
- Department of Biology, Brandeis University, Waltham, United States
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, United States
| | - James R Anderson
- Department of Ophthalmology, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, United States
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, United States
- National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Daniela Nicastro
- Department of Biology, Brandeis University, Waltham, United States
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, United States
| |
Collapse
|
121
|
Gu Y, Gu C. Physiological and pathological functions of mechanosensitive ion channels. Mol Neurobiol 2014; 50:339-47. [PMID: 24532247 DOI: 10.1007/s12035-014-8654-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/23/2014] [Indexed: 12/11/2022]
Abstract
Rapid sensation of mechanical stimuli is often mediated by mechanosensitve ion channels. Their opening results from conformational changes induced by mechanical forces. It leads to membrane permeation of selected ions and thereby to electrical signaling. Newly identified mechanosensitive ion channels are emerging at an astonishing rate, including some that are traditionally assigned for completely different functions. In this review, we first provide a brief overview of ion channels that are known to play a role in mechanosensation. Next, we focus on three representative ones, including the transient receptor potential channel V4 (TRPV4), Kv1.1 voltage-gated potassium (Kv) channel, and Piezo channels. Their structures, biophysical properties, expression and targeting patterns, and physiological functions are highlighted. The potential role of their mechanosensation in related diseases is further discussed. In sum, mechanosensation appears to be achieved in a variety of ways by different proteins and plays a fundamental role in the function of various organs under normal and abnormal conditions.
Collapse
Affiliation(s)
- Yuanzheng Gu
- Department of Neuroscience, Ohio State University, 182 Rightmire Hall, 1060 Carmack Road, Columbus, OH, USA
| | | |
Collapse
|
122
|
Vásquez V, Krieg M, Lockhead D, Goodman MB. Phospholipids that contain polyunsaturated fatty acids enhance neuronal cell mechanics and touch sensation. Cell Rep 2014; 6:70-80. [PMID: 24388754 DOI: 10.1016/j.celrep.2013.12.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/18/2013] [Accepted: 12/06/2013] [Indexed: 12/01/2022] Open
Abstract
Mechanoelectrical transduction (MeT) channels embedded in neuronal cell membranes are essential for touch and proprioception. Little is understood about the interplay between native MeT channels and membrane phospholipids, in part because few techniques are available for altering plasma membrane composition in vivo. Here, we leverage genetic dissection, chemical complementation, and optogenetics to establish that arachidonic acid (AA), an omega-6 polyunsaturated fatty acid, enhances touch sensation and mechanoelectrical transduction activity while incorporated into membrane phospholipids in C. elegans touch receptor neurons (TRNs). Because dynamic force spectroscopy reveals that AA modulates the mechanical properties of TRN plasma membranes, we propose that this polyunsaturated fatty acid (PUFA) is needed for MeT channel activity. These findings establish that polyunsaturated phospholipids are crucial determinants of both the biochemistry and mechanics of mechanoreceptor neurons and reinforce the idea that sensory mechanotransduction in animals relies on a cellular machine composed of both proteins and membrane lipids.
Collapse
Affiliation(s)
- Valeria Vásquez
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Krieg
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dean Lockhead
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Miriam B Goodman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
123
|
Venkatachalam K, Luo J, Montell C. Evolutionarily conserved, multitasking TRP channels: lessons from worms and flies. Handb Exp Pharmacol 2014; 223:937-62. [PMID: 24961975 DOI: 10.1007/978-3-319-05161-1_9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Transient Receptor Potential (TRP) channel family is comprised of a large group of cation-permeable channels, which display an extraordinary diversity of roles in sensory signaling. TRPs allow animals to detect chemicals, mechanical force, light, and changes in temperature. Consequently, these channels control a plethora of animal behaviors. Moreover, their functions are not limited to the classical senses, as they are cellular sensors, which are critical for ionic homeostasis and metabolism. Two genetically tractable invertebrate model organisms, Caenorhabditis elegans and Drosophila melanogaster, have led the way in revealing a wide array of sensory roles and behaviors that depend on TRP channels. Two overriding themes have emerged from these studies. First, TRPs are multitasking proteins, and second, many functions and modes of activation of these channels are evolutionarily conserved, including some that were formerly thought to be unique to invertebrates, such as phototransduction. Thus, worms and flies offer the potential to decipher roles for mammalian TRPs, which would otherwise not be suspected.
Collapse
Affiliation(s)
- Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX, 77030, USA,
| | | | | |
Collapse
|
124
|
Abstract
Hearing is a particularly sensitive form of mechanosensation that relies on dedicated ion channels transducing sound-induced vibrations that hardly exceed Brownian motion. Attempts to molecularly identify these auditory transduction channels have put the focus on TRPs in ears. In Drosophila, hearing has been shown to involve TRPA, TRPC, TRPN, and TRPV subfamily members, with candidate auditory transduction channels including NOMPC (=TRPN1) and the TRPVs Nan and Iav. In vertebrates, TRPs are unlikely to form auditory transduction channels, yet most TRPs are expressed in inner ear tissues, and mutations in TRPN1, TRPVA1, TRPML3, TRPV4, and TRPC3/TRPC6 have been implicated in inner ear function. Starting with a brief introduction of fly and vertebrate auditory anatomies and transduction mechanisms, this review summarizes our current understanding of the auditory roles of TRPs.
Collapse
Affiliation(s)
- Damiano Zanini
- Department of Cellular Neurobiology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | | |
Collapse
|
125
|
Abstract
Living organisms sense their physical environment through cellular mechanotransduction, which converts mechanical forces into electrical and biochemical signals. In turn, signal transduction serves a wide variety of functions, from basic cellular processes as diverse as proliferation, differentiation, migration, and apoptosis up to some of the most sophisticated senses, including touch and hearing. Accordingly, defects in mechanosensing potentially lead to diverse diseases and disorders such as hearing loss, cardiomyopathies, muscular dystrophies, chronic pain, and cancer. Here, we review the status of mechanically activated ion channel discovery and discuss current challenges to define their properties and physiological functions.
Collapse
Affiliation(s)
- Patrick Delmas
- Aix-Marseille-Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, UMR 7286, CS80011, Bd Pierre Dramard, 13344 Marseille, Cedex 15, France.
| | | |
Collapse
|
126
|
Pandey P, Mersha MD, Dhillon HS. A synergistic approach towards understanding the functional significance of dopamine receptor interactions. J Mol Signal 2013; 8:13. [PMID: 24308343 PMCID: PMC3878971 DOI: 10.1186/1750-2187-8-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/18/2013] [Indexed: 11/10/2022] Open
Abstract
The importance of the neurotransmitter dopamine (DA) in the nervous system is underscored by its role in a wide variety of physiological and neural functions in both vertebrates and invertebrates. Binding of dopamine to its membrane receptors initiates precise signaling cascades that result in specific cellular responses. Dopamine receptors belong to a super-family of G-protein coupled receptors (GPCRs) that are characterized by seven trans-membrane domains. In mammals, five dopamine receptors have been identified which are grouped into two different categories D1- and D2-like receptors. The interactions of DA receptors with other proteins including specific Gα subunits are critical in deciding the fate of downstream molecular events carried out by effector proteins. In this mini-review we provide a synopsis of known protein-protein interactions of DA receptors and a perspective on the potential synergistic utility of Caenorhabditis elegans as a model eukaryote with a comparatively simpler nervous system to gain insight on the neuronal and behavioral consequences of the receptor interactions.
Collapse
Affiliation(s)
| | | | - Harbinder S Dhillon
- Department of Biological Sciences, Center for Neuroscience Research, Delaware State University, Dover, DE 19901, USA.
| |
Collapse
|
127
|
Abstract
Two new studies show that the Drosophila transient receptor potential (TRP) family member NOMPC forms both a mechanically gated ion channel and a fine filament that, by tethering the protein to microtubules, might act as a gating spring.
Collapse
Affiliation(s)
- Damiano Zanini
- Department of Cellular Neurobiology, University of Göttingen, 37077 Göttingen, Germany
| | | |
Collapse
|
128
|
Boekhoff-Falk G, Eberl DF. The Drosophila auditory system. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 3:179-91. [PMID: 24719289 DOI: 10.1002/wdev.128] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/28/2013] [Accepted: 09/10/2013] [Indexed: 11/10/2022]
Abstract
Development of a functional auditory system in Drosophila requires specification and differentiation of the chordotonal sensilla of Johnston's organ (JO) in the antenna, correct axonal targeting to the antennal mechanosensory and motor center in the brain, and synaptic connections to neurons in the downstream circuit. Chordotonal development in JO is functionally complicated by structural, molecular, and functional diversity that is not yet fully understood, and construction of the auditory neural circuitry is only beginning to unfold. Here, we describe our current understanding of developmental and molecular mechanisms that generate the exquisite functions of the Drosophila auditory system, emphasizing recent progress and highlighting important new questions arising from research on this remarkable sensory system.
Collapse
Affiliation(s)
- Grace Boekhoff-Falk
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
129
|
Park J, Lee J, Shim J, Han W, Lee J, Bae YC, Chung YD, Kim CH, Moon SJ. dTULP, the Drosophila melanogaster homolog of tubby, regulates transient receptor potential channel localization in cilia. PLoS Genet 2013; 9:e1003814. [PMID: 24068974 PMCID: PMC3778012 DOI: 10.1371/journal.pgen.1003814] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/23/2013] [Indexed: 12/27/2022] Open
Abstract
Mechanically gated ion channels convert sound into an electrical signal for the sense of hearing. In Drosophila melanogaster, several transient receptor potential (TRP) channels have been implicated to be involved in this process. TRPN (NompC) and TRPV (Inactive) channels are localized in the distal and proximal ciliary zones of auditory receptor neurons, respectively. This segregated ciliary localization suggests distinct roles in auditory transduction. However, the regulation of this localization is not fully understood. Here we show that the Drosophila Tubby homolog, King tubby (hereafter called dTULP) regulates ciliary localization of TRPs. dTULP-deficient flies show uncoordinated movement and complete loss of sound-evoked action potentials. Inactive and NompC are mislocalized in the cilia of auditory receptor neurons in the dTulp mutants, indicating that dTULP is required for proper cilia membrane protein localization. This is the first demonstration that dTULP regulates TRP channel localization in cilia, and suggests that dTULP is a protein that regulates ciliary neurosensory functions.
Collapse
Affiliation(s)
- Jina Park
- Department of Oral Biology, Yonsei University College of Dentistry, Seodaemun-gu, Seoul, Korea
| | - Jeongmi Lee
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Jaewon Shim
- Department of Oral Biology, Yonsei University College of Dentistry, Seodaemun-gu, Seoul, Korea
| | - Woongsu Han
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jinu Lee
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Inchon, Korea
| | - Yong Chul Bae
- Department of Oral Anatomy and Neurobiology, BK21, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Yun Doo Chung
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Chul Hoon Kim
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- * E-mail: (CHK); (SJM)
| | - Seok Jun Moon
- Department of Oral Biology, Yonsei University College of Dentistry, Seodaemun-gu, Seoul, Korea
- * E-mail: (CHK); (SJM)
| |
Collapse
|
130
|
Liu J, Zhang B, Lei H, Feng Z, Liu J, Hsu AL, Xu XZS. Functional aging in the nervous system contributes to age-dependent motor activity decline in C. elegans. Cell Metab 2013; 18:392-402. [PMID: 24011074 PMCID: PMC3811915 DOI: 10.1016/j.cmet.2013.08.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/30/2013] [Accepted: 07/28/2013] [Indexed: 01/25/2023]
Abstract
Aging is characterized by a progressive decline in multiple physiological functions (i.e., functional aging). As animals age, they exhibit a gradual loss in motor activity, but the underlying mechanisms remain unclear. Here we approach this question in C. elegans by functionally characterizing its aging nervous system and muscles. We find that motor neurons exhibit a progressive functional decline, beginning in early life. Surprisingly, body-wall muscles, which were previously thought to undergo functional aging, do not manifest such a decline until mid-late life. Notably, motor neurons first develop a deficit in synaptic vesicle fusion followed by that in quantal size and vesicle docking/priming, revealing specific functional deteriorations in synaptic transmission. Pharmacological stimulation of synaptic transmission can improve motor activity in aged animals. These results uncover a critical role for the nervous system in age-dependent motor activity decline in C. elegans and provide insights into how functional aging occurs in this organism.
Collapse
Affiliation(s)
- Jie Liu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
131
|
Pan B, Géléoc GS, Asai Y, Horwitz GC, Kurima K, Ishikawa K, Kawashima Y, Griffith AJ, Holt JR. TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron 2013; 79:504-15. [PMID: 23871232 DOI: 10.1016/j.neuron.2013.06.019] [Citation(s) in RCA: 321] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2013] [Indexed: 02/02/2023]
Abstract
Sensory transduction in auditory and vestibular hair cells requires expression of transmembrane channel-like (Tmc) 1 and 2 genes, but the function of these genes is unknown. To investigate the hypothesis that TMC1 and TMC2 proteins are components of the mechanosensitive ion channels that convert mechanical information into electrical signals, we recorded whole-cell and single-channel currents from mouse hair cells that expressed Tmc1, Tmc2, or mutant Tmc1. Cells that expressed Tmc2 had high calcium permeability and large single-channel currents, while cells with mutant Tmc1 had reduced calcium permeability and reduced single-channel currents. Cells that expressed Tmc1 and Tmc2 had a broad range of single-channel currents, suggesting multiple heteromeric assemblies of TMC subunits. The data demonstrate TMC1 and TMC2 are components of hair cell transduction channels and contribute to permeation properties. Gradients in TMC channel composition may also contribute to variation in sensory transduction along the tonotopic axis of the mammalian cochlea.
Collapse
Affiliation(s)
- Bifeng Pan
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Center for Life Sciences 12251, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Eijkelkamp N, Quick K, Wood JN. Transient Receptor Potential Channels and Mechanosensation. Annu Rev Neurosci 2013; 36:519-46. [DOI: 10.1146/annurev-neuro-062012-170412] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Niels Eijkelkamp
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands;
| | - Kathryn Quick
- Wolfson Institute for Biomedical Research, University College London, London WC1 6BT, United Kingdom; ,
| | - John N. Wood
- Wolfson Institute for Biomedical Research, University College London, London WC1 6BT, United Kingdom; ,
| |
Collapse
|
133
|
Quick K, Zhao J, Eijkelkamp N, Linley JE, Rugiero F, Cox JJ, Raouf R, Gringhuis M, Sexton JE, Abramowitz J, Taylor R, Forge A, Ashmore J, Kirkwood N, Kros CJ, Richardson GP, Freichel M, Flockerzi V, Birnbaumer L, Wood JN. TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells. Open Biol 2013; 2:120068. [PMID: 22724068 PMCID: PMC3376737 DOI: 10.1098/rsob.120068] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/16/2012] [Indexed: 12/21/2022] Open
Abstract
Transient receptor potential (TRP) channels TRPC3 and TRPC6 are expressed in both sensory neurons and cochlear hair cells. Deletion of TRPC3 or TRPC6 in mice caused no behavioural phenotype, although loss of TRPC3 caused a shift of rapidly adapting (RA) mechanosensitive currents to intermediate-adapting currents in dorsal root ganglion sensory neurons. Deletion of both TRPC3 and TRPC6 caused deficits in light touch and silenced half of small-diameter sensory neurons expressing mechanically activated RA currents. Double TRPC3/TRPC6 knock-out mice also showed hearing impairment, vestibular deficits and defective auditory brain stem responses to high-frequency sounds. Basal, but not apical, cochlear outer hair cells lost more than 75 per cent of their responses to mechanical stimulation. FM1-43-sensitive mechanically gated currents were induced when TRPC3 and TRPC6 were co-expressed in sensory neuron cell lines. TRPC3 and TRPC6 are thus required for the normal function of cells involved in touch and hearing, and are potential components of mechanotransducing complexes.
Collapse
Affiliation(s)
- Kathryn Quick
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Prole DL, Taylor CW. Identification and analysis of putative homologues of mechanosensitive channels in pathogenic protozoa. PLoS One 2013; 8:e66068. [PMID: 23785469 PMCID: PMC3681921 DOI: 10.1371/journal.pone.0066068] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 05/04/2013] [Indexed: 11/19/2022] Open
Abstract
Mechanosensitive channels play important roles in the physiology of many organisms, and their dysfunction can affect cell survival. This suggests that they might be therapeutic targets in pathogenic organisms. Pathogenic protozoa lead to diseases such as malaria, dysentery, leishmaniasis and trypanosomiasis that are responsible for millions of deaths each year worldwide. We analyzed the genomes of pathogenic protozoa and show the existence within them of genes encoding putative homologues of mechanosensitive channels. Entamoeba histolytica, Leishmania spp., Trypanosoma cruzi and Trichomonas vaginalis have genes encoding homologues of Piezo channels, while most pathogenic protozoa have genes encoding homologues of mechanosensitive small-conductance (MscS) and K+-dependent (MscK) channels. In contrast, all parasites examined lack genes encoding mechanosensitive large-conductance (MscL), mini-conductance (MscM) and degenerin/epithelial Na+ (DEG/ENaC) channels. Multiple sequence alignments of evolutionarily distant protozoan, amoeban, plant, insect and vertebrate Piezo channel subunits define an absolutely conserved motif that may be involved in channel conductance or gating. MscS channels are not present in humans, and the sequences of protozoan and human homologues of Piezo channels differ substantially. This suggests the possibility for specific targeting of mechanosensitive channels of pathogens by therapeutic drugs.
Collapse
Affiliation(s)
- David L Prole
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| | | |
Collapse
|
135
|
Yu Y, Ulbrich MH, Li MH, Dobbins S, Zhang WK, Tong L, Isacoff EY, Yang J. Molecular mechanism of the assembly of an acid-sensing receptor ion channel complex. Nat Commun 2013; 3:1252. [PMID: 23212381 PMCID: PMC3575195 DOI: 10.1038/ncomms2257] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 11/05/2012] [Indexed: 12/11/2022] Open
Abstract
Polycystic kidney disease (PKD) family proteins associate with transient receptor potential (TRP) channel family proteins to form functionally important complexes. PKD proteins differ from known ion channel-forming proteins and are generally thought to act as membrane receptors. Here we find that PKD1L3, a PKD protein, functions as a channel-forming subunit in an acid-sensing heteromeric complex formed by PKD1L3 and TRPP3, a TRP channel protein. Single amino-acid mutations in the putative pore region of both proteins alter the channel's ion selectivity. The PKD1L3/TRPP3 complex in the plasma membrane of live cells contains one PKD1L3 and three TRPP3. A TRPP3 C-terminal coiled-coil domain forms a trimer in solution and in crystal, and has a crucial role in the assembly and surface expression of the PKD1L3/TRPP3 complex. These results demonstrate that PKD subunits constitute a new class of channel-forming proteins, enriching our understanding of the function of PKD proteins and PKD/TRPP complexes.
Collapse
Affiliation(s)
- Yong Yu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | | | |
Collapse
|
136
|
A gap junction circuit enhances processing of coincident mechanosensory inputs. Curr Biol 2013; 23:963-7. [PMID: 23707432 PMCID: PMC3675673 DOI: 10.1016/j.cub.2013.04.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 11/21/2022]
Abstract
Electrical synapses have been shown to be important for enabling and detecting neuronal synchrony in both vertebrates [1–4] and invertebrates [5, 6]. Hub-and-spoke circuits, in which a central hub neuron is electrically coupled to several input neurons, are an overrepresented motif in the C. elegans nervous system [7] and may represent a conserved functional unit. The functional relevance of this configuration has been demonstrated for circuits mediating aggregation behavior [8] and nose touch perception [9]. Modeling approaches have been useful for understanding structurally and dynamically more complex electrical circuits [10, 11]. Therefore, we formulated a simple analytical model with minimal assumptions to obtain insight into the properties of the hub-and-spoke microcircuit motif. A key prediction of the model is that an active input neuron should facilitate activity throughout the network, whereas an inactive input should suppress network activity through shunting; this prediction was supported by cell ablation and in vivo neuroimaging experiments in the C. elegans nose touch circuit. Thus, the hub-and-spoke architecture may implement an analog coincidence detector enabling distinct responses to distributed and localized patterns of sensory input. A model hub-and-spoke circuit defines a role for shunting in sensory processing Nonrectifying gap junctions allow inactive neurons to inhibit network activity Shunting and lateral facilitation both contribute to nose touch perception The hub-and-spoke microcircuit mediates analog coincidence detection
Collapse
|
137
|
Husson SJ, Gottschalk A, Leifer AM. Optogenetic manipulation of neural activity in C. elegans: from synapse to circuits and behaviour. Biol Cell 2013; 105:235-50. [PMID: 23458457 DOI: 10.1111/boc.201200069] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/22/2013] [Indexed: 11/30/2022]
Abstract
The emerging field of optogenetics allows for optical activation or inhibition of excitable cells. In 2005, optogenetic proteins were expressed in the nematode Caenorhabditis elegans for the first time. Since then, C. elegans has served as a powerful platform upon which to conduct optogenetic investigations of synaptic function, circuit dynamics and the neuronal basis of behaviour. The C. elegans nervous system, consisting of 302 neurons, whose connectivity and morphology has been mapped completely, drives a rich repertoire of behaviours that are quantifiable by video microscopy. This model organism's compact nervous system, quantifiable behaviour, genetic tractability and optical accessibility make it especially amenable to optogenetic interrogation. Channelrhodopsin-2 (ChR2), halorhodopsin (NpHR/Halo) and other common optogenetic proteins have all been expressed in C. elegans. Moreover, recent advances leveraging molecular genetics and patterned light illumination have now made it possible to target photoactivation and inhibition to single cells and to do so in worms as they behave freely. Here, we describe techniques and methods for optogenetic manipulation in C. elegans. We review recent work using optogenetics and C. elegans for neuroscience investigations at the level of synapses, circuits and behaviour.
Collapse
Affiliation(s)
- Steven J Husson
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven B-3000, Belgium
| | | | | |
Collapse
|
138
|
Gong J, Wang Q, Wang Z. NOMPC is likely a key component ofDrosophilamechanotransduction channels. Eur J Neurosci 2013; 38:2057-64. [DOI: 10.1111/ejn.12214] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 01/08/2023]
Affiliation(s)
| | - Qingxiu Wang
- Institute of Neuroscience; State Key Laboratory of Neuroscience; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai; China
| | - Zuoren Wang
- Institute of Neuroscience; State Key Laboratory of Neuroscience; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai; China
| |
Collapse
|
139
|
Salam S, Ansari A, Amon S, Rezai P, Selvaganapathy PR, Mishra RK, Gupta BP. A microfluidic phenotype analysis system reveals function of sensory and dopaminergic neuron signaling in C. elegans electrotactic swimming behavior. WORM 2013; 2:e24558. [PMID: 24058875 PMCID: PMC3704449 DOI: 10.4161/worm.24558] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 12/21/2022]
Abstract
The nematode (worm) C. elegans is a leading multicellular animal model to study neuronal-basis of behavior. Worms respond to a wide range of stimuli and exhibit characteristic movement patterns. Here we describe the use of a microfluidics setup to probe neuronal activity that relies on the innate response of C. elegans to swim toward the cathode in the presence of a DC electric field (termed "electrotaxis"). Using this setup, we examined mutants affecting sensory and dopaminergic neurons and found that their electrotactic responses were defective. Such animals moved with reduced speed (35-80% slower than controls) with intermittent pauses, abnormal turning and slower body bends. A similar phenotype was observed in worms treated with neurotoxins 6-OHDA (6- hydroxy dopamine), MPTP (1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine) and rotenone (20-60% slower). We also found that neurotoxin effects could be suppressed by pre-exposing worms to a known neuroprotective compound acetaminophen. Collectively, these results show that microfluidic electrotaxis can identify alterations in dopamine and amphid neuronal signaling based on swimming responses of C. elegans. Further characterization has revealed that the electrotactic swimming response is highly sensitive and reliable in detecting neuronal abnormalities. Thus, our microfluidics setup could be used to dissect neuronal function and toxin-induced neurodegeneration. Among other applications, the setup promises to facilitate genetic and chemical screenings to identify factors that mediate neuronal signaling and neuroprotection.
Collapse
Affiliation(s)
- Sangeena Salam
- Department of Biology; McMaster University; Hamilton, ON Canada
| | - Ata Ansari
- Department of Biology; McMaster University; Hamilton, ON Canada
- Department of Psychiatry and Behavioral Neuroscience; McMaster University; Hamilton, ON Canada
| | - Siavash Amon
- Department of Biology; McMaster University; Hamilton, ON Canada
| | - Pouya Rezai
- Department of Mechanical Engineering; McMaster University; Hamilton, ON Canada
| | | | - Ram K. Mishra
- Department of Psychiatry and Behavioral Neuroscience; McMaster University; Hamilton, ON Canada
| | | |
Collapse
|
140
|
Neuronal encoding of sound, gravity, and wind in the fruit fly. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:253-62. [PMID: 23494584 DOI: 10.1007/s00359-013-0806-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 01/01/2023]
Abstract
The fruit fly Drosophila melanogaster responds behaviorally to sound, gravity, and wind. Exposure to male courtship songs results in reduced locomotion in females, whereas males begin to chase each other. When agitated, fruit flies tend to move against gravity. When faced with air currents, they 'freeze' in place. Based on recent studies, Johnston's hearing organ, the antennal ear of the fruit fly, serves as a sensor for all of these mechanosensory stimuli. Compartmentalization of sense cells in Johnston's organ into vibration-sensitive and deflection-sensitive neural groups allows this single organ to mediate such varied functions. Sound and gravity/wind signals sensed by these two neuronal groups travel in parallel from the fly ear to the brain, feeding into neural pathways reminiscent of the auditory and vestibular pathways in the human brain. Studies of the similarities between mammals and flies will lead to a better understanding of the principles of how sound and gravity information is encoded in the brain. Here, we review recent advances in our understanding of these principles and discuss the advantages of the fruit fly as a model system to explore the fundamental principles of how neural circuits and their ensembles process and integrate sensory information in the brain.
Collapse
|
141
|
Lehnert BP, Baker AE, Gaudry Q, Chiang AS, Wilson RI. Distinct roles of TRP channels in auditory transduction and amplification in Drosophila. Neuron 2013; 77:115-28. [PMID: 23312520 PMCID: PMC3811118 DOI: 10.1016/j.neuron.2012.11.030] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2012] [Indexed: 11/26/2022]
Abstract
Auditory receptor cells rely on mechanically gated channels to transform sound stimuli into neural activity. Several TRP channels have been implicated in Drosophila auditory transduction, but mechanistic studies have been hampered by the inability to record subthreshold signals from receptor neurons. Here, we develop a non-invasive method for measuring these signals by recording from a central neuron that is electrically coupled to a genetically defined population of auditory receptor cells. We find that the TRPN family member NompC, which is necessary for the active amplification of sound-evoked motion by the auditory organ, is not required for transduction in auditory receptor cells. Instead, NompC sensitizes the transduction complex to movement and precisely regulates the static forces on the complex. In contrast, the TRPV channels Nanchung and Inactive are required for responses to sound, suggesting they are components of the transduction complex. Thus, transduction and active amplification are genetically separable processes in Drosophila hearing.
Collapse
Affiliation(s)
- Brendan P Lehnert
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
142
|
Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation. Nature 2012; 493:221-5. [PMID: 23222543 DOI: 10.1038/nature11685] [Citation(s) in RCA: 252] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/19/2012] [Indexed: 12/27/2022]
Abstract
Touch sensation is essential for behaviours ranging from environmental exploration to social interaction; however, the underlying mechanisms are largely unknown. In Drosophila larvae, two types of sensory neurons, class III and class IV dendritic arborization neurons, tile the body wall. The mechanotransduction channel PIEZO in class IV neurons is essential for sensing noxious mechanical stimuli but is not involved in gentle touch. On the basis of electrophysiological-recording, calcium-imaging and behavioural studies, here we report that class III dendritic arborization neurons are touch sensitive and contribute to gentle-touch sensation. We further identify NOMPC (No mechanoreceptor potential C), a member of the transient receptor potential (TRP) family of ion channels, as a mechanotransduction channel for gentle touch. NOMPC is highly expressed in class III neurons and is required for their mechanotransduction. Moreover, ectopic NOMPC expression confers touch sensitivity to the normally touch-insensitive class IV neurons. In addition to the critical role of NOMPC in eliciting gentle-touch-mediated behavioural responses, expression of this protein in the Drosophila S2 cell line also gives rise to mechanosensitive channels in which ion selectivity can be altered by NOMPC mutation, indicating that NOMPC is a pore-forming subunit of a mechanotransduction channel. Our study establishes NOMPC as a bona fide mechanotransduction channel that satisfies all four criteria proposed for a channel to qualify as a transducer of mechanical stimuli and mediates gentle-touch sensation. Our study also suggests that different mechanosensitive channels may be used to sense gentle touch versus noxious mechanical stimuli.
Collapse
|
143
|
Abstract
Mechanoreceptor cells respond to a vast span of stimulus intensities, which they transduce into a limited response-range using a dynamic regulation of transduction gain. Weak stimuli are detected by enhancing the gain of responses through the process of active mechanical amplification. To preserve responsiveness, the gain of responses to prolonged activation is rapidly reduced through the process of adaptation. We investigated long-term processes of mechanotransduction gain control by studying responses from single mechanoreceptor neurons in Drosophila. We found that mechanical stimuli elicited a sustained reduction of gain that we termed long-term adaptation. Long-term adaptation and the adaptive decay of responses during stimuli had distinct kinetics and they were independently affected by manipulations of mechanotransduction. Therefore, long-term adaptation is not associated with the reduction of response gain during stimulation. Instead, the long-term adaptation suppressed canonical features of active amplification which were the high gain of weak stimuli and the spontaneous emission of noise. In addition, depressing amplification using energy deprivation recapitulated the effects of long-term adaptation. These data suggest that long-term adaptation is mediated by suppression of active amplification. Finally, the extent of long-term adaptation matched with cytoplasmic Ca(2+) levels and dTrpA1-induced Ca(2+) elevation elicited the effects of long-term adaptation. Our data suggest that mechanotransduction employs parallel adaptive mechanisms: while a rapid process exerts immediate gain reduction, long-term adjustments are achieved by attenuating active amplification. The slow adjustment of gain, manifest as diminished sensitivity, is associated with the accumulation of Ca(2+).
Collapse
|
144
|
Wiemuth D, van de Sandt L, Herr R, Gründer S. Transient receptor potential N (TRPN1) from Xenopus
interacts with the penta-EF-hand protein peflin. FEBS Lett 2012; 586:4276-81. [DOI: 10.1016/j.febslet.2012.10.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/26/2012] [Indexed: 11/30/2022]
|
145
|
Senthilan PR, Piepenbrock D, Ovezmyradov G, Nadrowski B, Bechstedt S, Pauls S, Winkler M, Möbius W, Howard J, Göpfert MC. Drosophila auditory organ genes and genetic hearing defects. Cell 2012; 150:1042-54. [PMID: 22939627 DOI: 10.1016/j.cell.2012.06.043] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 03/02/2012] [Accepted: 06/20/2012] [Indexed: 12/22/2022]
Abstract
The Drosophila auditory organ shares equivalent transduction mechanisms with vertebrate hair cells, and both are specified by atonal family genes. Using a whole-organ knockout strategy based on atonal, we have identified 274 Drosophila auditory organ genes. Only four of these genes had previously been associated with fly hearing, yet one in five of the genes that we identified has a human cognate that is implicated in hearing disorders. Mutant analysis of 42 genes shows that more than half of them contribute to auditory organ function, with phenotypes including hearing loss, auditory hypersusceptibility, and ringing ears. We not only discover ion channels and motors important for hearing, but also show that auditory stimulus processing involves chemoreceptor proteins as well as phototransducer components. Our findings demonstrate mechanosensory roles for ionotropic receptors and visual rhodopsins and indicate that different sensory modalities utilize common signaling cascades.
Collapse
Affiliation(s)
- Pingkalai R Senthilan
- Department of Cellular Neurobiology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Ghosh R, Mohammadi A, Kruglyak L, Ryu WS. Multiparameter behavioral profiling reveals distinct thermal response regimes in Caenorhabditis elegans. BMC Biol 2012; 10:85. [PMID: 23114012 PMCID: PMC3520762 DOI: 10.1186/1741-7007-10-85] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/31/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Responding to noxious stimuli by invoking an appropriate escape response is critical for survival of an organism. The sensations of small and large changes in temperature in most organisms have been studied separately in the context of thermotaxis and nociception, respectively. Here we use the nematode C. elegans to address the neurogenetic basis of responses to thermal stimuli over a broad range of intensities. RESULTS C. elegans responds to aversive temperature by eliciting a stereotypical behavioral sequence. Upon sensation of the noxious stimulus, it moves backwards, turns and resumes forward movement in a new direction. In order to study the response of C. elegans to a broad range of noxious thermal stimuli, we developed a novel assay that allows simultaneous characterization of multiple aspects of escape behavior elicited by thermal pulses of increasing amplitudes. We exposed the laboratory strain N2, as well as 47 strains with defects in various aspects of nervous system function, to thermal pulses ranging from ΔT = 0.4°C to 9.1°C and recorded the resulting behavioral profiles. CONCLUSIONS Through analysis of the multidimensional behavioral profiles, we found that the combinations of molecules shaping avoidance responses to a given thermal pulse are unique. At different intensities of aversive thermal stimuli, these distinct combinations of molecules converge onto qualitatively similar stereotyped behavioral sequences.
Collapse
Affiliation(s)
- Rajarshi Ghosh
- Lewis-Sigler Institute for Integrative Genomics, Department of Ecology and Evolutionary Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
147
|
Dendritic filopodia, Ripped Pocket, NOMPC, and NMDARs contribute to the sense of touch in Drosophila larvae. Curr Biol 2012; 22:2124-34. [PMID: 23103192 DOI: 10.1016/j.cub.2012.09.019] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/07/2012] [Accepted: 09/07/2012] [Indexed: 01/07/2023]
Abstract
BACKGROUND Among the Aristotelian senses, the subcellular and molecular mechanisms involved in the sense of touch are the most poorly understood. RESULTS We demonstrate that specialized sensory neurons, the class II and class III multidendritic (md) neurons, are gentle touch sensors of Drosophila larvae. Genetic silencing of these cells significantly impairs gentle touch responses, optogenetic activation of these cells triggers behavioral touch-like responses, and optical recordings from these neurons show that they respond to force. The class III neurons possess highly dynamic dendritic protrusions rich in F-actin. Genetic manipulations that alter actin dynamics indicate that the actin-rich protrusions (termed sensory filopodia) on the class III neurons are required for behavioral sensitivity to gentle touch. Through a genome-wide RNAi screen of ion channels, we identified Ripped Pocket (rpk), No Mechanoreceptor Potential C (nompC), and NMDA Receptors 1 and 2 (Nmdars) as playing critical roles in both behavioral responses to touch and in the formation of the actin-rich sensory filopodia. Consistent with this requirement, reporters for rpk and nompC show expression in the class III neurons. A genetic null allele of rpk confirms its critical role in touch responses. CONCLUSIONS Output from class II and class III md neurons of the Drosophila larvae is necessary and sufficient for eliciting behavioral touch responses. These cells show physiological responses to force. Ion channels in several force-sensing gene families are required for behavioral sensitivity to touch and for the formation of the actin-rich sensory filopodia.
Collapse
|
148
|
Boiko N, Kucher V, Stockand JD, Eaton BA. Pickpocket1 is an ionotropic molecular sensory transducer. J Biol Chem 2012; 287:39878-86. [PMID: 23033486 DOI: 10.1074/jbc.m112.411736] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The molecular transformation of an external stimulus into changes in sensory neuron activity is incompletely described. Although a number of molecules have been identified that can respond to stimuli, evidence that these molecules can transduce stimulation into useful neural activity is lacking. Here we demonstrate that pickpocket1 (ppk1), a Drosophila homolog of mammalian Degenerin/epithelial sodium channels, encodes an acid-sensing sodium channel that conducts a transient depolarizing current in multidendritic sensory neurons of Drosophila melanogaster. Stimulation of Ppk1 is sufficient to bring these sensory neurons to threshold, eliciting a burst of action potentials. The transient nature of the neural activity produced by Ppk1 activation is the result of Ppk1 channel gating properties. This model is supported by the observation of enhanced bursting activity in neurons expressing a gain of function ppk1 mutant harboring the degenerin mutation. These findings demonstrate that Ppk1 can function as an ionotropic molecular sensory transducer capable of transforming the perception of a stimulus into phasic neuronal activity in sensory neurons.
Collapse
Affiliation(s)
- Nina Boiko
- Department of Physiology, University of Texas Health Sciences Center, San Antonio, Texas 78229, USA
| | | | | | | |
Collapse
|
149
|
Geffeney SL, Goodman MB. How we feel: ion channel partnerships that detect mechanical inputs and give rise to touch and pain perception. Neuron 2012; 74:609-19. [PMID: 22632719 DOI: 10.1016/j.neuron.2012.04.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2012] [Indexed: 10/28/2022]
Abstract
Every moment of every day, our skin and its embedded sensory neurons are bombarded with mechanical cues that we experience as pleasant or painful. Knowing the difference between innocuous and noxious mechanical stimuli is critical for survival and relies on the function of mechanoreceptor neurons that vary in their size, shape, and sensitivity. Their function is poorly understood at the molecular level. This review emphasizes the importance of integrating analysis at the molecular and cellular levels and focuses on the discovery of ion channel proteins coexpressed in the mechanoreceptors of worms, flies, and mice.
Collapse
Affiliation(s)
- Shana L Geffeney
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
150
|
Drosophila TRP channels and animal behavior. Life Sci 2012; 92:394-403. [PMID: 22877650 DOI: 10.1016/j.lfs.2012.07.029] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/09/2012] [Accepted: 07/16/2012] [Indexed: 11/24/2022]
Abstract
Multiple classes of cell surface receptors and ion channels participate in the detection of changes in environmental stimuli, and thereby influence animal behavior. Among the many classes of ion channels, Transient Receptor Potential (TRP) cation channels are notable in contributing to virtually every sensory modality, and in controlling a daunting array of behaviors. TRP channels appear to be conserved in all metazoan organisms including worms, insects and humans. Flies encode 13 TRPs, most of which are expressed and function in sensory neurons, and impact behaviors ranging from phototaxis to thermotaxis, gravitaxis, the avoidance of noxious tastants and smells and proprioception. Multiple diseases result from defects in TRPs, and flies provide an excellent animal model for dissecting the mechanisms underlying "TRPopathies." Drosophila TRPs also function in the sensation of botanically derived insect repellents, and related TRPs in insect pests are potential targets for the development of improved repellents to combat insect-borne diseases.
Collapse
|