101
|
Mercado III E, Department of Psychology, University at Buffalo, Buffalo, NY 14260, USA. Relating Cortical Wave Dynamics to Learning and Remembering. AIMS Neurosci 2014. [DOI: 10.3934/neuroscience.2014.3.185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
102
|
Kutchko KM, Fröhlich F. Emergence of metastable state dynamics in interconnected cortical networks with propagation delays. PLoS Comput Biol 2013; 9:e1003304. [PMID: 24204238 PMCID: PMC3812055 DOI: 10.1371/journal.pcbi.1003304] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 09/11/2013] [Indexed: 01/01/2023] Open
Abstract
The importance of the large number of thin-diameter and unmyelinated axons that connect different cortical areas is unknown. The pronounced propagation delays in these axons may prevent synchronization of cortical networks and therefore hinder efficient information integration and processing. Yet, such global information integration across cortical areas is vital for higher cognitive function. We hypothesized that delays in communication between cortical areas can disrupt synchronization and therefore enhance the set of activity trajectories and computations interconnected networks can perform. To evaluate this hypothesis, we studied the effect of long-range cortical projections with propagation delays in interconnected large-scale cortical networks that exhibited spontaneous rhythmic activity. Long-range connections with delays caused the emergence of metastable, spatio-temporally distinct activity states between which the networks spontaneously transitioned. Interestingly, the observed activity patterns correspond to macroscopic network dynamics such as globally synchronized activity, propagating wave fronts, and spiral waves that have been previously observed in neurophysiological recordings from humans and animal models. Transient perturbations with simulated transcranial alternating current stimulation (tACS) confirmed the multistability of the interconnected networks by switching the networks between these metastable states. Our model thus proposes that slower long-range connections enrich the landscape of activity states and represent a parsimonious mechanism for the emergence of multistability in cortical networks. These results further provide a mechanistic link between the known deficits in connectivity and cortical state dynamics in neuropsychiatric illnesses such as schizophrenia and autism, as well as suggest non-invasive brain stimulation as an effective treatment for these illnesses.
Collapse
Affiliation(s)
- Katrina M. Kutchko
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill North Carolina, United States of America
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
103
|
Gu C, St-Yves G, Davidsen J. Spiral wave chimeras in complex oscillatory and chaotic systems. PHYSICAL REVIEW LETTERS 2013; 111:134101. [PMID: 24116782 DOI: 10.1103/physrevlett.111.134101] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 07/10/2013] [Indexed: 06/02/2023]
Abstract
We demonstrate for the first time that spiral wave chimeras-spiral waves with spatially extended unsynchronzied cores-can exist in complex oscillatory and even locally chaotic homogeneous systems under nonlocal coupling. Using ideas from phase synchronization, we show in particular that the unsynchronized cores exhibit a distribution of different frequencies, thus generalizing the main concept of chimera states beyond simple oscillatory systems. In contrast to simple oscillatory systems, we find that spiral wave chimeras in complex oscillatory and locally chaotic systems are characterized by the presence of synchronization defect lines (SDLs), along which the dynamics follows a periodic behavior different from that of the bulk. Whereas this is similar to the case of local coupling, the type of the prevailing SDLs is very different.
Collapse
Affiliation(s)
- Chad Gu
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
104
|
Mohajerani MH, Chan AW, Mohsenvand M, LeDue J, Liu R, McVea DA, Boyd JD, Wang YT, Reimers M, Murphy TH. Spontaneous cortical activity alternates between motifs defined by regional axonal projections. Nat Neurosci 2013; 16:1426-35. [PMID: 23974708 DOI: 10.1038/nn.3499] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/17/2013] [Indexed: 12/20/2022]
Abstract
Using millisecond-timescale voltage-sensitive dye imaging in lightly anesthetized or awake adult mice, we show that a palette of sensory-evoked and hemisphere-wide activity motifs are represented in spontaneous activity. These motifs can reflect multiple modes of sensory processing, including vision, audition and touch. We found similar cortical networks with direct cortical activation using channelrhodopsin-2. Regional analysis of activity spread indicated modality-specific sources, such as primary sensory areas, a common posterior-medial cortical sink where sensory activity was extinguished within the parietal association area and a secondary anterior medial sink within the cingulate and secondary motor cortices for visual stimuli. Correlation analysis between functional circuits and intracortical axonal projections indicated a common framework corresponding to long-range monosynaptic connections between cortical regions. Maps of intracortical monosynaptic structural connections predicted hemisphere-wide patterns of spontaneous and sensory-evoked depolarization. We suggest that an intracortical monosynaptic connectome shapes the ebb and flow of spontaneous cortical activity.
Collapse
Affiliation(s)
- Majid H Mohajerani
- 1] Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada. [2] Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada. [3] [4]
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Hall D, Kuhlmann L. Mechanisms of seizure propagation in 2-dimensional centre-surround recurrent networks. PLoS One 2013; 8:e71369. [PMID: 23967201 PMCID: PMC3742758 DOI: 10.1371/journal.pone.0071369] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 06/29/2013] [Indexed: 11/19/2022] Open
Abstract
Understanding how seizures spread throughout the brain is an important problem in the treatment of epilepsy, especially for implantable devices that aim to avert focal seizures before they spread to, and overwhelm, the rest of the brain. This paper presents an analysis of the speed of propagation in a computational model of seizure-like activity in a 2-dimensional recurrent network of integrate-and-fire neurons containing both excitatory and inhibitory populations and having a difference of Gaussians connectivity structure, an approximation to that observed in cerebral cortex. In the same computational model network, alternative mechanisms are explored in order to simulate the range of seizure-like activity propagation speeds (0.1-100 mm/s) observed in two animal-slice-based models of epilepsy: (1) low extracellular [Formula: see text], which creates excess excitation and (2) introduction of gamma-aminobutyric acid (GABA) antagonists, which reduce inhibition. Moreover, two alternative connection topologies are considered: excitation broader than inhibition, and inhibition broader than excitation. It was found that the empirically observed range of propagation velocities can be obtained for both connection topologies. For the case of the GABA antagonist model simulation, consistent with other studies, it was found that there is an effective threshold in the degree of inhibition below which waves begin to propagate. For the case of the low extracellular [Formula: see text] model simulation, it was found that activity-dependent reductions in inhibition provide a potential explanation for the emergence of slowly propagating waves. This was simulated as a depression of inhibitory synapses, but it may also be achieved by other mechanisms. This work provides a localised network understanding of the propagation of seizures in 2-dimensional centre-surround networks that can be tested empirically.
Collapse
Affiliation(s)
- David Hall
- Victoria Research Labs, National ICT Australia, Parkville, Victoria, Australia
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Levin Kuhlmann
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
106
|
Hu B, Ma J, Tang J. Selection of multiarmed spiral waves in a regular network of neurons. PLoS One 2013; 8:e69251. [PMID: 23935966 PMCID: PMC3732196 DOI: 10.1371/journal.pone.0069251] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/06/2013] [Indexed: 11/18/2022] Open
Abstract
Formation and selection of multiarmed spiral wave due to spontaneous symmetry breaking are investigated in a regular network of Hodgkin-Huxley neuron by changing the excitability and imposing spatial forcing currents on the neurons in the network. The arm number of the multiarmed spiral wave is dependent on the distribution of spatial forcing currents and excitability diversity in the network, and the selection criterion for supporting multiarmed spiral waves is discussed. A broken spiral segment is measured by a short polygonal line connected by three adjacent points (controlled nodes), and a double-spiral wave can be developed from the spiral segment. Multiarmed spiral wave is formed when a group of double-spiral waves rotate in the same direction in the network. In the numerical studies, a group of controlled nodes are selected and spatial forcing currents are imposed on these nodes, and our results show that l-arm stable spiral wave (l = 2, 3, 4,...8) can be induced to occupy the network completely. It is also confirmed that low excitability is critical to induce multiarmed spiral waves while high excitability is important to propagate the multiarmed spiral wave outside so that distinct multiarmed spiral wave can occupy the network completely. Our results confirm that symmetry breaking of target wave in the media accounts for emergence of multiarmed spiral wave, which can be developed from a group of spiral waves with single arm under appropriate condition, thus the potential formation mechanism of multiarmed spiral wave in the media is explained.
Collapse
Affiliation(s)
- Bolin Hu
- Department of Physics, Lanzhou University of Technology, Lanzhou, China
| | - Jun Ma
- Department of Physics, Lanzhou University of Technology, Lanzhou, China
- * E-mail:
| | - Jun Tang
- College of Science, China University of Mining and Technology, Xuzhou, China
| |
Collapse
|
107
|
Dynamic analysis of recurrent phase patterns in spontaneous human EEG. BMC Neurosci 2013. [PMCID: PMC3704557 DOI: 10.1186/1471-2202-14-s1-p157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
108
|
Stroh A, Adelsberger H, Groh A, Rühlmann C, Fischer S, Schierloh A, Deisseroth K, Konnerth A. Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo. Neuron 2013; 77:1136-50. [PMID: 23522048 DOI: 10.1016/j.neuron.2013.01.031] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2013] [Indexed: 11/26/2022]
Abstract
Corticothalamic slow oscillations of neuronal activity determine internal brain states. At least in the cortex, the electrical activity is associated with large neuronal Ca(2+) transients. Here we implemented an optogenetic approach to explore causal features of the generation of slow oscillation-associated Ca(2+) waves in the in vivo mouse brain. We demonstrate that brief optogenetic stimulation (3-20 ms) of a local group of layer 5 cortical neurons is sufficient for the induction of global brain Ca(2+) waves. These Ca(2+) waves are evoked in an all-or-none manner, exhibit refractoriness during repetitive stimulation, and propagate over long distances. By local optogenetic stimulation, we demonstrate that evoked Ca(2+) waves initially invade the cortex, followed by a secondary recruitment of the thalamus. Together, our results establish that synchronous activity in a small cluster of layer 5 cortical neurons can initiate a global neuronal wave of activity suited for long-range corticothalamic integration.
Collapse
Affiliation(s)
- Albrecht Stroh
- Institute of Neuroscience, Technical University Munich, Biedersteiner Strasse 29, 80802 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Chandrasekaran L, Xiao Y, Sivaramakrishnan S. Functional architecture of the inferior colliculus revealed with voltage-sensitive dyes. Front Neural Circuits 2013; 7:41. [PMID: 23518906 PMCID: PMC3602642 DOI: 10.3389/fncir.2013.00041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/28/2013] [Indexed: 11/22/2022] Open
Abstract
We used optical imaging with voltage-sensitive dyes to investigate the spatio-temporal dynamics of synaptically evoked activity in brain slices of the inferior colliculus (IC). Responses in transverse slices which preserve cross-frequency connections and in modified sagittal slices that preserve connections within frequency laminae were evoked by activating the lateral lemniscal tract. Comparing activity between small and large populations of cells revealed response areas in the central nucleus of the IC that were similar in magnitude but graded temporally. In transverse sections, these response areas are summed to generate a topographic response profile. Activity through the commissure to the contralateral IC required an excitation threshold that was reached when GABAergic inhibition was blocked. Within laminae, module interaction created temporal homeostasis. Diffuse activity evoked by a single lemniscal shock re-organized into distinct spatial and temporal compartments when stimulus trains were used, and generated a directional activity profile within the lamina. Using different stimulus patterns to activate subsets of microcircuits in the central nucleus of the IC, we found that localized responses evoked by low-frequency stimulus trains spread extensively when train frequency was increased, suggesting recruitment of silent microcircuits. Long stimulus trains activated a circuit specific to post-inhibitory rebound neurons. Rebound microcircuits were defined by a focal point of initiation that spread to an annular ring that oscillated between inhibition and excitation. We propose that much of the computing power of the IC is derived from local circuits, some of which are cell-type specific. These circuits organize activity within and across frequency laminae, and are critical in determining the stimulus-selectivity of auditory coding.
Collapse
Affiliation(s)
- Lakshmi Chandrasekaran
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH, USA
| | | | | |
Collapse
|
110
|
Noise-induced spatiotemporal patterns in Hodgkin-Huxley neuronal network. Cogn Neurodyn 2013; 7:431-40. [PMID: 24427217 DOI: 10.1007/s11571-013-9245-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 10/27/2022] Open
Abstract
The effect of noise on the pattern selection in a regular network of Hodgkin-Huxley neurons is investigated, and the transition of pattern in the network is measured from subexcitable to excitable media. Extensive numerical results confirm that kinds of travelling wave such as spiral wave, circle wave and target wave could be developed and kept alive in the subexcitable network due to the noise. In the case of excitable media under noise, the developed spiral wave and target wave could coexist and new target-like wave is induced near to the border of media. The averaged membrane potentials over all neurons in the network are calculated to detect the periodicity of the time series and the generated traveling wave. Furthermore, the firing probabilities of neurons in networks are also calculated to analyze the collective behavior of networks.
Collapse
|
111
|
Wu X, Ma J. The formation mechanism of defects, spiral wave in the network of neurons. PLoS One 2013; 8:e55403. [PMID: 23383179 PMCID: PMC3561244 DOI: 10.1371/journal.pone.0055403] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/23/2012] [Indexed: 11/18/2022] Open
Abstract
A regular network of neurons is constructed by using the Morris-Lecar (ML) neuron with the ion channels being considered, and the potential mechnism of the formation of a spiral wave is investigated in detail. Several spiral waves are initiated by blocking the target wave with artificial defects and/or partial blocking (poisoning) in ion channels. Furthermore, possible conditions for spiral wave formation and the effect of partial channel blocking are discussed completely. Our results are summarized as follows. 1) The emergence of a target wave depends on the transmembrane currents with diversity, which mapped from the external forcing current and this kind of diversity is associated with spatial heterogeneity in the media. 2) Distinct spiral wave could be induced to occupy the network when the target wave is broken by partially blocking the ion channels of a fraction of neurons (local poisoned area), and these generated spiral waves are similar with the spiral waves induced by artificial defects. It is confirmed that partial channel blocking of some neurons in the network could play a similar role in breaking a target wave as do artificial defects; 3) Channel noise and additive Gaussian white noise are also considered, and it is confirmed that spiral waves are also induced in the network in the presence of noise. According to the results mentioned above, we conclude that appropriate poisoning in ion channels of neurons in the network acts as ‘defects’ on the evolution of the spatiotemporal pattern, and accounts for the emergence of a spiral wave in the network of neurons. These results could be helpful to understand the potential cause of the formation and development of spiral waves in the cortex of a neuronal system.
Collapse
Affiliation(s)
- Xinyi Wu
- Department of Physics, Lanzhou University of Technology, Lanzhou, China
| | - Jun Ma
- Department of Physics, Lanzhou University of Technology, Lanzhou, China
- * E-mail:
| |
Collapse
|
112
|
Namiki S, Norimoto H, Kobayashi C, Nakatani K, Matsuki N, Ikegaya Y. Layer III neurons control synchronized waves in the immature cerebral cortex. J Neurosci 2013; 33:987-1001. [PMID: 23325237 PMCID: PMC6704853 DOI: 10.1523/jneurosci.2522-12.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/10/2012] [Accepted: 10/24/2012] [Indexed: 01/11/2023] Open
Abstract
Correlated spiking activity prevails in immature cortical networks and is believed to contribute to neuronal circuit maturation; however, its spatiotemporal organization is not fully understood. Using wide-field calcium imaging from acute whole-brain slices of rat pups on postnatal days 1-6, we found that correlated spikes were initiated in the anterior part of the lateral entorhinal cortex and propagated anteriorly to the frontal cortex and posteriorly to the medial entorhinal cortex, forming traveling waves that engaged almost the entire cortex. The waves were blocked by ionotropic glutamatergic receptor antagonists but not by GABAergic receptor antagonists. During wave events, glutamatergic and GABAergic synaptic inputs were balanced and induced UP state-like depolarization. Magnified monitoring with cellular resolution revealed that the layer III neurons were first activated when the waves were initiated. Consistent with this finding, layer III contained a larger number of neurons that were autonomously active, even under a blockade of synaptic transmission. During wave propagation, the layer III neurons constituted a leading front of the wave. The waves did not enter the parasubiculum; however, in some cases, they were reflected at the parasubicular border and propagated back in the opposite direction. During this reflection process, the layer III neurons in the medial entorhinal cortex maintained persistent activity. Thus, our data emphasize the role of layer III in early network behaviors and provide insight into the circuit mechanisms through which cerebral cortical networks maturate.
Collapse
Affiliation(s)
- Shigehiro Namiki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan, and
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroaki Norimoto
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan, and
| | - Chiaki Kobayashi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan, and
| | - Kei Nakatani
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Norio Matsuki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan, and
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan, and
| |
Collapse
|
113
|
Milton JG. Neuronal avalanches, epileptic quakes and other transient forms of neurodynamics. Eur J Neurosci 2012; 36:2156-63. [PMID: 22805061 DOI: 10.1111/j.1460-9568.2012.08102.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Power-law behaviors in brain activity in healthy animals, in the form of neuronal avalanches, potentially benefit the computational activities of the brain, including information storage, transmission and processing. In contrast, power-law behaviors associated with seizures, in the form of epileptic quakes, potentially interfere with the brain's computational activities. This review draws attention to the potential roles played by homeostatic mechanisms and multistable time-delayed recurrent inhibitory loops in the generation of power-law phenomena. Moreover, it is suggested that distinctions between health and disease are scale-dependent. In other words, what is abnormal and defines disease it is not the propagation of neural activity but the propagation of activity in a neural population that is large enough to interfere with the normal activities of the brain. From this point of view, epilepsy is a disease that results from a failure of mechanisms, possibly located in part in the cortex itself or in the deep brain nuclei and brainstem, which truncate or otherwise confine the spatiotemporal scales of these power-law phenomena.
Collapse
Affiliation(s)
- John G Milton
- W. M. Keck Science Center, 925 N. Mills Ave., The Claremont Colleges, Claremont, CA 91711, USA.
| |
Collapse
|
114
|
Xiao Y, Huang XY, Van Wert S, Barreto E, Wu JY, Gluckman BJ, Schiff SJ. The role of inhibition in oscillatory wave dynamics in the cortex. Eur J Neurosci 2012; 36:2201-12. [PMID: 22805065 DOI: 10.1111/j.1460-9568.2012.08132.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cortical oscillations arise during behavioral and mental tasks, and all temporal oscillations have particular spatial patterns. Studying the mechanisms that generate and modulate the spatiotemporal characteristics of oscillations is important for understanding neural information processing and the signs and symptoms of dynamical diseases of the brain. Nevertheless, it remains unclear how GABAergic inhibition modulates these oscillation dynamics. Using voltage-sensitive dye imaging, pharmacological methods, and tangentially cut occipital neocortical brain slices (including layers 3-5) of Sprague-Dawley rat, we found that GABAa disinhibition with bicuculline can progressively simplify oscillation dynamics in the presence of carbachol in a concentration-dependent manner. Additionally, GABAb disinhibition can further simplify oscillation dynamics after GABAa receptors are blocked. Both GABAa and GABAb disinhibition increase the synchronization of the neural network. Theta frequency (5-15-Hz) oscillations are reliably generated by using a combination of GABAa and GABAb antagonists alone. These theta oscillations have basic spatiotemporal patterns similar to those generated by carbachol/bicuculline. These results are illustrative of how GABAergic inhibition increases the complexity of patterns of activity and contributes to the regulation of the cortex.
Collapse
Affiliation(s)
- Ying Xiao
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA
| | | | | | | | | | | | | |
Collapse
|
115
|
Lenkov DN, Volnova AB, Pope ARD, Tsytsarev V. Advantages and limitations of brain imaging methods in the research of absence epilepsy in humans and animal models. J Neurosci Methods 2012; 212:195-202. [PMID: 23137652 DOI: 10.1016/j.jneumeth.2012.10.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/24/2012] [Accepted: 10/25/2012] [Indexed: 12/18/2022]
Abstract
The purpose of this review is to analyze research possibilities and limitations of several methods, technical tools and their combinations for elucidation of absence epilepsy mechanisms, particularly the childhood absences. Despite the notable collection of simultaneous recording of clinical electroencephalography (EEG) and behavioral changes in relation to absence seizures, shortcomings of scalp EEG in both spatial resolution and precise detection of subcortical centers have limited the understanding of the fundamental mechanisms of altered brain function during and after recurrent epileptic paroxysms. Therefore, in the past decade, EEG recordings have often been combined with simultaneous imaging methods in epilepsy studies. Among imaging methods, the following ones are used regularly: functional magnetic resonance imaging (fMRI), positron-emission tomography (PET), low-resolution electromagnetic tomography (LORETA), single photon emission spectroscopy (SPECT), near-infrared spectroscopy (NIRS), and optical imaging of intrinsic signals (IOS). In addition, voltage-sensitive dye optical imaging method and even photoacoustic microscopy can be applied to animal models of epilepsy. Samplings of some of the most relevant data obtained by the above methods are presented. It appears that the elaboration of more adequate animal models of the patterns of absence seizures during the early postnatal period is necessary for better correspondence of human and animal absence phenomena.
Collapse
Affiliation(s)
- Dmitry N Lenkov
- Nevsky Center of Scientific Collaboration-Saint Petersburg, Razjezshaya 43/1 Liter A, Suite 8N, Saint Petersburg 192119, Russia
| | | | | | | |
Collapse
|
116
|
Voltage-sensitive dye imaging reveals dynamic spatiotemporal properties of cortical activity after spontaneous muscle twitches in the newborn rat. J Neurosci 2012; 32:10982-94. [PMID: 22875932 DOI: 10.1523/jneurosci.1322-12.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spontaneous activity in the developing brain contributes to its maturation, but how this activity is coordinated between distinct cortical regions and whether it might reflect developing sensory circuits is not well understood. Here, we address this question by imaging the spread and synchronization of cortical activity using voltage-sensitive dyes (VSDs) in the developing rat in vivo. In postnatal day 4-6 rats (n = 10), we collected spontaneous changes in VSD signal that reflect underlying membrane potential changes over a large craniotomy (50 mm2) that encompassed both the sensory and motor cortices of both hemispheres. Bursts of depolarization that occurred approximately once every 12 s were preceded by spontaneous twitches of the hindlimbs and/or tail. The close association with peripheral movements suggests that these bursts may represent a slow component of spindle bursts, a prominent form of activity in the developing somatosensory cortex. Twitch-associated cortical activity was synchronized between subregions of somatosensory cortex, which reflected the synchronized twitching of the limbs and tail. This activity also spread asymmetrically, toward the midline of the brain. We found that the spatial and temporal structure of such spontaneous cortical bursts closely matched that of sensory-evoked activity elicited via direct stimulation of the periphery. These data suggest that spontaneous cortical activity provides a recurring template of functional cortical circuits within the developing cortex and could contribute to the maturation of integrative connections between sensory and motor cortices.
Collapse
|
117
|
Long-range parallel processing and local recurrent activity in the visual cortex of the mouse. J Neurosci 2012; 32:11120-31. [PMID: 22875943 DOI: 10.1523/jneurosci.6304-11.2012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The transfer of visual information from the primary visual cortex (V1) to higher order visual cortices is an essential step in visual processing. However, the dynamics of activation of visual cortices is poorly understood. In mice, several extrastriate areas surrounding V1 have been described. Using voltage-sensitive dye imaging in vivo, we determined the spatiotemporal dynamics of the activity evoked in the visual cortex by simple stimuli. Independently of precise areal boundaries, we found that V1 activation is rapidly followed by the depolarization of three functional groups of higher order visual areas organized retinotopically. After this sequential activation, all four regions were simultaneously active for most of the response. Concomitantly with the parallel processing of the visual input, the activity initiated retinotopically and propagated quickly and isotropically within each region. The size of this activation by local recurrent activity, which extended beyond the initial retinotopic response, was dependent on the intensity of the stimulus. Moreover the difference in the spatiotemporal dynamic of the response to dark and bright stimuli suggested the dominance in the mouse of the ON pathway. Our results suggest that the cortex integrates visual information simultaneously through across-area parallel and within-area serial processing.
Collapse
|
118
|
Abstract
Electrode recordings and imaging studies have revealed that localized visual stimuli elicit waves of activity that travel across primary visual cortex. Traveling waves are present also during spontaneous activity, but they can be greatly reduced by widespread and intensive visual stimulation. In this Review, we summarize the evidence in favor of these traveling waves. We suggest that their substrate may lie in long-range horizontal connections and that their functional role may involve the integration of information over large regions of space.
Collapse
|
119
|
Heitmann S, Gong P, Breakspear M. A computational role for bistability and traveling waves in motor cortex. Front Comput Neurosci 2012; 6:67. [PMID: 22973223 PMCID: PMC3438483 DOI: 10.3389/fncom.2012.00067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/26/2012] [Indexed: 11/13/2022] Open
Abstract
Adaptive changes in behavior require rapid changes in brain states yet the brain must also remain stable. We investigated two neural mechanisms for evoking rapid transitions between spatiotemporal synchronization patterns of beta oscillations (13–30 Hz) in motor cortex. Cortex was modeled as a sheet of neural oscillators that were spatially coupled using a center-surround connection topology. Manipulating the inhibitory surround was found to evoke reliable transitions between synchronous oscillation patterns and traveling waves. These transitions modulated the simulated local field potential in agreement with physiological observations in humans. Intermediate levels of surround inhibition were also found to produce bistable coupling topologies that supported both waves and synchrony. State-dependent perturbation between bistable states produced very rapid transitions but were less reliable. We surmise that motor cortex may thus employ state-dependent computation to achieve very rapid changes between bistable motor states when the demand for speed exceeds the demand for accuracy.
Collapse
Affiliation(s)
- Stewart Heitmann
- School of Psychiatry, The University of New South Wales Sydney, NSW, Australia
| | | | | |
Collapse
|
120
|
|
121
|
Knöpfel T. Genetically encoded optical indicators for the analysis of neuronal circuits. Nat Rev Neurosci 2012; 13:687-700. [PMID: 22931891 DOI: 10.1038/nrn3293] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a departure from previous top-down or bottom-up strategies used to understand neuronal circuits, many forward-looking research programs now place the circuit itself at their centre. This has led to an emphasis on the dissection and elucidation of neuronal circuit elements and mechanisms, and on studies that ask how these circuits generate behavioural outputs. This movement towards circuit-centric strategies is progressing rapidly as a result of technological advances that combine genetic manipulation with light-based methods. The core tools of these new approaches are genetically encoded optical indicators and actuators that enable non-destructive interrogation and manipulation of neuronal circuits in behaving animals with cellular-level precision. This Review examines genetically encoded reporters of neuronal function and assesses their value for circuit-oriented neuroscientific investigations.
Collapse
Affiliation(s)
- Thomas Knöpfel
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako City, Saitama 351-0198, Japan.
| |
Collapse
|
122
|
Perron A, Akemann W, Mutoh H, Knöpfel T. Genetically encoded probes for optical imaging of brain electrical activity. PROGRESS IN BRAIN RESEARCH 2012; 196:63-77. [PMID: 22341321 DOI: 10.1016/b978-0-444-59426-6.00004-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The combination of optical imaging methods with targeted expression of protein-based fluorescent probes constitutes a powerful approach for functional analysis of selected cell populations within intact neuronal circuitries. Herein, we lay out the conceptual motivation for optogenetic recording of brain electrical activity using genetically encoded voltage-sensitive fluorescent proteins (VSFPs), describe how the current generation of VSFPs has evolved, and demonstrate how VSFPs report membrane voltage signals in isolated cells, brain slices, and living animals. We conclude with a critical appraisal of VSFPs for voltage recording and highlight promising applications of this emerging methodology for bridging cellular and intact systems biology.
Collapse
Affiliation(s)
- Amélie Perron
- RIKEN Brain Science Institute, Hirosawa, Wako City, Saitama, Japan
| | | | | | | |
Collapse
|
123
|
Gao X, Xu W, Wang Z, Takagaki K, Li B, Wu JY. Interactions between two propagating waves in rat visual cortex. Neuroscience 2012; 216:57-69. [PMID: 22561730 DOI: 10.1016/j.neuroscience.2012.04.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/05/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022]
Abstract
Sensory-evoked propagating waves are frequently observed in sensory cortex. However, it is largely unknown how an evoked propagating wave affects the activity evoked by subsequent sensory inputs, or how two propagating waves interact when evoked by simultaneous sensory inputs. Using voltage-sensitive dye imaging, we investigated the interactions between two evoked waves in rat visual cortex, and the spatiotemporal patterns of depolarization in the neuronal population due to wave-to-wave interactions. We have found that visually-evoked propagating waves have a refractory period of about 300 ms, within which the response to a subsequent visual stimulus is suppressed. Simultaneous presentation of two visual stimuli at different locations can evoke two waves propagating toward each other, and these two waves fuse. Fusion significantly shortens the latency and half-width of the response, leading to changes in the spatial profile of evoked population activity. The visually-evoked propagating wave may also be suppressed by a preceding spontaneous wave. The refractory period following a propagating wave and the fusion between two waves may contribute to visual sensory processing by modifying the spatiotemporal profile of population neuronal activity evoked by sensory events.
Collapse
Affiliation(s)
- X Gao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
124
|
Kim DH, Ghaffari R, Lu N, Rogers JA. Flexible and stretchable electronics for biointegrated devices. Annu Rev Biomed Eng 2012; 14:113-28. [PMID: 22524391 DOI: 10.1146/annurev-bioeng-071811-150018] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Advances in materials, mechanics, and manufacturing now allow construction of high-quality electronics and optoelectronics in forms that can readily integrate with the soft, curvilinear, and time-dynamic surfaces of the human body. The resulting capabilities create new opportunities for studying disease states, improving surgical procedures, monitoring health/wellness, establishing human-machine interfaces, and performing other functions. This review summarizes these technologies and illustrates their use in forms integrated with the brain, the heart, and the skin.
Collapse
Affiliation(s)
- Dae-Hyeong Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 151-744, Korea
| | | | | | | |
Collapse
|
125
|
Vladimirov N, Tu Y, Traub RD. Shortest Loops are Pacemakers in Random Networks of Electrically Coupled Axons. Front Comput Neurosci 2012; 6:17. [PMID: 22514532 PMCID: PMC3324298 DOI: 10.3389/fncom.2012.00017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/16/2012] [Indexed: 11/28/2022] Open
Abstract
High-frequency oscillations (HFOs) are an important part of brain activity in health and disease. However, their origins remain obscure and controversial. One possible mechanism depends on the presence of sparsely distributed gap junctions that electrically couple the axons of principal cells. A plexus of electrically coupled axons is modeled as a random network with bi-directional connections between its nodes. Under certain conditions the network can demonstrate one of two types of oscillatory activity. Type I oscillations (100–200 Hz) are predicted to be caused by spontaneously spiking axons in a network with strong (high conductance) gap junctions. Type II oscillations (200–300 Hz) require no spontaneous spiking and relatively weak (low-conductance) gap junctions, across which spike propagation failures occur. The type II oscillations are reentrant and self-sustained. Here we examine what determines the frequency of type II oscillations. Using simulations we show that the distribution of loop lengths is the key factor for determining frequency in type II network oscillations. We first analyze spike failure between two electrically coupled cells using a model of anatomically reconstructed CA1 pyramidal neuron. Then network oscillations are studied by a cellular automaton model with random network connectivity, in which we control loop statistics. We show that oscillation periods can be predicted from the network’s loop statistics. The shortest loop, around which a spike can travel, is the most likely pacemaker candidate. The principle of one loop as a pacemaker is remarkable, because random networks contain a large number of loops juxtaposed and superimposed, and their number rapidly grows with network size. This principle allows us to predict the frequency of oscillations from network connectivity and visa versa. We finally propose that type I oscillations may correspond to ripples, while type II oscillations correspond to so-called fast ripples.
Collapse
|
126
|
Chen Y, Palmer CR, Seidemann E. The relationship between voltage-sensitive dye imaging signals and spiking activity of neural populations in primate V1. J Neurophysiol 2012; 107:3281-95. [PMID: 22422999 DOI: 10.1152/jn.00977.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Voltage-sensitive dye imaging (VSDI) is a powerful technique for measuring neural population responses from a large cortical region simultaneously with millisecond temporal resolution and columnar spatial resolution. However, the relationship between the average VSDI signal and the average spiking activity of neural populations is largely unknown. To better understand this relationship, we compared visual responses measured from V1 of behaving monkeys using VSDI and single-unit electrophysiology. We found large and systematic differences between position and orientation tuning properties obtained with these two techniques. We then determined that a simple computational model could explain these tuning differences. This model, together with our experimental results, allowed us to estimate the quantitative relationship between the average VSDI signal and local spiking activity. We found that this relationship is similar to the previously reported nonlinear relationship between average membrane potential and spike rate in single V1 neurons, suggesting that VSDI signals are dominated by subthreshold synaptic activity. This model, together with the VSDI measured maps for spatial position (retinotopy) and orientation, also allowed us to estimate the spatial integration area over which neural responses contribute to the VSDI signal at a given location. We found that the VSDI-integration area is consistent with a Gaussian envelope with a space constant of ∼230 μm. Finally, we show how this model and estimated parameters can be used to predict the pattern of population responses at the level of spiking activity from VSDI responses.
Collapse
Affiliation(s)
- Yuzhi Chen
- Department of Psychology and Center for Perceptual Systems, University of Texas at Austin, Austin, TX, USA
| | | | | |
Collapse
|
127
|
Yu Y, Santos LM, Mattiace LA, Costa ML, Ferreira LC, Benabou K, Kim AH, Abrahams J, Bennett MVL, Rozental R. Reentrant spiral waves of spreading depression cause macular degeneration in hypoglycemic chicken retina. Proc Natl Acad Sci U S A 2012; 109:2585-9. [PMID: 22308470 PMCID: PMC3289307 DOI: 10.1073/pnas.1121111109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spreading depression (SD), a slow diffusion-mediated self-sustained wave of depolarization that severely disrupts neuronal function, has been implicated as a cause of cellular injury in a number of central nervous system pathologies, including blind spots in the retina. Here we show that in the hypoglycemic chicken retina, spontaneous episodes of SD can occur, resulting in irreversible punctate lesions in the macula, the region of highest visual acuity in the central region of the retina. These lesions in turn can act as sites of origin for secondary self-sustained reentrant spiral waves of SD that progressively enlarge the lesions. Furthermore, we show that the degeneration of the macula under hypoglycemic conditions can be prevented by blocking reentrant spiral SDs or by blocking caspases. The observation that spontaneous formation of reentrant spiral SD waves leads to the development of progressive retinal lesions under conditions of hypoglycemia establishes a potential role of SD in initiation and progression of macular degeneration, one of the leading causes of visual disability worldwide.
Collapse
Affiliation(s)
- Yufei Yu
- Departments of Cell Biology and Anatomy
| | - Laura M. Santos
- Programa de Ciências Morfológicas, Instituto de Ciências Biomédicas
- Stratego/Thermopraxis, Bio-Rio Polo de Biotecnologia, 21941-904 Rio de Janeiro, Brazil
| | | | - Manoel L. Costa
- Programa de Ciências Morfológicas, Instituto de Ciências Biomédicas
| | | | | | - Ana H. Kim
- Otolaryngology, and
- New York Eye and Ear Infirmary, New York, NY 10003
| | - John Abrahams
- Neurosurgery, New York Medical College, Valhalla, NY 10595
| | - Michael V. L. Bennett
- Domick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Renato Rozental
- Departments of Cell Biology and Anatomy
- Programa de Ciências Morfológicas, Instituto de Ciências Biomédicas
- Biotechnology Innovation Center-Paulo de Góes, Maternidade Escola, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- Department of Neurosurgery, Medical College of Georgia, Augusta, GA 30912
| |
Collapse
|
128
|
Viventi J, Kim DH, Vigeland L, Frechette ES, Blanco JA, Kim YS, Avrin AE, Tiruvadi VR, Hwang SW, Vanleer AC, Wulsin DF, Davis K, Gelber CE, Palmer L, Van der Spiegel J, Wu J, Xiao J, Huang Y, Contreras D, Rogers JA, Litt B. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci 2011; 14:1599-605. [PMID: 22081157 PMCID: PMC3235709 DOI: 10.1038/nn.2973] [Citation(s) in RCA: 568] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 10/04/2011] [Indexed: 11/09/2022]
Abstract
Arrays of electrodes for recording and stimulating the brain are used throughout clinical medicine and basic neuroscience research, yet are unable to sample large areas of the brain while maintaining high spatial resolution because of the need to individually wire each passive sensor at the electrode-tissue interface. To overcome this constraint, we developed new devices that integrate ultrathin and flexible silicon nanomembrane transistors into the electrode array, enabling new dense arrays of thousands of amplified and multiplexed sensors that are connected using fewer wires. We used this system to record spatial properties of cat brain activity in vivo, including sleep spindles, single-trial visual evoked responses and electrographic seizures. We found that seizures may manifest as recurrent spiral waves that propagate in the neocortex. The developments reported here herald a new generation of diagnostic and therapeutic brain-machine interface devices.
Collapse
Affiliation(s)
- Jonathan Viventi
- Department of Electrical and Computer Engineering, Polytechnic Institute of New York University, Brooklyn, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Abstract
Cortical electrical activity during nonrapid eye movement (non-REM) sleep is dominated by slow-wave activity (SWA). At larger spatial scales (∼2-30 cm), investigated by scalp EEG recordings, SWA has been shown to propagate globally over wide cortical regions as traveling waves, which has been proposed to serve as a temporal framework for neural plasticity. However, whether SWA dynamics at finer spatial scales also reflects the orderly propagation has not previously been investigated in humans. To reveal the local, finer spatial scale (∼1-6 cm) patterns of SWA propagation during non-REM sleep, electrocorticographic (ECoG) recordings were conducted from subdurally implanted electrode grids and a nonlinear correlation technique [mutual information (MI)] was implemented. MI analysis revealed spatial maps of correlations between cortical areas demonstrating SWA propagation directions, speed, and association strength. Highest correlations, indicating significant coupling, were detected during the initial positive-going deflection of slow waves. SWA propagated predominantly between adjacent cortical areas, albeit spatial noncontinuities were also frequently observed. MI analysis further uncovered significant convergence and divergence patterns. Areas receiving the most convergent activity were similar to those with high divergence rate, while reciprocal and circular propagation of SWA was also frequent. We hypothesize that SWA is characterized by distinct attributes depending on the spatial scale observed. At larger spatial scales, the orderly SWA propagation dominates; at the finer scale of the ECoG recordings, non-REM sleep is characterized by complex SWA propagation patterns.
Collapse
|
130
|
Takagaki K, Zhang C, Wu JY, Ohl FW. Flow detection of propagating waves with temporospatial correlation of activity. J Neurosci Methods 2011; 200:207-18. [PMID: 21664934 DOI: 10.1016/j.jneumeth.2011.05.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/24/2011] [Accepted: 05/25/2011] [Indexed: 11/30/2022]
Abstract
Voltage-sensitive dye imaging (VSDI) allows population patterns of cortical activity to be recorded with high temporal resolution, and recent findings ascribe potential significance to these spatial propagation patterns--both for normal cortical processing and in pathologies such as epilepsy. However, analysis of these spatiotemporal patterns has been mostly qualitative to date. In this report, we describe an algorithm to quantify fast local flow patterns of cortical population activation, as measured with VSDI. The algorithm uses correlation of temporal features across space, and therefore differs from conventional optical flow algorithms which use correlation of spatial features over time. This alternative approach allows us to take advantage of the characteristics of fast optical imaging data, which have very high temporal resolution but less spatial resolution. We verify the method both on artificial and biological data, and demonstrate its use.
Collapse
|