101
|
Xu T, Huo J, Shao S, Po M, Kawano T, Lu Y, Wu M, Zhen M, Wen Q. Descending pathway facilitates undulatory wave propagation in Caenorhabditis elegans through gap junctions. Proc Natl Acad Sci U S A 2018; 115:E4493-E4502. [PMID: 29686107 PMCID: PMC5948959 DOI: 10.1073/pnas.1717022115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Descending signals from the brain play critical roles in controlling and modulating locomotion kinematics. In the Caenorhabditis elegans nervous system, descending AVB premotor interneurons exclusively form gap junctions with the B-type motor neurons that execute forward locomotion. We combined genetic analysis, optogenetic manipulation, calcium imaging, and computational modeling to elucidate the function of AVB-B gap junctions during forward locomotion. First, we found that some B-type motor neurons generate rhythmic activity, constituting distributed oscillators. Second, AVB premotor interneurons use their electric inputs to drive bifurcation of B-type motor neuron dynamics, triggering their transition from stationary to oscillatory activity. Third, proprioceptive couplings between neighboring B-type motor neurons entrain the frequency of body oscillators, forcing coherent bending wave propagation. Despite substantial anatomical differences between the motor circuits of C. elegans and higher model organisms, converging principles govern coordinated locomotion.
Collapse
Affiliation(s)
- Tianqi Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230027 Hefei, China
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, 230027 Hefei, China
| | - Jing Huo
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230027 Hefei, China
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, 230027 Hefei, China
| | - Shuai Shao
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230027 Hefei, China
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, 230027 Hefei, China
| | - Michelle Po
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Taizo Kawano
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Yangning Lu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Min Wu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Quan Wen
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230027 Hefei, China;
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, 230027 Hefei, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
102
|
Costalago-Meruelo A, Machado P, Appiah K, Mujika A, Leskovsky P, Alvarez R, Epelde G, McGinnity T. Emulation of chemical stimulus triggered head movement in the C. elegans nematode. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.02.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
103
|
Fieseler C, Kunert-Graf J, Kutz JN. The control structure of the nematode Caenorhabditis elegans: Neuro-sensory integration and proprioceptive feedback. J Biomech 2018; 74:1-8. [PMID: 29705349 DOI: 10.1016/j.jbiomech.2018.03.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 02/24/2018] [Accepted: 03/25/2018] [Indexed: 11/27/2022]
Abstract
We develop a biophysically realistic model of the nematode C. elegans that includes: (i) its muscle structure and activation, (ii) key connectomic activation circuitry, and (iii) a weighted and time-dynamic proprioception. In combination, we show that these model components can reproduce the complex waveforms exhibited in C. elegans locomotive behaviors, chiefly omega turns. This is achieved via weighted, time-dependent suppression of the proprioceptive signal. Though speculative, such dynamics are biologically plausible due to the presence of neuromodulators which have recently been experimentally implicated in the escape response, which includes an omega turn. This is the first integrated neuromechanical model to reveal a mechanism capable of generating the complex waveforms observed in the behavior of C. elegans, thus contributing to a mathematical framework for understanding how control decisions can be executed at the connectome level in order to produce the full repertoire of observed behaviors.
Collapse
Affiliation(s)
- C Fieseler
- Department of Physics, University of Washington, Seattle, WA 98195, United States.
| | - J Kunert-Graf
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122, United States
| | - J N Kutz
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
104
|
Roll maneuvers are essential for active reorientation of Caenorhabditis elegans in 3D media. Proc Natl Acad Sci U S A 2018; 115:E3616-E3625. [PMID: 29618610 DOI: 10.1073/pnas.1706754115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Locomotion of the nematode Caenorhabditis elegans is a key observable used in investigations ranging from behavior to neuroscience to aging. However, while the natural environment of this model organism is 3D, quantitative investigations of its locomotion have been mostly limited to 2D motion. Here, we present a quantitative analysis of how the nematode reorients itself in 3D media. We identify a unique behavioral state of C. elegans-a roll maneuver-which is an essential component of 3D locomotion in burrowing and swimming. The rolls, associated with nonzero torsion of the nematode body, result in rotation of the plane of dorsoventral body undulations about the symmetry axis of the trajectory. When combined with planar turns in a new undulation plane, the rolls allow the nematode to reorient its body in any direction, thus enabling complete exploration of 3D space. The rolls observed in swimming are much faster than the ones in burrowing; we show that this difference stems from a purely hydrodynamic enhancement mechanism and not from a gait change or an increase in the body torsion. This result demonstrates that hydrodynamic viscous forces can enhance 3D reorientation in undulatory locomotion, in contrast to known hydrodynamic hindrance of both forward motion and planar turns.
Collapse
|
105
|
He L, Si G, Huang J, Samuel ADT, Perrimon N. Mechanical regulation of stem-cell differentiation by the stretch-activated Piezo channel. Nature 2018; 555:103-106. [PMID: 29414942 PMCID: PMC6101000 DOI: 10.1038/nature25744] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/12/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Li He
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Guangwei Si
- Department of Physics, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02142, USA
| | - Jiuhong Huang
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Aravinthan D T Samuel
- Department of Physics, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02142, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
106
|
Gao S, Guan SA, Fouad AD, Meng J, Kawano T, Huang YC, Li Y, Alcaire S, Hung W, Lu Y, Qi YB, Jin Y, Alkema M, Fang-Yen C, Zhen M. Excitatory motor neurons are local oscillators for backward locomotion. eLife 2018; 7:e29915. [PMID: 29360035 PMCID: PMC5780044 DOI: 10.7554/elife.29915] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/22/2017] [Indexed: 01/16/2023] Open
Abstract
Cell- or network-driven oscillators underlie motor rhythmicity. The identity of C. elegans oscillators remains unknown. Through cell ablation, electrophysiology, and calcium imaging, we show: (1) forward and backward locomotion is driven by different oscillators; (2) the cholinergic and excitatory A-class motor neurons exhibit intrinsic and oscillatory activity that is sufficient to drive backward locomotion in the absence of premotor interneurons; (3) the UNC-2 P/Q/N high-voltage-activated calcium current underlies A motor neuron's oscillation; (4) descending premotor interneurons AVA, via an evolutionarily conserved, mixed gap junction and chemical synapse configuration, exert state-dependent inhibition and potentiation of A motor neuron's intrinsic activity to regulate backward locomotion. Thus, motor neurons themselves derive rhythms, which are dually regulated by the descending interneurons to control the reversal motor state. These and previous findings exemplify compression: essential circuit properties are conserved but executed by fewer numbers and layers of neurons in a small locomotor network.
Collapse
Affiliation(s)
- Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Sihui Asuka Guan
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
| | - Anthony D Fouad
- Department of BioengineeringSchool of Engineering and Applied Science, University of PennsylvaniaPhiladelphiaUnited States
| | - Jun Meng
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
| | - Taizo Kawano
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
| | - Yung-Chi Huang
- Department of NeurobiologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Yi Li
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Salvador Alcaire
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
| | - Wesley Hung
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
| | - Yangning Lu
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
| | - Yingchuan Billy Qi
- Neurobiology Section, Division of Biological SciencesUniversity of CaliforniaSan DiegoUnited States
| | - Yishi Jin
- Neurobiology Section, Division of Biological SciencesUniversity of CaliforniaSan DiegoUnited States
| | - Mark Alkema
- Department of NeurobiologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Christopher Fang-Yen
- Department of BioengineeringSchool of Engineering and Applied Science, University of PennsylvaniaPhiladelphiaUnited States
- Department of NeuroscienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
| |
Collapse
|
107
|
Fouad AD, Teng S, Mark JR, Liu A, Alvarez-Illera P, Ji H, Du A, Bhirgoo PD, Cornblath E, Guan SA, Fang-Yen C. Distributed rhythm generators underlie Caenorhabditis elegans forward locomotion. eLife 2018; 7:e29913. [PMID: 29360037 PMCID: PMC5780042 DOI: 10.7554/elife.29913] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022] Open
Abstract
Coordinated rhythmic movements are ubiquitous in animal behavior. In many organisms, chains of neural oscillators underlie the generation of these rhythms. In C. elegans, locomotor wave generation has been poorly understood; in particular, it is unclear where in the circuit rhythms are generated, and whether there exists more than one such generator. We used optogenetic and ablation experiments to probe the nature of rhythm generation in the locomotor circuit. We found that multiple sections of forward locomotor circuitry are capable of independently generating rhythms. By perturbing different components of the motor circuit, we localize the source of secondary rhythms to cholinergic motor neurons in the midbody. Using rhythmic optogenetic perturbation, we demonstrate bidirectional entrainment of oscillations between different body regions. These results show that, as in many other vertebrates and invertebrates, the C. elegans motor circuit contains multiple oscillators that coordinate activity to generate behavior.
Collapse
Affiliation(s)
- Anthony D Fouad
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Shelly Teng
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Julian R Mark
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Alice Liu
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Pilar Alvarez-Illera
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Hongfei Ji
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Angelica Du
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Priya D Bhirgoo
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Eli Cornblath
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Sihui Asuka Guan
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
| | - Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
- Department of Neuroscience, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
108
|
Liu H, Yang W, Wu T, Duan F, Soucy E, Jin X, Zhang Y. Cholinergic Sensorimotor Integration Regulates Olfactory Steering. Neuron 2018; 97:390-405.e3. [PMID: 29290549 PMCID: PMC5773357 DOI: 10.1016/j.neuron.2017.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/06/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022]
Abstract
Sensorimotor integration regulates goal-directed movements. We study the signaling mechanisms underlying sensorimotor integration in C. elegans during olfactory steering, when the sinusoidal movements of the worm generate an in-phase oscillation in the concentration of the sampled odorant. We show that cholinergic neurotransmission encodes the oscillatory sensory response and the motor state of head undulations by acting through an acetylcholine-gated channel and a muscarinic acetylcholine receptor, respectively. These signals converge on two axonal domains of an interneuron RIA, where the sensory-evoked signal suppresses the motor-encoding signal to transform the spatial information of the odorant into the asymmetry between the axonal activities. The asymmetric synaptic outputs of the RIA axonal domains generate a directional bias in the locomotory trajectory. Experience alters the sensorimotor integration to generate specific behavioral changes. Our study reveals how cholinergic neurotransmission, which can represent sensory and motor information in the mammalian brain, regulates sensorimotor integration during goal-directed locomotions.
Collapse
Affiliation(s)
- He Liu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Wenxing Yang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Taihong Wu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Fengyun Duan
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Edward Soucy
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Xin Jin
- Society of Fellows, Harvard University, Cambridge, MA 02138, USA
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
109
|
Optical silencing of body wall muscles induces pumping inhibition in Caenorhabditis elegans. PLoS Genet 2017; 13:e1007134. [PMID: 29281635 PMCID: PMC5760098 DOI: 10.1371/journal.pgen.1007134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 01/09/2018] [Accepted: 11/28/2017] [Indexed: 01/08/2023] Open
Abstract
Feeding, a vital behavior in animals, is modulated depending on internal and external factors. In the nematode Caenorhabditis elegans, the feeding organ called the pharynx ingests food by pumping driven by the pharyngeal muscles. Here we report that optical silencing of the body wall muscles, which drive the locomotory movement of worms, affects pumping. In worms expressing the Arch proton pump or the ACR2 anion channel in the body wall muscle cells, the pumping rate decreases after activation of Arch or ACR2 with light illumination, and recovers gradually after terminating illumination. Pumping was similarly inhibited by illumination in locomotion-defective mutants carrying Arch, suggesting that perturbation of locomotory movement is not critical for pumping inhibition. Analysis of mutants and cell ablation experiments showed that the signals mediating the pumping inhibition response triggered by activation of Arch with weak light are transferred mainly through two pathways: one involving gap junction-dependent mechanisms through pharyngeal I1 neurons, which mediate fast signals, and the other involving dense-core vesicle-dependent mechanisms, which mediate slow signals. Activation of Arch with strong light inhibited pumping strongly in a manner that does not rely on either gap junction-dependent or dense-core vesicle-dependent mechanisms. Our study revealed a new aspect of the neural and neuroendocrine controls of pumping initiated from the body wall muscles. Since feeding is an essential behavior for the survival of animals, it is modulated by a variety of neural and neuroendocrine signals that are generated depending on internal and external conditions. To elucidate the cellular and molecular mechanisms underlying the regulation of feeding, the nematode Caenorhabditis elegans, which is composed of a small number of identifiable cells, provides a unique system. In C. elegans, the pumping movement of a feeding organ called the pharynx has been subjected to intensive genetic studies. Compared to the factors promoting pumping, however, the inhibitory mechanisms of pumping are less well understood. In this paper, we report that optogenetic silencing of the body wall muscles, which drive the locomotory movement of worms, inhibits pumping in the pharynx. Signals emanating from muscles are likely to trigger pumping inhibition, raising an interesting possibility that the proprioceptive sense detecting the relaxation of body wall muscles might be involved. When the Arch proton pump was activated with weak light, signals for pumping inhibition are transferred into the pharynx mainly through two pathways: one involving gap junction-dependent mechanisms through pharyngeal I1 neurons, which mediate fast signals, and the other involving dense-core vesicle-dependent mechanisms, which mediate slow signals. Strong activation of Arch inhibits pumping very strongly via other mechanisms. Thus, we have revealed a new link between pumping and the body wall muscles, and confirmed the important cooperation of neural and neuroendocrine circuits in the regulation of feeding behaviors.
Collapse
|
110
|
Yang L, Hong T, Zhang Y, Arriola JGS, Nelms BL, Mu R, Li D. A microfluidic diode for sorting and immobilization of Caenorhabditis elegans. Biomed Microdevices 2017; 19:38. [PMID: 28466284 DOI: 10.1007/s10544-017-0175-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Caenorhabditis elegans (C. elegans) is a powerful model organism extensively used in studies of human aging and diseases. Despite the numerous advantages of C. elegans as a model system, two biological characteristics may introduce complexity and variability to most studies: 1. it exhibits different biological features, composition and behaviors at different developmental stages; 2. it has very high mobility. Therefore, synchronization and immobilization of worm populations are often required. Conventionally, these processes are implemented through manual and chemical methods, which can be laborious, time-consuming and of low-throughput. Here we demonstrate a microfluidic design capable of simultaneously sorting worms by size at a throughput of 97±4 worms per minute, and allowing for worm collection or immobilization for further investigations. The key component, a microfluidic diode structure, comprises a curved head and a straight tail, which facilitates worms to enter from the curved end but prevents them from translocating from the straight side. This design remarkably enhances the efficiency and accuracy of worm sorting at relatively low flow rates, and hence provides a practical approach to sort worms even with the presence of egg clusters and debris. In addition, we show that well-sorted worms could be immobilized, kept alive and identically orientated, which could facilitate many C. elegans-based studies.
Collapse
Affiliation(s)
- Lijie Yang
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Tao Hong
- Queensborough Community College, Bayside, NY, 11364, USA
| | - Yin Zhang
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| | | | - Brian L Nelms
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, 37208, USA
| | - Richard Mu
- TIGER Institute, College of Engineering, Tennessee State University, Nashville, TN, 37209, USA.
| | - Deyu Li
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
111
|
Mujika A, Leškovský P, Álvarez R, Otaduy MA, Epelde G. Modeling Behavioral Experiment Interaction and Environmental Stimuli for a Synthetic C. elegans. Front Neuroinform 2017; 11:71. [PMID: 29276485 PMCID: PMC5727351 DOI: 10.3389/fninf.2017.00071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/24/2017] [Indexed: 11/13/2022] Open
Abstract
This paper focusses on the simulation of the neural network of the Caenorhabditis elegans living organism, and more specifically in the modeling of the stimuli applied within behavioral experiments and the stimuli that is generated in the interaction of the C. elegans with the environment. To the best of our knowledge, all efforts regarding stimuli modeling for the C. elegansare focused on a single type of stimulus, which is usually tested with a limited subnetwork of the C. elegansneural system. In this paper, we follow a different approach where we model a wide-range of different stimuli, with more flexible neural network configurations and simulations in mind. Moreover, we focus on the stimuli sensation by different types of sensory organs or various sensory principles of the neurons. As part of this work, most common stimuli involved in behavioral assays have been modeled. It includes models for mechanical, thermal, chemical, electrical and light stimuli, and for proprioception-related self-sensed information exchange with the neural network. The developed models have been implemented and tested with the hardware-based Si elegans simulation platform.
Collapse
Affiliation(s)
- Andoni Mujika
- Intelligent Transport Systems and Engineering, Vicomtech-ik4, Donostia/San Sebastián, Spain
| | - Peter Leškovský
- Intelligent Transport Systems and Engineering, Vicomtech-ik4, Donostia/San Sebastián, Spain
| | - Roberto Álvarez
- eHealth and Biomedical Applications, Vicomtech-ik4, Donostia/San Sebastián, Spain.,IIS Biodonostia, Donostia/San Sebastián, Spain
| | - Miguel A Otaduy
- Department of Computer Science, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Gorka Epelde
- eHealth and Biomedical Applications, Vicomtech-ik4, Donostia/San Sebastián, Spain.,IIS Biodonostia, Donostia/San Sebastián, Spain
| |
Collapse
|
112
|
Rakowski F, Karbowski J. Optimal synaptic signaling connectome for locomotory behavior in Caenorhabditis elegans: Design minimizing energy cost. PLoS Comput Biol 2017; 13:e1005834. [PMID: 29155814 PMCID: PMC5714387 DOI: 10.1371/journal.pcbi.1005834] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 12/04/2017] [Accepted: 10/19/2017] [Indexed: 11/18/2022] Open
Abstract
The detailed knowledge of C. elegans connectome for 3 decades has not contributed dramatically to our understanding of worm's behavior. One of main reasons for this situation has been the lack of data on the type of synaptic signaling between particular neurons in the worm's connectome. The aim of this study was to determine synaptic polarities for each connection in a small pre-motor circuit controlling locomotion. Even in this compact network of just 7 neurons the space of all possible patterns of connection types (excitation vs. inhibition) is huge. To deal effectively with this combinatorial problem we devised a novel and relatively fast technique based on genetic algorithms and large-scale parallel computations, which we combined with detailed neurophysiological modeling of interneuron dynamics and compared the theory to the available behavioral data. As a result of these massive computations, we found that the optimal connectivity pattern that matches the best locomotory data is the one in which all interneuron connections are inhibitory, even those terminating on motor neurons. This finding is consistent with recent experimental data on cholinergic signaling in C. elegans, and it suggests that the system controlling locomotion is designed to save metabolic energy. Moreover, this result provides a solid basis for a more realistic modeling of neural control in these worms, and our novel powerful computational technique can in principle be applied (possibly with some modifications) to other small-scale functional circuits in C. elegans.
Collapse
Affiliation(s)
- Franciszek Rakowski
- Interdisciplinary Centre for Mathematical and Computational Modeling, University of Warsaw, Warsaw, Poland
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Karbowski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
- Institute of Applied Mathematics and Mechanics, Department of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
- * E-mail:
| |
Collapse
|
113
|
Ardiel EL, Kumar A, Marbach J, Christensen R, Gupta R, Duncan W, Daniels JS, Stuurman N, Colón-Ramos D, Shroff H. Visualizing Calcium Flux in Freely Moving Nematode Embryos. Biophys J 2017; 112:1975-1983. [PMID: 28494967 DOI: 10.1016/j.bpj.2017.02.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/21/2017] [Accepted: 02/28/2017] [Indexed: 11/29/2022] Open
Abstract
The lack of physiological recordings from Caenorhabditis elegans embryos stands in stark contrast to the comprehensive anatomical and gene expression datasets already available. Using light-sheet fluorescence microscopy to address the challenges associated with functional imaging at this developmental stage, we recorded calcium dynamics in muscles and neurons and developed analysis strategies to relate activity and movement. In muscles, we found that the initiation of twitching was associated with a spreading calcium wave in a dorsal muscle bundle. Correlated activity in muscle bundles was linked with early twitching and eventual coordinated movement. To identify neuronal correlates of behavior, we monitored brainwide activity with subcellular resolution and identified a particularly active cell associated with muscle contractions. Finally, imaging neurons of a well-defined adult motor circuit, we found that reversals in the eggshell correlated with calcium transients in AVA interneurons.
Collapse
Affiliation(s)
- Evan L Ardiel
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland; Grass Lab, Marine Biological Laboratories, Woods Hole, Massachusetts.
| | - Abhishek Kumar
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland; Grass Lab, Marine Biological Laboratories, Woods Hole, Massachusetts
| | - Joseph Marbach
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Ryan Christensen
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Rishi Gupta
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - William Duncan
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | | | - Nico Stuurman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California
| | - Daniel Colón-Ramos
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Neuroscience, Yale University, New Haven, Connecticut; Whitman Center, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Hari Shroff
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland; Whitman Center, Marine Biological Laboratory, Woods Hole, Massachusetts
| |
Collapse
|
114
|
Cho Y, Porto DA, Hwang H, Grundy LJ, Schafer WR, Lu H. Automated and controlled mechanical stimulation and functional imaging in vivo in C. elegans. LAB ON A CHIP 2017; 17:2609-2618. [PMID: 28660945 PMCID: PMC5575793 DOI: 10.1039/c7lc00465f] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
C. elegans is a useful genetic model system for investigating mechanisms involved in sensory behavior which are potentially relevant to human diseases. While utilities of advanced techniques such as microfluidics have accelerated some areas of C. elegans sensory biology such as chemosensation, studies of mechanosensation conventionally require immobilization by glue and manual delivery of stimuli, leading to low experimental throughput and high variability. Here we present a microfluidic platform that precisely and robustly delivers a wide range of mechanical stimuli and can also be used in conjunction with functional imaging and optical interrogation techniques. The platform is fully automated, thereby greatly enhancing the throughput and robustness of experiments. We show that the behavior of the well-known gentle and harsh touch neurons and their receptive fields can be recapitulated. Using calcium dynamics as a read-out, we demonstrate its ability to perform a drug screen in vivo. We envision that this system will be able to greatly accelerate the discovery of genes and molecules involved in mechanosensation and multimodal sensory behavior, as well as the discovery of therapeutics for related diseases.
Collapse
Affiliation(s)
- Yongmin Cho
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, USA.
| | - Daniel A Porto
- Interdisciplinary Bioengineering Program, Georgia Institute of Technology, USA
| | - Hyundoo Hwang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, USA.
| | - Laura J Grundy
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - William R Schafer
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, USA.
| |
Collapse
|
115
|
Gengyo-Ando K, Kagawa-Nagamura Y, Ohkura M, Fei X, Chen M, Hashimoto K, Nakai J. A new platform for long-term tracking and recording of neural activity and simultaneous optogenetic control in freely behaving Caenorhabditis elegans. J Neurosci Methods 2017; 286:56-68. [PMID: 28506879 DOI: 10.1016/j.jneumeth.2017.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Real-time recording and manipulation of neural activity in freely behaving animals can greatly advance our understanding of how neural circuits regulate behavior. Ca2+ imaging and optogenetic manipulation with optical probes are key technologies for this purpose. However, integrating the two optical approaches with behavioral analysis has been technically challenging. NEW METHOD Here, we developed a new imaging system, ICaST (Integrated platform for Ca2+ imaging, Stimulation, and Tracking), which combines an automatic worm tracking system and a fast-scanning laser confocal microscope, to image neurons of interest in freely behaving C. elegans. We optimized different excitation wavelengths for the concurrent use of channelrhodopsin-2 and G-CaMP, a green fluorescent protein (GFP)-based, genetically encoded Ca2+ indicator. RESULTS Using ICaST in conjunction with an improved G-CaMP7, we successfully achieved long-term tracking and Ca2+ imaging of the AVA backward command interneurons while tracking the head of a moving animal. We also performed all-optical manipulation and simultaneous recording of Ca2+ dynamics from GABAergic motor neurons in conjunction with behavior monitoring. COMPARISON WITH EXISTING METHOD(S) Our system differs from conventional systems in that it does not require fluorescent markers for tracking and can track any part of the worm's body via bright-field imaging at high magnification. Consequently, this approach enables the long-term imaging of activity from neurons or nerve processes of interest with high spatiotemporal resolution. CONCLUSION Our imaging system is a powerful tool for studying the neural circuit mechanisms of C. elegans behavior and has potential for use in other small animals.
Collapse
|
116
|
Gonzales DL, Badhiwala KN, Vercosa DG, Avants BW, Liu Z, Zhong W, Robinson JT. Scalable electrophysiology in intact small animals with nanoscale suspended electrode arrays. NATURE NANOTECHNOLOGY 2017; 12:684-691. [PMID: 28416816 PMCID: PMC5500410 DOI: 10.1038/nnano.2017.55] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/04/2017] [Indexed: 05/17/2023]
Abstract
Electrical measurements from large populations of animals would help reveal fundamental properties of the nervous system and neurological diseases. Small invertebrates are ideal for these large-scale studies; however, patch-clamp electrophysiology in microscopic animals typically requires invasive dissections and is low-throughput. To overcome these limitations, we present nano-SPEARs: suspended electrodes integrated into a scalable microfluidic device. Using this technology, we have made the first extracellular recordings of body-wall muscle electrophysiology inside an intact roundworm, Caenorhabditis elegans. We can also use nano-SPEARs to record from multiple animals in parallel and even from other species, such as Hydra littoralis. Furthermore, we use nano-SPEARs to establish the first electrophysiological phenotypes for C. elegans models for amyotrophic lateral sclerosis and Parkinson's disease, and show a partial rescue of the Parkinson's phenotype through drug treatment. These results demonstrate that nano-SPEARs provide the core technology for microchips that enable scalable, in vivo studies of neurobiology and neurological diseases.
Collapse
Affiliation(s)
- Daniel L. Gonzales
- Applied Physics Program, Rice University, 6100 Main St., Houston, TX 77005, USA
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Krishna N. Badhiwala
- Department of Bioengineering, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Daniel G. Vercosa
- Applied Physics Program, Rice University, 6100 Main St., Houston, TX 77005, USA
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Ben W. Avants
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Zheng Liu
- Department of BioSciences, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Weiwei Zhong
- Department of BioSciences, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Jacob T. Robinson
- Applied Physics Program, Rice University, 6100 Main St., Houston, TX 77005, USA
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA
- Department of Bioengineering, Rice University, 6100 Main St., Houston, TX 77005, USA
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Correspondence to:
| |
Collapse
|
117
|
Kunert-Graf JM, Shlizerman E, Walker A, Kutz JN. Multistability and Long-Timescale Transients Encoded by Network Structure in a Model of C. elegans Connectome Dynamics. Front Comput Neurosci 2017; 11:53. [PMID: 28659783 PMCID: PMC5468412 DOI: 10.3389/fncom.2017.00053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/31/2017] [Indexed: 11/13/2022] Open
Abstract
The neural dynamics of the nematode Caenorhabditis elegans are experimentally low-dimensional and may be understood as long-timescale transitions between multiple low-dimensional attractors. Previous modeling work has found that dynamic models of the worm's full neuronal network are capable of generating reasonable dynamic responses to certain inputs, even when all neurons are treated as identical save for their connectivity. This study investigates such a model of C. elegans neuronal dynamics, finding that a wide variety of multistable responses are generated in response to varied inputs. Specifically, we generate bifurcation diagrams for all possible single-neuron inputs, showing the existence of fixed points and limit cycles for different input regimes. The nature of the dynamical response is seen to vary according to the type of neuron receiving input; for example, input into sensory neurons is more likely to drive a bifurcation in the system than input into motor neurons. As a specific example we consider compound input into the neuron pairs PLM and ASK, discovering bistability of a limit cycle and a fixed point. The transient timescales in approaching each of these states are much longer than any intrinsic timescales of the system. This suggests consistency of our model with the characterization of dynamics in neural systems as long-timescale transitions between discrete, low-dimensional attractors corresponding to behavioral states.
Collapse
Affiliation(s)
| | - Eli Shlizerman
- Department of Applied Mathematics, University of WashingtonSeattle, WA, United States.,Department of Electrical Engineering, University of WashingtonSeattle, WA, United States
| | - Andrew Walker
- Department of Applied Mathematics, University of WashingtonSeattle, WA, United States
| | - J Nathan Kutz
- Department of Physics, University of WashingtonSeattle, WA, United States.,Department of Applied Mathematics, University of WashingtonSeattle, WA, United States
| |
Collapse
|
118
|
McCloskey RJ, Fouad AD, Churgin MA, Fang-Yen C. Food responsiveness regulates episodic behavioral states in Caenorhabditis elegans. J Neurophysiol 2017; 117:1911-1934. [PMID: 28228583 PMCID: PMC5411472 DOI: 10.1152/jn.00555.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 02/04/2023] Open
Abstract
Animals optimize survival and reproduction in part through control of behavioral states, which depend on an organism's internal and external environments. In the nematode Caenorhabditis elegans a variety of behavioral states have been described, including roaming, dwelling, quiescence, and episodic swimming. These states have been considered in isolation under varied experimental conditions, making it difficult to establish a unified picture of how they are regulated. Using long-term imaging, we examined C. elegans episodic behavioral states under varied mechanical and nutritional environments. We found that animals alternate between high-activity (active) and low-activity (sedentary) episodes in any mechanical environment, while the incidence of episodes and their behavioral composition depend on food levels. During active episodes, worms primarily roam, as characterized by continuous whole body movement. During sedentary episodes, animals exhibit dwelling (slower movements confined to the anterior half of the body) and quiescence (a complete lack of movement). Roaming, dwelling, and quiescent states are manifest not only through locomotory characteristics but also in pharyngeal pumping (feeding) and in egg-laying behaviors. Next, we analyzed the genetic basis of behavioral states. We found that modulation of behavioral states depends on neuropeptides and insulin-like signaling in the nervous system. Sensory neurons and the Foraging homolog EGL-4 regulate behavior through control of active/sedentary episodes. Optogenetic stimulation of dopaminergic and serotonergic neurons induced dwelling, implicating dopamine as a dwell-promoting neurotransmitter. Our findings provide a more unified description of behavioral states and suggest that perception of nutrition is a conserved mechanism for regulating animal behavior.NEW & NOTEWORTHY One strategy by which animals adapt to their internal states and external environments is by adopting behavioral states. The roundworm Caenorhabditis elegans is an attractive model for investigating how behavioral states are genetically and neuronally controlled. Here we describe the hierarchical organization of behavioral states characterized by locomotory activity, feeding, and egg-laying. We show that decisions to engage in these behaviors are controlled by the nervous system through insulin-like signaling and the perception of food.
Collapse
Affiliation(s)
- Richard J McCloskey
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Anthony D Fouad
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Matthew A Churgin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania; and
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
119
|
Locomotion Behavior Is Affected by the Gα S Pathway and the Two-Pore-Domain K + Channel TWK-7 Interacting in GABAergic Motor Neurons in Caenorhabditis elegans. Genetics 2017; 206:283-297. [PMID: 28341653 DOI: 10.1534/genetics.116.195669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/19/2017] [Indexed: 01/03/2023] Open
Abstract
Adjusting the efficiency of movement in response to environmental cues is an essential integrative characteristic of adaptive locomotion behavior across species. However, the modulatory molecules and the pathways involved are largely unknown. Recently, we demonstrated that in Caenorhabditis elegans, a loss-of-function of the two-pore-domain potassium (K2P) channel TWK-7 causes a fast, coordinated, and persistent forward crawling behavior in which five central aspects of stimulated locomotion-velocity, direction, wave parameters, duration, and straightness-are affected. Here, we isolated the reduction-of-function allele cau1 of the C. elegans gene kin-2 in a forward genetic screen and showed that it phenocopies the locomotor activity and locomotion behavior of twk-7(null) animals. Kin-2 encodes the negative regulatory subunit of protein kinase A (KIN-1/PKA). Consistently, we found that other gain-of-function mutants of the GαS-KIN-1/PKA pathway resemble kin-2(cau1) and twk-7(null) in locomotion phenotype. Using the powerful genetics of the C. elegans system in combination with cell type-specific approaches and detailed locomotion analyses, we identified TWK-7 as a putative downstream target of the GαS-KIN-1/PKA pathway at the level of the γ-aminobutyric acid (GABA)ergic D-type motor neurons. Due to this epistatic interaction, we suggest that KIN-1/PKA and TWK-7 may share a common pathway that is probably involved in the modulation of both locomotor activity and locomotion behavior during forward crawling.
Collapse
|
120
|
Cho Y, Zhao CL, Lu H. Trends in high-throughput and functional neuroimaging in Caenorhabditis elegans. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28221003 DOI: 10.1002/wsbm.1376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 11/20/2016] [Accepted: 11/23/2016] [Indexed: 02/03/2023]
Abstract
The nervous system of Caenorhabditis elegans is an important model system for understanding the development and function of larger, more complex nervous systems. It is prized for its ease of handling, rapid life cycle, and stereotyped, well-cataloged development, with the development of all 302 neurons mapped all the way from zygote to adult. The combination of easy genetic manipulation and optical transparency of the worm allows for the direct imaging of its interior with fluorescent microscopy, without physically compromising the normal physiology of the animal itself. By expressing fluorescent markers, biologists study many developmental and cell biology questions in vivo; by expressing genetically encoded fluorescent calcium indicators within neurons, it is also possible to monitor their dynamic activity, answering questions about the structure and function of neural microcircuitry in the worm. However, to successfully image the worm it is necessary to overcome a number of experimental challenges. It is necessary to hold worms within the field of view, collect images efficiently and rapidly, and robustly analyze the data obtained. In recent years, a trend has developed toward imaging a large number of worms or neurons simultaneously, directly exploiting the unique properties of C. elegans to acquire data on a scale, which is not possible in other organisms. Doing this has required the development of new experimental tools, techniques, and data analytic approaches, all of which come together to open new perspectives on the field of neurobiology in C. elegans, and neuroscience in general. WIREs Syst Biol Med 2017, 9:e1376. doi: 10.1002/wsbm.1376 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Yongmin Cho
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Charles L Zhao
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
121
|
Kunert JM, Proctor JL, Brunton SL, Kutz JN. Spatiotemporal Feedback and Network Structure Drive and Encode Caenorhabditis elegans Locomotion. PLoS Comput Biol 2017; 13:e1005303. [PMID: 28076347 PMCID: PMC5226684 DOI: 10.1371/journal.pcbi.1005303] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 12/12/2016] [Indexed: 01/19/2023] Open
Abstract
Using a computational model of the Caenorhabditis elegans connectome dynamics, we show that proprioceptive feedback is necessary for sustained dynamic responses to external input. This is consistent with the lack of biophysical evidence for a central pattern generator, and recent experimental evidence that proprioception drives locomotion. The low-dimensional functional response of the Caenorhabditis elegans network of neurons to proprioception-like feedback is optimized by input of specific spatial wavelengths which correspond to the spatial scale of real body shape dynamics. Furthermore, we find that the motor subcircuit of the network is responsible for regulating this response, in agreement with experimental expectations. To explore how the connectomic dynamics produces the observed two-mode, oscillatory limit cycle behavior from a static fixed point, we probe the fixed point's low-dimensional structure using Dynamic Mode Decomposition. This reveals that the nonlinear network dynamics encode six clusters of dynamic modes, with timescales spanning three orders of magnitude. Two of these six dynamic mode clusters correspond to previously-discovered behavioral modes related to locomotion. These dynamic modes and their timescales are encoded by the network's degree distribution and specific connectivity. This suggests that behavioral dynamics are partially encoded within the connectome itself, the connectivity of which facilitates proprioceptive control.
Collapse
Affiliation(s)
- James M. Kunert
- Department of Physics, University of Washington, Seattle, Washington, United States of America
| | - Joshua L. Proctor
- Institute for Disease Modeling, Bellevue, Washington, United States of America
| | - Steven L. Brunton
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - J. Nathan Kutz
- Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
122
|
Chen L, Zhang J, Xu J, Wan L, Teng K, Xiang J, Zhang R, Huang Z, Liu Y, Li W, Liu X. rBmαTX14 Increases the Life Span and Promotes the Locomotion of Caenorhabditis Elegans. PLoS One 2016; 11:e0161847. [PMID: 27611314 PMCID: PMC5017660 DOI: 10.1371/journal.pone.0161847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/12/2016] [Indexed: 12/02/2022] Open
Abstract
The scorpion has been extensively used in various pharmacological profiles or as food supplies. The exploration of scorpion venom has been reported due to the presence of recombinant peptides. rBmαTX14 is an α-neurotoxin extracted from the venom gland of the East Asian scorpion Buthus martensii Karsch and can affect ion channel conductance. Here, we investigated the functions of rBmαTX14 using the Caenorhabditis elegans model. Using western blot analysis, rBmαTX14 was shown to be expressed both in the cytoplasm and inclusion bodies in the E.coli Rosetta (DE3) strain. Circular dichroism spectroscopy analysis demonstrated that purified rBmαTX14 retained its biological structures. Next, feeding nematodes with E.coli Rosetta (DE3) expressing rBmαTX14 caused extension of the life span and promoted the locomotion of the nematodes. In addition, we identified several genes that play various roles in the life span and locomotion of C. elegans through microarray analysis and quantitative real-time PCR. Furthermore, if the amino acid site H15 of rBmαTX14 was mutated, rBmαTX14 no longer promoted the C. elegans life span. In conclusion, the results not only demonstrated the functions and mechanism of rBmαTX14 in C. elegans, but also provided the new sight in the utility of recombinant peptides from scorpion venom.
Collapse
Affiliation(s)
- Lan Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ju Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jie Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lu Wan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Kaixuan Teng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jin Xiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Rui Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zebo Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yongmei Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wenhua Li
- School of Life Science, Wuhan University, Wuhan, 430071, China
| | - Xin Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- * E-mail:
| |
Collapse
|
123
|
Complex Locomotion Behavior Changes Are Induced in Caenorhabditis elegans by the Lack of the Regulatory Leak K+ Channel TWK-7. Genetics 2016; 204:683-701. [PMID: 27535928 DOI: 10.1534/genetics.116.188896] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/06/2016] [Indexed: 11/18/2022] Open
Abstract
The change of locomotion activity in response to external cues is a considerable achievement of animals and is required for escape responses, foraging, and other complex behaviors. Little is known about the molecular regulators of such an adaptive locomotion. The conserved eukaryotic two-pore domain potassium (K2P) channels have been recognized as regulatory K+ channels that modify the membrane potential of cells, thereby affecting, e.g., rhythmic muscle activity. By using the Caenorhabditis elegans system combined with cell-type-specific approaches and locomotion in-depth analyses, here, we found that the loss of K2P channel TWK-7 increases the locomotor activity of worms during swimming and crawling in a coordinated mode. Moreover, loss of TWK-7 function results in a hyperactive state that (although less pronounced) resembles the fast, persistent, and directed forward locomotion behavior of stimulated C. elegans TWK-7 is expressed in several head neurons as well as in cholinergic excitatory and GABAergic inhibitory motor neurons. Remarkably, the abundance of TWK-7 in excitatory B-type and inhibitory D-type motor neurons affected five central aspects of adaptive locomotion behavior: velocity/frequency, wavelength/amplitude, direction, duration, and straightness. Hence, we suggest that TWK-7 activity might represent a means to modulate a complex locomotion behavior at the level of certain types of motor neurons.
Collapse
|
124
|
Abstract
Locomotion in an organism is a consequence of the coupled interaction between brain, body and environment. Motivated by qualitative observations and quantitative perturbations of crawling in Drosophila melanogaster larvae, we construct a minimal integrative mathematical model for its locomotion. Our model couples the excitation-inhibition circuits in the nervous system to force production in the muscles and body movement in a frictional environment, thence linking neural dynamics to body mechanics via sensory feedback in a heterogeneous environment. Our results explain the basic observed phenomenology of crawling with and without proprioception, and elucidate the stabilizing role that proprioception plays in producing a robust crawling phenotype in the presence of biological perturbations. More generally, our approach allows us to make testable predictions on the effect of changing body-environment interactions on crawling, and serves as a step in the development of hierarchical models linking cellular processes to behavior.
Collapse
Affiliation(s)
- Cengiz Pehlevan
- The Swartz Program in Theoretical Neuroscience, Harvard University, Cambridge, United States
- Simons Center for Data Analysis, Simons Foundation, New York, United States
| | - Paolo Paoletti
- School of Engineering, The University of Liverpool, Liverpool, United Kingdom
| | - L Mahadevan
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
- Wyss Institute for Bioinspired Engineering, Harvard University, Cambridge, United States
- Kavli Institute for BioNano Science and Technology, Harvard University, Cambridge, United States
- Department of Physics, Harvard University, Cambridge, United States
| |
Collapse
|
125
|
Izquierdo EJ, Beer RD. The whole worm: brain-body-environment models of C. elegans. Curr Opin Neurobiol 2016; 40:23-30. [PMID: 27336738 DOI: 10.1016/j.conb.2016.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/26/2016] [Accepted: 06/02/2016] [Indexed: 12/20/2022]
Abstract
Brain, body and environment are in continuous dynamical interaction, and it is becoming increasingly clear that an animal's behavior must be understood as a product not only of its nervous system, but also of the ongoing feedback of this neural activity through the biomechanics of its body and the ecology of its environment. Modeling has an essential integrative role to play in such an understanding. But successful whole-animal modeling requires an animal for which detailed behavioral, biomechanical and neural information is available and a modeling methodology which can gracefully cope with the constantly changing balance of known and unknown biological constraints. Here we review recent progress on both optogenetic techniques for imaging and manipulating neural activity and neuromechanical modeling in the nematode worm Caenorhabditis elegans. This work demonstrates both the feasibility and challenges of whole-animal modeling.
Collapse
Affiliation(s)
- Eduardo J Izquierdo
- Cognitive Science Program, Program in Neuroscience, School of Informatics and Computing, Indiana University, United States
| | - Randall D Beer
- Cognitive Science Program, Program in Neuroscience, School of Informatics and Computing, Indiana University, United States.
| |
Collapse
|
126
|
Fang-Yen C, Alkema MJ, Samuel ADT. Illuminating neural circuits and behaviour in Caenorhabditis elegans with optogenetics. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140212. [PMID: 26240427 DOI: 10.1098/rstb.2014.0212] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The development of optogenetics, a family of methods for using light to control neural activity via light-sensitive proteins, has provided a powerful new set of tools for neurobiology. These techniques have been particularly fruitful for dissecting neural circuits and behaviour in the compact and transparent roundworm Caenorhabditis elegans. Researchers have used optogenetic reagents to manipulate numerous excitable cell types in the worm, from sensory neurons, to interneurons, to motor neurons and muscles. Here, we show how optogenetics applied to this transparent roundworm has contributed to our understanding of neural circuits.
Collapse
Affiliation(s)
- Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark J Alkema
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Aravinthan D T Samuel
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
127
|
In actio optophysiological analyses reveal functional diversification of dopaminergic neurons in the nematode C. elegans. Sci Rep 2016; 6:26297. [PMID: 27193056 PMCID: PMC4872038 DOI: 10.1038/srep26297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/29/2016] [Indexed: 11/08/2022] Open
Abstract
Many neuronal groups such as dopamine-releasing (dopaminergic) neurons are functionally divergent, although the details of such divergence are not well understood. Dopamine in the nematode Caenorhabditis elegans modulates various neural functions and is released from four left-right pairs of neurons. The terminal identities of these dopaminergic neurons are regulated by the same genetic program, and previous studies have suggested that they are functionally redundant. In this study, however, we show functional divergence within the dopaminergic neurons of C. elegans. Because dopaminergic neurons of the animals were supposedly activated by mechanical stimulus upon entry into a lawn of their food bacteria, we developed a novel integrated microscope system that can auto-track a freely-moving (in actio) C. elegans to individually monitor and stimulate the neuronal activities of multiple neurons. We found that only head-dorsal pair of dopaminergic neurons (CEPD), but not head-ventral or posterior pairs, were preferentially activated upon food entry. In addition, the optogenetic activation of CEPD neurons alone exhibited effects similar to those observed upon food entry. Thus, our results demonstrated functional divergence in the genetically similar dopaminergic neurons, which may provide a new entry point toward understanding functional diversity of neurons beyond genetic terminal identification.
Collapse
|
128
|
Shen Y, Wen Q, Liu H, Zhong C, Qin Y, Harris G, Kawano T, Wu M, Xu T, Samuel AD, Zhang Y. An extrasynaptic GABAergic signal modulates a pattern of forward movement in Caenorhabditis elegans. eLife 2016; 5:e14197. [PMID: 27138642 DOI: 10.7554/elife.14197.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/04/2016] [Indexed: 05/24/2023] Open
Abstract
As a common neurotransmitter in the nervous system, γ-aminobutyric acid (GABA) modulates locomotory patterns in both vertebrates and invertebrates. However, the signaling mechanisms underlying the behavioral effects of GABAergic modulation are not completely understood. Here, we demonstrate that a GABAergic signal in C. elegans modulates the amplitude of undulatory head bending through extrasynaptic neurotransmission and conserved metabotropic receptors. We show that the GABAergic RME head motor neurons generate undulatory activity patterns that correlate with head bending and the activity of RME causally links with head bending amplitude. The undulatory activity of RME is regulated by a pair of cholinergic head motor neurons SMD, which facilitate head bending, and inhibits SMD to limit head bending. The extrasynaptic neurotransmission between SMD and RME provides a gain control system to set head bending amplitude to a value correlated with optimal efficiency of forward movement.
Collapse
Affiliation(s)
- Yu Shen
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, United States
| | - Quan Wen
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Department of Physics, Center for Brain Science, Harvard University, Cambridge, United States
- CAS Center for Excellence in Brain Science and Intelligence Technology, University of Science and Technology of China, Hefei, China
| | - He Liu
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, United States
| | - Connie Zhong
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, United States
| | - Yuqi Qin
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, United States
| | - Gareth Harris
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, United States
| | - Taizo Kawano
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Min Wu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Tianqi Xu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Aravinthan Dt Samuel
- Department of Physics, Center for Brain Science, Harvard University, Cambridge, United States
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, United States
| |
Collapse
|
129
|
Shen Y, Wen Q, Liu H, Zhong C, Qin Y, Harris G, Kawano T, Wu M, Xu T, Samuel AD, Zhang Y. An extrasynaptic GABAergic signal modulates a pattern of forward movement in Caenorhabditis elegans. eLife 2016; 5. [PMID: 27138642 PMCID: PMC4854516 DOI: 10.7554/elife.14197] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/04/2016] [Indexed: 11/13/2022] Open
Abstract
As a common neurotransmitter in the nervous system, γ-aminobutyric acid (GABA) modulates locomotory patterns in both vertebrates and invertebrates. However, the signaling mechanisms underlying the behavioral effects of GABAergic modulation are not completely understood. Here, we demonstrate that a GABAergic signal in C. elegans modulates the amplitude of undulatory head bending through extrasynaptic neurotransmission and conserved metabotropic receptors. We show that the GABAergic RME head motor neurons generate undulatory activity patterns that correlate with head bending and the activity of RME causally links with head bending amplitude. The undulatory activity of RME is regulated by a pair of cholinergic head motor neurons SMD, which facilitate head bending, and inhibits SMD to limit head bending. The extrasynaptic neurotransmission between SMD and RME provides a gain control system to set head bending amplitude to a value correlated with optimal efficiency of forward movement. DOI:http://dx.doi.org/10.7554/eLife.14197.001
Collapse
Affiliation(s)
- Yu Shen
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, United States
| | - Quan Wen
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Department of Physics, Center for Brain Science, Harvard University, Cambridge, United States.,CAS Center for Excellence in Brain Science and Intelligence Technology, University of Science and Technology of China, Hefei, China
| | - He Liu
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, United States
| | - Connie Zhong
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, United States
| | - Yuqi Qin
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, United States
| | - Gareth Harris
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, United States
| | - Taizo Kawano
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Min Wu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Tianqi Xu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Aravinthan Dt Samuel
- Department of Physics, Center for Brain Science, Harvard University, Cambridge, United States
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, United States
| |
Collapse
|
130
|
Yuan J, Raizen DM, Bau HH. A hydrodynamic mechanism for attraction of undulatory microswimmers to surfaces (bordertaxis). J R Soc Interface 2016; 12:20150227. [PMID: 26156298 DOI: 10.1098/rsif.2015.0227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Although small nematodes significantly impact human and animal health, agriculture, and ecology, little is known about the role of hydrodynamics in their life cycles. Using the nematode Caenorhabditis elegans as a model undulatory microswimmer, we have observed that animals are attracted to and swim along surfaces. The attraction to surfaces does not require mechanosensory neuron function. In dilute swarms, swimmers aggregate near surfaces. Using resistive force-based theory, symmetry arguments, and direct hydrodynamic simulations, we demonstrate that forces resulting from the interaction between the swimmer-induced flow field and a nearby surface cause a short-range hydrodynamic torque that stirs the swimmers towards the surface. When combined with steric forces, this causes locomotion along the surface. This surface attraction may affect nematode mate and food finding behaviour and, in the case of parasitic nematodes, may facilitate host penetration. Surface attraction must be accounted for when studying animals' responses to various stimuli, and suggests means of controlling undulatory microswimmers.
Collapse
Affiliation(s)
- Jinzhou Yuan
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 220 South 33rd Street, USA
| | - David M Raizen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Haim H Bau
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 220 South 33rd Street, USA
| |
Collapse
|
131
|
Deng X, Xu JX, Wang J, Wang GY, Chen QS. Biological modeling the undulatory locomotion of C. elegans using dynamic neural network approach. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.12.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
132
|
Isakov A, Buchanan SM, Sullivan B, Ramachandran A, Chapman JKS, Lu ES, Mahadevan L, de Bivort B. Recovery of locomotion after injury in Drosophila melanogaster depends on proprioception. ACTA ACUST UNITED AC 2016; 219:1760-71. [PMID: 26994176 DOI: 10.1242/jeb.133652] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/08/2016] [Indexed: 11/20/2022]
Abstract
Locomotion is necessary for survival in most animal species. However, injuries to the appendages mediating locomotion are common. We assess the recovery of walking in Drosophila melanogaster following leg amputation. Whereas flies pre-amputation explore open arenas in a symmetric fashion on average, foreleg amputation induces a strong turning bias away from the side of the amputation. However, we find that unbiased walking behavior returns over time in wild-type flies, while recovery is significantly impaired in proprioceptive mutants. To identify the biomechanical basis of this locomotor impairment and recovery, we then examine individual leg motion (gait) at a fine scale. A minimal mathematical model that links neurodynamics to body mechanics during walking shows that redistributing leg forces between the right and left side enables the observed recovery. Altogether, our study suggests that proprioceptive input from the intact limbs plays a crucial role in the behavioral plasticity associated with locomotor recovery after injury.
Collapse
Affiliation(s)
- Alexander Isakov
- Department of Physics, Harvard University, Cambridge, MA 02138, USA Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | | | - Brian Sullivan
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Akshitha Ramachandran
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Edward S Lu
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - L Mahadevan
- Department of Physics, Harvard University, Cambridge, MA 02138, USA Center for Brain Science, Harvard University, Cambridge, MA 02138, USA Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Benjamin de Bivort
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA Rowland Institute at Harvard, Cambridge, MA 02142, USA Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
133
|
Trojanowski NF, Raizen DM, Fang-Yen C. Pharyngeal pumping in Caenorhabditis elegans depends on tonic and phasic signaling from the nervous system. Sci Rep 2016; 6:22940. [PMID: 26976078 PMCID: PMC4791602 DOI: 10.1038/srep22940] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/23/2016] [Indexed: 02/02/2023] Open
Abstract
Rhythmic movements are ubiquitous in animal locomotion, feeding, and circulatory systems. In some systems, the muscle itself generates rhythmic contractions. In others, rhythms are generated by the nervous system or by interactions between the nervous system and muscles. In the nematode Caenorhabditis elegans, feeding occurs via rhythmic contractions (pumping) of the pharynx, a neuromuscular feeding organ. Here, we use pharmacology, optogenetics, genetics, and electrophysiology to investigate the roles of the nervous system and muscle in generating pharyngeal pumping. Hyperpolarization of the nervous system using a histamine-gated chloride channel abolishes pumping, and optogenetic stimulation of pharyngeal muscle in these animals causes abnormal contractions, demonstrating that normal pumping requires nervous system function. In mutants that pump slowly due to defective nervous system function, tonic muscle stimulation causes rapid pumping, suggesting tonic neurotransmitter release may regulate pumping. However, tonic cholinergic motor neuron stimulation, but not tonic muscle stimulation, triggers pumps that electrophysiologically resemble typical rapid pumps. This suggests that pharyngeal cholinergic motor neurons are normally rhythmically, and not tonically active. These results demonstrate that the pharynx generates a myogenic rhythm in the presence of tonically released acetylcholine, and suggest that the pharyngeal nervous system entrains contraction rate and timing through phasic neurotransmitter release.
Collapse
Affiliation(s)
- Nicholas F Trojanowski
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 PA, USA.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, 19104 PA, USA.,Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 PA, USA
| | - David M Raizen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 PA, USA
| | - Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, 19104 PA, USA.,Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104 PA, USA
| |
Collapse
|
134
|
Venkatachalam V, Ji N, Wang X, Clark C, Mitchell JK, Klein M, Tabone CJ, Florman J, Ji H, Greenwood J, Chisholm AD, Srinivasan J, Alkema M, Zhen M, Samuel ADT. Pan-neuronal imaging in roaming Caenorhabditis elegans. Proc Natl Acad Sci U S A 2016; 113:E1082-8. [PMID: 26711989 PMCID: PMC4776525 DOI: 10.1073/pnas.1507109113] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We present an imaging system for pan-neuronal recording in crawling Caenorhabditis elegans. A spinning disk confocal microscope, modified for automated tracking of the C. elegans head ganglia, simultaneously records the activity and position of ∼80 neurons that coexpress cytoplasmic calcium indicator GCaMP6s and nuclear localized red fluorescent protein at 10 volumes per second. We developed a behavioral analysis algorithm that maps the movements of the head ganglia to the animal's posture and locomotion. Image registration and analysis software automatically assigns an index to each nucleus and calculates the corresponding calcium signal. Neurons with highly stereotyped positions can be associated with unique indexes and subsequently identified using an atlas of the worm nervous system. To test our system, we analyzed the brainwide activity patterns of moving worms subjected to thermosensory inputs. We demonstrate that our setup is able to uncover representations of sensory input and motor output of individual neurons from brainwide dynamics. Our imaging setup and analysis pipeline should facilitate mapping circuits for sensory to motor transformation in transparent behaving animals such as C. elegans and Drosophila larva.
Collapse
Affiliation(s)
- Vivek Venkatachalam
- Department of Physics, Harvard University, Cambridge, MA 02138; Center for Brain Science, Harvard University, Cambridge, MA 02138;
| | - Ni Ji
- Department of Physics, Harvard University, Cambridge, MA 02138; Center for Brain Science, Harvard University, Cambridge, MA 02138
| | - Xian Wang
- Department of Physics, Harvard University, Cambridge, MA 02138; Center for Brain Science, Harvard University, Cambridge, MA 02138
| | - Christopher Clark
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605
| | - James Kameron Mitchell
- Department of Physics, Harvard University, Cambridge, MA 02138; Center for Brain Science, Harvard University, Cambridge, MA 02138
| | - Mason Klein
- Department of Physics, Harvard University, Cambridge, MA 02138; Center for Brain Science, Harvard University, Cambridge, MA 02138
| | - Christopher J Tabone
- Department of Physics, Harvard University, Cambridge, MA 02138; Center for Brain Science, Harvard University, Cambridge, MA 02138
| | - Jeremy Florman
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Hongfei Ji
- Department of Physics, Nanjing University, 210093 Nanjing, China
| | - Joel Greenwood
- Center for Brain Science, Harvard University, Cambridge, MA 02138
| | - Andrew D Chisholm
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609
| | - Mark Alkema
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Mei Zhen
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5; Departments of Molecular Genetics and Physiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Aravinthan D T Samuel
- Department of Physics, Harvard University, Cambridge, MA 02138; Center for Brain Science, Harvard University, Cambridge, MA 02138;
| |
Collapse
|
135
|
Fushiki A, Zwart MF, Kohsaka H, Fetter RD, Cardona A, Nose A. A circuit mechanism for the propagation of waves of muscle contraction in Drosophila. eLife 2016; 5. [PMID: 26880545 PMCID: PMC4829418 DOI: 10.7554/elife.13253] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/14/2016] [Indexed: 12/20/2022] Open
Abstract
Animals move by adaptively coordinating the sequential activation of muscles. The circuit mechanisms underlying coordinated locomotion are poorly understood. Here, we report on a novel circuit for the propagation of waves of muscle contraction, using the peristaltic locomotion of Drosophila larvae as a model system. We found an intersegmental chain of synaptically connected neurons, alternating excitatory and inhibitory, necessary for wave propagation and active in phase with the wave. The excitatory neurons (A27h) are premotor and necessary only for forward locomotion, and are modulated by stretch receptors and descending inputs. The inhibitory neurons (GDL) are necessary for both forward and backward locomotion, suggestive of different yet coupled central pattern generators, and its inhibition is necessary for wave propagation. The circuit structure and functional imaging indicated that the commands to contract one segment promote the relaxation of the next segment, revealing a mechanism for wave propagation in peristaltic locomotion. DOI:http://dx.doi.org/10.7554/eLife.13253.001 Rhythmic movements such as walking and swimming require the coordinated contraction of many different muscles. Throughout the animal kingdom, from insects to mammals, animals possess specialized circuits of neurons that are responsible for producing these patterns of muscle contraction. These circuits are known as ‘central pattern generators’. Central pattern generators are made up of multiple types of neurons that exchange information. However, it is unclear how neurons controlling the movement of one part of the body relay information to neurons controlling the movement of other parts. To answer this question, Fushiki et al. used larvae from the fruit fly Drosophila melanogaster as a model, and combined techniques such as electrophysiology and electron microscopy with measures of the insect’s behavior. Fruit fly larvae have bodies that are made of segments, and they can contract and relax these segments in a sequence to propel themselves forwards or backwards. The contraction of one segment is accompanied by relaxation of the segment immediately in front. Fushiki et al. found that each body segment contains a copy of the same basic neuronal circuit. This circuit is made up of excitatory and inhibitory neurons. Both types of neurons regulate movement, but the inhibitory neurons must be suppressed for movement to occur. The experiments also showed that each circuit receives both long-range input from the brain and local sensory feedback. This combination of inputs ensures that the segments contract and relax in the correct order. Future challenges are to determine how the brain controls larval movement via its long-range projections to the body. A key step will be to map these circuits at the level of the individual neurons and the connections between them. DOI:http://dx.doi.org/10.7554/eLife.13253.002
Collapse
Affiliation(s)
- Akira Fushiki
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Maarten F Zwart
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Hiroshi Kohsaka
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Richard D Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Akinao Nose
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan.,Department of Physics, Graduate School of Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
136
|
Song P, Dong X, Liu X. A microfluidic device for automated, high-speed microinjection of Caenorhabditis elegans. BIOMICROFLUIDICS 2016; 10:011912. [PMID: 26958099 PMCID: PMC4769256 DOI: 10.1063/1.4941984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 02/03/2016] [Indexed: 05/22/2023]
Abstract
The nematode worm Caenorhabditis elegans has been widely used as a model organism in biological studies because of its short and prolific life cycle, relatively simple body structure, significant genetic overlap with human, and facile/inexpensive cultivation. Microinjection, as an established and versatile tool for delivering liquid substances into cellular/organismal objects, plays an important role in C. elegans research. However, the conventional manual procedure of C. elegans microinjection is labor-intensive and time-consuming and thus hinders large-scale C. elegans studies involving microinjection of a large number of C. elegans on a daily basis. In this paper, we report a novel microfluidic device that enables, for the first time, fully automated, high-speed microinjection of C. elegans. The device is automatically regulated by on-chip pneumatic valves and allows rapid loading, immobilization, injection, and downstream sorting of single C. elegans. For demonstration, we performed microinjection experiments on 200 C. elegans worms and demonstrated an average injection speed of 6.6 worm/min (average worm handling time: 9.45 s/worm) and a success rate of 77.5% (post-sorting success rate: 100%), both much higher than the performance of manual operation (speed: 1 worm/4 min and success rate: 30%). We conducted typical viability tests on the injected C. elegans and confirmed that the automated injection system does not impose significant adverse effect on the physiological condition of the injected C. elegans. We believe that the developed microfluidic device holds great potential to become a useful tool for facilitating high-throughput, large-scale worm biology research.
Collapse
Affiliation(s)
- Pengfei Song
- Department of Mechanical Engineering, McGill University , Montreal, Quebec H3A 0C3, Canada
| | - Xianke Dong
- Department of Mechanical Engineering, McGill University , Montreal, Quebec H3A 0C3, Canada
| | - Xinyu Liu
- Department of Mechanical Engineering, McGill University , Montreal, Quebec H3A 0C3, Canada
| |
Collapse
|
137
|
Nagy S, Huang YC, Alkema MJ, Biron D. Caenorhabditis elegans exhibit a coupling between the defecation motor program and directed locomotion. Sci Rep 2015; 5:17174. [PMID: 26597056 PMCID: PMC4657007 DOI: 10.1038/srep17174] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/26/2015] [Indexed: 12/27/2022] Open
Abstract
Distinct motor programs can be coupled to refine the repertoire of behavior dynamics. However, mechanisms underlying such coupling are poorly understood. The defecation motor program (DMP) of C. elegans is composed of a succession of body contraction and expulsion steps, performed repeatedly with a period of 50-60 sec. We show that recurring patterns of directed locomotion are executed in tandem with, co-reset, and co-terminate with the DMP cycle. Calcium waves in the intestine and proton signaling were shown to regulate the DMP. We found that genetic manipulations affecting these calcium dynamics regulated the corresponding patterns of directed locomotion. Moreover, we observed the initiation of a recurring locomotion pattern 10 seconds prior to the posterior body contraction, suggesting that the synchronized motor program may initiate prior to the DMP. This study links two multi-step motor programs executed by C. elegans in synchrony, utilizing non-neuronal tissue to drive directed locomotion.
Collapse
Affiliation(s)
- Stanislav Nagy
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL
| | - Yung-Chi Huang
- Department of Neurobiology, University of Ma ssachusetts Medical School, Worcester, MA
| | - Mark J Alkema
- Department of Neurobiology, University of Ma ssachusetts Medical School, Worcester, MA
| | - David Biron
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL
| |
Collapse
|
138
|
Paoletti P, Mahadevan L. A proprioceptive neuromechanical theory of crawling. Proc Biol Sci 2015; 281:rspb.2014.1092. [PMID: 25030987 DOI: 10.1098/rspb.2014.1092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The locomotion of many soft-bodied animals is driven by the propagation of rhythmic waves of contraction and extension along the body. These waves are classically attributed to globally synchronized periodic patterns in the nervous system embodied in a central pattern generator (CPG). However, in many primitive organisms such as earthworms and insect larvae, the evidence for a CPG is weak, or even non-existent. We propose a neuromechanical model for rhythmically coordinated crawling that obviates the need for a CPG, by locally coupling the local neuro-muscular dynamics in the body to the mechanics of the body as it interacts frictionally with the substrate. We analyse our model using a combination of analytical and numerical methods to determine the parameter regimes where coordinated crawling is possible and compare our results with experimental data. Our theory naturally suggests mechanisms for how these movements might arise in developing organisms and how they are maintained in adults, and also suggests a robust design principle for engineered motility in soft systems.
Collapse
Affiliation(s)
- P Paoletti
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford St., Cambridge, MA 02138, USA
| | - L Mahadevan
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford St., Cambridge, MA 02138, USA Department of Organismic and Evolutionary Biology, Harvard University, 29 Oxford St., Cambridge, MA 02138, USA
| |
Collapse
|
139
|
|
140
|
Kato S, Kaplan HS, Schrödel T, Skora S, Lindsay TH, Yemini E, Lockery S, Zimmer M. Global brain dynamics embed the motor command sequence of Caenorhabditis elegans. Cell 2015; 163:656-69. [PMID: 26478179 DOI: 10.1016/j.cell.2015.09.034] [Citation(s) in RCA: 293] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/14/2015] [Accepted: 09/02/2015] [Indexed: 11/26/2022]
Abstract
While isolated motor actions can be correlated with activities of neuronal networks, an unresolved problem is how the brain assembles these activities into organized behaviors like action sequences. Using brain-wide calcium imaging in Caenorhabditis elegans, we show that a large proportion of neurons across the brain share information by engaging in coordinated, dynamical network activity. This brain state evolves on a cycle, each segment of which recruits the activities of different neuronal sub-populations and can be explicitly mapped, on a single trial basis, to the animals' major motor commands. This organization defines the assembly of motor commands into a string of run-and-turn action sequence cycles, including decisions between alternative behaviors. These dynamics serve as a robust scaffold for action selection in response to sensory input. This study shows that the coordination of neuronal activity patterns into global brain dynamics underlies the high-level organization of behavior.
Collapse
Affiliation(s)
- Saul Kato
- Research Institute of Molecular Pathology IMP, Vienna Biocenter VBC, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Harris S Kaplan
- Research Institute of Molecular Pathology IMP, Vienna Biocenter VBC, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Tina Schrödel
- Research Institute of Molecular Pathology IMP, Vienna Biocenter VBC, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Susanne Skora
- Research Institute of Molecular Pathology IMP, Vienna Biocenter VBC, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | | | - Eviatar Yemini
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY 10032, USA
| | - Shawn Lockery
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Manuel Zimmer
- Research Institute of Molecular Pathology IMP, Vienna Biocenter VBC, Dr. Bohr-Gasse 7, 1030 Vienna, Austria.
| |
Collapse
|
141
|
Nagy S, Goessling M, Amit Y, Biron D. A Generative Statistical Algorithm for Automatic Detection of Complex Postures. PLoS Comput Biol 2015; 11:e1004517. [PMID: 26439258 PMCID: PMC4595081 DOI: 10.1371/journal.pcbi.1004517] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/25/2015] [Indexed: 02/06/2023] Open
Abstract
This paper presents a method for automated detection of complex (non-self-avoiding) postures of the nematode Caenorhabditis elegans and its application to analyses of locomotion defects. Our approach is based on progressively detailed statistical models that enable detection of the head and the body even in cases of severe coilers, where data from traditional trackers is limited. We restrict the input available to the algorithm to a single digitized frame, such that manual initialization is not required and the detection problem becomes embarrassingly parallel. Consequently, the proposed algorithm does not propagate detection errors and naturally integrates in a "big data" workflow used for large-scale analyses. Using this framework, we analyzed the dynamics of postures and locomotion of wild-type animals and mutants that exhibit severe coiling phenotypes. Our approach can readily be extended to additional automated tracking tasks such as tracking pairs of animals (e.g., for mating assays) or different species.
Collapse
Affiliation(s)
- Stanislav Nagy
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, United States of America
| | - Marc Goessling
- Department of Statistics, The University of Chicago, Chicago, Illinois, United States of America
| | - Yali Amit
- Department of Statistics, The University of Chicago, Chicago, Illinois, United States of America
- Department of Computer Science, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (YA); (DB)
| | - David Biron
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, United States of America
- Department of Physics and the James Franck Institute, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (YA); (DB)
| |
Collapse
|
142
|
Williams R, Hale ME. Fin ray sensation participates in the generation of normal fin movement in the hovering behavior of the bluegill sunfish (Lepomis macrochirus). ACTA ACUST UNITED AC 2015; 218:3435-47. [PMID: 26347560 DOI: 10.1242/jeb.123638] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/26/2015] [Indexed: 11/20/2022]
Abstract
For many fish species, the pectoral fins serve as important propulsors and stabilizers and are precisely controlled. Although it has been shown that mechanosensory feedback from the fin ray afferent nerves provides information on ray bending and position, the effects of this feedback on fin movement are not known. In other taxa, including insects and mammals, sensory feedback from the limbs has been shown to be important for control of limb-based behaviors and we hypothesized that this is also the case for the fishes. In this study, we examined the impact of the loss of sensory feedback from the pectoral fins on movement kinematics during hover behavior. Research was performed with bluegill sunfish (Lepomis macrochirus), a model for understanding the biomechanics of swimming and for bio-inspired design of engineered fins. The bluegill beats its pectoral fins rhythmically, and in coordination with pelvic and median fin movement, to maintain a stationary position while hovering. Bilateral deafferentation of the fin rays results in a splay-finned posture where fins beat regularly but at a higher frequency and without adducting fully against the side of the body. For unilateral transections, more irregular changes in fin movements were recorded. These data indicate that sensory feedback from the fin rays and membrane is important for generating normal hover movements but is not necessary for generating rhythmic fin movement.
Collapse
Affiliation(s)
- Richard Williams
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Melina E Hale
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637, USA Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
143
|
Schwarz RF, Branicky R, Grundy LJ, Schafer WR, Brown AEX. Changes in Postural Syntax Characterize Sensory Modulation and Natural Variation of C. elegans Locomotion. PLoS Comput Biol 2015; 11:e1004322. [PMID: 26295152 PMCID: PMC4546679 DOI: 10.1371/journal.pcbi.1004322] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/05/2015] [Indexed: 01/26/2023] Open
Abstract
Locomotion is driven by shape changes coordinated by the nervous system through time; thus, enumerating an animal's complete repertoire of shape transitions would provide a basis for a comprehensive understanding of locomotor behaviour. Here we introduce a discrete representation of behaviour in the nematode C. elegans. At each point in time, the worm's posture is approximated by its closest matching template from a set of 90 postures and locomotion is represented as sequences of postures. The frequency distribution of postural sequences is heavy-tailed with a core of frequent behaviours and a much larger set of rarely used behaviours. Responses to optogenetic and environmental stimuli can be quantified as changes in postural syntax: worms show different preferences for different sequences of postures drawn from the same set of templates. A discrete representation of behaviour will enable the use of methods developed for other kinds of discrete data in bioinformatics and language processing to be harnessed for the study of behaviour.
Collapse
Affiliation(s)
| | - Robyn Branicky
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Laura J. Grundy
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - André E. X. Brown
- MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| |
Collapse
|
144
|
Butler VJ, Branicky R, Yemini E, Liewald JF, Gottschalk A, Kerr RA, Chklovskii DB, Schafer WR. A consistent muscle activation strategy underlies crawling and swimming in Caenorhabditis elegans. J R Soc Interface 2015; 12:20140963. [PMID: 25551155 PMCID: PMC4277086 DOI: 10.1098/rsif.2014.0963] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Although undulatory swimming is observed in many organisms, the neuromuscular basis for undulatory movement patterns is not well understood. To better understand the basis for the generation of these movement patterns, we studied muscle activity in the nematode Caenorhabditis elegans. Caenorhabditis elegans exhibits a range of locomotion patterns: in low viscosity fluids the undulation has a wavelength longer than the body and propagates rapidly, while in high viscosity fluids or on agar media the undulatory waves are shorter and slower. Theoretical treatment of observed behaviour has suggested a large change in force–posture relationships at different viscosities, but analysis of bend propagation suggests that short-range proprioceptive feedback is used to control and generate body bends. How muscles could be activated in a way consistent with both these results is unclear. We therefore combined automated worm tracking with calcium imaging to determine muscle activation strategy in a variety of external substrates. Remarkably, we observed that across locomotion patterns spanning a threefold change in wavelength, peak muscle activation occurs approximately 45° (1/8th of a cycle) ahead of peak midline curvature. Although the location of peak force is predicted to vary widely, the activation pattern is consistent with required force in a model incorporating putative length- and velocity-dependence of muscle strength. Furthermore, a linear combination of local curvature and velocity can match the pattern of activation. This suggests that proprioception can enable the worm to swim effectively while working within the limitations of muscle biomechanics and neural control.
Collapse
Affiliation(s)
- Victoria J. Butler
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Janelia Farm Research Campus HHMI, Ashburn, VA 20147, USA
| | - Robyn Branicky
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Eviatar Yemini
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jana F. Liewald
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany
| | - Rex A. Kerr
- Janelia Farm Research Campus HHMI, Ashburn, VA 20147, USA
- e-mail:
| | | | - William R. Schafer
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Janelia Farm Research Campus HHMI, Ashburn, VA 20147, USA
| |
Collapse
|
145
|
Konop CJ, Knickelbine JJ, Sygulla MS, Vestling MM, Stretton AOW. Different neuropeptides are expressed in different functional subsets of cholinergic excitatory motorneurons in the nematode Ascaris suum. ACS Chem Neurosci 2015; 6:855-70. [PMID: 25812635 DOI: 10.1021/cn5003623] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Neuropeptides are known to have dramatic effects on neurons and synapses; however, despite extensive studies of the motorneurons in the parasitic nematode Ascaris suum, their peptide content had not yet been described. We determined the peptide content of single excitatory motorneurons by mass spectrometry and tandem mass spectrometry. There are two subsets of ventral cord excitatory motorneurons, each with neuromuscular output either anterior or posterior to their cell body, mediating forward or backward locomotion, respectively. Strikingly, the two sets of neurons contain different neuropeptides, with AF9 and six novel peptides (As-NLP-21.1-6) in anterior projectors, and the six afp-1 peptides in addition to AF2 in posterior projectors. In situ hybridization confirmed the expression of these peptides, validating the integrity of the dissection technique. This work identifies new components of the functional behavioral circuit, as well as potential targets for antiparasitic drug development.
Collapse
Affiliation(s)
- Christopher J. Konop
- Department of Zoology, ‡Parasitology and Vector Biology
Training Program, §Department of Chemistry, ∥Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jennifer J. Knickelbine
- Department of Zoology, ‡Parasitology and Vector Biology
Training Program, §Department of Chemistry, ∥Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Molly S. Sygulla
- Department of Zoology, ‡Parasitology and Vector Biology
Training Program, §Department of Chemistry, ∥Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Martha M. Vestling
- Department of Zoology, ‡Parasitology and Vector Biology
Training Program, §Department of Chemistry, ∥Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Antony O. W. Stretton
- Department of Zoology, ‡Parasitology and Vector Biology
Training Program, §Department of Chemistry, ∥Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
146
|
Zhen M, Samuel ADT. C. elegans locomotion: small circuits, complex functions. Curr Opin Neurobiol 2015; 33:117-26. [PMID: 25845627 DOI: 10.1016/j.conb.2015.03.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 12/20/2022]
Abstract
With 302 neurons in the adult Caenorhabditis elegans nervous system, it should be possible to build models of complex behaviors spanning sensory input to motor output. The logic of the motor circuit is an essential component of such models. Advances in physiological, anatomical, and neurogenetic analysis are revealing a surprisingly complex signaling network in the worm's small motor circuit. We are progressing towards a systems level dissection of the network of premotor interneurons, motor neurons, and muscle cells that move the animal forward and backward in its environment.
Collapse
Affiliation(s)
- Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8; Department of Physiology, University of Toronto, Toronto, ON, Canada M5S 1A8.
| | - Aravinthan D T Samuel
- Center for Brain Science, Department of Physics, Harvard University, Cambridge, MA 02138, United States.
| |
Collapse
|
147
|
Allen BD, Singer AC, Boyden ES. Principles of designing interpretable optogenetic behavior experiments. ACTA ACUST UNITED AC 2015; 22:232-8. [PMID: 25787711 PMCID: PMC4371169 DOI: 10.1101/lm.038026.114] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Over the last decade, there has been much excitement about the use of optogenetic tools to test whether specific cells, regions, and projection pathways are necessary or sufficient for initiating, sustaining, or altering behavior. However, the use of such tools can result in side effects that can complicate experimental design or interpretation. The presence of optogenetic proteins in cells, the effects of heat and light, and the activity of specific ions conducted by optogenetic proteins can result in cellular side effects. At the network level, activation or silencing of defined neural populations can alter the physiology of local or distant circuits, sometimes in undesired ways. We discuss how, in order to design interpretable behavioral experiments using optogenetics, one can understand, and control for, these potential confounds.
Collapse
Affiliation(s)
- Brian D Allen
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Annabelle C Singer
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Edward S Boyden
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
148
|
Abstract
Inertial swimmers use flexural movements to push water and generate thrust. We quantify this dynamical process for a slender body in a fluid by accounting for passive elasticity and hydrodynamics and active muscular force generation and proprioception. Our coupled elastohydrodynamic model takes the form of a nonlinear eigenvalue problem for the swimming speed and locomotion gait. The solution of this problem shows that swimmers use quantized resonant interactions with the fluid environment to enhance speed and efficiency. Thus, a fish is like an optimized diode that converts a prescribed alternating transverse motion to forward motion. Our results also allow for a broad comparative view of swimming locomotion and provide a mechanistic basis for the empirical relation linking the swimmer's speed U, length L, and tail beat frequency f, given by U/L ~ f [Bainbridge R (1958) J Exp Biol 35:109-133]. Furthermore, we show that a simple form of proprioceptive sensory feedback, wherein local muscle activation is function of body curvature, suffices to drive elastic instabilities associated with thrust production and leads to a spontaneous swimming gait without the need for a central pattern generator. Taken together, our results provide a simple mechanistic view of swimming consistent with natural observations and suggest ways to engineer artificial swimmers for optimal performance.
Collapse
|
149
|
A microfluidic device for efficient chemical testing using Caenorhabditis elegans. Biomed Microdevices 2015; 17:38. [DOI: 10.1007/s10544-015-9939-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
150
|
Guo M, Wu TH, Song YX, Ge MH, Su CM, Niu WP, Li LL, Xu ZJ, Ge CL, Al-Mhanawi MTH, Wu SP, Wu ZX. Reciprocal inhibition between sensory ASH and ASI neurons modulates nociception and avoidance in Caenorhabditis elegans. Nat Commun 2015; 6:5655. [PMID: 25585042 DOI: 10.1038/ncomms6655] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 10/24/2014] [Indexed: 02/02/2023] Open
Abstract
Sensory modulation is essential for animal sensations, behaviours and survival. Peripheral modulations of nociceptive sensations and aversive behaviours are poorly understood. Here we identify a biased cross-inhibitory neural circuit between ASH and ASI sensory neurons. This inhibition is essential to drive normal adaptive avoidance of a CuSO4 (Cu(2+)) challenge in Caenorhabditis elegans. In the circuit, ASHs respond to Cu(2+) robustly and suppress ASIs via electro-synaptically exciting octopaminergic RIC interneurons, which release octopamine (OA), and neuroendocrinally inhibit ASI by acting on the SER-3 receptor. In addition, ASIs sense Cu(2+) and permit a rapid onset of Cu(2+)-evoked responses in Cu(2+)-sensitive ADF neurons via neuropeptides possibly, to inhibit ASHs. ADFs function as interneurons to mediate ASI inhibition of ASHs by releasing serotonin (5-HT) that binds with the SER-5 receptor on ASHs. This elaborate modulation among sensory neurons via reciprocal inhibition fine-tunes the nociception and avoidance behaviour.
Collapse
Affiliation(s)
- Min Guo
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Tai-Hong Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yan-Xue Song
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Ming-Hai Ge
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Chun-Ming Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Wei-Pin Niu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Lan-Lan Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Zi-Jing Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Chang-Li Ge
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Maha T H Al-Mhanawi
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Shi-Ping Wu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Zheng-Xing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|