101
|
Ando K, Laborde Q, Brion JP, Duyckaerts C. 3D imaging in the postmortem human brain with CLARITY and CUBIC. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:303-317. [PMID: 29496149 DOI: 10.1016/b978-0-444-63639-3.00021-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recent innovations in tissue clearing and imaging technologies have enabled us to analyse biological systems directly in three-dimensions using thick samples. In this review, we discuss two of these recently reported tissue-clearing technologies (CLARITY and CUBIC) that are compatible with archival formalin-fixed human brain materials that have been fixed in formalin for a long period of time. We will discuss the pros and cons of these two technologies, examples of visualisation of Alzheimer neuropathological hallmarks and the exact protocols that we regularly use in the laboratory.
Collapse
Affiliation(s)
- Kunie Ando
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium; Laboratoire de Neuropathologie Escourolle, Hôpital de la Pitié-Salpêtrière, Paris, France.
| | - Quentin Laborde
- Laboratoire de Neuropathologie Escourolle, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Charles Duyckaerts
- Laboratoire de Neuropathologie Escourolle, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
102
|
Abstract
The past decade has witnessed the development of powerful, genetically encoded tools for manipulating and monitoring neuronal function in freely moving animals. These tools are most readily deployed in genetic model organisms and efforts to map the circuits that govern behavior have increasingly focused on worms, flies, zebrafish, and mice. The traditional virtues of these animals for genetic studies in terms of small size, short generation times, and ease of animal husbandry in a laboratory setting have facilitated rapid progress, and the neural basis of an increasing number of behaviors is being established at cellular resolution in each of these animals. The depth and breadth of this analysis should soon offer a significantly more comprehensive understanding of how the circuitry underlying behavior is organized in particular animals and promises to help answer long-standing questions that have waited for such a brain-wide perspective on nervous system function. The comprehensive understanding achieved in genetic model animals is thus likely to make them into paradigmatic examples that will serve as touchstones for comparisons to understand how behavior is organized in other animals, including ourselves.
Collapse
Affiliation(s)
- Benjamin H White
- a Laboratory of Molecular Biology , National Institute of Mental Health, NIH , Bethesda , MD , USA
| |
Collapse
|
103
|
Jiang T, Long B, Gong H, Xu T, Li X, Duan Z, Li A, Deng L, Zhong Q, Peng X, Yuan J. A platform for efficient identification of molecular phenotypes of brain-wide neural circuits. Sci Rep 2017; 7:13891. [PMID: 29066836 PMCID: PMC5654830 DOI: 10.1038/s41598-017-14360-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/10/2017] [Indexed: 12/31/2022] Open
Abstract
A neural circuit is a structural-functional unit of achieving particular information transmission and processing, and have various inputs, outputs and molecular phenotypes. Systematic acquisition and comparative analysis of the molecular features of neural circuits are crucial to elucidating the operating mechanisms of brain function. However, no efficient, systematic approach is available for describing the molecular phenotypes of specific neural circuits at the whole brain scale. In this study, we developed a rapid whole-brain optical tomography method and devised an efficient approach to map brain-wide structural and molecular information in the same brain: rapidly imaging and sectioning the whole brain as well as automatically collecting all slices; conveniently selecting slices of interest through quick data browsing and then performing post hoc immunostaining of selected slices. Using this platform, we mapped the brain-wide distribution of inputs to motor, sensory and visual cortices and determined their molecular phenotypes in several subcortical regions. Our platform significantly enhances the efficiency of molecular phenotyping of neural circuits and provides access to automation and industrialization of cell type analyses for specific circuits.
Collapse
Affiliation(s)
- Tao Jiang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ben Long
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tonghui Xu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhuonan Duan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lei Deng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiuyuan Zhong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xue Peng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jing Yuan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China. .,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
104
|
Experience-Dependent Plasticity Drives Individual Differences in Pheromone-Sensing Neurons. Neuron 2017; 91:878-892. [PMID: 27537487 DOI: 10.1016/j.neuron.2016.07.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 03/30/2016] [Accepted: 07/06/2016] [Indexed: 02/03/2023]
Abstract
Different individuals exhibit distinct behaviors, but studying the neuronal basis of individuality is a daunting challenge. Here, we considered this question in the vomeronasal organ, a pheromone-detecting epithelium containing hundreds of distinct neuronal types. Using light-sheet microscopy, we characterized in each animal the abundance of 17 physiologically defined types, altogether recording from half a million sensory neurons. Inter-animal differences were much larger than predicted by chance, and different physiological cell types showed distinct patterns of variability. One neuronal type was present in males and nearly absent in females. Surprisingly, this apparent sexual dimorphism was generated by plasticity, as exposure to female scents or single ligands led to both the elimination of this cell type and alterations in olfactory behavior. That an all-or-none apparent sex difference in neuronal types is controlled by experience-even in a sensory system devoted to "innate" behaviors-highlights the extraordinary role of "nurture" in neural individuality.
Collapse
|
105
|
Galas L, Bénard M, Lebon A, Komuro Y, Schapman D, Vaudry H, Vaudry D, Komuro H. Postnatal Migration of Cerebellar Interneurons. Brain Sci 2017; 7:brainsci7060062. [PMID: 28587295 PMCID: PMC5483635 DOI: 10.3390/brainsci7060062] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/25/2017] [Accepted: 06/01/2017] [Indexed: 12/26/2022] Open
Abstract
Due to its continuing development after birth, the cerebellum represents a unique model for studying the postnatal orchestration of interneuron migration. The combination of fluorescent labeling and ex/in vivo imaging revealed a cellular highway network within cerebellar cortical layers (the external granular layer, the molecular layer, the Purkinje cell layer, and the internal granular layer). During the first two postnatal weeks, saltatory movements, transient stop phases, cell-cell interaction/contact, and degradation of the extracellular matrix mark out the route of cerebellar interneurons, notably granule cells and basket/stellate cells, to their final location. In addition, cortical-layer specific regulatory factors such as neuropeptides (pituitary adenylate cyclase-activating polypeptide (PACAP), somatostatin) or proteins (tissue-type plasminogen activator (tPA), insulin growth factor-1 (IGF-1)) have been shown to inhibit or stimulate the migratory process of interneurons. These factors show further complexity because somatostatin, PACAP, or tPA have opposite or no effect on interneuron migration depending on which layer or cell type they act upon. External factors originating from environmental conditions (light stimuli, pollutants), nutrients or drug of abuse (alcohol) also alter normal cell migration, leading to cerebellar disorders.
Collapse
Affiliation(s)
- Ludovic Galas
- Normandie University, UNIROUEN, INSERM, Regional Cell Imaging Platform of Normandy (PRIMACEN), 76000 Rouen, France.
| | - Magalie Bénard
- Normandie University, UNIROUEN, INSERM, Regional Cell Imaging Platform of Normandy (PRIMACEN), 76000 Rouen, France.
| | - Alexis Lebon
- Normandie University, UNIROUEN, INSERM, Regional Cell Imaging Platform of Normandy (PRIMACEN), 76000 Rouen, France.
| | - Yutaro Komuro
- Department of Neurophysiology, Donders Centre for Neuroscience, Radboud University, Nijmegen 6525 AJ, The Netherlands.
| | - Damien Schapman
- Normandie University, UNIROUEN, INSERM, Regional Cell Imaging Platform of Normandy (PRIMACEN), 76000 Rouen, France.
| | - Hubert Vaudry
- Normandie University, UNIROUEN, INSERM, Regional Cell Imaging Platform of Normandy (PRIMACEN), 76000 Rouen, France.
| | - David Vaudry
- Normandie University, UNIROUEN, INSERM, Regional Cell Imaging Platform of Normandy (PRIMACEN), 76000 Rouen, France.
| | - Hitoshi Komuro
- Department of Neuroscience, School of Medicine, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
106
|
Seiriki K, Kasai A, Hashimoto T, Schulze W, Niu M, Yamaguchi S, Nakazawa T, Inoue KI, Uezono S, Takada M, Naka Y, Igarashi H, Tanuma M, Waschek JA, Ago Y, Tanaka KF, Hayata-Takano A, Nagayasu K, Shintani N, Hashimoto R, Kunii Y, Hino M, Matsumoto J, Yabe H, Nagai T, Fujita K, Matsuda T, Takuma K, Baba A, Hashimoto H. High-Speed and Scalable Whole-Brain Imaging in Rodents and Primates. Neuron 2017. [DOI: 10.1016/j.neuron.2017.05.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
107
|
Strobl F, Schmitz A, Stelzer EHK. Improving your four-dimensional image: traveling through a decade of light-sheet-based fluorescence microscopy research. Nat Protoc 2017; 12:1103-1109. [DOI: 10.1038/nprot.2017.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
108
|
Dong P, Liu Z. Shaping development by stochasticity and dynamics in gene regulation. Open Biol 2017; 7:170030. [PMID: 28469006 PMCID: PMC5451542 DOI: 10.1098/rsob.170030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/05/2017] [Indexed: 12/12/2022] Open
Abstract
Animal development is orchestrated by spatio-temporal gene expression programmes that drive precise lineage commitment, proliferation and migration events at the single-cell level, collectively leading to large-scale morphological change and functional specification in the whole organism. Efforts over decades have uncovered two 'seemingly contradictory' mechanisms in gene regulation governing these intricate processes: (i) stochasticity at individual gene regulatory steps in single cells and (ii) highly coordinated gene expression dynamics in the embryo. Here we discuss how these two layers of regulation arise from the molecular and the systems level, and how they might interplay to determine cell fate and to control the complex body plan. We also review recent technological advancements that enable quantitative analysis of gene regulation dynamics at single-cell, single-molecule resolution. These approaches outline next-generation experiments to decipher general principles bridging gaps between molecular dynamics in single cells and robust gene regulations in the embryo.
Collapse
Affiliation(s)
- Peng Dong
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Dr, Ashburn, VA 20147, USA
| | - Zhe Liu
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Dr, Ashburn, VA 20147, USA
| |
Collapse
|
109
|
Hoshiba Y, Wada T, Hayashi-Takagi A. Synaptic Ensemble Underlying the Selection and Consolidation of Neuronal Circuits during Learning. Front Neural Circuits 2017; 11:12. [PMID: 28303092 PMCID: PMC5332426 DOI: 10.3389/fncir.2017.00012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 02/20/2017] [Indexed: 12/20/2022] Open
Abstract
Memories are crucial to the cognitive essence of who we are as human beings. Accumulating evidence has suggested that memories are stored as a subset of neurons that probably fire together in the same ensemble. Such formation of cell ensembles must meet contradictory requirements of being plastic and responsive during learning, but also stable in order to maintain the memory. Although synaptic potentiation is presumed to be the cellular substrate for this process, the link between the two remains correlational. With the application of the latest optogenetic tools, it has been possible to collect direct evidence of the contributions of synaptic potentiation in the formation and consolidation of cell ensemble in a learning task specific manner. In this review, we summarize the current view of the causative role of synaptic plasticity as the cellular mechanism underlying the encoding of memory and recalling of learned memories. In particular, we will be focusing on the latest optoprobe developed for the visualization of such “synaptic ensembles.” We further discuss how a new synaptic ensemble could contribute to the formation of cell ensembles during learning and memory. With the development and application of novel research tools in the future, studies on synaptic ensembles will pioneer new discoveries, eventually leading to a comprehensive understanding of how the brain works.
Collapse
Affiliation(s)
- Yoshio Hoshiba
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma University Maebashi, Japan
| | - Takeyoshi Wada
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma University Maebashi, Japan
| | - Akiko Hayashi-Takagi
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashi, Japan; PRESTO, Japan Science and Technology AgencyKawaguchi, Japan
| |
Collapse
|
110
|
Abstract
Despite substantial recent progress, our understanding of the principles and mechanisms underlying complex brain function and cognition remains incomplete. Network neuroscience proposes to tackle these enduring challenges. Approaching brain structure and function from an explicitly integrative perspective, network neuroscience pursues new ways to map, record, analyze and model the elements and interactions of neurobiological systems. Two parallel trends drive the approach: the availability of new empirical tools to create comprehensive maps and record dynamic patterns among molecules, neurons, brain areas and social systems; and the theoretical framework and computational tools of modern network science. The convergence of empirical and computational advances opens new frontiers of scientific inquiry, including network dynamics, manipulation and control of brain networks, and integration of network processes across spatiotemporal domains. We review emerging trends in network neuroscience and attempt to chart a path toward a better understanding of the brain as a multiscale networked system.
Collapse
Affiliation(s)
- Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Electrical &Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
- Indiana University Network Science Institute, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
111
|
Panzeri S, Harvey CD, Piasini E, Latham PE, Fellin T. Cracking the Neural Code for Sensory Perception by Combining Statistics, Intervention, and Behavior. Neuron 2017; 93:491-507. [PMID: 28182905 PMCID: PMC5308795 DOI: 10.1016/j.neuron.2016.12.036] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 12/24/2022]
Abstract
The two basic processes underlying perceptual decisions-how neural responses encode stimuli, and how they inform behavioral choices-have mainly been studied separately. Thus, although many spatiotemporal features of neural population activity, or "neural codes," have been shown to carry sensory information, it is often unknown whether the brain uses these features for perception. To address this issue, we propose a new framework centered on redefining the neural code as the neural features that carry sensory information used by the animal to drive appropriate behavior; that is, the features that have an intersection between sensory and choice information. We show how this framework leads to a new statistical analysis of neural activity recorded during behavior that can identify such neural codes, and we discuss how to combine intersection-based analysis of neural recordings with intervention on neural activity to determine definitively whether specific neural activity features are involved in a task.
Collapse
Affiliation(s)
- Stefano Panzeri
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy.
| | | | - Eugenio Piasini
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Peter E Latham
- Gatsby Computational Neuroscience Unit, University College London, London, W1T 4JG, UK
| | - Tommaso Fellin
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy; Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genoa, Italy.
| |
Collapse
|
112
|
Bovetti S, Moretti C, Zucca S, Dal Maschio M, Bonifazi P, Fellin T. Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain. Sci Rep 2017; 7:40041. [PMID: 28053310 PMCID: PMC5215385 DOI: 10.1038/srep40041] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/30/2016] [Indexed: 02/06/2023] Open
Abstract
Genetically encoded calcium indicators and optogenetic actuators can report and manipulate the activity of specific neuronal populations. However, applying imaging and optogenetics simultaneously has been difficult to establish in the mammalian brain, even though combining the techniques would provide a powerful approach to reveal the functional organization of neural circuits. Here, we developed a technique based on patterned two-photon illumination to allow fast scanless imaging of GCaMP6 signals in the intact mouse brain at the same time as single-photon optogenetic inhibition with Archaerhodopsin. Using combined imaging and electrophysiological recording, we demonstrate that single and short bursts of action potentials in pyramidal neurons can be detected in the scanless modality at acquisition frequencies up to 1 kHz. Moreover, we demonstrate that our system strongly reduces the artifacts in the fluorescence detection that are induced by single-photon optogenetic illumination. Finally, we validated our technique investigating the role of parvalbumin-positive (PV) interneurons in the control of spontaneous cortical dynamics. Monitoring the activity of cellular populations on a precise spatiotemporal scale while manipulating neuronal activity with optogenetics provides a powerful tool to causally elucidate the cellular mechanisms underlying circuit function in the intact mammalian brain.
Collapse
Affiliation(s)
- Serena Bovetti
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Claudio Moretti
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Stefano Zucca
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Marco Dal Maschio
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Paolo Bonifazi
- School of Physics and Astronomy, Italy-Israel Joint Neuroscience Laboratory, Tel Aviv University, 69978 Tel Aviv, Israel.,Computational Neuroimaging Lab, BioCruces Health Research Institute, Plaza de Cruces, s/n E-48903, Barakaldo, Spain
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
113
|
Abstract
Myelination by oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system is essential for nervous system function and health. Despite its importance, we have a relatively poor understanding of the molecular and cellular mechanisms that regulate myelination in the living animal, particularly in the CNS. This is partly due to the fact that myelination commences around birth in mammals, by which time the CNS is complex and largely inaccessible, and thus very difficult to image live in its intact form. As a consequence, in recent years much effort has been invested in the use of smaller, simpler, transparent model organisms to investigate mechanisms of myelination in vivo. Although the majority of such studies have employed zebrafish, the Xenopus tadpole also represents an important complementary system with advantages for investigating myelin biology in vivo. Here we review how the natural features of zebrafish embryos and larvae and Xenopus tadpoles make them ideal systems for experimentally interrogating myelination by live imaging. We outline common transgenic technologies used to generate zebrafish and Xenopus that express fluorescent reporters, which can be used to image myelination. We also provide an extensive overview of the imaging modalities most commonly employed to date to image the nervous system in these transparent systems, and also emerging technologies that we anticipate will become widely used in studies of zebrafish and Xenopus myelination in the near future.
Collapse
Affiliation(s)
- Jenea M Bin
- Centre for Neuroregeneration, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - David A Lyons
- Centre for Neuroregeneration, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
114
|
Abstract
Light microscopy is a key tool in modern cell biology. Light microscopy has several features that make it ideally suited for imaging biology in living cells: the resolution is well-matched to the sizes of subcellular structures, a diverse range of available fluorescent probes makes it possible to mark proteins, organelles, and other structures for imaging, and the relatively nonperturbing nature of light means that living cells can be imaged for long periods of time to follow their dynamics. Here I provide a brief introduction to using light microscopy in cell biology, with particular emphasis on factors to be considered when starting microscopy experiments.
Collapse
Affiliation(s)
- Kurt Thorn
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
115
|
Altunbek M, Kuku G, Culha M. Gold Nanoparticles in Single-Cell Analysis for Surface Enhanced Raman Scattering. Molecules 2016; 21:E1617. [PMID: 27897986 PMCID: PMC6273107 DOI: 10.3390/molecules21121617] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/17/2016] [Accepted: 11/22/2016] [Indexed: 01/24/2023] Open
Abstract
The need for new therapeutic approaches in the treatment of challenging diseases such as cancer, which often consists of a highly heterogeneous and complex population of cells, brought up the idea of analyzing single cells. The development of novel techniques to analyze single cells has been intensively studied to fully understand specific alternations inducing abnormalities in cellular function. One of the techniques used for single cell analysis is surface-enhanced Raman spectroscopy (SERS) in which a noble metal nanoparticle is used to enhance Raman scattering. Due to its low toxicity and biocompatibility, gold nanoparticles (AuNPs) are commonly preferred as SERS substrates in single cell analysis. The intracellular uptake, localization and toxicity issues of AuNPs are the critical points for interpretation of data since the obtained SERS signals originate from molecules in close vicinity to AuNPs that are taken up by the cells. In this review, the AuNP-living cell interactions, cellular uptake and toxicity of AuNPs in relation to their physicochemical properties, and surface-enhanced Raman scattering from single cells are discussed.
Collapse
Affiliation(s)
- Mine Altunbek
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Atasehir, Istanbul 34755, Turkey.
| | - Gamze Kuku
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Atasehir, Istanbul 34755, Turkey.
| | - Mustafa Culha
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Atasehir, Istanbul 34755, Turkey.
| |
Collapse
|
116
|
Truccolo W. From point process observations to collective neural dynamics: Nonlinear Hawkes process GLMs, low-dimensional dynamics and coarse graining. JOURNAL OF PHYSIOLOGY, PARIS 2016; 110:336-347. [PMID: 28336305 PMCID: PMC5610574 DOI: 10.1016/j.jphysparis.2017.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 02/20/2017] [Accepted: 02/26/2017] [Indexed: 01/15/2023]
Abstract
This review presents a perspective on capturing collective dynamics in recorded neuronal ensembles based on multivariate point process models, inference of low-dimensional dynamics and coarse graining of spatiotemporal measurements. A general probabilistic framework for continuous time point processes reviewed, with an emphasis on multivariate nonlinear Hawkes processes with exogenous inputs. A point process generalized linear model (PP-GLM) framework for the estimation of discrete time multivariate nonlinear Hawkes processes is described. The approach is illustrated with the modeling of collective dynamics in neocortical neuronal ensembles recorded in human and non-human primates, and prediction of single-neuron spiking. A complementary approach to capture collective dynamics based on low-dimensional dynamics ("order parameters") inferred via latent state-space models with point process observations is presented. The approach is illustrated by inferring and decoding low-dimensional dynamics in primate motor cortex during naturalistic reach and grasp movements. Finally, we briefly review hypothesis tests based on conditional inference and spatiotemporal coarse graining for assessing collective dynamics in recorded neuronal ensembles.
Collapse
Affiliation(s)
- Wilson Truccolo
- Department of Neuroscience and Institute for Brain Science, Brown University, Providence, USA; Center for Neurorestoration and Neurotechnology, U.S. Department of Veterans Affairs, Providence, USA.
| |
Collapse
|
117
|
Huang B. A microscopic view of the cell. Mol Biol Cell 2016; 27:3183-3184. [PMID: 27799489 PMCID: PMC5170846 DOI: 10.1091/mbc.e16-06-0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Light microscopy has long been an indispensable tool for cell biology research. From biological problems to biological knowledge, there are two more critical links in the light microscopy approach: labeling and quantitative analysis. Therefore, an integrative approach is desirable in order to deal with practical challenges in biological light microscopy.
Collapse
Affiliation(s)
- Bo Huang
- Department of Pharmaceutical Chemistry and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
118
|
Adaptive light-sheet microscopy for long-term, high-resolution imaging in living organisms. Nat Biotechnol 2016; 34:1267-1278. [DOI: 10.1038/nbt.3708] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 09/16/2016] [Indexed: 11/08/2022]
|
119
|
Tainaka K, Kuno A, Kubota SI, Murakami T, Ueda HR. Chemical Principles in Tissue Clearing and Staining Protocols for Whole-Body Cell Profiling. Annu Rev Cell Dev Biol 2016; 32:713-741. [DOI: 10.1146/annurev-cellbio-111315-125001] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kazuki Tainaka
- Department of Systems Pharmacology, The University of Tokyo, Tokyo 113-0033, Japan
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
- PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Shimpei I. Kubota
- Department of Systems Pharmacology, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tatzya Murakami
- Department of Systems Pharmacology, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroki R. Ueda
- Department of Systems Pharmacology, The University of Tokyo, Tokyo 113-0033, Japan
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka 565-0871, Japan;
| |
Collapse
|
120
|
Wang F, Bélanger E, Paquet ME, Côté DC, De Koninck Y. Probing pain pathways with light. Neuroscience 2016; 338:248-271. [PMID: 27702648 DOI: 10.1016/j.neuroscience.2016.09.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 02/06/2023]
Abstract
We have witnessed an accelerated growth of photonics technologies in recent years to enable not only monitoring the activity of specific neurons, while animals are performing certain types of behavior, but also testing whether specific cells, circuits, and regions are sufficient or necessary for initiating, maintaining, or altering this or that behavior. Compared to other sensory systems, however, such as the visual or olfactory system, photonics applications in pain research are only beginning to emerge. One reason pain studies have lagged behind is that many of the techniques originally developed cannot be directly implemented to study key relay sites within pain pathways, such as the skin, dorsal root ganglia, spinal cord, and brainstem. This is due, in part, to difficulties in accessing these structures with light. Here we review a number of recent advances in design and delivery of light-sensitive molecular probes (sensors and actuators) into pain relay circuits to help decipher their structural and functional organization. We then discuss several challenges that have hampered hardware access to specific structures including light scattering, tissue movement and geometries. We review a number of strategies to circumvent these challenges, by delivering light into, and collecting it from the different key sites to unravel how nociceptive signals are encoded at each level of the neuraxis. We conclude with an outlook on novel imaging modalities for label-free chemical detection and opportunities for multimodal interrogation in vivo. While many challenges remain, these advances offer unprecedented opportunities to bridge cellular approaches with context-relevant behavioral testing, an essential step toward improving translation of basic research findings into clinical applications.
Collapse
Affiliation(s)
- Feng Wang
- Institut universitaire en santé mentale de Québec, Université Laval, Québec, QC, Canada
| | - Erik Bélanger
- Institut universitaire en santé mentale de Québec, Université Laval, Québec, QC, Canada; Centre d'optique, photonique et laser, Université Laval, Québec, QC, Canada
| | - Marie-Eve Paquet
- Institut universitaire en santé mentale de Québec, Université Laval, Québec, QC, Canada; Département de biochimie, microbiologie et bioinformatique, Université Laval, Québec, QC, Canada
| | - Daniel C Côté
- Institut universitaire en santé mentale de Québec, Université Laval, Québec, QC, Canada; Centre d'optique, photonique et laser, Université Laval, Québec, QC, Canada; Département de physique, de génie physique et d'optique, Université Laval, Québec, QC, Canada
| | - Yves De Koninck
- Institut universitaire en santé mentale de Québec, Université Laval, Québec, QC, Canada; Centre d'optique, photonique et laser, Université Laval, Québec, QC, Canada; Département de psychiatrie et neurosciences, Université Laval, Québec, QC, Canada.
| |
Collapse
|
121
|
Churchland AK, Kiani R. Three challenges for connecting model to mechanism in decision-making. Curr Opin Behav Sci 2016; 11:74-80. [PMID: 27403450 DOI: 10.1016/j.cobeha.2016.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent years have seen a growing interest in understanding the neural mechanisms that support decision-making. The advent of new tools for measuring and manipulating neurons, alongside the inclusion of multiple new animal models and sensory systems has led to the generation of many novel datasets. The potential for these new approaches to constrain decision-making models is unprecedented. Here, we argue that to fully leverage these new approaches, three challenges must be met. First, experimenters must design well-controlled behavioral experiments that make it possible to distinguish competing behavioral strategies. Second, analyses of neural responses should think beyond single neurons, taking into account tradeoffs of single-trial versus trial-averaged approaches. Finally, quantitative model comparisons should be used, but must consider common obstacles.
Collapse
Affiliation(s)
| | - R Kiani
- Center for Neural Science, New York University, New York University
| |
Collapse
|
122
|
Liang X, Zang Y, Dong D, Zhang L, Fang M, Yang X, Arranz A, Ripoll J, Hui H, Tian J. Stripe artifact elimination based on nonsubsampled contourlet transform for light sheet fluorescence microscopy. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:106005. [PMID: 27784051 DOI: 10.1117/1.jbo.21.10.106005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/28/2016] [Indexed: 05/18/2023]
Abstract
Stripe artifacts, caused by high-absorption or high-scattering structures in the illumination light path, are a common drawback in both unidirectional and multidirectional light sheet fluorescence microscopy (LSFM), significantly deteriorating image quality. To circumvent this problem, we present an effective multidirectional stripe remover (MDSR) method based on nonsubsampled contourlet transform (NSCT), which can be used for both unidirectional and multidirectional LSFM. In MDSR, a fast Fourier transform (FFT) filter is designed in the NSCT domain to shrink the stripe components and eliminate the noise. Benefiting from the properties of being multiscale and multidirectional, MDSR succeeds in eliminating stripe artifacts in both unidirectional and multidirectional LSFM. To validate the method, MDSR has been tested on images from a custom-made unidirectional LSFM system and a commercial multidirectional LSFM system, clearly demonstrating that MDSR effectively removes most of the stripe artifacts. Moreover, we performed a comparative experiment with the variational stationary noise remover and the wavelet-FFT methods and quantitatively analyzed the results with a peak signal-to-noise ratio, showing an improved noise removal when using the MDSR method.
Collapse
Affiliation(s)
- Xiao Liang
- Chinese Academy of Sciences, Key Laboratory of Molecular Imaging, No. 95 Zhongguancun East Road, Beijing 100190, ChinabThe State Key Laboratory of Management and Control for Complex Systems, No. 95 Zhongguancun East Road, Beijing 100190, ChinacUniversity of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Beijing 100190, China
| | - Yali Zang
- Chinese Academy of Sciences, Key Laboratory of Molecular Imaging, No. 95 Zhongguancun East Road, Beijing 100190, ChinabThe State Key Laboratory of Management and Control for Complex Systems, No. 95 Zhongguancun East Road, Beijing 100190, ChinacUniversity of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Beijing 100190, China
| | - Di Dong
- Chinese Academy of Sciences, Key Laboratory of Molecular Imaging, No. 95 Zhongguancun East Road, Beijing 100190, ChinabThe State Key Laboratory of Management and Control for Complex Systems, No. 95 Zhongguancun East Road, Beijing 100190, ChinacUniversity of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Beijing 100190, China
| | - Liwen Zhang
- Chinese Academy of Sciences, Key Laboratory of Molecular Imaging, No. 95 Zhongguancun East Road, Beijing 100190, ChinabThe State Key Laboratory of Management and Control for Complex Systems, No. 95 Zhongguancun East Road, Beijing 100190, China
| | - Mengjie Fang
- Chinese Academy of Sciences, Key Laboratory of Molecular Imaging, No. 95 Zhongguancun East Road, Beijing 100190, ChinabThe State Key Laboratory of Management and Control for Complex Systems, No. 95 Zhongguancun East Road, Beijing 100190, ChinacUniversity of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Beijing 100190, China
| | - Xin Yang
- Chinese Academy of Sciences, Key Laboratory of Molecular Imaging, No. 95 Zhongguancun East Road, Beijing 100190, ChinabThe State Key Laboratory of Management and Control for Complex Systems, No. 95 Zhongguancun East Road, Beijing 100190, ChinacUniversity of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Beijing 100190, China
| | - Alicia Arranz
- Center for Molecular Biology "Severo Ochoa", Calle Nicolás Cabrera, 1, Madrid 28049, Spain
| | - Jorge Ripoll
- Universidad Carlos III of Madrid, Department of Bioengineering and Aerospace Engineering, Escuela Politécnica Superior, Avd. de la Universidad, 30, Madrid 28911, SpainfInstituto de Investigación Sanitaria del Hospital Gregorio Marañón, Experimental Medicine and Surgery Unit, Calle del Dr. Esquerdo, 46, Madrid 28007, Spain
| | - Hui Hui
- Chinese Academy of Sciences, Key Laboratory of Molecular Imaging, No. 95 Zhongguancun East Road, Beijing 100190, ChinabThe State Key Laboratory of Management and Control for Complex Systems, No. 95 Zhongguancun East Road, Beijing 100190, ChinacUniversity of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Beijing 100190, China
| | - Jie Tian
- Chinese Academy of Sciences, Key Laboratory of Molecular Imaging, No. 95 Zhongguancun East Road, Beijing 100190, ChinabThe State Key Laboratory of Management and Control for Complex Systems, No. 95 Zhongguancun East Road, Beijing 100190, ChinacUniversity of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Beijing 100190, China
| |
Collapse
|
123
|
Abstract
A custom-built objective lens called the Mesolens allows relatively large biological specimens to be imaged with cellular resolution.
Collapse
|
124
|
Gagnon L, Smith AF, Boas DA, Devor A, Secomb TW, Sakadžić S. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation. Front Comput Neurosci 2016; 10:82. [PMID: 27630556 PMCID: PMC5006088 DOI: 10.3389/fncom.2016.00082] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/25/2016] [Indexed: 01/09/2023] Open
Abstract
Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These “bottom-up” models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans.
Collapse
Affiliation(s)
- Louis Gagnon
- Optics Division, Department of Radiology, MHG/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - Amy F Smith
- Institut de Mécanique des Fluides de ToulouseToulouse, France; Department of Physiology, University of ArizonaTucson, AZ, USA
| | - David A Boas
- Optics Division, Department of Radiology, MHG/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - Anna Devor
- Optics Division, Department of Radiology, MHG/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolCharlestown, MA, USA; Departments of Neurosciences and Radiology, University of California, San DiegoLa Jolla, CA, USA
| | | | - Sava Sakadžić
- Optics Division, Department of Radiology, MHG/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| |
Collapse
|
125
|
Chazeau A, Giannone G. Organization and dynamics of the actin cytoskeleton during dendritic spine morphological remodeling. Cell Mol Life Sci 2016; 73:3053-73. [PMID: 27105623 PMCID: PMC11108290 DOI: 10.1007/s00018-016-2214-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 12/18/2022]
Abstract
In the central nervous system, most excitatory post-synapses are small subcellular structures called dendritic spines. Their structure and morphological remodeling are tightly coupled to changes in synaptic transmission. The F-actin cytoskeleton is the main driving force of dendritic spine remodeling and sustains synaptic plasticity. It is therefore essential to understand how changes in synaptic transmission can regulate the organization and dynamics of actin binding proteins (ABPs). In this review, we will provide a detailed description of the organization and dynamics of F-actin and ABPs in dendritic spines and will discuss the current models explaining how the actin cytoskeleton sustains both structural and functional synaptic plasticity.
Collapse
Affiliation(s)
- Anaël Chazeau
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, UMR 5297, 33000, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, 33000, Bordeaux, France
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Grégory Giannone
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, UMR 5297, 33000, Bordeaux, France.
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, 33000, Bordeaux, France.
| |
Collapse
|
126
|
Liu Z, Keller PJ. Emerging Imaging and Genomic Tools for Developmental Systems Biology. Dev Cell 2016; 36:597-610. [PMID: 27003934 DOI: 10.1016/j.devcel.2016.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 11/16/2022]
Abstract
Animal development is a complex and dynamic process orchestrated by exquisitely timed cell lineage commitment, divisions, migration, and morphological changes at the single-cell level. In the past decade, extensive genetic, stem cell, and genomic studies provided crucial insights into molecular underpinnings and the functional importance of genetic pathways governing various cellular differentiation processes. However, it is still largely unknown how the precise coordination of these pathways is achieved at the whole-organism level and how the highly regulated spatiotemporal choreography of development is established in turn. Here, we discuss the latest technological advances in imaging and single-cell genomics that hold great promise for advancing our understanding of this intricate process. We propose an integrated approach that combines such methods to quantitatively decipher in vivo cellular dynamic behaviors and their underlying molecular mechanisms at the systems level with single-cell, single-molecule resolution.
Collapse
Affiliation(s)
- Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
127
|
Daetwyler S, Huisken J. Fast Fluorescence Microscopy with Light Sheets. THE BIOLOGICAL BULLETIN 2016; 231:14-25. [PMID: 27638692 DOI: 10.1086/689588] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In light sheet microscopy, optical sectioning by selective fluorescence excitation with a sheet of light is combined with fast full-frame acquisition. This illumination scheme provides minimal photobleaching and phototoxicity. Complemented with remote focusing and multi-view acquisition, light sheet microscopy is the method of choice for acquisition of very fast biological processes, large samples, and high-throughput applications in areas such as neuroscience, plant biology, and developmental biology. This review explains why light sheet microscopes are much faster and gentler than other established fluorescence microscopy techniques. New volumetric imaging schemes and highlights of selected biological applications are also discussed.
Collapse
Affiliation(s)
- Stephan Daetwyler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
128
|
A Practical Guide to Light Sheet Microscopy. Methods Mol Biol 2016. [PMID: 27464818 DOI: 10.1007/978-1-4939-3771-4_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Light sheet fluorescence microscopy is an efficient method for imaging large volumes of biological tissue, including brains of larval zebrafish, at high spatial and fairly high temporal resolution with minimal phototoxicity.Here, we provide a practical guide for those who intend to build a light sheet microscope for fluorescence imaging in live larval zebrafish brains or other tissues.
Collapse
|
129
|
Abstract
The larval zebrafish (Danio rerio) is an excellent vertebrate model for in vivo imaging of biological phenomena at subcellular, cellular and systems levels. However, the optical accessibility of highly pigmented tissues, like the eyes, is limited even in this animal model. Typical strategies to improve the transparency of zebrafish larvae require the use of either highly toxic chemical compounds (e.g. 1-phenyl-2-thiourea, PTU) or pigmentation mutant strains (e.g. casper mutant). To date none of these strategies produce normally behaving larvae that are transparent in both the body and the eyes. Here we present crystal, an optically clear zebrafish mutant obtained by combining different viable mutations affecting skin pigmentation. Compared to the previously described combinatorial mutant casper, the crystal mutant lacks pigmentation also in the retinal pigment epithelium, therefore enabling optical access to the eyes. Unlike PTU-treated animals, crystal larvae are able to perform visually guided behaviours, such as the optomotor response, as efficiently as wild type larvae. To validate the in vivo application of crystal larvae, we performed whole-brain light-sheet imaging and two-photon calcium imaging of neural activity in the retina. In conclusion, this novel combinatorial pigmentation mutant represents an ideal vertebrate tool for completely unobstructed structural and functional in vivo investigations of biological processes, particularly when imaging tissues inside or between the eyes.
Collapse
|
130
|
Abstract
The larval zebrafish (Danio rerio) is an excellent vertebrate model for in vivo imaging of biological phenomena at subcellular, cellular and systems levels. However, the optical accessibility of highly pigmented tissues, like the eyes, is limited even in this animal model. Typical strategies to improve the transparency of zebrafish larvae require the use of either highly toxic chemical compounds (e.g. 1-phenyl-2-thiourea, PTU) or pigmentation mutant strains (e.g. casper mutant). To date none of these strategies produce normally behaving larvae that are transparent in both the body and the eyes. Here we present crystal, an optically clear zebrafish mutant obtained by combining different viable mutations affecting skin pigmentation. Compared to the previously described combinatorial mutant casper, the crystal mutant lacks pigmentation also in the retinal pigment epithelium, therefore enabling optical access to the eyes. Unlike PTU-treated animals, crystal larvae are able to perform visually guided behaviours, such as the optomotor response, as efficiently as wild type larvae. To validate the in vivo application of crystal larvae, we performed whole-brain light-sheet imaging and two-photon calcium imaging of neural activity in the retina. In conclusion, this novel combinatorial pigmentation mutant represents an ideal vertebrate tool for completely unobstructed structural and functional in vivo investigations of biological processes, particularly when imaging tissues inside or between the eyes.
Collapse
|
131
|
Kawakami N. In vivo imaging in autoimmune diseases in the central nervous system. Allergol Int 2016; 65:235-42. [PMID: 26935215 DOI: 10.1016/j.alit.2016.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 11/18/2022] Open
Abstract
Intravital imaging is becoming more popular and is being used to visualize cellular motility and functions. In contrast to in vitro analysis, which resembles in vivo analysis, intravital imaging can be used to observe and analyze cells directly in vivo. In this review, I will summarize recent imaging studies of autoreactive T cell infiltration into the central nervous system (CNS) and provide technical background. During their in vivo journey, autoreactive T cells interact with many different cells. At first, autoreactive T cells interact with endothelial cells in the airways of the lung or with splenocytes, where they acquire a migratory phenotype to infiltrate into the CNS. After arriving at the CNS, they interact with endothelial cells of the leptomeningeal vessels or the choroid plexus before passing through the blood-brain barrier. CNS-infiltrating T cells become activated by recognizing endogenous autoantigens presented by local antigen-presenting cells (APCs). This activation was visualized in vivo by using protein-based sensors. One such sensor detects changes in intracellular calcium concentration as an early marker of T cell activation. Another sensor detects translocation of Nuclear factor of activated T-cells (NFAT) from cytosol to nucleus as a definitive sign of T cell activation. Importantly, intravital imaging is not just used to visualize cellular behavior. Together with precise analysis, intravital imaging deepens our knowledge of cellular functions in living organs and also provides a platform for developing therapeutic treatments.
Collapse
Affiliation(s)
- Naoto Kawakami
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians Universitaet Muenchen, Munich, Germany; Neuroimmunology Group, Max-Planck Institute of Neurobiology, Martinsried, Germany.
| |
Collapse
|
132
|
Brown DJ, Pastras CJ, Curthoys IS, Southwell CS, Van Roon L. Endolymph movement visualized with light sheet fluorescence microscopy in an acute hydrops model. Hear Res 2016; 339:112-24. [PMID: 27377233 DOI: 10.1016/j.heares.2016.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/30/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
There are a variety of techniques available to investigate endolymph dynamics, primarily seeking to understand the cause of endolymphatic hydrops. Here we have taken the novel approach of injecting, via a glass micropipette, fluorescein isothiocyanate-dextran (FITC-dex) and artificial endolymph into scala media of anaesthetized guinea pigs, with subsequent imaging of the inner ear using Light Sheet Fluorescence Microscopy (LSFM) as a means to obtain highly resolved 3D visualization of fluid movements. Our results demonstrate endolymph movement into the utricle, semicircular canals and endolymphatic duct and sac when more than 2.5 μl of fluid had been injected into scala media, with no apparent movement of fluid into the perilymphatic compartments. There was no movement of endolymph into these compartments when less than 2.5 μl was injected. The remarkable uptake of the FITC-dex into the endolymphatic duct, including an absorption into the periductal channels surrounding the endolymphatic duct, highlights the functional role this structure plays in endolymph volume regulation.
Collapse
Affiliation(s)
- Daniel J Brown
- Sydney Medical School, The University of Sydney, Sydney, NSW, 2050, Australia.
| | | | - Ian S Curthoys
- Vestibular Research Laboratory, The University of Sydney, School of Psychology, Sydney, NSW, 2050, Australia
| | | | - Lieke Van Roon
- University of Utrecht, Faculty Nature and Technique, Inst. for Life Sciences and Chemistry, Utrecht, 3508 AD, The Netherlands
| |
Collapse
|
133
|
Seo J, Choe M, Kim SY. Clearing and Labeling Techniques for Large-Scale Biological Tissues. Mol Cells 2016; 39:439-46. [PMID: 27239813 PMCID: PMC4916395 DOI: 10.14348/molcells.2016.0088] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 11/27/2022] Open
Abstract
Clearing and labeling techniques for large-scale biological tissues enable simultaneous extraction of molecular and structural information with minimal disassembly of the sample, facilitating the integration of molecular, cellular and systems biology across different scales. Recent years have witnessed an explosive increase in the number of such methods and their applications, reflecting heightened interest in organ-wide clearing and labeling across many fields of biology and medicine. In this review, we provide an overview and comparison of existing clearing and labeling techniques and discuss challenges and opportunities in the investigations of large-scale biological systems.
Collapse
Affiliation(s)
- Jinyoung Seo
- Department of Chemistry, Seoul National University, Seoul 08826,
Korea
| | - Minjin Choe
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826,
Korea
| | - Sung-Yon Kim
- Department of Chemistry, Seoul National University, Seoul 08826,
Korea
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826,
Korea
- School of Biological Sciences, Seoul National University, Seoul 08826,
Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
134
|
Renier N, Adams EL, Kirst C, Wu Z, Azevedo R, Kohl J, Autry AE, Kadiri L, Umadevi Venkataraju K, Zhou Y, Wang VX, Tang CY, Olsen O, Dulac C, Osten P, Tessier-Lavigne M. Mapping of Brain Activity by Automated Volume Analysis of Immediate Early Genes. Cell 2016; 165:1789-1802. [PMID: 27238021 DOI: 10.1016/j.cell.2016.05.007] [Citation(s) in RCA: 578] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/31/2016] [Accepted: 05/01/2016] [Indexed: 11/26/2022]
Abstract
Understanding how neural information is processed in physiological and pathological states would benefit from precise detection, localization, and quantification of the activity of all neurons across the entire brain, which has not, to date, been achieved in the mammalian brain. We introduce a pipeline for high-speed acquisition of brain activity at cellular resolution through profiling immediate early gene expression using immunostaining and light-sheet fluorescence imaging, followed by automated mapping and analysis of activity by an open-source software program we term ClearMap. We validate the pipeline first by analysis of brain regions activated in response to haloperidol. Next, we report new cortical regions downstream of whisker-evoked sensory processing during active exploration. Last, we combine activity mapping with axon tracing to uncover new brain regions differentially activated during parenting behavior. This pipeline is widely applicable to different experimental paradigms, including animal species for which transgenic activity reporters are not readily available.
Collapse
Affiliation(s)
- Nicolas Renier
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Eliza L Adams
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Christoph Kirst
- Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Zhuhao Wu
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Ricardo Azevedo
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Johannes Kohl
- Department of Molecular and Cellular Biology, Center for Brain Science, Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Anita E Autry
- Department of Molecular and Cellular Biology, Center for Brain Science, Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | | | - Kannan Umadevi Venkataraju
- Cold Spring Harbor Laboratories, Cold Spring Harbor, NY 11724, USA; Certerra, Cold Spring Harbor, NY 11724, USA
| | - Yu Zhou
- Department of Radiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Victoria X Wang
- Department of Radiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Cheuk Y Tang
- Department of Radiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Olav Olsen
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Center for Brain Science, Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Pavel Osten
- Cold Spring Harbor Laboratories, Cold Spring Harbor, NY 11724, USA
| | - Marc Tessier-Lavigne
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
135
|
Icha J, Schmied C, Sidhaye J, Tomancak P, Preibisch S, Norden C. Using Light Sheet Fluorescence Microscopy to Image Zebrafish Eye Development. J Vis Exp 2016:e53966. [PMID: 27167079 PMCID: PMC4941907 DOI: 10.3791/53966] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Light sheet fluorescence microscopy (LSFM) is gaining more and more popularity as a method to image embryonic development. The main advantages of LSFM compared to confocal systems are its low phototoxicity, gentle mounting strategies, fast acquisition with high signal to noise ratio and the possibility of imaging samples from various angles (views) for long periods of time. Imaging from multiple views unleashes the full potential of LSFM, but at the same time it can create terabyte-sized datasets. Processing such datasets is the biggest challenge of using LSFM. In this protocol we outline some solutions to this problem. Until recently, LSFM was mostly performed in laboratories that had the expertise to build and operate their own light sheet microscopes. However, in the last three years several commercial implementations of LSFM became available, which are multipurpose and easy to use for any developmental biologist. This article is primarily directed to those researchers, who are not LSFM technology developers, but want to employ LSFM as a tool to answer specific developmental biology questions. Here, we use imaging of zebrafish eye development as an example to introduce the reader to LSFM technology and we demonstrate applications of LSFM across multiple spatial and temporal scales. This article describes a complete experimental protocol starting with the mounting of zebrafish embryos for LSFM. We then outline the options for imaging using the commercially available light sheet microscope. Importantly, we also explain a pipeline for subsequent registration and fusion of multiview datasets using an open source solution implemented as a Fiji plugin. While this protocol focuses on imaging the developing zebrafish eye and processing data from a particular imaging setup, most of the insights and troubleshooting suggestions presented here are of general use and the protocol can be adapted to a variety of light sheet microscopy experiments.
Collapse
Affiliation(s)
- Jaroslav Icha
- Max Planck Institute of Molecular Cell Biology and Genetics;
| | | | | | - Pavel Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics
| | - Stephan Preibisch
- Max Planck Institute of Molecular Cell Biology and Genetics; HHMI Janelia Research Campus; Berlin Institute of Medical Systems Biology of the Max Delbrück Center
| | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics;
| |
Collapse
|
136
|
Engerer P, Plucinska G, Thong R, Trovò L, Paquet D, Godinho L. Imaging Subcellular Structures in the Living Zebrafish Embryo. J Vis Exp 2016:e53456. [PMID: 27078038 DOI: 10.3791/53456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In vivo imaging provides unprecedented access to the dynamic behavior of cellular and subcellular structures in their natural context. Performing such imaging experiments in higher vertebrates such as mammals generally requires surgical access to the system under study. The optical accessibility of embryonic and larval zebrafish allows such invasive procedures to be circumvented and permits imaging in the intact organism. Indeed the zebrafish is now a well-established model to visualize dynamic cellular behaviors using in vivo microscopy in a wide range of developmental contexts from proliferation to migration and differentiation. A more recent development is the increasing use of zebrafish to study subcellular events including mitochondrial trafficking and centrosome dynamics. The relative ease with which these subcellular structures can be genetically labeled by fluorescent proteins and the use of light microscopy techniques to image them is transforming the zebrafish into an in vivo model of cell biology. Here we describe methods to generate genetic constructs that fluorescently label organelles, highlighting mitochondria and centrosomes as specific examples. We use the bipartite Gal4-UAS system in multiple configurations to restrict expression to specific cell-types and provide protocols to generate transiently expressing and stable transgenic fish. Finally, we provide guidelines for choosing light microscopy methods that are most suitable for imaging subcellular dynamics.
Collapse
Affiliation(s)
- Peter Engerer
- Institute of Neuronal Cell Biology, Technische Universität München;
| | - Gabriela Plucinska
- Institute of Neuronal Cell Biology, Technische Universität München; Cell Biology, Department of Biology, Faculty of Science, Utrecht University
| | - Rachel Thong
- Institute of Neuronal Cell Biology, Technische Universität München; Faculty of Biology, Ludwig-Maximilians-Universität-München
| | - Laura Trovò
- Institute of Neuronal Cell Biology, Technische Universität München
| | - Dominik Paquet
- Adolf-Butenandt-Institute, Biochemistry, Ludwig-Maximilians-Universität-München; German Center for Neurodegenerative Diseases; Laboratory of Brain Development and Repair, The Rockefeller University
| | - Leanne Godinho
- Institute of Neuronal Cell Biology, Technische Universität München;
| |
Collapse
|
137
|
Schneidman E. Towards the design principles of neural population codes. Curr Opin Neurobiol 2016; 37:133-140. [PMID: 27016639 DOI: 10.1016/j.conb.2016.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/18/2022]
Abstract
The ability to record the joint activity of large groups of neurons would allow for direct study of information representation and computation at the level of whole circuits in the brain. The combinatorial space of potential population activity patterns and neural noise imply that it would be impossible to directly map the relations between stimuli and population responses. Understanding of large neural population codes therefore depends on identifying simplifying design principles. We review recent results showing that strongly correlated population codes can be explained using minimal models that rely on low order relations among cells. We discuss the implications for large populations, and how such models allow for mapping the semantic organization of the neural codebook and stimulus space, and decoding.
Collapse
Affiliation(s)
- Elad Schneidman
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
138
|
Abstract
This article summarizes the past, present, and future promise of multiphoton excitation fluorescence microscopy for intravital kidney imaging. During the past 15years, several high-power visual research approaches have been developed using multiphoton imaging to study the normal functions of the healthy, intact, living kidney, and the various molecular and cellular mechanisms of the development of kidney diseases. In this review, the main focus will be on intravital multiphoton imaging of the glomerulus, the structure and function of the glomerular filtration barrier, especially the podocyte. Examples will be given for the combination of two powerful research tools, in vivo multiphoton imaging and mouse genetics using commercially available whole animal models for the detailed characterization of glomerular cell types, their function and fate, and for the better understanding of the molecular mechanisms of glomerular pathologies. One of the new modalities of multiphoton imaging, serial imaging of the same glomerulus in the same animal over several days will be emphasized for its potential for further advancing the field of nephrology research.
Collapse
Affiliation(s)
- János Peti-Peterdi
- Departments of Physiology and Biophysics, and Medicine, Zilkha Neurogenetic Institute, ZNI355, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA.
| |
Collapse
|
139
|
Abstract
In the nervous system, axons transmit information in the form of electrical impulses over long distances. The speed of impulse conduction is enhanced by myelin, a lipid-rich membrane that wraps around axons. Myelin also is required for the long-term health of axons by providing metabolic support. Accordingly, myelin deficiencies are implicated in a wide range of neurodevelopmental and neuropsychiatric disorders, intellectual disabilities, and neurodegenerative conditions. Central nervous system myelin is formed by glial cells called oligodendrocytes. During development, oligodendrocyte precursor cells migrate from their origins to their target axons, extend long membrane processes that wrap axons, and produce the proteins and lipids that provide myelin membrane with its unique characteristics. Myelination is a dynamic process that involves intricate interactions between multiple cell types. Therefore, an in vivo myelination model, such as the zebrafish, which allows for live observation of cell dynamics and cell-to-cell interactions, is well suited for investigating oligodendrocyte development. Zebrafish offer several advantages to investigating myelination, including the use of transgenic reporter lines, live imaging, forward genetic screens, chemical screens, and reverse genetic approaches. This chapter will describe how these tools and approaches have provided new insights into the regulatory mechanisms that guide myelination.
Collapse
Affiliation(s)
- E S Mathews
- University of Colorado School of Medicine, Aurora, CO, United States
| | - B Appel
- University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
140
|
Follain G, Mercier L, Osmani N, Harlepp S, Goetz JG. Seeing is believing: multi-scale spatio-temporal imaging towards in vivo cell biology. J Cell Sci 2016; 130:23-38. [DOI: 10.1242/jcs.189001] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT
Life is driven by a set of biological events that are naturally dynamic and tightly orchestrated from the single molecule to entire organisms. Although biochemistry and molecular biology have been essential in deciphering signaling at a cellular and organismal level, biological imaging has been instrumental for unraveling life processes across multiple scales. Imaging methods have considerably improved over the past decades and now allow to grasp the inner workings of proteins, organelles, cells, organs and whole organisms. Not only do they allow us to visualize these events in their most-relevant context but also to accurately quantify underlying biomechanical features and, so, provide essential information for their understanding. In this Commentary, we review a palette of imaging (and biophysical) methods that are available to the scientific community for elucidating a wide array of biological events. We cover the most-recent developments in intravital imaging, light-sheet microscopy, super-resolution imaging, and correlative light and electron microscopy. In addition, we illustrate how these technologies have led to important insights in cell biology, from the molecular to the whole-organism resolution. Altogether, this review offers a snapshot of the current and state-of-the-art imaging methods that will contribute to the understanding of life and disease.
Collapse
Affiliation(s)
- Gautier Follain
- Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Inserm U1109, MN3T, Strasbourg F-67200, France
- Université de Strasbourg, Strasbourg F-67000, France
- LabEx Medalis, Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg F-67000, France
| | - Luc Mercier
- Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Inserm U1109, MN3T, Strasbourg F-67200, France
- Université de Strasbourg, Strasbourg F-67000, France
- LabEx Medalis, Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg F-67000, France
| | - Naël Osmani
- Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Inserm U1109, MN3T, Strasbourg F-67200, France
- Université de Strasbourg, Strasbourg F-67000, France
- LabEx Medalis, Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg F-67000, France
| | - Sébastien Harlepp
- Université de Strasbourg, Strasbourg F-67000, France
- DON: Optique ultrarapide et nanophotonique, IPCMS UMR7504, Strasbourg 67000, France
- LabEx NIE, Université de Strasbourg, Strasbourg F-67000, France
| | - Jacky G. Goetz
- Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Inserm U1109, MN3T, Strasbourg F-67200, France
- Université de Strasbourg, Strasbourg F-67000, France
- LabEx Medalis, Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg F-67000, France
| |
Collapse
|
141
|
Susaki E, Ueda H. Whole-body and Whole-Organ Clearing and Imaging Techniques with Single-Cell Resolution: Toward Organism-Level Systems Biology in Mammals. Cell Chem Biol 2016; 23:137-157. [DOI: 10.1016/j.chembiol.2015.11.009] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 11/20/2015] [Accepted: 11/20/2015] [Indexed: 12/29/2022]
|
142
|
Abstract
Lineage tracing is a widely used method for understanding cellular dynamics in multicellular organisms during processes such as development, adult tissue maintenance, injury repair and tumorigenesis. Advances in tracing or tracking methods, from light microscopy-based live cell tracking to fluorescent label-tracing with two-photon microscopy, together with emerging tissue clearing strategies and intravital imaging approaches have enabled scientists to decipher adult stem and progenitor cell properties in various tissues and in a wide variety of biological processes. Although technical advances have enabled time-controlled genetic labeling and simultaneous live imaging, a number of obstacles still need to be overcome. In this review, we aim to provide an in-depth description of the traditional use of lineage tracing as well as current strategies and upcoming new methods of labeling and imaging.
Collapse
Affiliation(s)
| | | | - Bon-Kyoung Koo
- Department of Genetics and Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, United Kingdom
| |
Collapse
|
143
|
Treweek JB, Chan KY, Flytzanis NC, Yang B, Deverman BE, Greenbaum A, Lignell A, Xiao C, Cai L, Ladinsky MS, Bjorkman PJ, Fowlkes CC, Gradinaru V. Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nat Protoc 2015; 10:1860-1896. [PMID: 26492141 PMCID: PMC4917295 DOI: 10.1038/nprot.2015.122] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To facilitate fine-scale phenotyping of whole specimens, we describe here a set of tissue fixation-embedding, detergent-clearing and staining protocols that can be used to transform excised organs and whole organisms into optically transparent samples within 1-2 weeks without compromising their cellular architecture or endogenous fluorescence. PACT (passive CLARITY technique) and PARS (perfusion-assisted agent release in situ) use tissue-hydrogel hybrids to stabilize tissue biomolecules during selective lipid extraction, resulting in enhanced clearing efficiency and sample integrity. Furthermore, the macromolecule permeability of PACT- and PARS-processed tissue hybrids supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive index matching solution) grants high-resolution imaging at depth by further reducing light scattering in cleared and uncleared samples alike. These methods are adaptable to difficult-to-image tissues, such as bone (PACT-deCAL), and to magnified single-cell visualization (ePACT). Together, these protocols and solutions enable phenotyping of subcellular components and tracing cellular connectivity in intact biological networks.
Collapse
Affiliation(s)
- Jennifer B Treweek
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Ken Y Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Nicholas C Flytzanis
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Bin Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Benjamin E Deverman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Alon Greenbaum
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Antti Lignell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Cheng Xiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Long Cai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Charless C Fowlkes
- Department of Computer Science, University of California, Irvine, California, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
144
|
Chhetri RK, Amat F, Wan Y, Höckendorf B, Lemon WC, Keller PJ. Whole-animal functional and developmental imaging with isotropic spatial resolution. Nat Methods 2015; 12:1171-8. [PMID: 26501515 DOI: 10.1038/nmeth.3632] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/01/2015] [Indexed: 12/19/2022]
Abstract
Imaging fast cellular dynamics across large specimens requires high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To meet these requirements, we developed isotropic multiview (IsoView) light-sheet microscopy, which rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. Combining these four views by means of high-throughput multiview deconvolution yields images with high resolution in all three dimensions. We demonstrate whole-animal functional imaging of Drosophila larvae at a spatial resolution of 1.1-2.5 μm and temporal resolution of 2 Hz for several hours. We also present spatially isotropic whole-brain functional imaging in Danio rerio larvae and spatially isotropic multicolor imaging of fast cellular dynamics across gastrulating Drosophila embryos. Compared with conventional light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.
Collapse
Affiliation(s)
- Raghav K Chhetri
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA
| | - Fernando Amat
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA
| | - Yinan Wan
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA
| | - Burkhard Höckendorf
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA
| | - William C Lemon
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA
| | - Philipp J Keller
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA
| |
Collapse
|
145
|
Abstract
Here we describe a protocol for advanced CUBIC (Clear, Unobstructed Brain/Body Imaging Cocktails and Computational analysis). The CUBIC protocol enables simple and efficient organ clearing, rapid imaging by light-sheet microscopy and quantitative imaging analysis of multiple samples. The organ or body is cleared by immersion for 1-14 d, with the exact time required dependent on the sample type and the experimental purposes. A single imaging set can be completed in 30-60 min. Image processing and analysis can take <1 d, but it is dependent on the number of samples in the data set. The CUBIC clearing protocol can process multiple samples simultaneously. We previously used CUBIC to image whole-brain neural activities at single-cell resolution using Arc-dVenus transgenic (Tg) mice. CUBIC informatics calculated the Venus signal subtraction, comparing different brains at a whole-organ scale. These protocols provide a platform for organism-level systems biology by comprehensively detecting cells in a whole organ or body.
Collapse
|
146
|
Amat F, Höckendorf B, Wan Y, Lemon WC, McDole K, Keller PJ. Efficient processing and analysis of large-scale light-sheet microscopy data. Nat Protoc 2015; 10:1679-96. [PMID: 26426501 DOI: 10.1038/nprot.2015.111] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Light-sheet microscopy is a powerful method for imaging the development and function of complex biological systems at high spatiotemporal resolution and over long time scales. Such experiments typically generate terabytes of multidimensional image data, and thus they demand efficient computational solutions for data management, processing and analysis. We present protocols and software to tackle these steps, focusing on the imaging-based study of animal development. Our protocols facilitate (i) high-speed lossless data compression and content-based multiview image fusion optimized for multicore CPU architectures, reducing image data size 30-500-fold; (ii) automated large-scale cell tracking and segmentation; and (iii) visualization, editing and annotation of multiterabyte image data and cell-lineage reconstructions with tens of millions of data points. These software modules are open source. They provide high data throughput using a single computer workstation and are readily applicable to a wide spectrum of biological model systems.
Collapse
Affiliation(s)
- Fernando Amat
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA
| | - Burkhard Höckendorf
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA
| | - Yinan Wan
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA
| | - William C Lemon
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA
| | - Katie McDole
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA
| | - Philipp J Keller
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA
| |
Collapse
|
147
|
Ode KL, Ueda HR. Seeing the forest and trees: whole-body and whole-brain imaging for circadian biology. Diabetes Obes Metab 2015; 17 Suppl 1:47-54. [PMID: 26332968 DOI: 10.1111/dom.12511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/26/2015] [Indexed: 01/13/2023]
Abstract
Recent advances in methods for making mammalian organs translucent have made possible whole-body fluorescent imaging with single-cell resolution. Because organ-clearing methods can be used to image the heterogeneous nature of cell populations, they are powerful tools to investigate the hierarchical organization of the cellular circadian clock, and how the clock synchronizes a variety of physiological activities. In particular, methods compatible with genetically encoded fluorescent reporters have the potential to detect circadian activity in different brain regions and the circadian-phase distribution across the whole body. In this review, we summarize the current methods and strategy for making organs translucent (removal of lipids, decolourization of haemoglobin and adjusting the refractive index of the specimen). We then discuss possible applications to circadian biology. For example, the coupling of circadian rhythms among different brain regions, brain activity in sleep-wake cycles and the role of migrating cells such as immune cells and cancer cells in chronopharmacology.
Collapse
Affiliation(s)
- K L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Quantitative Biology Center, RIKEN, Osaka, Japan
| | - H R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Quantitative Biology Center, RIKEN, Osaka, Japan
| |
Collapse
|
148
|
Whole-central nervous system functional imaging in larval Drosophila. Nat Commun 2015; 6:7924. [PMID: 26263051 PMCID: PMC4918770 DOI: 10.1038/ncomms8924] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/25/2015] [Indexed: 12/21/2022] Open
Abstract
Understanding how the brain works in tight concert with the rest of the central nervous system (CNS) hinges upon knowledge of coordinated activity patterns across the whole CNS. We present a method for measuring activity in an entire, non-transparent CNS with high spatiotemporal resolution. We combine a light-sheet microscope capable of simultaneous multi-view imaging at volumetric speeds 25-fold faster than the state-of-the-art, a whole-CNS imaging assay for the isolated Drosophila larval CNS and a computational framework for analysing multi-view, whole-CNS calcium imaging data. We image both brain and ventral nerve cord, covering the entire CNS at 2 or 5 Hz with two- or one-photon excitation, respectively. By mapping network activity during fictive behaviours and quantitatively comparing high-resolution whole-CNS activity maps across individuals, we predict functional connections between CNS regions and reveal neurons in the brain that identify type and temporal state of motor programs executed in the ventral nerve cord. To understand how neuronal networks function, it is important to measure neuronal network activity at the systems level. Here Lemon et al. develop a framework that combines a high-speed multi-view light-sheet microscope, a whole-CNS imaging assay and computational tools to demonstrate simultaneous functional imaging across the entire isolated Drosophila larval CNS.
Collapse
|
149
|
Czopka T. Insights into mechanisms of central nervous system myelination using zebrafish. Glia 2015; 64:333-49. [PMID: 26250418 DOI: 10.1002/glia.22897] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 12/12/2022]
Abstract
Myelin is the multi-layered membrane that surrounds most axons and is produced by oligodendrocytes in the central nervous system (CNS). In addition to its important role in enabling rapid nerve conduction, it has become clear in recent years that myelin plays additional vital roles in CNS function. Myelinating oligodendrocytes provide metabolic support to axons and active myelination is even involved in regulating forms of learning and memory formation. However, there are still large gaps in our understanding of how myelination by oligodendrocytes is regulated. The small tropical zebrafish has become an increasingly popular model organism to investigate many aspects of nervous system formation, function, and regeneration. This is mainly due to two approaches for which the zebrafish is an ideally suited vertebrate model--(1) in vivo live cell imaging using vital dyes and genetically encoded reporters, and (2) gene and target discovery using unbiased screens. This review summarizes how the use of zebrafish has helped understand mechanisms of oligodendrocyte behavior and myelination in vivo and discusses the potential use of zebrafish to shed light on important future questions relating to myelination in the context of CNS development, function and repair.
Collapse
Affiliation(s)
- Tim Czopka
- Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
| |
Collapse
|
150
|
Abstract
Advances in optical manipulation and observation of neural activity have set the stage for widespread implementation of closed-loop and activity-guided optical control of neural circuit dynamics. Closing the loop optogenetically (i.e., basing optogenetic stimulation on simultaneously observed dynamics in a principled way) is a powerful strategy for causal investigation of neural circuitry. In particular, observing and feeding back the effects of circuit interventions on physiologically relevant timescales is valuable for directly testing whether inferred models of dynamics, connectivity, and causation are accurate in vivo. Here we highlight technical and theoretical foundations as well as recent advances and opportunities in this area, and we review in detail the known caveats and limitations of optogenetic experimentation in the context of addressing these challenges with closed-loop optogenetic control in behaving animals.
Collapse
Affiliation(s)
- Logan Grosenick
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA; CNC Program, Stanford University, Stanford, CA 94305 USA; Neurosciences Program, Stanford University, Stanford, CA 94305 USA
| | - James H Marshel
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA; CNC Program, Stanford University, Stanford, CA 94305 USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA; CNC Program, Stanford University, Stanford, CA 94305 USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305 USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305 USA.
| |
Collapse
|