101
|
Ron Y, Dafni-Merom A, Saadon-Grosman N, Roseman M, Elias U, Arzy S. Brain System for Social Categorization by Narrative Roles. J Neurosci 2022; 42:5246-5253. [PMID: 35613892 PMCID: PMC9236283 DOI: 10.1523/jneurosci.1436-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/31/2022] Open
Abstract
The cognitive system applies categorical thinking to facilitate perception of the rich environment around us. In person cognition, research has focused on the roles of gender, race, age, or appearance in social categorical thinking. Here we investigated how narrative roles, as portrayed by different cinematic characters, are categorized in the neurocognitive system. Under functional MRI, 17 human participants (7 females) were asked to make different judgments regarding personality traits of 16 renowned cinematic characters representing four roles: hero, sidekick, mentor, and villain. Classification analysis showed a brain network, comprising the dorsal medial prefrontal cortex, the precuneus and the temporoparietal junction bilaterally, and the left occipital face area (OFA), to discriminate among the four roles. No such classification was found between other individual attributes including age or the associated film. Moreover, regions overlapping the default mode network (DMN) were found to better discriminate between roles, rather than the individual characters, while the OFA was found to better discriminate between individuals. These results demonstrate the inherent role of roles in person cognition, and suggest an intimate relation between roles categorization and self-referential activity.SIGNIFICANCE STATEMENT Social categorization, the assignment of different people in our social network to subgroups, is a powerful strategy in social cognition. How is this managed by the brain? We provide evidence that different characters from different stories, representing similar roles in their corresponding narrative, elicit similar brain activation patterns, as revealed by functional MRI. Unlike previous studies of social categorization, these brain activations were similar to those elicited by social cognition rather than face processing, and included regions at the prefrontal cortex, the precuneus, and the temporoparietal junction. The identified brain network significantly overlapped the default mode network. We suggest that social categorization by roles is fundamental to the cognitive system, relying on brain regions related to social cognition.
Collapse
Affiliation(s)
- Yorai Ron
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Amnon Dafni-Merom
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Noam Saadon-Grosman
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Moshe Roseman
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Uri Elias
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Shahar Arzy
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9190501, Israel
- Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem 9112001, Israel
- Department of Brain and Cognitive Sciences, Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| |
Collapse
|
102
|
Coughlin C, Ben-Asher E, Roome HE, Varga NL, Moreau MM, Schneider LL, Preston AR. Interpersonal Family Dynamics Relate to Hippocampal CA Subfield Structure. Front Neurosci 2022; 16:872101. [PMID: 35784846 PMCID: PMC9247275 DOI: 10.3389/fnins.2022.872101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/28/2022] [Indexed: 12/03/2022] Open
Abstract
Social environments that are extremely enriched or adverse can influence hippocampal volume. Though most individuals experience social environments that fall somewhere in between these extremes, substantially less is known about the influence of normative variation in social environments on hippocampal structure. Here, we examined whether hippocampal volume tracks normative variation in interpersonal family dynamics in 7- to 12-year-olds and adults recruited from the general population. We focused on interpersonal family dynamics as a prominent feature of one's social world. Given evidence that CA1 and CA2 play a key role in tracking social information, we related individual hippocampal subfield volumes to interpersonal family dynamics. More positive perceptions of interpersonal family dynamics were associated with greater CA1 and CA2/3 volume regardless of age and controlling for socioeconomic status. These data suggest that CA subfields are sensitive to normative variation in social environments and identify interpersonal family dynamics as an impactful environmental feature.
Collapse
Affiliation(s)
- Christine Coughlin
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX, United States
| | - Eliya Ben-Asher
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Hannah E. Roome
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX, United States
| | - Nicole L. Varga
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX, United States
| | - Michelle M. Moreau
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Lauren L. Schneider
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - Alison R. Preston
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX, United States
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
103
|
Chien JH, Hung IT, Goh JOS, Kuo LW, Chang WW. Personal socio-cultural preferences modulate neural correlates of decisions to socialize with powerful persons. Hum Brain Mapp 2022; 43:4422-4432. [PMID: 35665565 PMCID: PMC9435004 DOI: 10.1002/hbm.25963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/02/2022] [Accepted: 05/14/2022] [Indexed: 11/26/2022] Open
Abstract
Social power differences fundamentally shape the behavioral interaction dynamics of groups and societies. While it has long been recognized that individual socio‐cultural preferences mitigate social interactions involving persons of power, there is limited empirical data on the underlying neural correlates. To bridge this gap, we asked university student participants to decide whether they were willing to engage in social activities involving their teachers (higher power status), classmates (equal power status), or themselves (control) while functional brain images were acquired. Questionnaires assessed participants' preferences for power distance, uncertainty avoidance, and cultural intelligence. As expected, participants generally accepted more social interactions with classmates than teachers. Also, left inferior frontal activity was higher when accepting than when rejecting social interactions with teachers. Critically, power distance preferences further modulated right lateral frontoparietal activity contrasting approach relative to avoidance decisions towards teachers. In addition, uncertainty avoidance modulated activity in medial frontal, precuneus, and left supramarginal areas distinguishing approach decisions towards teachers relative to classmates. Cultural intelligence modulated neural responses to classmate approach/avoidance decisions in anterior cingulate and left parietal areas. Overall, functional activities in distinct brain networks reflected different personal socio‐cultural preferences despite observed social decisions to interact with others of differential power status. Such findings highlight that social approach or avoidance behaviors towards powerful persons involves differential subjective neural processes possibly involved in computing implicit social utility.
Collapse
Affiliation(s)
- Jui-Hong Chien
- Graduate Institute of International Human Resource Development, National Taiwan Normal University, Taipei, Taiwan
| | - I-Tzu Hung
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| | - Joshua Oon Soo Goh
- Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.,Department of Psychology, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.,Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, Taiwan
| | - Li-Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan.,Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Wen Chang
- Graduate Institute of International Human Resource Development, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
104
|
Abstract
SignificancePeople's decisions about how to treat others are known to be influenced by societally shared expectations about the typical traits of people from particular social groups (stereotypes). We combined a social psychological framework, an economic game, and multivariate functional MRI analysis to investigate whether and how trait inferences are instantiated neurally in the service of behavior toward members of different social groups. Multidimensional representations of trait content were found in brain regions associated with social cognition and in a region associated with inference-based decision-making: the lateral orbitofrontal cortex (OFC). Only OFC representations predicted individual participants' behavior, suggesting that although stereotypes are also represented in social cognition regions, they exert influence on behavior via decision-making mechanisms centered in the OFC.
Collapse
|
105
|
Morin A, Funkiewiez A, Routier A, Le Bouc R, Borderies N, Galanaud D, Levy R, Pessiglione M, Dubois B, Eymard B, Michon CC, Angeard N, Behin A, Laforet P, Stojkovic T, Azuar C. Unravelling the impact of frontal lobe impairment for social dysfunction in myotonic dystrophy type 1. Brain Commun 2022; 4:fcac111. [PMID: 35611304 PMCID: PMC9123843 DOI: 10.1093/braincomms/fcac111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 01/14/2022] [Accepted: 05/13/2022] [Indexed: 01/18/2023] Open
Abstract
Abstract
Myotonic dystrophy type 1 is an autosomal dominant multisystemic disorder affecting muscular and extra muscular systems, including the central nervous system. Cerebral involvement in myotonic dystrophy type 1 is associated with subtle cognitive and behavioural disorders, of major impact on socio-professional adaptation. The social dysfunction and its potential relation to frontal lobe neuropsychology remain under-evaluated in this pathology. The neuroanatomical network underpinning that disorder is yet to disentangle. Twenty-eight myotonic dystrophy type 1 adult patients (mean age: 46 years old) and 18 age and sex-matched healthy controls were included in the study. All patients performed an exhaustive neuropsychological assessment with a specific focus on frontal lobe neuropsychology (motivation, social cognition and executive functions). Among them, 18 myotonic dystrophy type 1 patients and 18 healthy controls had a brain MRI with T1 and T2 Flair sequences. Grey matter segmentation, Voxel-based morphometry and cortical thickness estimation were performed with Statistical Parametric Mapping Software SPM12 and Freesurfer software. Furthermore, T2 white matter lesions and subcortical structures were segmented with Automated Volumetry Software. Most patients showed significant impairment in executive frontal functions (auditory working memory, inhibition, contextualization and mental flexibility). Patients showed only minor difficulties in social cognition tests mostly in cognitive Theory of Mind, but with relative sparing of affective Theory of Mind and emotion recognition. Neuroimaging analysis revealed atrophy mostly in the parahippocampal and hippocampal regions and to a lesser extent in basal ganglia, regions involved in social navigation and mental flexibility, respectively. Social cognition scores were correlated with right parahippocampal gyrus atrophy. Social dysfunction in myotonic dystrophy type 1 might be a consequence of cognitive impairment regarding mental flexibility and social contextualization rather than a specific social cognition deficit such as emotion recognition. We suggest that both white matter lesions and grey matter disease could account for this social dysfunction, involving, in particular, the frontal-subcortical network and the hippocampal/arahippocampal regions, brain regions known, respectively, to integrate contextualization and social navigation.
Collapse
Affiliation(s)
- Alexandre Morin
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Service de Neurologie, CHU Rouen, Centre National de Référence Maladie d’Alzheimer du sujet jeune, 76000 Rouen, France
| | - Aurelie Funkiewiez
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer, Centre National Démences Rares, Hôpital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Alexandre Routier
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
| | - Raphael Le Bouc
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Urgences cérébro-vasculaires, Hôpital de la Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Nicolas Borderies
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
| | - Damien Galanaud
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Service de Neuroradiologie, Hôpital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Richard Levy
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer, Centre National Démences Rares, Hôpital Pitié-Salpêtrière, APHP, 75013 Paris, France
- Unité de Neuro-Psychiatrie Comportementale (IHU), Hôpital de la Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Mathias Pessiglione
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
| | - Bruno Dubois
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer, Centre National Démences Rares, Hôpital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Bruno Eymard
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hospital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Claire-Cecile Michon
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hospital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Nathalie Angeard
- U1129, Paris Descartes University, Sorbonne Paris Cité, Paris, France
- Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, APHP, Paris, France
| | - Anthony Behin
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hospital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Pascal Laforet
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hospital Raymond Poincaré, APHP, 92380 Garches, France
| | - Tanya Stojkovic
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hospital Pitié-Salpêtrière, APHP, 75013 Paris, France
| | - Carole Azuar
- Institut du Cerveau et de la Moelle épinière (ICM), UMRS 975, ICM-INSERM 1127, 75013 Paris, France
- Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer, Centre National Démences Rares, Hôpital Pitié-Salpêtrière, APHP, 75013 Paris, France
| |
Collapse
|
106
|
Ferreira-Fernandes E, Peça J. The Neural Circuit Architecture of Social Hierarchy in Rodents and Primates. Front Cell Neurosci 2022; 16:874310. [PMID: 35634473 PMCID: PMC9133341 DOI: 10.3389/fncel.2022.874310] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Social status is recognized as a major determinant of social behavior and health among animals; however, the neural circuits supporting the formation and navigation of social hierarchies remain under extensive research. Available evidence suggests the prefrontal cortex is a keystone in this circuit, but upstream and downstream candidates are progressively emerging. In this review, we compare and integrate findings from rodent and primate studies to create a model of the neural and cellular networks supporting social hierarchies, both from a macro (i.e., circuits) to a micro-scale perspective (microcircuits and synapses). We start by summarizing the literature on the prefrontal cortex and other relevant brain regions to expand the current “prefrontal-centric” view of social hierarchy behaviors. Based on connectivity data we also discuss candidate regions that might inspire further investigation, as well as the caveats and strategies that have been used to further our understanding of the biological substrates underpinning social hierarchy and dominance.
Collapse
Affiliation(s)
- Emanuel Ferreira-Fernandes
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - João Peça
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- *Correspondence: João Peça
| |
Collapse
|
107
|
Potrebić M, Pavković Ž, Puškaš N, Pešić V. The Influence of Social Isolation on Social Orientation, Sociability, Social Novelty Preference, and Hippocampal Parvalbumin-Expressing Interneurons in Peripubertal Rats - Understanding the Importance of Meeting Social Needs in Adolescence. Front Behav Neurosci 2022; 16:872628. [PMID: 35592640 PMCID: PMC9113078 DOI: 10.3389/fnbeh.2022.872628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The fulfillment of belonging needs underlies a variety of behaviors. In order to understand how social needs unmet during maturation shape everyday life, we examined social motivation and cognition in peripubertal rats, as a rodent model of adolescence, subjected to social isolation (SI) during early and early-to-mid adolescence. The behavioral correlates of social orientation (social space preference), sociability (preference for social over non-social novelty), and social novelty preference (SNP) were examined in group-housed (GH) and single-housed (SH) rats in a 3-chamber test. The response to social odors was examined to gain insights into the developmental role of social odors in motivated social behavior. Differentiation between appetitive (number of visits/approaches) and consummatory (exploratory time) aspects of motivated social behavior was done to determine which facet of social motivation characterizes maturation when social needs are met and which aspect dominates when social needs are unsatisfied. The SI-sensitive parvalbumin-expressing interneurons (PVI) in the hippocampus were examined using immunohistochemistry. The main findings are the following: (1) in GH rats, the preference for social space is not evident regardless of animals' age, while sociability becomes apparent in mid-adolescence strictly through consummatory behavior, along with complete SNP (appetitive, consummatory); (2) SH promotes staying in a social chamber/space regardless of animals' age and produces an appetitive preference for it only in early-adolescent animals; (3) SH promotes sociability (appetitive, consummatory) regardless of the animals' age and prevents the SNP; (4) the preference for a social odor is displayed in all the groups through consummatory behavior, while appetitive behavior is evident only in SH rats; (5) the response to social odors does not commensurate directly to the response to conspecifics; (6) SH does not influence PVI in the hippocampus, except in the case of early-adolescence when a transient decrease in the dentate gyrus is observed. These results accentuate the developmental complexity of social motivation and cognition, and the power of SI in adolescence to infringe social maturation at different functional levels, promoting appetitive behavior toward peers overall but harming the interest for social novelty. The findings emphasize the importance of the fulfillment of basic social needs in the navigation through the social world.
Collapse
Affiliation(s)
- Milica Potrebić
- Molecular Neurobiology and Behavior, Department of Neurobiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Željko Pavković
- Molecular Neurobiology and Behavior, Department of Neurobiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nela Puškaš
- Institute of Histology and Embryology “Aleksandar Đ. Kostić”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vesna Pešić
- Molecular Neurobiology and Behavior, Department of Neurobiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
108
|
Gentsch A, Kuehn E. Clinical Manifestations of Body Memories: The Impact of Past Bodily Experiences on Mental Health. Brain Sci 2022; 12:594. [PMID: 35624981 PMCID: PMC9138975 DOI: 10.3390/brainsci12050594] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/04/2022] Open
Abstract
Bodily experiences such as the feeling of touch, pain or inner signals of the body are deeply emotional and activate brain networks that mediate their perception and higher-order processing. While the ad hoc perception of bodily signals and their influence on behavior is empirically well studied, there is a knowledge gap on how we store and retrieve bodily experiences that we perceived in the past, and how this influences our everyday life. Here, we explore the hypothesis that negative body memories, that is, negative bodily experiences of the past that are stored in memory and influence behavior, contribute to the development of somatic manifestations of mental health problems including somatic symptoms, traumatic re-experiences or dissociative symptoms. By combining knowledge from the areas of cognitive neuroscience and clinical neuroscience with insights from psychotherapy, we identify Clinical Body Memory (CBM) mechanisms that specify how mental health problems could be driven by corporeal experiences stored in memory. The major argument is that the investigation of the neuronal mechanisms that underlie the storage and retrieval of body memories provides us with empirical access to reduce the negative impact of body memories on mental health.
Collapse
Affiliation(s)
- Antje Gentsch
- Department of Psychology, General and Experimental Psychology, LMU Munich, 80802 Munich, Germany;
- Institute for Psychoanalysis, Psychotherapy and Psychosomatics (IPB), 10557 Berlin, Germany
| | - Esther Kuehn
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
- Hertie Institute for Clinical Brain Research (HIH), 72076 Tübingen, Germany
| |
Collapse
|
109
|
Sheng J, Zhang L, Liu C, Liu J, Feng J, Zhou Y, Hu H, Xue G. Higher-dimensional neural representations predict better episodic memory. SCIENCE ADVANCES 2022; 8:eabm3829. [PMID: 35442734 PMCID: PMC9020666 DOI: 10.1126/sciadv.abm3829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Episodic memory enables humans to encode and later vividly retrieve information about our rich experiences, yet the neural representations that support this mental capacity are poorly understood. Using a large fMRI dataset (n = 468) of face-name associative memory tasks and principal component analysis to examine neural representational dimensionality (RD), we found that the human brain maintained a high-dimensional representation of faces through hierarchical representation within and beyond the face-selective regions. Critically, greater RD was associated with better subsequent memory performance both within and across participants, and this association was specific to episodic memory but not general cognitive abilities. Furthermore, the frontoparietal activities could suppress the shared low-dimensional fluctuations and reduce the correlations of local neural responses, resulting in greater RD. RD was not associated with the degree of item-specific pattern similarity, and it made complementary contributions to episodic memory. These results provide a mechanistic understanding of the role of RD in supporting accurate episodic memory.
Collapse
|
110
|
Kojima H, Ikegami T. Organization of a Latent Space structure in VAE/GAN trained by navigation data. Neural Netw 2022; 152:234-243. [PMID: 35561527 DOI: 10.1016/j.neunet.2022.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/13/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
We present a novel artificial cognitive mapping system using generative deep neural networks, called variational autoencoder/generative adversarial network (VAE/GAN), which can map input images to latent vectors and generate temporal sequences internally. The results show that the distance of the predicted image is reflected in the distance of the corresponding latent vector after training. This indicates that the latent space is self-organized to reflect the proximity structure of the dataset and may provide a mechanism through which many aspects of cognition are spatially represented. The present study allows the network to internally generate temporal sequences that are analogous to the hippocampal replay/pre-play ability, where VAE produces only near-accurate replays of past experiences, but by introducing GANs, the generated sequences are coupled with instability and novelty.
Collapse
Affiliation(s)
- Hiroki Kojima
- The graduate school of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | - Takashi Ikegami
- The graduate school of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
111
|
Kim M, Doeller CF. Adaptive cognitive maps for curved surfaces in the 3D world. Cognition 2022; 225:105126. [PMID: 35461111 DOI: 10.1016/j.cognition.2022.105126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Terrains in a 3D world can be undulating. Yet, most prior research has exclusively investigated spatial representations on a flat surface, leaving a 2D cognitive map as the dominant model in the field. Here, we investigated whether humans represent a curved surface by building a dimension-reduced flattened 2D map or a full 3D map. Participants learned the location of objects positioned on a flat and curved surface in a virtual environment by driving on the concave side of the surface (Experiment 1), driving and looking vertically (Experiment 2), or flying (Experiment 3). Subsequently, they were asked to retrieve either the path distance or the 3D Euclidean distance between the objects. Path distance estimation was good overall, but we found a significant underestimation bias for the path distance on the curve, suggesting an influence of potential 3D shortcuts, even though participants were only driving on the surface. Euclidean distance estimation was better when participants were exposed more to the global 3D structure of the environment by looking and flying. These results suggest that the representation of the 2D manifold, embedded in a 3D world, is neither purely 2D nor 3D. Rather, it is flexible and dependent on the behavioral experience and demand.
Collapse
Affiliation(s)
- Misun Kim
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Christian F Doeller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Psychology, Leipzig University, Leipzig, Germany; Kavli Institute for Systems Neuroscience, Trondheim, Norway.
| |
Collapse
|
112
|
Musa A, Khan S, Mujahid M, El-Gaby M. The shallow cognitive map hypothesis: A hippocampal framework for thought disorder in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:34. [PMID: 35853896 PMCID: PMC9261089 DOI: 10.1038/s41537-022-00247-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/11/2022] [Indexed: 12/31/2022]
Abstract
Memories are not formed in isolation. They are associated and organized into relational knowledge structures that allow coherent thought. Failure to express such coherent thought is a key hallmark of Schizophrenia. Here we explore the hypothesis that thought disorder arises from disorganized Hippocampal cognitive maps. In doing so, we combine insights from two key lines of investigation, one concerning the neural signatures of cognitive mapping, and another that seeks to understand lower-level cellular mechanisms of cognition within a dynamical systems framework. Specifically, we propose that multiple distinct pathological pathways converge on the shallowing of Hippocampal attractors, giving rise to disorganized Hippocampal cognitive maps and driving conceptual disorganization. We discuss the available evidence at the computational, behavioural, network, and cellular levels. We also outline testable predictions from this framework, including how it could unify major chemical and psychological theories of schizophrenia and how it can provide a rationale for understanding the aetiology and treatment of the disease.
Collapse
Affiliation(s)
- Ayesha Musa
- Green Templeton College, University of Oxford, Oxford, OX2 6HG, UK
| | - Safia Khan
- Green Templeton College, University of Oxford, Oxford, OX2 6HG, UK
| | - Minahil Mujahid
- St Anne's college, University of Oxford, Oxford, OX2 6HS, UK
| | - Mohamady El-Gaby
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3SR, UK.
| |
Collapse
|
113
|
Vaidya AR, Badre D. Abstract task representations for inference and control. Trends Cogn Sci 2022; 26:484-498. [DOI: 10.1016/j.tics.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022]
|
114
|
Arzy S, Kaplan R. Transforming Social Perspectives with Cognitive Maps. Soc Cogn Affect Neurosci 2022; 17:939-955. [PMID: 35257155 PMCID: PMC9527473 DOI: 10.1093/scan/nsac017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/17/2021] [Accepted: 03/07/2022] [Indexed: 01/29/2023] Open
Abstract
Growing evidence suggests that cognitive maps represent relations between social knowledge similar to how spatial locations are represented in an environment. Notably, the extant human medial temporal lobe literature assumes associations between social stimuli follow a linear associative mapping from an egocentric viewpoint to a cognitive map. Yet, this form of associative social memory doesn't account for a core phenomenon of social interactions in which social knowledge learned via comparisons to the self, other individuals, or social networks are assimilated within a single frame of reference. We argue that hippocampal-entorhinal coordinate transformations, known to integrate egocentric and allocentric spatial cues, inform social perspective switching between the self and others. We present evidence that the hippocampal formation helps inform social interactions by relating self versus other social attribute comparisons to society in general, which can afford rapid and flexible assimilation of knowledge about the relationship between the self and social networks of varying proximities. We conclude by discussing the ramifications of cognitive maps in aiding this social perspective transformation process in states of health and disease.
Collapse
Affiliation(s)
- Shahar Arzy
- Faculty of Medicine and the Department of Cognitive Sciences, Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem 91120, Israel
| | - Raphael Kaplan
- Correspondence should be addressed to Raphael Kaplan, Department of Basic Psychology, Clinical Psychology, and Psychobiology, Universitat Jaume I, Avinguda de Vicent Sos Baynat, Castelló de la Plana, Spain. E-mail:
| |
Collapse
|
115
|
Encoding in a social feedback context enhances and biases behavioral and electrophysiological correlates of long-term recognition memory. Sci Rep 2022; 12:3312. [PMID: 35228604 PMCID: PMC8885702 DOI: 10.1038/s41598-022-07270-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/14/2022] [Indexed: 11/08/2022] Open
Abstract
Encoding often occurs in social contexts, yet research has hardly addressed their role in verbal memory. In three experiments, we investigated the behavioral and neural effects of encoding context on memory for positive, negative, and neutral adjectives, contrasting a social-feedback group (N = 24) with an explicit verbal-learning (N = 24) and a levels-of-processing group (N = 24). Participants in the social-feedback group were not aware of a recognition session one week later, but their memory was better than the explicit learning or the levels-of-processing groups'. However, they also exhibited the strongest response bias, particularly for positive words. Brain event-related potentials (ERPs) revealed largest early negativities (EPN) and late positivities (LPP) in the social-feedback group. Only in the subsequent slow-wave did the explicit learning group show higher amplitudes than the other two groups, suggesting reliance on strategic rather than automatic processes. Still, context-driven incidental encoding outweighed explicit instructions, specifying a decisive role of social factors in memory.
Collapse
|
116
|
Task-related connectivity of decision points during spatial navigation in a schematic map. Brain Struct Funct 2022; 227:1697-1710. [PMID: 35194657 DOI: 10.1007/s00429-022-02466-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/28/2022] [Indexed: 12/19/2022]
Abstract
Successful navigation is largely dependent on the ability to make correct decisions at navigational decision points. However, the interaction between the brain regions associated with the navigational decision point in a schematic map is unclear. In this study, we adopted a 2D subway paradigm to study the neural basis underlying decision points. Twenty-eight subjects performed a spatial navigation task using a subway map during fMRI scanning. We adopted a voxel-wise general linear model (GLM) approach and found four brain regions, the left hippocampus (HIP), left parahippocampal gyrus (PHG), left ventromedial prefrontal cortex (vmPFC), and right retrosplenial cortex (RSC), activated at a navigational decision point in a schematic map. Using a psychophysiological interactions (PPI) method, we found that (1) both the left vmPFC and right HIP interacted cooperatively with the right RSC, and (2) the left HIP and the left vmPFC interacted cooperatively at the decision point. These findings may be helpful for revealing the neural mechanisms underlying decision points in a schematic map during spatial navigation.
Collapse
|
117
|
Subhadeep D, Srikumar BN, Shankaranarayana Rao BS, Kutty BM. Ventral subicular lesion impairs pro-social empathy-like behavior in adult Wistar rats. Neurosci Lett 2022; 776:136535. [PMID: 35182682 DOI: 10.1016/j.neulet.2022.136535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/01/2022]
Abstract
The subiculum, an important structure of the hippocampal formation, regulates spatial information processing, social cognition, and affective behavior. Earlier we demonstrated deficits in sociability and social novelty as a measure of social cognition in ventral subicular lesioned (VSL) rats. The present study investigated empathy-like pro-social behavior and the associated affective states in VSL rats. The ability of free rats to release trapped cagemates was assessed using a modified door-opening empathy task.The rat pairs (free rat and the trapped cagemate) used were from the same group and tested for eight days to assess the pro-social behavior displayed by the free rats. The controlfree rats learned to open the door quickly to release the trapped cagemate and both the rats displayed social responses by emitting 'hedonic' calls (50-kHz ultrasonic vocalizations) while playing after the release. The VSLfree rats, however, were less exploratory, displayed apathy towards the trapped cagemate, demonstrated freezing behavior following door-opening and did not interact with the cagemate even after its release. These findings indicate deficits of social motivation and reinforcement learning associated with lesions in possibly both the rats. In addition, the VSL rat pairs elicited more 22-kHz 'alarm' calls and fewer 50-kHz 'hedonic' calls highlighting the lesion-induced alterations of contextual processing and threat perception abilities. In conclusion, VSL led to significant pro-social deficits implicating the role of ventral subiculum in social cognition and empathy. More studies are needed to substantiate whether the subiculum is implicated in social deficits associated with psychiatric conditions such as autism spectrum disorder.
Collapse
Affiliation(s)
- Duttagupta Subhadeep
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - B N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India.
| |
Collapse
|
118
|
Zhang L, Chen P, Schafer M, Zheng S, Chen L, Wang S, Liang Q, Qi Q, Zhang Y, Huang R. A specific brain network for a social map in the human brain. Sci Rep 2022; 12:1773. [PMID: 35110581 PMCID: PMC8810806 DOI: 10.1038/s41598-022-05601-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 01/13/2022] [Indexed: 12/03/2022] Open
Abstract
Individuals use social information to guide social interactions and to update relationships along multiple social dimensions. However, it is unclear what neural basis underlies this process of abstract "social navigation". In the current study, we recruited twenty-nine participants who performed a choose-your-own-adventure game in which they interacted with fictional characters during fMRI scanning. Using a whole-brain GLM approach, we found that vectors encoding two-dimensional information about the relationships predicted BOLD responses in the hippocampus and the precuneus, replicating previous work. We also explored whether these geometric representations were related to key brain regions previously identified in physical and abstract spatial navigation studies, but we did not find involvement of the entorhinal cortex, parahippocampal gyrus or the retrosplenial cortex. Finally, we used psychophysiological interaction analysis and identified a network of regions that correlated during participants' decisions, including the left posterior hippocampus, precuneus, dorsolateral prefrontal cortex (dlPFC), and the insula. Our findings suggest a brain network for social navigation in multiple abstract, social dimensions that includes the hippocampus, precuneus, dlPFC, and insula.
Collapse
Affiliation(s)
- Lu Zhang
- School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, People's Republic of China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Ping Chen
- School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, People's Republic of China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Matthew Schafer
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Senning Zheng
- School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, People's Republic of China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Lixiang Chen
- School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, People's Republic of China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Shuai Wang
- School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, People's Republic of China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Qunjun Liang
- School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, People's Republic of China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Qing Qi
- School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, People's Republic of China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Yichen Zhang
- School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, People's Republic of China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Ruiwang Huang
- School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China.
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, People's Republic of China.
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China.
| |
Collapse
|
119
|
Basyouni R, Parkinson C. Mapping the social landscape: tracking patterns of interpersonal relationships. Trends Cogn Sci 2022; 26:204-221. [DOI: 10.1016/j.tics.2021.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022]
|
120
|
Zajner C, Spreng RN, Bzdok D. Lacking Social Support is Associated With Structural Divergences in Hippocampus-Default Network Co-Variation Patterns. Soc Cogn Affect Neurosci 2022; 17:802-818. [PMID: 35086149 PMCID: PMC9433851 DOI: 10.1093/scan/nsac006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/17/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022] Open
Abstract
Elaborate social interaction is a pivotal asset of the human species. The complexity of people’s social lives may constitute the dominating factor in the vibrancy of many individuals’ environment. The neural substrates linked to social cognition thus appear especially susceptible when people endure periods of social isolation: here, we zoom in on the systematic inter-relationships between two such neural substrates, the allocortical hippocampus (HC) and the neocortical default network (DN). Previous human social neuroscience studies have focused on the DN, while HC subfields have been studied in most detail in rodents and monkeys. To bring into contact these two separate research streams, we directly quantified how DN subregions are coherently co-expressed with specific HC subfields in the context of social isolation. A two-pronged decomposition of structural brain scans from ∼40 000 UK Biobank participants linked lack of social support to mostly lateral subregions in the DN patterns. This lateral DN association co-occurred with HC patterns that implicated especially subiculum, presubiculum, CA2, CA3 and dentate gyrus. Overall, the subregion divergences within spatially overlapping signatures of HC–DN co-variation followed a clear segregation into the left and right brain hemispheres. Separable regimes of structural HC–DN co-variation also showed distinct associations with the genetic predisposition for lacking social support at the population level.
Collapse
Affiliation(s)
- Chris Zajner
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal H3A2B4, Canada
| | - R Nathan Spreng
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal H3A2B4, Canada
| | - Danilo Bzdok
- Correspondence should be addressed to Danilo Bzdok, McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal H3A2B4, Canada. E-mail:
| |
Collapse
|
121
|
Nyberg N, Duvelle É, Barry C, Spiers HJ. Spatial goal coding in the hippocampal formation. Neuron 2022; 110:394-422. [PMID: 35032426 DOI: 10.1016/j.neuron.2021.12.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/18/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022]
Abstract
The mammalian hippocampal formation contains several distinct populations of neurons involved in representing self-position and orientation. These neurons, which include place, grid, head direction, and boundary-vector cells, are thought to collectively instantiate cognitive maps supporting flexible navigation. However, to flexibly navigate, it is necessary to also maintain internal representations of goal locations, such that goal-directed routes can be planned and executed. Although it has remained unclear how the mammalian brain represents goal locations, multiple neural candidates have recently been uncovered during different phases of navigation. For example, during planning, sequential activation of spatial cells may enable simulation of future routes toward the goal. During travel, modulation of spatial cells by the prospective route, or by distance and direction to the goal, may allow maintenance of route and goal-location information, supporting navigation on an ongoing basis. As the goal is approached, an increased activation of spatial cells may enable the goal location to become distinctly represented within cognitive maps, aiding goal localization. Lastly, after arrival at the goal, sequential activation of spatial cells may represent the just-taken route, enabling route learning and evaluation. Here, we review and synthesize these and other evidence for goal coding in mammalian brains, relate the experimental findings to predictions from computational models, and discuss outstanding questions and future challenges.
Collapse
Affiliation(s)
- Nils Nyberg
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, UK.
| | - Éléonore Duvelle
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Caswell Barry
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Hugo J Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, UK.
| |
Collapse
|
122
|
Averbeck B, O'Doherty JP. Reinforcement-learning in fronto-striatal circuits. Neuropsychopharmacology 2022; 47:147-162. [PMID: 34354249 PMCID: PMC8616931 DOI: 10.1038/s41386-021-01108-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 01/03/2023]
Abstract
We review the current state of knowledge on the computational and neural mechanisms of reinforcement-learning with a particular focus on fronto-striatal circuits. We divide the literature in this area into five broad research themes: the target of the learning-whether it be learning about the value of stimuli or about the value of actions; the nature and complexity of the algorithm used to drive the learning and inference process; how learned values get converted into choices and associated actions; the nature of state representations, and of other cognitive machinery that support the implementation of various reinforcement-learning operations. An emerging fifth area focuses on how the brain allocates or arbitrates control over different reinforcement-learning sub-systems or "experts". We will outline what is known about the role of the prefrontal cortex and striatum in implementing each of these functions. We then conclude by arguing that it will be necessary to build bridges from algorithmic level descriptions of computational reinforcement-learning to implementational level models to better understand how reinforcement-learning emerges from multiple distributed neural networks in the brain.
Collapse
Affiliation(s)
| | - John P O'Doherty
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
123
|
Blaison C. Affective judgment in spatial context: Orienting within physical spaces containing people and things. SOCIAL AND PERSONALITY PSYCHOLOGY COMPASS 2021. [DOI: 10.1111/spc3.12653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christophe Blaison
- Laboratoire de Psychologie Sociale Institut de Psychologie Université de Paris Boulogne‐Billancourt Cedex France
| |
Collapse
|
124
|
Li S, Krueger F, Camilleri JA, Eickhoff SB, Qu C. The neural signatures of social hierarchy-related learning and interaction: A coordinate- and connectivity-based meta-analysis. Neuroimage 2021; 245:118731. [PMID: 34788662 DOI: 10.1016/j.neuroimage.2021.118731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/17/2021] [Accepted: 11/13/2021] [Indexed: 11/25/2022] Open
Abstract
Numerous neuroimaging studies have investigated the neural mechanisms of two mutually independent yet closely related cognitive processes aiding humans to navigate complex societies: social hierarchy-related learning (SH-RL) and social hierarchy-related interaction (SH-RI). To integrate these heterogeneous results into a more fine-grained and reliable characterization of the neural basis of social hierarchy, we combined coordinate-based meta-analyses with connectivity and functional decoding analyses to understand the underlying neuropsychological mechanism of SH-RL and SH-RI. We identified the anterior insula and temporoparietal junction (dominance detection), medial prefrontal cortex (information updating and computation), and intraparietal sulcus region, amygdala, and hippocampus (social hierarchy representation) as consistent activated brain regions for SH-RL, but the striatum, amygdala, and hippocampus associated with reward processing for SH-RI. Our results provide an overview of the neural architecture of the neuropsychological processes underlying how we understand, and interact within, social hierarchy.
Collapse
Affiliation(s)
- Siying Li
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631 China
| | - Frank Krueger
- School of Systems Biology, George Mason University, Fairfax, VA, United States; Department of Psychology, George Mason University, Fairfax, VA, United States
| | - Julia A Camilleri
- Research Center Jülich, Institute for Neuroscience and Medicine (INM-7), Germany; Medical Faculty, Institute for Systems Neuroscience, Heinrich-Heine University Düsseldorf, Germany
| | - Simon B Eickhoff
- Research Center Jülich, Institute for Neuroscience and Medicine (INM-7), Germany; Medical Faculty, Institute for Systems Neuroscience, Heinrich-Heine University Düsseldorf, Germany
| | - Chen Qu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631 China.
| |
Collapse
|
125
|
Impaired remapping of social relationships in older adults. Sci Rep 2021; 11:21910. [PMID: 34753971 PMCID: PMC8578667 DOI: 10.1038/s41598-021-01258-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/19/2021] [Indexed: 11/08/2022] Open
Abstract
Social relationships are a central aspect of our everyday life, yet our ability to change established social relationships is an under-investigated topic. Here, we use the concept of cognitive mapping to investigate the plasticity of social relationships in younger and older adults. We describe social relationships within a 'social space', defined as a two-dimensional grid composed of the axis 'power' and 'affiliation', and investigate it using a 3D virtual environment with interacting avatars. We show that participants remap dimensions in 'social space' when avatars show conflicting behavior compared to consistent behavior and that, while older adults show similar updating behavior than younger adults, they show a distinct reduction in remapping social space. Our data provide first evidence that older adults show more rigid social behavior when avatars change their behavior in the dimensions of power and affiliation, which may explain age-related social behavior differences in everyday life.
Collapse
|
126
|
Na S, Chung D, Hula A, Perl O, Jung J, Heflin M, Blackmore S, Fiore VG, Dayan P, Gu X. Humans use forward thinking to exploit social controllability. eLife 2021; 10:64983. [PMID: 34711304 PMCID: PMC8555988 DOI: 10.7554/elife.64983] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 09/30/2021] [Indexed: 12/27/2022] Open
Abstract
The controllability of our social environment has a profound impact on our behavior and mental health. Nevertheless, neurocomputational mechanisms underlying social controllability remain elusive. Here, 48 participants performed a task where their current choices either did (Controllable), or did not (Uncontrollable), influence partners’ future proposals. Computational modeling revealed that people engaged a mental model of forward thinking (FT; i.e., calculating the downstream effects of current actions) to estimate social controllability in both Controllable and Uncontrollable conditions. A large-scale online replication study (n=1342) supported this finding. Using functional magnetic resonance imaging (n=48), we further demonstrated that the ventromedial prefrontal cortex (vmPFC) computed the projected total values of current actions during forward planning, supporting the neural realization of the forward-thinking model. These findings demonstrate that humans use vmPFC-dependent FT to estimate and exploit social controllability, expanding the role of this neurocomputational mechanism beyond spatial and cognitive contexts.
Collapse
Affiliation(s)
- Soojung Na
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, United States.,Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Dongil Chung
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Andreas Hula
- Austrian Institute of Technology, Seibersdorf, Austria
| | - Ofer Perl
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Jennifer Jung
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, United States
| | - Matthew Heflin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Sylvia Blackmore
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States.,Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Vincenzo G Fiore
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Peter Dayan
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,University of Tübingen, Tübingen, Germany
| | - Xiaosi Gu
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
127
|
Zheng L, Gao Z, McAvan AS, Isham EA, Ekstrom AD. Partially overlapping spatial environments trigger reinstatement in hippocampus and schema representations in prefrontal cortex. Nat Commun 2021; 12:6231. [PMID: 34711830 PMCID: PMC8553856 DOI: 10.1038/s41467-021-26560-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 10/11/2021] [Indexed: 01/17/2023] Open
Abstract
When we remember a city that we have visited, we retrieve places related to finding our goal but also non-target locations within this environment. Yet, understanding how the human brain implements the neural computations underlying holistic retrieval remains unsolved, particularly for shared aspects of environments. Here, human participants learned and retrieved details from three partially overlapping environments while undergoing high-resolution functional magnetic resonance imaging (fMRI). Our findings show reinstatement of stores even when they are not related to a specific trial probe, providing evidence for holistic environmental retrieval. For stores shared between cities, we find evidence for pattern separation (representational orthogonalization) in hippocampal subfield CA2/3/DG and repulsion in CA1 (differentiation beyond orthogonalization). Additionally, our findings demonstrate that medial prefrontal cortex (mPFC) stores representations of the common spatial structure, termed schema, across environments. Together, our findings suggest how unique and common elements of multiple spatial environments are accessed computationally and neurally.
Collapse
Affiliation(s)
- Li Zheng
- grid.134563.60000 0001 2168 186XDepartment of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XEvelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA
| | - Zhiyao Gao
- grid.5685.e0000 0004 1936 9668Department of Psychology, University of York, Heslington, York YO10 5DD UK
| | - Andrew S. McAvan
- grid.134563.60000 0001 2168 186XDepartment of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XEvelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA
| | - Eve A. Isham
- grid.134563.60000 0001 2168 186XDepartment of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XEvelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA
| | - Arne D. Ekstrom
- grid.134563.60000 0001 2168 186XDepartment of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XEvelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA
| |
Collapse
|
128
|
Gaztambide DJ. Love in a time of anti-Blackness: social rank, attachment, and race in psychotherapy. Attach Hum Dev 2021; 24:353-365. [PMID: 34672242 DOI: 10.1080/14616734.2021.1976935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This paper draws on critical race theory and research on attachment, social rank and dehumanization to theorize the implications of addressing anti-Blackness in psychotherapy with both Black and non-Black clients in the context of White Supremacy. Drawing on and critiquing a recent review of attachment theory and race, the author draws on historical and empirical research outlining the contours of a racial capitalist world. Recontextualizing attachment theory through this critical race theory lens, it will be argued psychotherapy must address anti-Blackness with both Black and non-Black clients, redefining therapeutic action not only as the provision of repair of interpersonal ruptures, but also as the capacity to mentalize about socio-historical ruptures, allowing space to clarify and pursue one's values despite an anti-Black, capitalist and White Supremacist world. This paper will provide case examples illustrating these principles with Black and non-Black clients and conclude with their clinical and political implications.
Collapse
Affiliation(s)
- Daniel J Gaztambide
- Department of Psychology, The New School for Social Research, New York, NY, USA
| |
Collapse
|
129
|
Wang S, Feng SF, Bornstein AM. Mixing memory and desire: How memory reactivation supports deliberative decision-making. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2021; 13:e1581. [PMID: 34665529 DOI: 10.1002/wcs.1581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 08/24/2021] [Accepted: 09/16/2021] [Indexed: 11/09/2022]
Abstract
Memories affect nearly every aspect of our mental life. They allow us to both resolve uncertainty in the present and to construct plans for the future. Recently, renewed interest in the role memory plays in adaptive behavior has led to new theoretical advances and empirical observations. We review key findings, with particular emphasis on how the retrieval of many kinds of memories affects deliberative action selection. These results are interpreted in a sequential inference framework, in which reinstatements from memory serve as "samples" of potential action outcomes. The resulting model suggests a central role for the dynamics of memory reactivation in determining the influence of different kinds of memory in decisions. We propose that representation-specific dynamics can implement a bottom-up "product of experts" rule that integrates multiple sets of action-outcome predictions weighted based on their uncertainty. We close by reviewing related findings and identifying areas for further research. This article is categorized under: Psychology > Reasoning and Decision Making Neuroscience > Cognition Neuroscience > Computation.
Collapse
Affiliation(s)
- Shaoming Wang
- Department of Psychology, New York University, New York, New York, USA
| | - Samuel F Feng
- Department of Mathematics, Khalifa University of Science and Technology, Abu Dhabi, UAE.,Khalifa University Centre for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Aaron M Bornstein
- Department of Cognitive Sciences, University of California-Irvine, Irvine, California, USA.,Center for the Neurobiology of Learning & Memory, University of California-Irvine, Irvine, California, USA.,Institute for Mathematical Behavioral Sciences, University of California-Irvine, Irvine, California, USA
| |
Collapse
|
130
|
Robinson JC, Brandon MP. Skipping ahead: A circuit for representing the past, present, and future. eLife 2021; 10:e68795. [PMID: 34647521 PMCID: PMC8516414 DOI: 10.7554/elife.68795] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/28/2021] [Indexed: 01/02/2023] Open
Abstract
Envisioning the future is intuitively linked to our ability to remember the past. Within the memory system, substantial work has demonstrated the involvement of the prefrontal cortex and the hippocampus in representing the past and present. Recent data shows that both the prefrontal cortex and the hippocampus encode future trajectories, which are segregated in time by alternating cycles of the theta rhythm. Here, we discuss how information is temporally organized by these brain regions supported by the medial septum, nucleus reuniens, and parahippocampal regions. Finally, we highlight a brain circuit that we predict is essential for the temporal segregation of future scenarios.
Collapse
Affiliation(s)
- Jennifer C Robinson
- Department of Psychological and Brain Sciences, Rajen Kilachand Center for Integrated Life Sciences and Engineering, Boston UniversityBostonUnited States
| | - Mark P Brandon
- Department of Psychiatry, Douglas Hospital Research Centre, McGill UniversityMontrealCanada
| |
Collapse
|
131
|
Son JY, Bhandari A, FeldmanHall O. Cognitive maps of social features enable flexible inference in social networks. Proc Natl Acad Sci U S A 2021; 118:e2021699118. [PMID: 34518372 PMCID: PMC8488581 DOI: 10.1073/pnas.2021699118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2021] [Indexed: 11/18/2022] Open
Abstract
In order to navigate a complex web of relationships, an individual must learn and represent the connections between people in a social network. However, the sheer size and complexity of the social world makes it impossible to acquire firsthand knowledge of all relations within a network, suggesting that people must make inferences about unobserved relationships to fill in the gaps. Across three studies (n = 328), we show that people can encode information about social features (e.g., hobbies, clubs) and subsequently deploy this knowledge to infer the existence of unobserved friendships in the network. Using computational models, we test various feature-based mechanisms that could support such inferences. We find that people's ability to successfully generalize depends on two representational strategies: a simple but inflexible similarity heuristic that leverages homophily, and a complex but flexible cognitive map that encodes the statistical relationships between social features and friendships. Together, our studies reveal that people can build cognitive maps encoding arbitrary patterns of latent relations in many abstract feature spaces, allowing social networks to be represented in a flexible format. Moreover, these findings shed light on open questions across disciplines about how people learn and represent social networks and may have implications for generating more human-like link prediction in machine learning algorithms.
Collapse
Affiliation(s)
- Jae-Young Son
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912
| | - Apoorva Bhandari
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912
| | - Oriel FeldmanHall
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912;
- Carney Institute for Brain Sciences, Brown University, Providence, RI 02912
| |
Collapse
|
132
|
Small ML. On Mobilization. PERSONAL NETWORKS 2021:573-595. [DOI: 10.1017/9781108878296.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
133
|
Banker SM, Gu X, Schiller D, Foss-Feig JH. Hippocampal contributions to social and cognitive deficits in autism spectrum disorder. Trends Neurosci 2021; 44:793-807. [PMID: 34521563 DOI: 10.1016/j.tins.2021.08.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/07/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Autism spectrum disorder (ASD) is characterized by hallmark impairments in social functioning. Nevertheless, nonsocial cognition, including hippocampus-dependent spatial reasoning and episodic memory, is also commonly impaired in ASD. ASD symptoms typically emerge between 12 and 24 months of age, a time window associated with critical developmental events in the hippocampus. Despite this temporal overlap and evidence of hippocampal structural abnormalities in ASD individuals, relatively few human studies have focused on hippocampal function in ASD. Herein, we review the existing evidence for the involvement of the hippocampus in ASD and highlight the hippocampus as a promising area of interest for future research in ASD.
Collapse
Affiliation(s)
- Sarah M Banker
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Xiaosi Gu
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniela Schiller
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jennifer H Foss-Feig
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
134
|
Fatfouta R, Trope Y. Keeping One’s Distance: Mask Wearing is Implicitly Associated With Psychological Distance. SOCIAL PSYCHOLOGICAL AND PERSONALITY SCIENCE 2021. [DOI: 10.1177/19485506211044061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mask wearing plays a vital role in the fight against the novel coronavirus (COVID-19). Despite its ubiquity in everyday social life, it is still unknown how masked faces are mentally represented. Drawing on construal-level theory, we test the hypothesis that masked faces and unmasked faces are implicitly associated with psychological distance and proximity in memory, respectively. Four preregistered, high-powered experiments ( N = 354 adults) using the Implicit Association Test lend convergent support to this hypothesis across all four dimensions of psychological distance: social distance, spatial distance, temporal distance, and hypothetical distance. A mini meta-analysis validates the reliability of the findings (Hedge’s g = 0.46). The present work contributes to the growing literature on construal-level effects on implicit social cognition and enriches the current discussion on mask wearing in the pandemic and beyond.
Collapse
Affiliation(s)
- Ramzi Fatfouta
- HMKW Hochschule für Medien, Kommunikation und Wirtschaft, University of Applied Sciences in Berlin, Germany
| | | |
Collapse
|
135
|
Learning and Representation of Hierarchical Concepts in Hippocampus and Prefrontal Cortex. J Neurosci 2021; 41:7675-7686. [PMID: 34330775 DOI: 10.1523/jneurosci.0657-21.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 11/21/2022] Open
Abstract
A key aspect of conceptual knowledge is that it can be flexibly applied at different levels of abstraction, implying a hierarchical organization. It is yet unclear how this hierarchical structure is acquired and represented in the brain. Here we investigate the computations underlying the acquisition and representation of the hierarchical structure of conceptual knowledge in the hippocampal-prefrontal system of 32 human participants (22 females). We assessed the hierarchical nature of learning during a novel tree-like categorization task via computational model comparisons. The winning model allowed to extract and quantify estimates for accumulation and updating of hierarchical compared with single-feature-based concepts from behavior. We find that mPFC tracks accumulation of hierarchical conceptual knowledge over time, and mPFC and hippocampus both support trial-to-trial updating. As a function of those learning parameters, mPFC and hippocampus further show connectivity changes to rostro-lateral PFC, which ultimately represented the hierarchical structure of the concept in the final stages of learning. Our results suggest that mPFC and hippocampus support the integration of accumulated evidence and instantaneous updates into hierarchical concept representations in rostro-lateral PFC.SIGNIFICANCE STATEMENT A hallmark of human cognition is the flexible use of conceptual knowledge at different levels of abstraction, ranging from a coarse category level to a fine-grained subcategory level. While previous work probed the representational geometry of long-term category knowledge, it is unclear how this hierarchical structure inherent to conceptual knowledge is acquired and represented. By combining a novel hierarchical concept learning task with computational modeling of categorization behavior and concurrent fMRI, we differentiate the roles of key concept learning regions in hippocampus and PFC in learning computations and the representation of a hierarchical category structure.
Collapse
|
136
|
|
137
|
Park SA, Miller DS, Boorman ED. Inferences on a multidimensional social hierarchy use a grid-like code. Nat Neurosci 2021; 24:1292-1301. [PMID: 34465915 PMCID: PMC8759596 DOI: 10.1038/s41593-021-00916-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/21/2021] [Indexed: 02/06/2023]
Abstract
Generalizing experiences to guide decision-making in novel situations is a hallmark of flexible behavior. Cognitive maps of an environment or task can theoretically afford such flexibility, but direct evidence has proven elusive. In this study, we found that discretely sampled abstract relationships between entities in an unseen two-dimensional social hierarchy are reconstructed into a unitary two-dimensional cognitive map in the hippocampus and entorhinal cortex. We further show that humans use a grid-like code in entorhinal cortex and medial prefrontal cortex for inferred direct trajectories between entities in the reconstructed abstract space during discrete decisions. These grid-like representations in the entorhinal cortex are associated with decision value computations in the medial prefrontal cortex and temporoparietal junction. Collectively, these findings show that grid-like representations are used by the human brain to infer novel solutions, even in abstract and discrete problems, and suggest a general mechanism underpinning flexible decision-making and generalization.
Collapse
Affiliation(s)
| | - Douglas S. Miller
- Center for Mind and Brain, University of California, Davis, USA,Center for Neuroscience, University of California, Davis, USA
| | - Erie D. Boorman
- Center for Mind and Brain, University of California, Davis, USA,Department of Psychology, University of California, Davis, USA
| |
Collapse
|
138
|
Bone J. Neoliberal precarity and primalization: A biosocial perspective on the age of insecurity, injustice, and unreason. THE BRITISH JOURNAL OF SOCIOLOGY 2021; 72:1030-1045. [PMID: 34374077 DOI: 10.1111/1468-4446.12884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/14/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
In light of the observed rise in social instability and populist politics that has emerged recently even in some of the world's oldest and presumed stable democracies, this paper reappraises the role of the neoliberal political and economic consensus in fermenting popular discontent. While this is very well trodden ground the paper approaches the issues from a wholly new direction, specifically addressing how exposure to the destabilizing conditions of the present can be seen to have negatively impacted on the neurological functioning of many of the disenchanted and distressed of the current era, generating chronic negative emotional arousal and an associated impact on the capacity for rational thought and conduct. This condition of mental and emotional fugue, it is argued, has also rendered growing numbers more susceptible to marginal and radicalizing discourses, largely extended and amplified via social media, and not least the emotionally charged overtures of populist politicians. Against a backdrop of increasing insecurity, transformative changes to work and living conditions precipitated by neoliberal policy and the digital revolution, together with the epochal crisis presented by the global pandemic, it is argued that the task of understanding the deep and fundamental causes of social and political fracture have rarely been more urgent.
Collapse
Affiliation(s)
- John Bone
- School of Social Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
139
|
Fulton SL, Hsieh C, Atkin T, Norris R, Schoenfeld E, Tsokas P, Fenton AA, Sacktor TC, Coplan JD. Lifelong reductions of PKMζ in ventral hippocampus of nonhuman primates exposed to early-life adversity due to unpredictable maternal care. Learn Mem 2021; 28:341-347. [PMID: 34400535 PMCID: PMC8372566 DOI: 10.1101/lm.053468.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 01/06/2023]
Abstract
Protein kinase Mζ (PKMζ) maintains long-term potentiation (LTP) and long-term memory through persistent increases in kinase expression. Early-life adversity is a precursor to adult mood and anxiety disorders, in part, through persistent disruption of emotional memory throughout life. Here we subjected 10- to 16-wk-old male bonnet macaques to adversity by a maternal variable-foraging demand paradigm. We then examined PKMζ expression in their ventral hippocampi as 7- to 12-yr-old adults. Quantitative immunohistochemistry reveals decreased PKMζ in dentate gyrus, CA1, and subiculum of subjects who had experienced early-life adversity due to the unpredictability of maternal care. Adult animals with persistent decrements of PKMζ in ventral hippocampus express timid rather than confrontational responses to a human intruder. Persistent down-regulation of PKMζ in the ventral hippocampus might reduce the capacity for emotional memory maintenance and contribute to the long-lasting emotional effects of early-life adversity.
Collapse
Affiliation(s)
| | | | | | | | | | - Panayiotis Tsokas
- Department of Physiology and Pharmacology,Department of Anesthesiology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA
| | - André Antonio Fenton
- Department of Physiology and Pharmacology,Center for Neural Science, New York University, New York, New York 10003, USA,Neuroscience Institute at the NYU Langone Medical Center, New York, New York 10016, USA
| | - Todd Charlton Sacktor
- Department of Physiology and Pharmacology,Department of Anesthesiology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA,Department of Neurology
| | - Jeremy D. Coplan
- Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA
| |
Collapse
|
140
|
Raithel CU, Gottfried JA. Using your nose to find your way: Ethological comparisons between human and non-human species. Neurosci Biobehav Rev 2021; 128:766-779. [PMID: 34214515 PMCID: PMC8359807 DOI: 10.1016/j.neubiorev.2021.06.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/10/2021] [Accepted: 06/25/2021] [Indexed: 02/08/2023]
Abstract
Olfaction is arguably the least valued among our sensory systems, and its significance for human behavior is often neglected. Spatial navigation represents no exception to the rule: humans are often characterized as purely visual navigators, a view that undermines the contribution of olfactory cues. Accordingly, research investigating whether and how humans use olfaction to navigate space is rare. In comparison, research on olfactory navigation in non-human species is abundant, and identifies behavioral strategies along with neural mechanisms characterizing the use of olfactory cues during spatial tasks. Using an ethological approach, our review draws from studies on olfactory navigation across species to describe the adaptation of strategies under the influence of selective pressure. Mammals interact with spatial environments by abstracting multisensory information into cognitive maps. We thus argue that olfactory cues, alongside inputs from other sensory modalities, play a crucial role in spatial navigation for mammalian species, including humans; that is, odors constitute one of the many building blocks in the formation of cognitive maps.
Collapse
Affiliation(s)
- Clara U Raithel
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Hamilton Walk, Stemmler Hall, Room G10, Philadelphia, PA, 19104, USA; Department of Psychology, School of Arts and Sciences, University of Pennsylvania, 425 S. University Avenue, Stephen A. Levin Building, Philadelphia, PA, 19104, USA.
| | - Jay A Gottfried
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Hamilton Walk, Stemmler Hall, Room G10, Philadelphia, PA, 19104, USA; Department of Psychology, School of Arts and Sciences, University of Pennsylvania, 425 S. University Avenue, Stephen A. Levin Building, Philadelphia, PA, 19104, USA
| |
Collapse
|
141
|
Li M, Ma Q, Baetens K, Pu M, Deroost N, Baeken C, Heleven E, Van Overwalle F. Social cerebellum in goal-directed navigation. Soc Neurosci 2021; 16:467-485. [PMID: 34404321 DOI: 10.1080/17470919.2021.1970017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The posterior cerebellum is responsible for the understanding and learning of sequences of actions by others, which are a prerequisite for social understanding. This study investigates this cerebellar function while navigating toward a goal in a social context. Participants undertook a novel social navigation task requiring them to memorize and subsequently reproduce a protagonist's trajectory through a grid toward a desirable goal. As a nonsocial control condition, a ball underwent the same trajectory by passively rolling through the grid toward the same endpoint. To establish that memorizing and reproducing a trajectory is a critical cerebellar function, two non-sequencing control conditions were created, which involved the observation only of the trajectory by the protagonist or ball. Our results showed that the posterior cerebellar Crus II was involved in memorizing both social and nonsocial trajectories, along with the parahippocampal gyrus and other cortical areas involved in social cognition. As hypothesized, cerebellar Crus I was more active when memorizing social as opposed to nonsocial trajectories. Moreover, cerebellar Crus I and II, and lobule VI, were activated when reproducing both social and nonsocial trajectories. These findings highlight the involvement of the posterior cerebellar Crus in supporting human goal-directed social navigation.
Collapse
Affiliation(s)
- Meijia Li
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium
| | - Qianying Ma
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kris Baetens
- Department of Psychiatry, Brussels University Hospital, Brussels, Belgium
| | - Min Pu
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium
| | - Natacha Deroost
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium
| | - Chris Baeken
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elien Heleven
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium
| | - Frank Van Overwalle
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
142
|
Radvansky BA, Oh JY, Climer JR, Dombeck DA. Behavior determines the hippocampal spatial mapping of a multisensory environment. Cell Rep 2021; 36:109444. [PMID: 34293330 PMCID: PMC8382043 DOI: 10.1016/j.celrep.2021.109444] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 03/27/2021] [Accepted: 07/01/2021] [Indexed: 12/01/2022] Open
Abstract
Animals behave in multisensory environments guided by various modalities of spatial information. Mammalian navigation engages a cognitive map of space in the hippocampus. Yet it is unknown whether and how this map incorporates multiple modalities of spatial information. Here, we establish two behavioral tasks in which mice navigate the same multisensory virtual environment by either pursuing a visual landmark or tracking an odor gradient. These tasks engage different proportions of visuo-spatial and olfacto-spatial mapping CA1 neurons and different population-level representations of each sensory-spatial coordinate. Switching between tasks results in global remapping. In a third task, mice pursue a target of varying sensory modality, and this engages modality-invariant neurons mapping the abstract behaviorally relevant coordinate irrespective of its physical modality. These findings demonstrate that the hippocampus does not necessarily map space as one coherent physical variable but as a combination of sensory and abstract reference frames determined by the subject's behavioral goal.
Collapse
Affiliation(s)
- Brad A Radvansky
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Jun Young Oh
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Jason R Climer
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Daniel A Dombeck
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
143
|
Wirth S, Soumier A, Eliava M, Derdikman D, Wagner S, Grinevich V, Sirigu A. Territorial blueprint in the hippocampal system. Trends Cogn Sci 2021; 25:831-842. [PMID: 34281765 DOI: 10.1016/j.tics.2021.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022]
Abstract
As we skillfully navigate through familiar places, neural computations of distances and coordinates escape our attention. However, we perceive clearly the division of space into socially meaningful territories. 'My space' versus 'your space' is a distinction familiar to all of us. Spatial frontiers are social in nature since they regulate individuals' access to utilities in space depending on hierarchy and affiliation. How does the brain integrate spatial geometry with social territory? We propose that the action of oxytocin (OT) in the entorhinal-hippocampal regions supports this process. Grounded on the functional role of the hypothalamic neuropeptide in the hippocampal system, we show how OT-induced plasticity may bias the geometrical coding of place and grid cells to represent social territories.
Collapse
Affiliation(s)
- Sylvia Wirth
- Institute of Cognitive Science Marc Jeannerod, CNRS and University of Lyon, Etablissement 1, Bron, France.
| | - Amelie Soumier
- iMIND Center of Excellence for Autism, Le Vinatier Hospital, Bron, France
| | - Marina Eliava
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Dori Derdikman
- Neuroscience Department, Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Integrated Brain and Behavior Research Center, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Angela Sirigu
- Institute of Cognitive Science Marc Jeannerod, CNRS and University of Lyon, Etablissement 1, Bron, France; iMIND Center of Excellence for Autism, Le Vinatier Hospital, Bron, France.
| |
Collapse
|
144
|
Payne HL, Lynch GF, Aronov D. Neural representations of space in the hippocampus of a food-caching bird. Science 2021; 373:343-348. [PMID: 34437154 DOI: 10.1126/science.abg2009] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/08/2021] [Indexed: 01/19/2023]
Abstract
Spatial memory in vertebrates requires brain regions homologous to the mammalian hippocampus. Between vertebrate clades, however, these regions are anatomically distinct and appear to produce different spatial patterns of neural activity. We asked whether hippocampal activity is fundamentally different even between distant vertebrates that share a strong dependence on spatial memory. We studied tufted titmice, food-caching birds capable of remembering many concealed food locations. We found mammalian-like neural activity in the titmouse hippocampus, including sharp-wave ripples and anatomically organized place cells. In a non-food-caching bird species, spatial firing was less informative and was exhibited by fewer neurons. These findings suggest that hippocampal circuit mechanisms are similar between birds and mammals, but that the resulting patterns of activity may vary quantitatively with species-specific ethological needs.
Collapse
Affiliation(s)
- H L Payne
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - G F Lynch
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - D Aronov
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
145
|
Yang SS, Mack NR, Shu Y, Gao WJ. Prefrontal GABAergic Interneurons Gate Long-Range Afferents to Regulate Prefrontal Cortex-Associated Complex Behaviors. Front Neural Circuits 2021; 15:716408. [PMID: 34322002 PMCID: PMC8313241 DOI: 10.3389/fncir.2021.716408] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 01/11/2023] Open
Abstract
Prefrontal cortical GABAergic interneurons (INs) and their innervations are essential for the execution of complex behaviors such as working memory, social behavior, and fear expression. These behavior regulations are highly dependent on primary long-range afferents originating from the subcortical structures such as mediodorsal thalamus (MD), ventral hippocampus (vHPC), and basolateral amygdala (BLA). In turn, the regulatory effects of these inputs are mediated by activation of parvalbumin-expressing (PV) and/or somatostatin expressing (SST) INs within the prefrontal cortex (PFC). Here we review how each of these long-range afferents from the MD, vHPC, or BLA recruits a subset of the prefrontal interneuron population to exert precise control of specific PFC-dependent behaviors. Specifically, we first summarize the anatomical connections of different long-range inputs formed on prefrontal GABAergic INs, focusing on PV versus SST cells. Next, we elaborate on the role of prefrontal PV- and SST- INs in regulating MD afferents-mediated cognitive behaviors. We also examine how prefrontal PV- and SST- INs gate vHPC afferents in spatial working memory and fear expression. Finally, we discuss the possibility that prefrontal PV-INs mediate fear conditioning, predominantly driven by the BLA-mPFC pathway. This review will provide a broad view of how multiple long-range inputs converge on prefrontal interneurons to regulate complex behaviors and novel future directions to understand how PFC controls different behaviors.
Collapse
Affiliation(s)
- Sha-Sha Yang
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
- Institute for Translational Brain Research, Fudan University, Shanghai, China
| | - Nancy R. Mack
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Yousheng Shu
- Institute for Translational Brain Research, Fudan University, Shanghai, China
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
146
|
Nieh EH, Schottdorf M, Freeman NW, Low RJ, Lewallen S, Koay SA, Pinto L, Gauthier JL, Brody CD, Tank DW. Geometry of abstract learned knowledge in the hippocampus. Nature 2021; 595:80-84. [PMID: 34135512 PMCID: PMC9549979 DOI: 10.1038/s41586-021-03652-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/18/2021] [Indexed: 02/05/2023]
Abstract
Hippocampal neurons encode physical variables1-7 such as space1 or auditory frequency6 in cognitive maps8. In addition, functional magnetic resonance imaging studies in humans have shown that the hippocampus can also encode more abstract, learned variables9-11. However, their integration into existing neural representations of physical variables12,13 is unknown. Here, using two-photon calcium imaging, we show that individual neurons in the dorsal hippocampus jointly encode accumulated evidence with spatial position in mice performing a decision-making task in virtual reality14-16. Nonlinear dimensionality reduction13 showed that population activity was well-described by approximately four to six latent variables, which suggests that neural activity is constrained to a low-dimensional manifold. Within this low-dimensional space, both physical and abstract variables were jointly mapped in an orderly manner, creating a geometric representation that we show is similar across mice. The existence of conjoined cognitive maps suggests that the hippocampus performs a general computation-the creation of task-specific low-dimensional manifolds that contain a geometric representation of learned knowledge.
Collapse
Affiliation(s)
- Edward H. Nieh
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Manuel Schottdorf
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Nicolas W. Freeman
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Ryan J. Low
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Sam Lewallen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Sue Ann Koay
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Lucas Pinto
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA,Present address: Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jeffrey L. Gauthier
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Carlos D. Brody
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA,Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA,Howard Hughes Medical Institute, Princeton University, Princeton, NJ, 08544, USA
| | - David W. Tank
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA,Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA,Bezos Center for Neural Dynamics, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
147
|
Zhen ZH, Guo MR, Li HM, Guo OY, Zhen JL, Fu J, Tan GJ. Normal and Abnormal Sharp Wave Ripples in the Hippocampal-Entorhinal Cortex System: Implications for Memory Consolidation, Alzheimer's Disease, and Temporal Lobe Epilepsy. Front Aging Neurosci 2021; 13:683483. [PMID: 34262446 PMCID: PMC8273653 DOI: 10.3389/fnagi.2021.683483] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
The appearance of hippocampal sharp wave ripples (SWRs) is an electrophysiological biomarker for episodic memory encoding and behavioral planning. Disturbed SWRs are considered a sign of neural network dysfunction that may provide insights into the structural connectivity changes associated with cognitive impairment in early-stage Alzheimer's disease (AD) and temporal lobe epilepsy (TLE). SWRs originating from hippocampus have been extensively studied during spatial navigation in rodents, and more recent studies have investigated SWRs in the hippocampal-entorhinal cortex (HPC-EC) system during a variety of other memory-guided behaviors. Understanding how SWR disruption impairs memory function, especially episodic memory, could aid in the development of more efficacious therapeutics for AD and TLE. In this review, we first provide an overview of the reciprocal association between AD and TLE, and then focus on the functions of HPC-EC system SWRs in episodic memory consolidation. It is posited that these waveforms reflect rapid network interactions among excitatory projection neurons and local interneurons and that these waves may contribute to synaptic plasticity underlying memory consolidation. Further, SWRs appear altered or ectopic in AD and TLE. These waveforms may thus provide clues to understanding disease pathogenesis and may even serve as biomarkers for early-stage disease progression and treatment response.
Collapse
Affiliation(s)
- Zhi-Hang Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mo-Ran Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - He-Ming Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ou-Yang Guo
- Department of Biology, Boston University, Boston, MA, United States
| | - Jun-Li Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Jian Fu
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guo-Jun Tan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China
| |
Collapse
|
148
|
Abstract
"Mental travel" is a cognitive concept embodying the human capacity to intentionally disengage from the here and now, and mentally experience the world from different perspectives. We explored how individuals mentally "travel" to the point of view (POV) of other people in varying levels of personal closeness and from these perspectives process these people's social network. Under fMRI, participants were asked to "project" themselves to the POVs of four different people: a close other, a nonclose other, a famous-person, and their own-self, and rate the level of affiliation (closeness) to different individuals in the respective social network. Participants were always faster making judgments from their own POV compared with other POVs (self-projection effect) and for people who were personally closer to their adopted POV (social-distance effect). Brain activity at the medial prefrontal and anterior cingulate cortex in the self-POV was higher, compared with all other conditions. Activity at the right temporoparietal junction and medial parietal cortex was found to distinguish between the personally related (self, close, and nonclose others) and unrelated (famous-person) people. No difference was found between mental travel to the POVs of close and nonclose others. Regardless of POV, the precuneus, anterior cingulate cortex, prefrontal cortex, and temporoparietal junction distinguished between close and distant individuals within the different social networks. Representational similarity analysis implicated the left retrosplenial cortex as crucial for social distance processing across all POVs. These distinctions suggest several constraints regarding our ability to adopt others' POV and process not only ours but also other people's social networks and stress the importance of proximity in social cognition.NEW & NOTEWORTHY Mental-travel, the ability to mentally imagine oneself in a different place and time, is a fundamental cognitive concept. Investigation of mental-travel in the social domain under fMRI revealed that a network of brain regions, largely overlapping the default-mode-network, is responsible for "traveling" to points of view of different others; moreover, this network distinguishes between closer and less-close others, suggesting that mental-travel is a rich dynamical process, encompassing individuals in different proximities and these individuals' social network.
Collapse
Affiliation(s)
- Mordechai Hayman
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem, Israel
| | - Shahar Arzy
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|
149
|
Peer M, Hayman M, Tamir B, Arzy S. Brain Coding of Social Network Structure. J Neurosci 2021; 41:4897-4909. [PMID: 33903220 PMCID: PMC8260169 DOI: 10.1523/jneurosci.2641-20.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/18/2021] [Accepted: 04/05/2021] [Indexed: 11/21/2022] Open
Abstract
Humans have large social networks, with hundreds of interacting individuals. How does the brain represent the complex connectivity structure of these networks? Here we used social media (Facebook) data to objectively map participants' real-life social networks. We then used representational similarity analysis (RSA) of functional magnetic resonance imaging (fMRI) activity patterns to investigate the neural coding of these social networks as participants reflected on each individual. We found coding of social network distances in the default-mode network (medial prefrontal, medial parietal, and lateral parietal cortices). When using partial correlation RSA to control for other factors that can be correlated to social distance (personal affiliation, personality traits. and visual appearance, as subjectively rated by the participants), we found that social network distance information was uniquely coded in the retrosplenial complex, a region involved in spatial processing. In contrast, information on individuals' personal affiliation to the participants and personality traits was found in the medial parietal and prefrontal cortices, respectively. These findings demonstrate a cortical division between representations of non-self-referenced (allocentric) social network structure, self-referenced (egocentric) social distance, and trait-based social knowledge.SIGNIFICANCE STATEMENT Each of us has a social network composed of hundreds of individuals, with different characteristics and different relations among them. How does our brain represent this complexity? To find out, we mapped participants' social connections using Facebook data and then asked them to think about individuals from their network while undergoing functional MRI scanning. We found that the position of individuals within the social network, as well as their affiliation to the participant, are mapped in the retrosplenial complex, a region involved in spatial processing. Individuals' personality traits were coded in another region, the medial prefrontal cortex. Our findings demonstrate a neural dissociation among different aspects of social knowledge and suggest a link between spatial and social cognitive mapping.
Collapse
Affiliation(s)
- Michael Peer
- Department of Medical Neurosciences, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem 91120, Israel
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mordechai Hayman
- Department of Medical Neurosciences, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem 91120, Israel
| | - Bar Tamir
- Department of Medical Neurosciences, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Shahar Arzy
- Department of Medical Neurosciences, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem 91120, Israel
| |
Collapse
|
150
|
Buades-Rotger M, Göttlich M, Weiblen R, Petereit P, Scheidt T, Keevil BG, Krämer UM. Low Competitive Status Elicits Aggression in Healthy Young Men: Behavioral and Neural Evidence. Soc Cogn Affect Neurosci 2021; 16:1123-1137. [PMID: 33959776 PMCID: PMC8599182 DOI: 10.1093/scan/nsab061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 11/14/2022] Open
Abstract
Winners are commonly assumed to compete more aggressively than losers. Here, we find overwhelming evidence for the opposite. We first demonstrate that low-ranking teams commit more fouls than they receive in top-tier soccer, ice hockey, and basketball men's leagues. We replicate this effect in the laboratory, showing that male participants deliver louder sound blasts to a rival when placed in a low-status position. Using neuroimaging, we characterize brain activity patterns that encode competitive status as well as those that facilitate status-dependent aggression in healthy young men. These analyses reveal three key findings. First, anterior hippocampus and striatum contain multivariate representations of competitive status. Second, interindividual differences in status-dependent aggression are linked with a sharper status differentiation in the striatum and with greater reactivity to status-enhancing victories in the dorsal anterior cingulate cortex. Third, activity in ventromedial, ventrolateral, and dorsolateral prefrontal cortex is associated with trial-wise increases in status-dependent aggressive behavior. Taken together, our results run counter to narratives glorifying aggression in competitive situations. Rather, we show that those in the lower ranks of skill-based hierarchies are more likely to behave aggressively and identify the potential neural basis of this phenomenon.
Collapse
Affiliation(s)
- Macià Buades-Rotger
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Department of Psychology, University of Lübeck, Lübeck, Germany.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Martin Göttlich
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Ronja Weiblen
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | | | - Thomas Scheidt
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Brian G Keevil
- Department of Clinical Biochemistry, University Hospital of South Manchester, Manchester, UK
| | - Ulrike M Krämer
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Department of Psychology, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|