101
|
Abstract
Nervous systems allow animals to acutely respond and behaviorally adapt to changes and recurring patterns in their environment at multiple timescales-from milliseconds to years. Behavior is further shaped at intergenerational timescales by genetic variation, drift, and selection. This sophistication and flexibility of behavior makes it challenging to measure behavior consistently in individual subjects and to compare it across individuals. In spite of these challenges, careful behavioral observations in nature and controlled measurements in the laboratory, combined with modern technologies and powerful genetic approaches, have led to important discoveries about the way genetic variation shapes behavior. A critical mass of genes whose variation is known to modulate behavior in nature is finally accumulating, allowing us to recognize emerging patterns. In this review, we first discuss genetic mapping approaches useful for studying behavior. We then survey how variation acts at different levels-in environmental sensation, in internal neuronal circuits, and outside the nervous system altogether-and then discuss the sources and types of molecular variation linked to behavior and the mechanisms that shape such variation. We end by discussing remaining questions in the field.
Collapse
Affiliation(s)
- Natalie Niepoth
- Zuckerman Mind Brain Behavior Institute and Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027, USA; ,
| | - Andres Bendesky
- Zuckerman Mind Brain Behavior Institute and Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027, USA; ,
| |
Collapse
|
102
|
Zung JL, McBride CS. How a fly came to love the vomit fruit. Nature 2020; 579:345-346. [PMID: 32173720 DOI: 10.1038/d41586-020-00535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
103
|
Auer TO, Khallaf MA, Silbering AF, Zappia G, Ellis K, Álvarez-Ocaña R, Arguello JR, Hansson BS, Jefferis GSXE, Caron SJC, Knaden M, Benton R. Olfactory receptor and circuit evolution promote host specialization. Nature 2020; 579:402-408. [PMID: 32132713 PMCID: PMC7100913 DOI: 10.1038/s41586-020-2073-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 01/31/2020] [Indexed: 11/09/2022]
Abstract
The evolution of animal behaviour is poorly understood1,2. Despite numerous correlations of behavioural and nervous system divergence, demonstration of the genetic basis of interspecific behavioural differences remains rare3–5. Here, we develop a novel neurogenetic model, Drosophila sechellia, a close cousin of D. melanogaster6,7 that displays profound behavioural changes linked to its extreme specialisation on noni fruit8–16. Using calcium imaging, we identify D. sechellia olfactory pathways detecting host volatiles. Mutational analysis indicates roles for different olfactory receptors in long- and short-range attraction to noni. Cross-species allele transfer demonstrates that tuning of one of these receptors is important for species-specific host-seeking. We identify the molecular determinants of this functional change, and characterise their evolutionary origin and behavioural significance. Through circuit tracing in the D. sechellia brain, we find that receptor adaptations are accompanied by increased sensory pooling onto interneurons and novel central projection patterns. This work reveals the accumulation of molecular, physiological and anatomical traits linked to behavioural divergence, and defines a powerful model for investigating nervous system evolution and speciation.
Collapse
Affiliation(s)
- Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Mohammed A Khallaf
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ana F Silbering
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Giovanna Zappia
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Kaitlyn Ellis
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Raquel Álvarez-Ocaña
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - J Roman Arguello
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Sophie J C Caron
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
104
|
Crowley-Gall A, Shaw M, Rollmann SM. Host Preference and Olfaction in Drosophila mojavensis. J Hered 2020; 110:68-79. [PMID: 30299456 DOI: 10.1093/jhered/esy052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/24/2018] [Indexed: 11/12/2022] Open
Abstract
Many organisms live in complex environments that vary geographically in resource availability. This environmental heterogeneity can lead to changes within species in their phenotypic traits. For example, in many herbivorous insects, variation in host plant availability has been shown to influence insect host preference behavior. This behavior can be mediated in part through the insect olfactory system and the odor-evoked responses of olfactory sensory neurons (OSNs), which are in turn mediated by their corresponding odorant receptor genes. The desert dwelling fly Drosophila mojavensis is a model species for understanding the mechanisms underlying host preference in a heterogeneous environment. Depending on geographic region, one to multiple host plant species are available. Here, we conducted electrophysiological studies and found variation in responses of ORNs to host plant volatiles both within and between 2 populations-particularly to the odorant 4-methylphenol. Flies from select localities within each population were found to lack a response to 4-methylphenol. Experiments then assessed the extent to which these electrophysiological differences were associated with differences in several odor-mediated behavioral responses. No association between the presence/absence of these odor-evoked responses and short range olfactory behavior or oviposition behavior was observed. However, differences in odor-induced feeding behavior in response to 4-methylphenol were found. Localities that exhibit an odor-evoked response to the odorant had increased feeding behavior in the presence of the odorant. This study sets the stage for future work examining the functional genetics underlying variation in odor perception.
Collapse
Affiliation(s)
- Amber Crowley-Gall
- Department of Biological Sciences, University of Cincinnati, Clifton Court, Cincinnati, OH
| | - Mary Shaw
- Department of Biological Sciences, University of Cincinnati, Clifton Court, Cincinnati, OH
| | - Stephanie M Rollmann
- Department of Biological Sciences, University of Cincinnati, Clifton Court, Cincinnati, OH
| |
Collapse
|
105
|
Tang R, Jiang NJ, Ning C, Li GC, Huang LQ, Wang CZ. The olfactory reception of acetic acid and ionotropic receptors in the Oriental armyworm, Mythimna separata Walker. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 118:103312. [PMID: 31904488 DOI: 10.1016/j.ibmb.2019.103312] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Various insect species including moths have shown significant foraging preference to acetic acid. However, the olfactory reception and behavioral outputs of acetic acid in moths remain unsolved. The female adults of Oriental armyworm, Mythimna separata, exhibit high preference to acetic acid enriched sweet vinegar solutions, making them good targets for exploration of acid reception and performance. We first proved that acetic acid is an essential component which elicited electrophysiological responses from volatiles of the sweet vinegar solution. Successive single sensillum recording tests showed that at least 4 types (as1, as2, as3, and as4) of sensilla were involved in acetic acid reception in the antennae. The low dosages of acetic acid elicited upwind flight and close search, and pre-contact proboscis extension responses of the fasted females, indicating it serves as a food related olfactory cue. In vivo optical imaging data showed that low dosages of acetic acid activated one ordinary glomerulus (DC3), and high dosages evoked additional two glomeruli (DC1 and AC1) in the antennal lobe. A systematic survey on olfaction related receptors in three related transcriptomes has yielded 67 olfactory receptors (ORs) and 19 ionotropic receptors (IRs). Among, MsepIR8a, MsepIR64a, MsepIR75q1, and MsepIR75q2 were chosen as putative acid receptors by blasting against known acid IRs in Drosophila and comparing essential amino acid residues which related to acid sensing. Later in situ hybridization revealed that MsepIr8a was co-expressed with each of the other 3 Irs, suggesting its putative co-receptor role. This study reveals olfactory reception of acetic acid as an attractant in M. separata, and it provides the solid basis for later deorphanization of relevant receptors.
Collapse
Affiliation(s)
- Rui Tang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China
| | - Nan-Ji Jiang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China
| | - Chao Ning
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China
| | - Guo-Cheng Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
106
|
Prieto-Godino LL, Silbering AF, Khallaf MA, Cruchet S, Bojkowska K, Pradervand S, Hansson BS, Knaden M, Benton R. Functional integration of "undead" neurons in the olfactory system. SCIENCE ADVANCES 2020; 6:eaaz7238. [PMID: 32195354 PMCID: PMC7065876 DOI: 10.1126/sciadv.aaz7238] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/03/2019] [Indexed: 05/05/2023]
Abstract
Programmed cell death (PCD) is widespread during neurodevelopment, eliminating the surpluses of neuronal production. Using the Drosophila olfactory system, we examined the potential of cells fated to die to contribute to circuit evolution. Inhibition of PCD is sufficient to generate new cells that express neural markers and exhibit odor-evoked activity. These "undead" neurons express a subset of olfactory receptors that is enriched for relatively recent receptor duplicates and includes some normally found in different chemosensory organs and life stages. Moreover, undead neuron axons integrate into the olfactory circuitry in the brain, forming novel receptor/glomerular couplings. Comparison of homologous olfactory lineages across drosophilids reveals natural examples of fate change from death to a functional neuron. Last, we provide evidence that PCD contributes to evolutionary differences in carbon dioxide-sensing circuit formation in Drosophila and mosquitoes. These results reveal the remarkable potential of alterations in PCD patterning to evolve new neural pathways.
Collapse
Affiliation(s)
- Lucia L. Prieto-Godino
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
- The Francis Crick Institute, London NW1 1BF, UK
| | - Ana F. Silbering
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Mohammed A. Khallaf
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Steeve Cruchet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Karolina Bojkowska
- Genomic Technologies Facility, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Sylvain Pradervand
- Genomic Technologies Facility, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
- Vital-IT Group, Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
- Corresponding author.
| |
Collapse
|
107
|
Anholt RRH. Chemosensation and Evolution of Drosophila Host Plant Selection. iScience 2020; 23:100799. [PMID: 31923648 PMCID: PMC6951304 DOI: 10.1016/j.isci.2019.100799] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/01/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
The ability to respond to chemosensory cues is critical for survival of most organisms. Among insects, Drosophila melanogaster has the best characterized olfactory system, and the availability of genome sequences of 30 Drosophila species provides an ideal scenario for studies on evolution of chemosensation. Gene duplications of chemoreceptor genes allow for functional diversification of the rapidly evolving chemoreceptor repertoire. Although some species of the genus Drosophila are generalists for host plant selection, rapid evolution of olfactory receptors, gustatory receptors, odorant-binding proteins, and cytochrome P450s has enabled diverse host specializations of different members of the genus. Here, I review diversification of the chemoreceptor repertoire among members of the genus Drosophila along with co-evolution of detoxification mechanisms that may have enabled occupation of diverse host plant ecological niches.
Collapse
Affiliation(s)
- Robert R H Anholt
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA.
| |
Collapse
|
108
|
Anholt RRH, O'Grady P, Wolfner MF, Harbison ST. Evolution of Reproductive Behavior. Genetics 2020; 214:49-73. [PMID: 31907301 PMCID: PMC6944409 DOI: 10.1534/genetics.119.302263] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022] Open
Abstract
Behaviors associated with reproduction are major contributors to the evolutionary success of organisms and are subject to many evolutionary forces, including natural and sexual selection, and sexual conflict. Successful reproduction involves a range of behaviors, from finding an appropriate mate, courting, and copulation, to the successful production and (in oviparous animals) deposition of eggs following mating. As a consequence, behaviors and genes associated with reproduction are often under strong selection and evolve rapidly. Courtship rituals in flies follow a multimodal pattern, mediated through visual, chemical, tactile, and auditory signals. Premating behaviors allow males and females to assess the species identity, reproductive state, and condition of their partners. Conflicts between the "interests" of individual males, and/or between the reproductive strategies of males and females, often drive the evolution of reproductive behaviors. For example, seminal proteins transmitted by males often show evidence of rapid evolution, mediated by positive selection. Postmating behaviors, including the selection of oviposition sites, are highly variable and Drosophila species span the spectrum from generalists to obligate specialists. Chemical recognition features prominently in adaptation to host plants for feeding and oviposition. Selection acting on variation in pre-, peri-, and postmating behaviors can lead to reproductive isolation and incipient speciation. Response to selection at the genetic level can include the expansion of gene families, such as those for detecting pheromonal cues for mating, or changes in the expression of genes leading to visual cues such as wing spots that are assessed during mating. Here, we consider the evolution of reproductive behavior in Drosophila at two distinct, yet complementary, scales. Some studies take a microevolutionary approach, identifying genes and networks involved in reproduction, and then dissecting the genetics underlying complex behaviors in D. melanogaster Other studies take a macroevolutionary approach, comparing reproductive behaviors across the genus Drosophila and how these might correlate with environmental cues. A full synthesis of this field will require unification across these levels.
Collapse
Affiliation(s)
- Robert R H Anholt
- Center for Human Genetics, Clemson University, Greenwood, South Carolina 29646
- Department of Genetics and Biochemistry, Clemson University, Greenwood, South Carolina 29646
| | - Patrick O'Grady
- Department of Entomology, Cornell University, Ithaca, New York 14853
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Susan T Harbison
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
109
|
Manni M, Simao FA, Robertson HM, Gabaglio MA, Waterhouse RM, Misof B, Niehuis O, Szucsich NU, Zdobnov EM. The Genome of the Blind Soil-Dwelling and Ancestrally Wingless Dipluran Campodea augens: A Key Reference Hexapod for Studying the Emergence of Insect Innovations. Genome Biol Evol 2020; 12:3534-3549. [PMID: 31778187 PMCID: PMC6938034 DOI: 10.1093/gbe/evz260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
The dipluran two-pronged bristletail Campodea augens is a blind ancestrally wingless hexapod with the remarkable capacity to regenerate lost body appendages such as its long antennae. As sister group to Insecta (sensu stricto), Diplura are key to understanding the early evolution of hexapods and the origin and evolution of insects. Here we report the 1.2-Gb draft genome of C. augens and results from comparative genomic analyses with other arthropods. In C. augens, we uncovered the largest chemosensory gene repertoire of ionotropic receptors in the animal kingdom, a massive expansion that might compensate for the loss of vision. We found a paucity of photoreceptor genes mirroring at the genomic level the secondary loss of an ancestral external photoreceptor organ. Expansions of detoxification and carbohydrate metabolism gene families might reflect adaptations for foraging behavior, and duplicated apoptotic genes might underlie its high regenerative potential. The C. augens genome represents one of the key references for studying the emergence of genomic innovations in insects, the most diverse animal group, and opens up novel opportunities to study the under-explored biology of diplurans.
Collapse
Affiliation(s)
- Mosè Manni
- Department of Genetic Medicine and Development, Swiss Institute of Bioinformatics, University of Geneva Medical School, Switzerland
| | - Felipe A Simao
- Department of Genetic Medicine and Development, Swiss Institute of Bioinformatics, University of Geneva Medical School, Switzerland
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign
| | - Marco A Gabaglio
- Department of Genetic Medicine and Development, Swiss Institute of Bioinformatics, University of Geneva Medical School, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, Swiss Institute of Bioinformatics, University of Lausanne, Switzerland
| | - Bernhard Misof
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Albert Ludwig University, Institute of Biology I (Zoology), Freiburg, Germany
| | | | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, Swiss Institute of Bioinformatics, University of Geneva Medical School, Switzerland
| |
Collapse
|
110
|
Dweck HKM, Carlson JR. Molecular Logic and Evolution of Bitter Taste in Drosophila. Curr Biol 2019; 30:17-30.e3. [PMID: 31839451 DOI: 10.1016/j.cub.2019.11.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/13/2019] [Accepted: 11/01/2019] [Indexed: 01/05/2023]
Abstract
Taste systems detect a vast diversity of toxins, which are perceived as bitter. When a species adapts to a new environment, its taste system must adapt to detect new death threats. We deleted each of six commonly expressed bitter gustatory receptors (Grs) from Drosophila melanogaster. Systematic analysis revealed that requirements for these Grs differed for the same tastant in different neurons and for different tastants in the same neuron. Responses to some tastants in some neurons required four Grs, including Gr39a. Deletions also produced increased or novel responses, supporting a model of Gr-Gr inhibitory interactions. Coexpression of four Grs conferred several bitter responses to a sugar neuron. We then examined bitter coding in three other Drosophila species. We found major evolutionary shifts. One shift depended on the concerted activity of seven Grs. This work shows how the complex logic of bitter coding provides the capacity to detect innumerable hazards and the flexibility to adapt to new ones.
Collapse
Affiliation(s)
- Hany K M Dweck
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
111
|
Melo N, Wolff GH, Costa-da-Silva AL, Arribas R, Triana MF, Gugger M, Riffell JA, DeGennaro M, Stensmyr MC. Geosmin Attracts Aedes aegypti Mosquitoes to Oviposition Sites. Curr Biol 2019; 30:127-134.e5. [PMID: 31839454 PMCID: PMC7144812 DOI: 10.1016/j.cub.2019.11.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/29/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022]
Abstract
Melo et al. show that geosmin mediates egg laying in the yellow fever mosquito Aedes aegypti, which associates geosmin with microbes present in the larval aquatic habitat. The authors further show that geosmin can be used as bait in oviposition traps and that geosmin can be substituted by beetroot peel for mosquito trapping in developing countries.
Collapse
Affiliation(s)
- Nadia Melo
- Department of Biology, Lund University, 22362 Lund, Sweden
| | - Gabriella H Wolff
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Andre Luis Costa-da-Silva
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Robert Arribas
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Merybeth Fernandez Triana
- Department of Biology, Lund University, 22362 Lund, Sweden; Instituto de Quimica e Biotecnologia, Universidade Federal de Alagoas, Maceio 5702-970, Brazil
| | - Muriel Gugger
- Collection of Cyanobacteria, Institut Pasteur, 75015 Paris, France
| | - Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Matthew DeGennaro
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | | |
Collapse
|
112
|
Beets I, Zhang G, Fenk LA, Chen C, Nelson GM, Félix MA, de Bono M. Natural Variation in a Dendritic Scaffold Protein Remodels Experience-Dependent Plasticity by Altering Neuropeptide Expression. Neuron 2019; 105:106-121.e10. [PMID: 31757604 PMCID: PMC6953435 DOI: 10.1016/j.neuron.2019.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 08/18/2019] [Accepted: 09/28/2019] [Indexed: 12/13/2022]
Abstract
The extent to which behavior is shaped by experience varies between individuals. Genetic differences contribute to this variation, but the neural mechanisms are not understood. Here, we dissect natural variation in the behavioral flexibility of two Caenorhabditis elegans wild strains. In one strain, a memory of exposure to 21% O2 suppresses CO2-evoked locomotory arousal; in the other, CO2 evokes arousal regardless of previous O2 experience. We map that variation to a polymorphic dendritic scaffold protein, ARCP-1, expressed in sensory neurons. ARCP-1 binds the Ca2+-dependent phosphodiesterase PDE-1 and co-localizes PDE-1 with molecular sensors for CO2 at dendritic ends. Reducing ARCP-1 or PDE-1 activity promotes CO2 escape by altering neuropeptide expression in the BAG CO2 sensors. Variation in ARCP-1 alters behavioral plasticity in multiple paradigms. Our findings are reminiscent of genetic accommodation, an evolutionary process by which phenotypic flexibility in response to environmental variation is reset by genetic change. Behavioral flexibility varies across Caenorhabditis and C. elegans wild isolates A natural polymorphism in ARCP-1 underpins inter-individual variation in plasticity ARCP-1 is a dendritic scaffold protein localizing cGMP signaling machinery to cilia Disrupting ARCP-1 alters behavioral plasticity by changing neuropeptide expression
Collapse
Affiliation(s)
- Isabel Beets
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Gaotian Zhang
- Institut de Biologie de l'École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris 75005, France
| | - Lorenz A Fenk
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Changchun Chen
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Geoffrey M Nelson
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Marie-Anne Félix
- Institut de Biologie de l'École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris 75005, France.
| | - Mario de Bono
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
113
|
Shan S, Wang SN, Song X, Khashaveh A, Lu ZY, Dhiloo KH, Li RJ, Gao XW, Zhang YJ. Antennal ionotropic receptors IR64a1 and IR64a2 of the parasitoid wasp Microplitis mediator (Hymenoptera: Braconidate) collaboratively perceive habitat and host cues. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 114:103204. [PMID: 31422151 DOI: 10.1016/j.ibmb.2019.103204] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 05/12/2023]
Abstract
Ionotropic receptors (IRs), as a member of the conserved chemoreceptor families in the peripheral nervous system, play a critical role in the chemoreception of Drosophila. However, little is known about IRs in Hymenoptera insects. Here, we comprehensively characterized the gene structure, topological map and chemosensory roles of antennal IRs (MmedIRs) in the hymenopteran parasitoid wasp Microplitis mediator. We found that the IRs were conserved across various insect species. In the in situ hybridization assays, most IRs showed female antennae biased features, and there was no co-expression of the IRs and the olfactory receptor co-receptor (ORco). Moreover, three IR co-expressed complexes, IR75u-IR8a, IR64a1-IR8a and IR64a2-IR8a, were detected. Two genes with high similarity, IR64a1 and IR64a2, were located in distinct neurons but projected to the same sensillum. In two-electrode voltage-clamp recordings, IR64a1 was widely tuned to the chemicals from habitat cues released from host plants over long distances, whereas IR64a2 responded to a narrow range host cues and plant odors with low-volatility. Notably, IR64a2 was able to perceive Z9-14: Ald, a vital sex pheromone component that is released from Helicoverpa armigera, which is the preferred host of M. mediator. Furthermore, most ligands of IR64a1 and IR64a2 can trigger electrophysiological responses in female wasps. We propose that IR64a1 and IR64a2 collaboratively perceive habitat and host cues to assist parasitoids in efficiently seeking hosts.
Collapse
Affiliation(s)
- Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Shan-Ning Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Xuan Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; College of Plant Protection, Agricultural University of Hebei, Baoding, 071000, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zi-Yun Lu
- IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, 071000, China
| | - Khalid Hussain Dhiloo
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam, 70060, Pakistan
| | - Rui-Jun Li
- College of Plant Protection, Agricultural University of Hebei, Baoding, 071000, China
| | - Xi-Wu Gao
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
114
|
Cury KM, Prud'homme B, Gompel N. A short guide to insect oviposition: when, where and how to lay an egg. J Neurogenet 2019; 33:75-89. [PMID: 31164023 DOI: 10.1080/01677063.2019.1586898] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Egg-laying behavior is one of the most important aspects of female behavior, and has a profound impact on the fitness of a species. As such, it is controlled by several layers of regulation. Here, we review recent advances in our understanding of insect neural circuits that control when, where and how to lay an egg. We also outline outstanding open questions about the control of egg-laying decisions, and speculate on the possible neural underpinnings that can drive the diversification of oviposition behaviors through evolution.
Collapse
Affiliation(s)
- Kevin M Cury
- a Department of Neuroscience and the Mortimer B. Zuckerman Mind Brain Behavior Institute , Columbia University , New York , NY , USA
| | - Benjamin Prud'homme
- b Aix Marseille Université, CNRS , Institut de Biologie du Développement de Marseille (IBDM) , Marseille , France
| | - Nicolas Gompel
- c Fakultät für Biologie, Biozentrum , Ludwig-Maximilians Universität München , Munich , Germany
| |
Collapse
|
115
|
Guo C, Pan Y, Gong Z. Recent Advances in the Genetic Dissection of Neural Circuits in Drosophila. Neurosci Bull 2019; 35:1058-1072. [PMID: 31119647 DOI: 10.1007/s12264-019-00390-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/17/2018] [Indexed: 11/28/2022] Open
Abstract
Nervous systems endow animals with cognition and behavior. To understand how nervous systems control behavior, neural circuits mediating distinct functions need to be identified and characterized. With superior genetic manipulability, Drosophila is a model organism at the leading edge of neural circuit analysis. We briefly introduce the state-of-the-art genetic tools that permit precise labeling of neurons and their interconnectivity and investigating what is happening in the brain of a behaving animal and manipulating neurons to determine how behaviors are affected. Brain-wide wiring diagrams, created by light and electron microscopy, bring neural circuit analysis to a new level and scale. Studies enabled by these tools advances our understanding of the nervous system in relation to cognition and behavior.
Collapse
Affiliation(s)
- Chao Guo
- Key Laboratory of Developmental Genes and Human Disease of the Ministry of Education of China, Institute of Life Sciences, Southeast University, Nanjing, 210096, China.
| | - Yufeng Pan
- Key Laboratory of Developmental Genes and Human Disease of the Ministry of Education of China, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Zhefeng Gong
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
116
|
Abuin L, Prieto-Godino LL, Pan H, Gutierrez C, Huang L, Jin R, Benton R. In vivo assembly and trafficking of olfactory Ionotropic Receptors. BMC Biol 2019; 17:34. [PMID: 30995910 PMCID: PMC6472016 DOI: 10.1186/s12915-019-0651-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 03/22/2019] [Indexed: 01/29/2023] Open
Abstract
Background Ionotropic receptors (IRs) are a large, divergent subfamily of ionotropic glutamate receptors (iGluRs) that are expressed in diverse peripheral sensory neurons and function in olfaction, taste, hygrosensation and thermosensation. Analogous to the cell biological properties of their synaptic iGluR ancestors, IRs are thought to form heteromeric complexes that localise to the ciliated dendrites of sensory neurons. IR complexes are composed of selectively expressed ‘tuning’ receptors and one of two broadly expressed co-receptors (IR8a or IR25a). While the extracellular ligand-binding domain (LBD) of tuning IRs is likely to define the stimulus specificity of the complex, the role of this domain in co-receptors is unclear. Results We identify a sequence in the co-receptor LBD, the ‘co-receptor extra loop’ (CREL), which is conserved across IR8a and IR25a orthologues but not present in either tuning IRs or iGluRs. The CREL contains a single predicted N-glycosylation site, which we show bears a sugar modification in recombinantly expressed IR8a. Using the Drosophila olfactory system as an in vivo model, we find that a transgenically encoded IR8a mutant in which the CREL cannot be N-glycosylated is impaired in localisation to cilia in some, though not all, populations of sensory neurons expressing different tuning IRs. This defect can be complemented by the presence of endogenous wild-type IR8a, indicating that IR complexes contain at least two IR8a subunits and that this post-translational modification is dispensable for protein folding or complex assembly. Analysis of the subcellular distribution of the mutant protein suggests that its absence from sensory cilia is due to a failure in exit from the endoplasmic reticulum. Protein modelling and in vivo analysis of tuning IR and co-receptor subunit interactions by a fluorescent protein fragment complementation assay reveal that the CREL N-glycosylation site is likely to be located on the external face of a heterotetrameric IR complex. Conclusions Our data reveal an important role for the IR co-receptor LBD in control of intracellular transport, provide novel insights into the stoichiometry and assembly of IR complexes and uncover an unexpected heterogeneity in the trafficking regulation of this sensory receptor family. Electronic supplementary material The online version of this article (10.1186/s12915-019-0651-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liliane Abuin
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Lucia L Prieto-Godino
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland.,Present address: The Francis Crick Institute, 1 Brill Place, London, NW1 1BF, UK
| | - Haiyun Pan
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA.,Conagen, 15 DeAngelo Dr, Bedford, MA, 01730, USA
| | - Craig Gutierrez
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA
| | - Richard Benton
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
117
|
Zhang Y, Tsang TK, Bushong EA, Chu LA, Chiang AS, Ellisman MH, Reingruber J, Su CY. Asymmetric ephaptic inhibition between compartmentalized olfactory receptor neurons. Nat Commun 2019; 10:1560. [PMID: 30952860 PMCID: PMC6451019 DOI: 10.1038/s41467-019-09346-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/04/2019] [Indexed: 11/09/2022] Open
Abstract
In the Drosophila antenna, different subtypes of olfactory receptor neurons (ORNs) housed in the same sensory hair (sensillum) can inhibit each other non-synaptically. However, the mechanisms underlying this underexplored form of lateral inhibition remain unclear. Here we use recordings from pairs of sensilla impaled by the same tungsten electrode to demonstrate that direct electrical ("ephaptic") interactions mediate lateral inhibition between ORNs. Intriguingly, within individual sensilla, we find that ephaptic lateral inhibition is asymmetric such that one ORN exerts greater influence onto its neighbor. Serial block-face scanning electron microscopy of genetically identified ORNs and circuit modeling indicate that asymmetric lateral inhibition reflects a surprisingly simple mechanism: the physically larger ORN in a pair corresponds to the dominant neuron in ephaptic interactions. Thus, morphometric differences between compartmentalized ORNs account for highly specialized inhibitory interactions that govern information processing at the earliest stages of olfactory coding.
Collapse
Affiliation(s)
- Ye Zhang
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Tin Ki Tsang
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Eric A Bushong
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Li-An Chu
- Brain Research Center, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Ann-Shyn Chiang
- Brain Research Center, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jürgen Reingruber
- Institut of Biology, École Normale Supérieure (IBENS), 46 rue d'Ulm, 75005, Paris, France.,INSERM U1024, 75005, Paris, France
| | - Chih-Ying Su
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
118
|
Abstract
A new study investigates the distinct male courtship songs of two related Drosophila species and the neurons controlling this behavior, localizing a site of evolutionary divergence to the motor system, downstream of the central brain.
Collapse
Affiliation(s)
- Dana S Galili
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| |
Collapse
|
119
|
Robertson HM, Robertson ECN, Walden KKO, Enders LS, Miller NJ. The chemoreceptors and odorant binding proteins of the soybean and pea aphids. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 105:69-78. [PMID: 30654011 DOI: 10.1016/j.ibmb.2019.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
We examined the genome of the soybean aphid, Aphis glycines, and an updated genome assembly of the pea aphid, Acyrthosiphon pisum, for members of the three major families of chemoreceptors, the Odorant Receptors (ORs), Gustatory Receptors (GRs) and Ionotropic Receptors (IRs), as well as the Odorant Binding Proteins (OBPs). The soybean aphid has 47 ORs, 61 GRs, 19 IRs, and 10 OBPs, compared with 87 ORs, 78 Grs, 19 IRs, and 18 OBPs in the pea aphid, with variable numbers of pseudogenes in the OR and GR families. Phylogenetic analysis reveals that while all of the IRs are simple orthologs between these two species, the OR, GR, and OBP families in the pea aphid have experienced major expansions of particular gene lineages and fewer losses of gene lineages. This imbalance in birth-and-death of chemosensory genes has led to the larger pea aphid gene repertoire, which might be related to the broader host range of pea aphids versus the specialization of soybean aphids on a single summer host plant. Examination of the expression levels of these chemosensory genes in parthenogenetic and sexual females and males of pea aphids revealed multiple genes that are differentially expressed in sexual females or males and might be involved in reproductive biology. Examination of the soybean aphid genes in parthenogenetic females under multiple stressors revealed multiple genes whose expression levels changed with heat or starvation stress, the latter potentially important in finding new food sources.
Collapse
Affiliation(s)
- Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Erica C N Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kimberly K O Walden
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Laramy S Enders
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA
| | - Nicholas J Miller
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA.
| |
Collapse
|
120
|
Robertson HM, Waterhouse RM, Walden KKO, Ruzzante L, Reijnders MJMF, Coates BS, Legeai F, Gress JC, Biyiklioglu S, Weaver DK, Wanner KW, Budak H. Genome Sequence of the Wheat Stem Sawfly, Cephus cinctus, Representing an Early-Branching Lineage of the Hymenoptera, Illuminates Evolution of Hymenopteran Chemoreceptors. Genome Biol Evol 2018; 10:2997-3011. [PMID: 30335145 PMCID: PMC6250288 DOI: 10.1093/gbe/evy232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2018] [Indexed: 02/06/2023] Open
Abstract
The wheat stem sawfly, Cephus cinctus, is a major pest of wheat and key ecological player in the grasslands of western North America. It also represents the distinctive Cephoidea superfamily of sawflies (Symphyta) that appeared early during the hymenopteran radiation, but after three early-branching eusymphytan superfamilies that form the base of the order Hymenoptera. We present a high-quality draft genome assembly of 162 Mb in 1,976 scaffolds with a scaffold N50 of 622 kb. Automated gene annotation identified 11,210 protein-coding gene models and 1,307 noncoding RNA models. Thirteen percent of the assembly consists of ∼58,000 transposable elements partitioned equally between Class-I and Class-II elements. Orthology analysis reveals that 86% of Cephus proteins have identifiable orthologs in other insects. Phylogenomic analysis of conserved subsets of these proteins supports the placement of the Cephoidea between the Eusymphyta and the parasitic woodwasp superfamily Orussoidea. Manual annotation and phylogenetic analysis of families of odorant, gustatory, and ionotropic receptors, plus odorant-binding proteins, shows that Cephus has representatives for most conserved and expanded gene lineages in the Apocrita (wasps, ants, and bees). Cephus has also maintained several insect gene lineages that have been lost from the Apocrita, most prominently the carbon dioxide receptor subfamily. Furthermore, Cephus encodes a few small lineage-specific chemoreceptor gene family expansions that might be involved in adaptations to new grasses including wheat. These comparative analyses identify gene family members likely to have been present in the hymenopteran ancestor and provide a new perspective on the evolution of the chemosensory gene repertoire.
Collapse
Affiliation(s)
- Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Livio Ruzzante
- Department of Ecology and Evolution, University of Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Maarten J M F Reijnders
- Department of Ecology and Evolution, University of Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Brad S Coates
- United States Department of Agriculture, Agricultural Research Service (USDA ARS), Corn Insects & Crop Genetics Research Unit, Ames, Iowa
| | - Fabrice Legeai
- Ecology and Genetics of Insects, INRA, UMR IGEPP 1349, Rennes, France
| | - Joanna C Gress
- Department of Science and Mathematics, Abraham Baldwin Agricultural College, Tifton, Georgia
- Department of Plant Sciences and Plant Pathology, Montana State University
| | - Sezgi Biyiklioglu
- Department of Plant Sciences and Plant Pathology, Montana State University
| | - David K Weaver
- Department of Land Resources and Environmental Sciences, Montana State University
| | - Kevin W Wanner
- Department of Plant Sciences and Plant Pathology, Montana State University
| | - Hikmet Budak
- Department of Plant Sciences and Plant Pathology, Montana State University
| |
Collapse
|
121
|
Sánchez-Alcañiz JA, Silbering AF, Croset V, Zappia G, Sivasubramaniam AK, Abuin L, Sahai SY, Münch D, Steck K, Auer TO, Cruchet S, Neagu-Maier GL, Sprecher SG, Ribeiro C, Yapici N, Benton R. An expression atlas of variant ionotropic glutamate receptors identifies a molecular basis of carbonation sensing. Nat Commun 2018; 9:4252. [PMID: 30315166 PMCID: PMC6185939 DOI: 10.1038/s41467-018-06453-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Through analysis of the Drosophila ionotropic receptors (IRs), a family of variant ionotropic glutamate receptors, we reveal that most IRs are expressed in peripheral neuron populations in diverse gustatory organs in larvae and adults. We characterise IR56d, which defines two anatomically-distinct neuron classes in the proboscis: one responds to carbonated solutions and fatty acids while the other represents a subset of sugar- and fatty acid-sensing cells. Mutational analysis indicates that IR56d, together with the broadly-expressed co-receptors IR25a and IR76b, is essential for physiological responses to carbonation and fatty acids, but not sugars. We further demonstrate that carbonation and fatty acids both promote IR56d-dependent attraction of flies, but through different behavioural outputs. Our work provides a toolkit for investigating taste functions of IRs, defines a subset of these receptors required for carbonation sensing, and illustrates how the gustatory system uses combinatorial expression of sensory molecules in distinct neurons to coordinate behaviour. Little is known about the role of variant ionotropic glutamate receptors (IRs) in insect taste. Here the authors characterise the expression pattern of IRs in the Drosophila gustatory system and highlight the role of one receptor, IR56d, in the detection of carbonation
Collapse
Affiliation(s)
- Juan Antonio Sánchez-Alcañiz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, Lausanne, CH-1015, Switzerland
| | - Ana Florencia Silbering
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, Lausanne, CH-1015, Switzerland
| | - Vincent Croset
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, Lausanne, CH-1015, Switzerland.,Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, United Kingdom
| | - Giovanna Zappia
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, Lausanne, CH-1015, Switzerland
| | - Anantha Krishna Sivasubramaniam
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, Lausanne, CH-1015, Switzerland
| | - Liliane Abuin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, Lausanne, CH-1015, Switzerland
| | - Saumya Yashmohini Sahai
- Department of Neurobiology and Behavior, Cornell University, W153 Mudd Hall, Ithaca, NY, 14853, USA
| | - Daniel Münch
- Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Kathrin Steck
- Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, Lausanne, CH-1015, Switzerland
| | - Steeve Cruchet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, Lausanne, CH-1015, Switzerland
| | - G Larisa Neagu-Maier
- Department of Biology, Institute of Zoology, University of Fribourg, Chemin du Musée 10, Fribourg, CH-1700, Switzerland
| | - Simon G Sprecher
- Department of Biology, Institute of Zoology, University of Fribourg, Chemin du Musée 10, Fribourg, CH-1700, Switzerland
| | - Carlos Ribeiro
- Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, W153 Mudd Hall, Ithaca, NY, 14853, USA
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, Lausanne, CH-1015, Switzerland.
| |
Collapse
|
122
|
Nemeth DC, Ammagarahalli B, Layne JE, Rollmann SM. Evolution of coeloconic sensilla in the peripheral olfactory system of Drosophila mojavensis. JOURNAL OF INSECT PHYSIOLOGY 2018; 110:13-22. [PMID: 30107159 DOI: 10.1016/j.jinsphys.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 08/04/2018] [Accepted: 08/05/2018] [Indexed: 06/08/2023]
Abstract
Populations inhabiting habitats with different environmental conditions, such as climate, resource availability, predation, competition, can undergo selection for traits that are adaptive in one habitat and not the other, leading to divergence between populations. Changes in the olfactory systems of insects that rely on different host plants, for example, can occur in response to differences in sensory stimuli between habitats. In this study, we investigate the evolution of host preference by characterizing the coeloconic sensilla in Drosophila mojavensis, a species that breeds on different necrotic cacti across its geographic range. These cactus species differ in the volatile chemicals they emit, a primary sensory cue for host plant discrimination. Analysis of odor-evoked responses identified four coeloconic sensilla that were qualitatively similar to those of Drosophila melanogaster, but varied in the breadth and strength of their olfactory sensory neuron responses to some acids and amines. Variation in responses to certain odorants among D. mojavensis populations was also observed. Compared to D. melanogaster, there was a lack of sensitivity of antennal coeloconic type 3 (ac3) sensilla to primary ligands of OR35a across all populations. Consistent with this result was a lack of detectable Or35a gene expression. Using a comparative approach, we then examined odor specificity of ac3 sensilla for seven additional Drosophila species, and found that OR35a-like sensitivity may be limited to the melanogaster subgroup. The variation in specificity that was observed among species is not clearly attributable to the degree of ecological specialization, nor to the ecological niche.
Collapse
Affiliation(s)
- Daniel C Nemeth
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Byrappa Ammagarahalli
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - John E Layne
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Stephanie M Rollmann
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
123
|
Gomez-Diaz C, Martin F, Garcia-Fernandez JM, Alcorta E. The Two Main Olfactory Receptor Families in Drosophila, ORs and IRs: A Comparative Approach. Front Cell Neurosci 2018; 12:253. [PMID: 30214396 PMCID: PMC6125307 DOI: 10.3389/fncel.2018.00253] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
Most insect species rely on the detection of olfactory cues for critical behaviors for the survival of the species, e.g., finding food, suitable mates and appropriate egg-laying sites. Although insects show a diverse array of molecular receptors dedicated to the detection of sensory cues, two main types of molecular receptors have been described as responsible for olfactory reception in Drosophila, the odorant receptors (ORs) and the ionotropic receptors (IRs). Although both receptor families share the role of being the first chemosensors in the insect olfactory system, they show distinct evolutionary origins and several distinct structural and functional characteristics. While ORs are seven-transmembrane-domain receptor proteins, IRs are related to the ionotropic glutamate receptor (iGluR) family. Both types of receptors are expressed on the olfactory sensory neurons (OSNs) of the main olfactory organ, the antenna, but they are housed in different types of sensilla, IRs in coeloconic sensilla and ORs in basiconic and trichoid sensilla. More importantly, from the functional point of view, they display different odorant specificity profiles. Research advances in the last decade have improved our understanding of the molecular basis, evolution and functional roles of these two families, but there are still controversies and unsolved key questions that remain to be answered. Here, we present an updated review on the advances of the genetic basis, evolution, structure, functional response and regulation of both types of chemosensory receptors. We use a comparative approach to highlight the similarities and differences among them. Moreover, we will discuss major open questions in the field of olfactory reception in insects. A comprehensive analysis of the structural and functional convergence and divergence of both types of receptors will help in elucidating the molecular basis of the function and regulation of chemoreception in insects.
Collapse
Affiliation(s)
- Carolina Gomez-Diaz
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Fernando Martin
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | | | - Esther Alcorta
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| |
Collapse
|
124
|
Liu NY, Xu W, Dong SL, Zhu JY, Xu YX, Anderson A. Genome-wide analysis of ionotropic receptor gene repertoire in Lepidoptera with an emphasis on its functions of Helicoverpa armigera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 99:37-53. [PMID: 29800678 DOI: 10.1016/j.ibmb.2018.05.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/21/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
The functions of the Ionotropic Receptor (IR) family have been well studied in Drosophila melanogaster, but only limited information is available in Lepidoptera. Here, we conducted a large-scale genome-wide analysis of the IR gene repertoire in 13 moths and 16 butterflies. Combining a homology-based approach and manual efforts, totally 996 IR candidates are identified including 31 pseudogenes and 825 full-length sequences, representing the most current comprehensive annotation in lepidopteran species. The phylogeny, expression and sequence characteristics classify Lepidoptera IRs into three sub-families: antennal IRs (A-IRs), divergent IRs (D-IRs) and Lepidoptera-specific IRs (LS-IRs), which is distinct from the case of Drosophila IRs. In comparison to LS-IRs and D-IRs, A-IRs members share a higher degree of protein identity and are distinguished into 16 orthologous groups in the phylogeny, showing conservation of gene structure. Analysis of selective forces on 27 orthologous groups reveals that these lepidopteran IRs have evolved under strong purifying selection (dN/dS≪1). Most notably, lineage-specific gene duplications that contribute primarily to gene number variations across Lepidoptera not only exist in D-IRs, but are present in the two other sub-families including members of IR41a, 76b, 87a, 100a and 100b. Expression profiling analysis reveals that over 80% (21/26) of Helicoverpa armigera A-IRs are expressed more highly in antennae of adults or larvae than other tissues, consistent with its proposed function in olfaction. However, some are also detected in taste organs like proboscises and legs. These results suggest that some A-IRs in H. armigera likely bear a dual function with their involvement in olfaction and gustation. Results from mating experiments show that two HarmIRs (IR1.2 and IR75d) expression is significantly up-regulated in antennae of mated female moths. However, no expression difference is observed between unmated female and male adults, suggesting an association with female host-searching behaviors. Our current study has greatly extended the IR gene repertoire resource in Lepidoptera, and more importantly, identifies potential IR candidates for olfactory, gustatory and oviposition behaviors in the cotton bollworm.
Collapse
Affiliation(s)
- Nai-Yong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; CSIRO Health & Biosecurity, Black Mountain, ACT 2601, Australia
| | - Wei Xu
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Shuang-Lin Dong
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yu-Xing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Alisha Anderson
- CSIRO Health & Biosecurity, Black Mountain, ACT 2601, Australia.
| |
Collapse
|
125
|
Neural circuit evolved to process pheromone differently in two species of fruit fly. Nature 2018; 559:485-487. [PMID: 30030513 DOI: 10.1038/d41586-018-05595-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
126
|
Robertson HM, Baits RL, Walden KK, Wada‐Katsumata A, Schal C. Enormous expansion of the chemosensory gene repertoire in the omnivorous German cockroach Blattella germanica. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:265-278. [PMID: 29566459 PMCID: PMC6175461 DOI: 10.1002/jez.b.22797] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/27/2018] [Indexed: 01/26/2023]
Abstract
The acquisition of genome sequences from a wide range of insects and other arthropods has revealed a broad positive correlation between the complexity of their chemical ecology and the size of their chemosensory gene repertoire. The German cockroach Blattella germanica is an extreme omnivore and has the largest chemosensory gene repertoire known for an arthropod, exceeding even the highly polyphagous spider mite Tetranychus urticae. While the Odorant Receptor family is not particularly large, with 123 genes potentially encoding 134 receptors (105 intact), the Gustatory Receptor family is greatly expanded to 431 genes potentially encoding 545 receptors (483 intact), the largest known for insects and second only to the spider mite. The Ionotropic Receptor family of olfactory and gustatory receptors is vastly expanded to at least 897 genes (604 intact), the largest size known in arthropods, far surpassing the 150 known from the dampwood termite Zootermopsis nevadensis. Commensurately, the Odorant Binding Protein family is expanded to the largest known for insects at 109 genes (all intact). Comparison with the far more specialized, but phylogenetically related termite, within the Dictyoptera, reveals considerable gene losses from the termite, and massive species-specific gene expansions in the cockroach. The cockroach has lost function of 11%-41% of these three chemoreceptor gene families to pseudogenization, and most of these are young events, implying rapid turnover of genes along with these major expansions, presumably in response to changes in its chemical ecology.
Collapse
Affiliation(s)
- Hugh M. Robertson
- Department of EntomologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Rachel L. Baits
- Department of EntomologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Kimberly K.O. Walden
- Department of EntomologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Ayako Wada‐Katsumata
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Coby Schal
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
127
|
Genome-based identification and analysis of ionotropic receptors in Spodoptera litura. Naturwissenschaften 2018; 105:38. [DOI: 10.1007/s00114-018-1563-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 01/09/2023]
|
128
|
Rimal S, Lee Y. The multidimensional ionotropic receptors of Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2018; 27:1-7. [PMID: 28857341 DOI: 10.1111/imb.12347] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ionotropic receptors (IRs), which form ion channels, can be categorized into conserved 'antennal IRs', which define the first olfactory receptor family of insects, and species-specific 'divergent IRs', which are expressed in gustatory receptor neurones. These receptors are located primarily in cell bodies and dendrites, and are highly enriched in the tips of the dendritic terminals that convey sensory information to higher brain centres. Antennal IRs play important roles in odour and thermosensation, whereas divergent IRs are involved in other important biological processes such as taste sensation. Some IRs are known to play specific biological roles in the perception of various molecules; however, many of their functions have not yet been defined. Although progress has been made in this field, many functions and mechanisms of these receptors remain unknown. In this review, we provide a comprehensive summary of the current state of knowledge in this field.
Collapse
Affiliation(s)
- S Rimal
- Department of Bio and Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul, Republic of Korea
| | - Y Lee
- Department of Bio and Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
129
|
Yang K, Huang LQ, Ning C, Wang CZ. Two single-point mutations shift the ligand selectivity of a pheromone receptor between two closely related moth species. eLife 2017; 6:29100. [PMID: 29063835 PMCID: PMC5673308 DOI: 10.7554/elife.29100] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/22/2017] [Indexed: 11/13/2022] Open
Abstract
Male moths possess highly sensitive and selective olfactory systems that detect sex pheromones produced by their females. Pheromone receptors (PRs) play a key role in this process. The PR HassOr14b is found to be tuned to (Z)-9-hexadecenal, the major sex-pheromone component, in Helicoverpa assulta. HassOr14b is co-localized with HassOr6 or HassOr16 in two olfactory sensory neurons within the same sensilla. As HarmOr14b, the ortholog of HassOr14b in the closely related species Helicoverpa armigera, is tuned to another chemical (Z)-9-tetradecenal, we study the amino acid residues that determine their ligand selectivity. Two amino acids located in the transmembrane domains F232I and T355I together determine the functional difference between the two orthologs. We conclude that species-specific changes in the tuning specificity of the PRs in the two Helicoverpa moth species could be achieved with just a few amino acid substitutions, which provides new insights into the evolution of closely related moth species.
Collapse
Affiliation(s)
- Ke Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chao Ning
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
130
|
Lebreton S, Borrero-Echeverry F, Gonzalez F, Solum M, Wallin EA, Hedenström E, Hansson BS, Gustavsson AL, Bengtsson M, Birgersson G, Walker WB, Dweck HKM, Becher PG, Witzgall P. A Drosophila female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food. BMC Biol 2017; 15:88. [PMID: 28962619 PMCID: PMC5622430 DOI: 10.1186/s12915-017-0427-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 09/12/2017] [Indexed: 12/20/2022] Open
Abstract
Background Mate finding and recognition in animals evolves during niche adaptation and involves social signals and habitat cues. Drosophila melanogaster and related species are known to be attracted to fermenting fruit for feeding and egg-laying, which poses the question of whether species-specific fly odours contribute to long-range premating communication. Results We have discovered an olfactory channel in D. melanogaster with a dual affinity to sex and food odorants. Female flies release a pheromone, (Z)-4-undecenal (Z4-11Al), that elicits flight attraction in both sexes. Its biosynthetic precursor is the cuticular hydrocarbon (Z,Z)-7,11-heptacosadiene (7,11-HD), which is known to afford reproductive isolation between the sibling species D. melanogaster and D. simulans during courtship. Twin olfactory receptors, Or69aB and Or69aA, are tuned to Z4-11Al and food odorants, respectively. They are co-expressed in the same olfactory sensory neurons, and feed into a neural circuit mediating species-specific, long-range communication; however, the close relative D. simulans, which shares food resources with D. melanogaster, does not respond to Z4-11Al. Conclusion The Or69aA and Or69aB isoforms have adopted dual olfactory traits. The underlying gene yields a collaboration between natural and sexual selection, which has the potential to drive speciation.
Collapse
Affiliation(s)
- Sebastien Lebreton
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden.
| | - Felipe Borrero-Echeverry
- Biological Control Laboratory, Colombian Corporation of Agricultural Research, AA 240142 Las Palmas, Bogota, Colombia
| | - Francisco Gonzalez
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden
| | - Marit Solum
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden
| | - Erika A Wallin
- Department of Chemical Engineering, Mid Sweden University, Holmgatan 10, 85170, Sundsvall, Sweden
| | - Erik Hedenström
- Department of Chemical Engineering, Mid Sweden University, Holmgatan 10, 85170, Sundsvall, Sweden
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Anna-Lena Gustavsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 172, 17165, Solna, Sweden
| | - Marie Bengtsson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden
| | - Göran Birgersson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden
| | - William B Walker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden
| | - Hany K M Dweck
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - Paul G Becher
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden.
| | - Peter Witzgall
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden.
| |
Collapse
|
131
|
Perry M, Konstantinides N, Pinto-Teixeira F, Desplan C. Generation and Evolution of Neural Cell Types and Circuits: Insights from the Drosophila Visual System. Annu Rev Genet 2017; 51:501-527. [PMID: 28961025 DOI: 10.1146/annurev-genet-120215-035312] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Drosophila visual system has become a premier model for probing how neural diversity is generated during development. Recent work has provided deeper insight into the elaborate mechanisms that control the range of types and numbers of neurons produced, which neurons survive, and how they interact. These processes drive visual function and influence behavioral preferences. Other studies are beginning to provide insight into how neuronal diversity evolved in insects by adding new cell types and modifying neural circuits. Some of the most powerful comparisons have been those made to the Drosophila visual system, where a deeper understanding of molecular mechanisms allows for the generation of hypotheses about the evolution of neural anatomy and function. The evolution of new neural types contributes additional complexity to the brain and poses intriguing questions about how new neurons interact with existing circuitry. We explore how such individual changes in a variety of species might play a role over evolutionary timescales. Lessons learned from the fly visual system apply to other neural systems, including the fly central brain, where decisions are made and memories are stored.
Collapse
Affiliation(s)
- Michael Perry
- Department of Biology, New York University, New York, NY 10003, USA;
| | | | - Filipe Pinto-Teixeira
- Department of Biology, New York University, New York, NY 10003, USA; .,Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA; .,Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
132
|
van Giesen L, Garrity PA. More than meets the IR: the expanding roles of variant Ionotropic Glutamate Receptors in sensing odor, taste, temperature and moisture. F1000Res 2017; 6:1753. [PMID: 29034089 PMCID: PMC5615767 DOI: 10.12688/f1000research.12013.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2017] [Indexed: 11/20/2022] Open
Abstract
The ionotropic receptors (IRs) are a branch of the ionotropic glutamate receptor family and serve as important mediators of sensory transduction in invertebrates. Recent work shows that, though initially studied as olfactory receptors, the IRs also mediate the detection of taste, temperature, and humidity. Here, we summarize recent insights into IR evolution and its potential ecological significance as well as recent advances in our understanding of how IRs contribute to diverse sensory modalities.
Collapse
Affiliation(s)
- Lena van Giesen
- National Center for Behavioral Genomics and Volen Center for Complex Systems Department of Biology, Brandeis University, Waltham, Massachusetts, USA
| | - Paul A Garrity
- National Center for Behavioral Genomics and Volen Center for Complex Systems Department of Biology, Brandeis University, Waltham, Massachusetts, USA
| |
Collapse
|
133
|
Maia Chagas A, Prieto-Godino LL, Arrenberg AB, Baden T. The €100 lab: A 3D-printable open-source platform for fluorescence microscopy, optogenetics, and accurate temperature control during behaviour of zebrafish, Drosophila, and Caenorhabditis elegans. PLoS Biol 2017; 15:e2002702. [PMID: 28719603 PMCID: PMC5515398 DOI: 10.1371/journal.pbio.2002702] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Small, genetically tractable species such as larval zebrafish, Drosophila, or Caenorhabditis elegans have become key model organisms in modern neuroscience. In addition to their low maintenance costs and easy sharing of strains across labs, one key appeal is the possibility to monitor single or groups of animals in a behavioural arena while controlling the activity of select neurons using optogenetic or thermogenetic tools. However, the purchase of a commercial solution for these types of experiments, including an appropriate camera system as well as a controlled behavioural arena, can be costly. Here, we present a low-cost and modular open-source alternative called 'FlyPi'. Our design is based on a 3D-printed mainframe, a Raspberry Pi computer, and high-definition camera system as well as Arduino-based optical and thermal control circuits. Depending on the configuration, FlyPi can be assembled for well under €100 and features optional modules for light-emitting diode (LED)-based fluorescence microscopy and optogenetic stimulation as well as a Peltier-based temperature stimulator for thermogenetics. The complete version with all modules costs approximately €200 or substantially less if the user is prepared to 'shop around'. All functions of FlyPi can be controlled through a custom-written graphical user interface. To demonstrate FlyPi's capabilities, we present its use in a series of state-of-the-art neurogenetics experiments. In addition, we demonstrate FlyPi's utility as a medical diagnostic tool as well as a teaching aid at Neurogenetics courses held at several African universities. Taken together, the low cost and modular nature as well as fully open design of FlyPi make it a highly versatile tool in a range of applications, including the classroom, diagnostic centres, and research labs.
Collapse
Affiliation(s)
- Andre Maia Chagas
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Graduate school for Neural and Behavioural Neuroscience, University of Tübingen, Tübingen, Germany
- TReND in Africa gUG, Bonn, Germany
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Lucia L. Prieto-Godino
- TReND in Africa gUG, Bonn, Germany
- Center of Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Aristides B. Arrenberg
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| | - Tom Baden
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- TReND in Africa gUG, Bonn, Germany
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
134
|
Abstract
Regardless of how a nervous system is genetically built, natural selection is acting on the functional outcome of its activity. To understand how nervous systems evolve, it is essential to analyze how their functional units - the neural circuits - change and adapt over time. A neural circuit can evolve in many different ways, and the underlying developmental and genetic mechanisms involve different sets of genes. Therefore, the comparison of gene expression can help reconstructing circuit evolution, as demonstrated by several examples in sensory systems. Functional constraints on neural circuit evolution suggest that in nervous systems developmental and genetic variants do not appear randomly, and that the evolution of neuroanatomy might be biased. Sensory systems, in particular, seem to evolve along trajectories that enhance their evolvability, ensuring adaptation to different environments.
Collapse
Affiliation(s)
- Maria Antonietta Tosches
- Max Planck Institute for Brain Research, Max-von-Laue Strasse 4, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
135
|
Abstract
Understanding how and why some species become pests, while their relatives remain harmless, might help us control them. A new study looks at how sensory mechanisms evolved in an emerging pest fly species.
Collapse
|