101
|
Wojciechowska N, Marzec-Schmidt K, Kalemba EM, Zarzyńska-Nowak A, Jagodziński AM, Bagniewska-Zadworna A. Autophagy counteracts instantaneous cell death during seasonal senescence of the fine roots and leaves in Populus trichocarpa. BMC PLANT BIOLOGY 2018; 18:260. [PMID: 30373512 PMCID: PMC6206944 DOI: 10.1186/s12870-018-1439-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 09/24/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Senescence, despite its destructive character, is a process that is precisely-regulated. The control of senescence is required to achieve remobilization of resources, a principle aspect of senescence. Remobilization allows plants to recapture valuable resources that would otherwise be lost to the environment with the senescing organ. Autophagy is one of the critical processes that is switched on during senescence. This evolutionarily conserved process plays dual, antagonistic roles. On the one hand, it counteracts instantaneous cell death and allows the process of remobilization to be set in motion, while on the other hand, it participates in the degradation of cellular components. Autophagy has been demonstrated to occur in many plant species during the senescence of leaves and flower petals. Little is known, however, about the senescence process in other ephemeral organs, such as fine roots, whose lifespan is also relatively short. We hypothesized that, like the case of seasonal leaf senescence, autophagy also plays a role in the senescence of fine roots, and that both processes are synchronized in their timing. RESULTS We evaluated which morphological and cytological symptoms are universal or unique in the senescence of fine roots and leaves. The results of our study confirmed that autophagy plays a key role in the senescence of fine roots, and is associated also with the process of cellular components degradation. In both organs, structures related to autophagy were observed, such as autophagic bodies and autophagosomes. The role of autophagy in the senescence of these plant organs was further confirmed by an analysis of ATG gene expression and protein detection. CONCLUSIONS The present study is the first one to examine molecular mechanisms associated with the senescence of fine roots, and provide evidence that can be used to determine whether senescence of fine roots can be treated as another example of developmentally programmed cell death (dPCD). Our results indicate that there is a strong similarity between the senescence of fine roots and other ephemeral organs, suggesting that this process occurs by the same autophagy-related mechanisms in all plant ephemeral organs.
Collapse
Affiliation(s)
- Natalia Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Katarzyna Marzec-Schmidt
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Ewa M Kalemba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Aleksandra Zarzyńska-Nowak
- Department of Virusology and Bacteriology, Institute of Plant Protection, Węgorka 20, 60-318 Poznań, Poland
| | - Andrzej M Jagodziński
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
102
|
Liu F, Marshall RS, Li F. Understanding and exploiting the roles of autophagy in plants through multi-omics approaches. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:146-152. [PMID: 30080598 PMCID: PMC6082170 DOI: 10.1016/j.plantsci.2018.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 05/20/2023]
Abstract
Autophagy is a highly conserved pathway in eukaryotes that promotes nutrient recycling and cellular homeostasis through the degradation of excess or damaged cytoplasmic constituents. In plants, autophagy is increasingly recognized as a key contributor to development, reproduction, metabolism, leaf senescence, endosperm and grain development, pathogen defense, and tolerance to abiotic and biotic stresses. Characterizing the functional transcriptomic, proteomic, and metabolomic networks relating to autophagy in plants subjected to various extra- and intra-cellular stimuli may help to identify components associated with the pathway. As such, the integration of multi-omics approaches (i.e., transcriptomics, proteomics and metabolomics), along with cellular, genetic and functional analyses, could provide a global perspective regarding the effects of autophagy on plant metabolism, development and stress responses. In this mini-review, recent research progress in plant autophagy is discussed, highlighting the importance of high-throughput omics approaches for defining the underpinning molecular mechanisms of autophagy and understanding its associated regulatory network.
Collapse
Affiliation(s)
- Fen Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Richard S Marshall
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Faqiang Li
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
103
|
Abstract
Plants have evolved sophisticated mechanisms to recycle intracellular constituents, which are essential for developmental and metabolic transitions; for efficient nutrient reuse; and for the proper disposal of proteins, protein complexes, and even entire organelles that become obsolete or dysfunctional. One major route is autophagy, which employs specialized vesicles to encapsulate and deliver cytoplasmic material to the vacuole for breakdown. In the past decade, the mechanics of autophagy and the scores of components involved in autophagic vesicle assembly have been documented. Now emerging is the importance of dedicated receptors that help recruit appropriate cargo, which in many cases exploit ubiquitylation as a signal. Although operating at a low constitutive level in all plant cells, autophagy is upregulated during senescence and various environmental challenges and is essential for proper nutrient allocation. Its importance to plant metabolism and energy balance in particular places autophagy at the nexus of robust crop performance, especially under suboptimal conditions.
Collapse
Affiliation(s)
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, USA;
| |
Collapse
|
104
|
Havé M, Balliau T, Cottyn-Boitte B, Dérond E, Cueff G, Soulay F, Lornac A, Reichman P, Dissmeyer N, Avice JC, Gallois P, Rajjou L, Zivy M, Masclaux-Daubresse C. Increases in activity of proteasome and papain-like cysteine protease in Arabidopsis autophagy mutants: back-up compensatory effect or cell-death promoting effect? JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1369-1385. [PMID: 29281085 PMCID: PMC6037082 DOI: 10.1093/jxb/erx482] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/14/2017] [Indexed: 05/18/2023]
Abstract
Autophagy is essential for protein degradation, nutrient recycling, and nitrogen remobilization. Autophagy is induced during leaf ageing and in response to nitrogen starvation, and is known to play a fundamental role in nutrient recycling for remobilization and seed filling. Accordingly, ageing leaves of Arabidopsis autophagy mutants (atg) have been shown to over-accumulate proteins and peptides, possibly because of a reduced protein degradation capacity. Surprisingly, atg leaves also displayed higher protease activities. The work reported here aimed at identifying the nature of the proteases and protease activities that accumulated differentially (higher or lower) in the atg mutants. Protease identification was performed using shotgun LC-MS/MS proteome analyses and activity-based protein profiling (ABPP). The results showed that the chloroplast FTSH (FILAMENTATION TEMPERATURE SENSITIVE H) and DEG (DEGRADATION OF PERIPLASMIC PROTEINS) proteases and several extracellular serine proteases [subtilases (SBTs) and serine carboxypeptidase-like (SCPL) proteases] were less abundant in atg5 mutants. By contrast, proteasome-related proteins and cytosolic or vacuole cysteine proteases were more abundant in atg5 mutants. Rubisco degradation assays and ABPP showed that the activities of proteasome and papain-like cysteine protease were increased in atg5 mutants. Whether these proteases play a back-up role in nutrient recycling and remobilization in atg mutants or act to promote cell death is discussed in relation to their accumulation patterns in the atg5 mutant compared with the salicylic acid-depleted atg5/sid2 double-mutant, and in low nitrate compared with high nitrate conditions. Several of the proteins identified are indeed known as senescence- and stress-related proteases or as spontaneous cell-death triggering factors.
Collapse
Affiliation(s)
- Marien Havé
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, France
| | - Thierry Balliau
- UMR GQE- le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, France
| | | | - Emeline Dérond
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, France
| | - Gwendal Cueff
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, France
| | | | - Aurélia Lornac
- UCBN, INRA, UMR INRA-UBCN 950 Ecophysiologie Végétale, Agronomie & Nutrition N.C.S., Université de Caen Normandie, France
| | - Pavel Reichman
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, Halle (Saale), Germany and Science Campus Halle – Plant-based Bioeconomy, Germany
| | - Nico Dissmeyer
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, Halle (Saale), Germany and Science Campus Halle – Plant-based Bioeconomy, Germany
| | - Jean-Christophe Avice
- UCBN, INRA, UMR INRA-UBCN 950 Ecophysiologie Végétale, Agronomie & Nutrition N.C.S., Université de Caen Normandie, France
| | - Patrick Gallois
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Loïc Rajjou
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, France
| | - Michel Zivy
- UMR GQE- le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, France
| | | |
Collapse
|
105
|
Enrique Gomez R, Joubès J, Valentin N, Batoko H, Satiat-Jeunemaître B, Bernard A. Lipids in membrane dynamics during autophagy in plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1287-1299. [PMID: 29140451 DOI: 10.1093/jxb/erx392] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/09/2017] [Indexed: 05/19/2023]
Abstract
Autophagy is a critical pathway for plant adaptation to stress. Macroautophagy relies on the biogenesis of a specialized membrane named the phagophore that maturates into a double membrane vesicle. Proteins and lipids act synergistically to promote membrane structure and functions, yet research on autophagy has mostly focused on autophagy-related proteins while knowledge of supporting lipids in the formation of autophagic membranes remains scarce. This review expands on studies in plants with examples from other organisms to present and discuss our current understanding of lipids in membrane dynamics associated with the autophagy pathway in plants.
Collapse
Affiliation(s)
- Rodrigo Enrique Gomez
- CNRS, Laboratoire de Biogenèse Membranaire, UMR5200, Bordeaux, France
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR5200, Bordeaux, France
| | - Jérôme Joubès
- CNRS, Laboratoire de Biogenèse Membranaire, UMR5200, Bordeaux, France
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR5200, Bordeaux, France
| | - Nicolas Valentin
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris-Sud University, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Henri Batoko
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, Louvain-la-Neuve, Belgium
| | - Béatrice Satiat-Jeunemaître
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris-Sud University, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Amélie Bernard
- CNRS, Laboratoire de Biogenèse Membranaire, UMR5200, Bordeaux, France
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR5200, Bordeaux, France
| |
Collapse
|
106
|
Bárány I, Berenguer E, Solís MT, Pérez-Pérez Y, Santamaría ME, Crespo JL, Risueño MC, Díaz I, Testillano PS. Autophagy is activated and involved in cell death with participation of cathepsins during stress-induced microspore embryogenesis in barley. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1387-1402. [PMID: 29309624 PMCID: PMC6019037 DOI: 10.1093/jxb/erx455] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/30/2017] [Indexed: 05/02/2023]
Abstract
Microspores are reprogrammed towards embryogenesis by stress. Many microspores die after this stress, limiting the efficiency of microspore embryogenesis. Autophagy is a degradation pathway that plays critical roles in stress response and cell death. In animals, cathepsins have an integral role in autophagy by degrading autophagic material; less is known in plants. Plant cathepsins are papain-like C1A cysteine proteases involved in many physiological processes, including programmed cell death. We have analysed the involvement of autophagy in cell death, in relation to cathepsin activation, during stress-induced microspore embryogenesis in Hordeum vulgare. After stress, reactive oxygen species (ROS) and cell death increased and autophagy was activated, including HvATG5 and HvATG6 up-regulation and increase of ATG5, ATG8, and autophagosomes. Concomitantly, cathepsin L/F-, B-, and H-like activities were induced, cathepsin-like genes HvPap-1 and HvPap-6 were up-regulated, and HvPap-1, HvPap-6, and HvPap-19 proteins increased and localized in the cytoplasm, resembling autophagy structures. Inhibitors of autophagy and cysteine proteases reduced cell death and promoted embryogenesis. The findings reveal a role for autophagy in stress-induced cell death during microspore embryogenesis, and the participation of cathepsins. Similar patterns of activation, expression, and localization suggest a possible connection between cathepsins and autophagy. The results open up new possibilities to enhance microspore embryogenesis efficiency with autophagy and/or cysteine protease modulators.
Collapse
Affiliation(s)
| | | | | | | | | | - José Luis Crespo
- Institute of Plant Biochemistry and Photosynthesis, IBVF, CSIC, Seville, Spain
| | | | - Isabel Díaz
- Center of Plant Biotechnology and Genomics, CBGP, UPM, Madrid, Spain
| | | |
Collapse
|
107
|
Sun X, Jia X, Huo L, Che R, Gong X, Wang P, Ma F. MdATG18a overexpression improves tolerance to nitrogen deficiency and regulates anthocyanin accumulation through increased autophagy in transgenic apple. PLANT, CELL & ENVIRONMENT 2018; 41:469-480. [PMID: 29210078 DOI: 10.1111/pce.13110] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 05/18/2023]
Abstract
Nitrogen (N) availability is an essential factor for plant growth. Recycling and remobilization of N have strong impacts on crop yield and quality under N deficiency. Autophagy is a critical nutrient-recycling process that facilitates remobilization under starvation. We previously showed that an important AuTophaGy (ATG) protein from apple, MdATG18a, has a positive role in drought tolerance. In this study, we explored its biological role in response to low-N. Overexpression of MdATG18a in both Arabidopsis and apple improved tolerance to N-depletion and caused a greater accumulation of anthocyanin. The increased anthocyanin concentration in transgenic apple was possibly due to up-regulating flavonoid biosynthetic and regulatory genes (MdCHI, MdCHS, MdANS, MdPAL, MdUFGT, and MdMYB1) and higher soluble sugars concentration. MdATG18a overexpression enhanced starch degradation with up-regulating amylase gene (MdAM1) and up-regulated sugar metabolism related genes (MdSS1, MdHXKs, MdFK1, and MdNINVs). Furthermore, MdATG18a functioned in nitrate uptake and assimilation by up-regulating nitrate reductase MdNIA2 and 3 high-affinity nitrate transporters MdNRT2.1/2.4/2.5. MdATG18a overexpression also elevated other important MdATG genes expression and autophagosomes formation under N-depletion, which play key contributions to above changes. Together, these results demonstrate that overexpression of MdATG18a enhances tolerance to N-deficiencies and plays positive roles in anthocyanin biosynthesis through greater autophagic activity.
Collapse
Affiliation(s)
- Xun Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xin Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liuqing Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Runmin Che
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ping Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
108
|
Marion J, Le Bars R, Besse L, Batoko H, Satiat-Jeunemaitre B. Multiscale and Multimodal Approaches to Study Autophagy in Model Plants. Cells 2018; 7:E5. [PMID: 29315263 PMCID: PMC5789278 DOI: 10.3390/cells7010005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 12/31/2022] Open
Abstract
Autophagy is a catabolic process used by eukaryotic cells to maintain or restore cellular and organismal homeostasis. A better understanding of autophagy in plant biology could lead to an improvement of the recycling processes of plant cells and thus contribute, for example, towards reducing the negative ecological consequences of nitrogen-based fertilizers in agriculture. It may also help to optimize plant adaptation to adverse biotic and abiotic conditions through appropriate plant breeding or genetic engineering to incorporate useful traits in relation to this catabolic pathway. In this review, we describe useful protocols for studying autophagy in the plant cell, taking into account some specificities of the plant model.
Collapse
Affiliation(s)
- Jessica Marion
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91 198 Gif-sur-Yvette, France; (J.M.); (R.L.B.); (L.B.); (B.S.-J.)
| | - Romain Le Bars
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91 198 Gif-sur-Yvette, France; (J.M.); (R.L.B.); (L.B.); (B.S.-J.)
| | - Laetitia Besse
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91 198 Gif-sur-Yvette, France; (J.M.); (R.L.B.); (L.B.); (B.S.-J.)
| | - Henri Batoko
- Institute of Life Sciences, UCL/ISV, University of Louvain, Croix du Sud 4, L7.07.14, 1348 Louvain-la-Neuve, Belgium
| | - Béatrice Satiat-Jeunemaitre
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91 198 Gif-sur-Yvette, France; (J.M.); (R.L.B.); (L.B.); (B.S.-J.)
| |
Collapse
|
109
|
Sun X, Huo L, Jia X, Che R, Gong X, Wang P, Ma F. Overexpression of MdATG18a in apple improves resistance to Diplocarpon mali infection by enhancing antioxidant activity and salicylic acid levels. HORTICULTURE RESEARCH 2018; 5:57. [PMID: 30393539 PMCID: PMC6210185 DOI: 10.1038/s41438-018-0059-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 05/18/2023]
Abstract
Marssonina apple blotch, caused by Diplocarpon mali, is one of the most serious diseases of apple. Autophagy plays a key role in pathogen resistance. We previously showed that MdATG18a has a positive influence on drought tolerance. Herein, we describe how overexpression (OE) of MdATG18a enhances resistance to D. mali infection, probably because less H2O2 but more salicylic acid (SA) is accumulated in the leaves of OE apple plants. Expression of chitinase, β-1,3-glucanase, and SA-related marker genes was induced more strongly by D. mali in OE lines. Transcript levels of other important MdATG genes were also drastically increased by D. mali in OE plants, which indicated increased autophagy activities. Taken together, these results demonstrate that OE of MdATG18a enhances resistance to infection by D. mali and plays positive roles in H2O2-scavenging and SA accumulations. Our findings provide important information for designing strategies which could induce autophagy to minimize the impact of this disease on apple production.
Collapse
Affiliation(s)
- Xun Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Liuqing Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Xin Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Runmin Che
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Ping Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| |
Collapse
|
110
|
Tegeder M, Masclaux-Daubresse C. Source and sink mechanisms of nitrogen transport and use. THE NEW PHYTOLOGIST 2018; 217:35-53. [PMID: 29120059 DOI: 10.1111/nph.14876] [Citation(s) in RCA: 343] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/09/2017] [Indexed: 05/03/2023]
Abstract
Contents Summary 35 I. Introduction 35 II. Nitrogen acquisition and assimilation 36 III. Root-to-shoot transport of nitrogen 38 IV. Nitrogen storage pools in vegetative tissues 39 V. Nitrogen transport from source leaf to sink 40 VI. Nitrogen import into sinks 42 VII. Relationship between source and sink nitrogen transport processes and metabolism 43 VIII. Regulation of nitrogen transport 43 IX. Strategies for crop improvement 44 X. Conclusions 46 Acknowledgements 47 References 47 SUMMARY: Nitrogen is an essential nutrient for plant growth. World-wide, large quantities of nitrogenous fertilizer are applied to ensure maximum crop productivity. However, nitrogen fertilizer application is expensive and negatively affects the environment, and subsequently human health. A strategy to address this problem is the development of crops that are efficient in acquiring and using nitrogen and that can achieve high seed yields with reduced nitrogen input. This review integrates the current knowledge regarding inorganic and organic nitrogen management at the whole-plant level, spanning from nitrogen uptake to remobilization and utilization in source and sink organs. Plant partitioning and transient storage of inorganic and organic nitrogen forms are evaluated, as is how they affect nitrogen availability, metabolism and mobilization. Essential functions of nitrogen transporters in source and sink organs and their importance in regulating nitrogen movement in support of metabolism, and vegetative and reproductive growth are assessed. Finally, we discuss recent advances in plant engineering, demonstrating that nitrogen transporters are effective targets to improve crop productivity and nitrogen use efficiency. While inorganic and organic nitrogen transporters were examined separately in these studies, they provide valuable clues about how to successfully combine approaches for future crop engineering.
Collapse
Affiliation(s)
- Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Céline Masclaux-Daubresse
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, Versailles, France
| |
Collapse
|
111
|
Batoko H, Dagdas Y, Baluska F, Sirko A. Understanding and exploiting autophagy signaling in plants. Essays Biochem 2017; 61:675-685. [PMID: 29233877 PMCID: PMC5869243 DOI: 10.1042/ebc20170034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/11/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022]
Abstract
Autophagy is an essential catabolic pathway and is activated by various endogenous and exogenous stimuli. In particular, autophagy is required to allow sessile organisms such as plants to cope with biotic or abiotic stress conditions. It is thought that these various environmental signaling pathways are somehow integrated with autophagy signaling. However, the molecular mechanisms of plant autophagy signaling are not well understood, leaving a big gap of knowledge as a barrier to being able to manipulate this important pathway to improve plant growth and development. In this review, we discuss possible regulatory mechanisms at the core of plant autophagy signaling.
Collapse
Affiliation(s)
- Henri Batoko
- Université catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 4, L7.07.14, 1348 Louvain-la-Neuve, Belgium
| | - Yasin Dagdas
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | | | - Agnieszka Sirko
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
112
|
Izumi M, Nakamura S. Partial or entire: Distinct responses of two types of chloroplast autophagy. PLANT SIGNALING & BEHAVIOR 2017; 12:e1393137. [PMID: 29040052 PMCID: PMC5703251 DOI: 10.1080/15592324.2017.1393137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/12/2017] [Indexed: 05/24/2023]
Abstract
Autophagy carries out intracellular degradation of cytoplasmic components, which is important for the removal of dysfunctional organelles and for efficient nutrient recycling in eukaryotic cells. Most proteins in plant green tissues are found in chloroplasts, mainly as photosynthetic proteins that constantly accumulate damage caused by sunlight. Our recent study investigated the involvement of autophagy in the turnover of damaged chloroplasts and found that entire photodamaged chloroplasts are transported into the vacuole for degradation via an autophagy process termed chlorophagy. Our previous studies also established that autophagy can also degrade chloroplast components piecemeal: chloroplast stroma is transported for degradation via autophagy vesicles termed Rubisco-containing bodies (RCB). During sugar starvation-induced senescence in darkened leaves, the RCB pathway is preferentially active. By contrast, we observed active chlorophagy without prior induction of RCB production in photodamaged leaves. These distinct responses between the RCB pathway and chlorophagy support the notion that the induction of the partial-type and entire-organelle-type chloroplast autophagy are differentially regulated by individual upstream molecules. This finding further suggests that the two types of autophagy are coordinated to achieve the controlled chloroplast turnover in response to specific conditions.
Collapse
Affiliation(s)
- Masanori Izumi
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Sakuya Nakamura
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|