101
|
Somkuwar SS, Vendruscolo LF, Fannon MJ, Schmeichel B, Nguyen TB, Guevara J, Sidhu H, Contet C, Zorrilla EP, Mandyam CD. Abstinence from prolonged ethanol exposure affects plasma corticosterone, glucocorticoid receptor signaling and stress-related behaviors. Psychoneuroendocrinology 2017; 84. [PMID: 28647675 PMCID: PMC5557646 DOI: 10.1016/j.psyneuen.2017.06.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alcohol dependence is linked to dysregulation of the hypothalamic-pituitary-adrenal axis. Here, we investigated effects of repeated ethanol intoxication-withdrawal cycles (using chronic intermittent ethanol vapor inhalation; CIE) and abstinence from CIE on peak and nadir plasma corticosterone (CORT) levels. Irritability- and anxiety-like behaviors as well as glucocorticoid receptors (GR) in the medial prefrontal cortex (mPFC) were assessed at various intervals (2h-28d) after cessation of CIE. Results show that peak CORT increased during CIE, transiently decreased during early abstinence (1-11d), and returned to pre-abstinence levels during protracted abstinence (17-27d). Acute withdrawal from CIE enhanced aggression- and anxiety-like behaviors. Early abstinence from CIE reduced anxiety-like behavior. mPFC-GR signaling (indexed by relative phosphorylation of GR at Ser211) was transiently decreased when measured at time points during early and protracted abstinence. Further, voluntary ethanol drinking in CIE (CIE-ED) and CIE-naïve (ED) rats, and effects of CIE-ED and ED on peak CORT levels and mPFC-GR were investigated during acute withdrawal (8h) and protracted abstinence (28d). CIE-ED and ED increased peak CORT during drinking. CIE-ED and ED decreased expression and signaling of mPFC-GR during acute withdrawal, an effect that was reversed by systemic mifepristone treatment. CIE-ED and ED demonstrate robust reinstatement of ethanol seeking during protracted abstinence and show increases in mPFC-GR expression. Collectively, the data demonstrate that acute withdrawal from CIE produces robust alterations in GR signaling, CORT and negative affect symptoms which could facilitate excessive drinking. The findings also show that CIE-ED and ED demonstrate enhanced relapse vulnerability triggered by ethanol cues and these changes are partially mediated by altered GR expression in the mPFC. Taken together, transition to alcohol dependence could be accompanied by alterations in mPFC stress-related pathways that may increase negative emotional symptoms and increase vulnerability to relapse.
Collapse
Affiliation(s)
| | | | | | - Brooke Schmeichel
- National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Tran Bao Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA, USA
| | | | - Harpreet Sidhu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA USA
| | - Candice Contet
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA USA
| | - Eric P. Zorrilla
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA USA
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA, USA,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA, USA,Department of Neuroscience, The Scripps Research Institute, La Jolla, CA USA,Department of Anesthesiology, University of California San Diego, CA, USA
| |
Collapse
|
102
|
Rodberg EM, den Hartog CR, Anderson RI, Becker H, Moorman DE, Vazey EM. Stress Facilitates the Development of Cognitive Dysfunction After Chronic Ethanol Exposure. Alcohol Clin Exp Res 2017; 41:1574-1583. [PMID: 28753742 PMCID: PMC5592109 DOI: 10.1111/acer.13444] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Chronic exposure to stress or alcohol can drive neuroadaptations that alter cognition. Alterations in cognition may contribute to alcohol use disorders by reducing cognitive control over drinking and maintenance of abstinence. Here we examined effects of combined ethanol (EtOH) and stress exposure on prefrontal cortex (PFC)-dependent cognition. METHODS Adult male C57BL/6J mice were trained to drink EtOH (15%, v/v) on a 1 h/d 1-bottle schedule. Once stable, mice were exposed to cycles of chronic intermittent EtOH (CIE) or air-control vapor exposure (Air), followed by test cycles of 1 h/d EtOH drinking. During test drinking, mice received no stress (NS) or 10 minutes of forced swim stress (FSS) 4 hours before each test. This schedule produced 4 experimental groups: control, Air/NS; EtOH-dependent no stress, CIE/NS; nondependent stress, Air/FSS; or EtOH-dependent stress, CIE/FSS. After 2 cycles of CIE and FSS exposure, we assessed PFC-dependent cognition using object/context recognition and attentional set shifting. At the end of the study, mice were perfused and brains were collected for measurement of c-Fos activity in PFC and locus coeruleus (LC). RESULTS CIE/FSS mice escalated EtOH intake faster than CIE/NS and consumed more EtOH than Air/NS across all test cycles. After 2 cycles of CIE/FSS, mice showed impairments in contextual learning and extradimensional set-shifting relative to other groups. In addition to cognitive dysfunction, CIE/FSS mice demonstrated widespread reductions in c-Fos activity within prelimbic and infralimbic PFC as well as LC. CONCLUSIONS Together, these findings show that interactions between EtOH and stress exposure rapidly lead to disruptions in signaling across cognitive networks and impairments in PFC-dependent cognitive function.
Collapse
Affiliation(s)
| | | | | | | | - David E. Moorman
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst MA
| | - Elena M. Vazey
- Department of Biology, University of Massachusetts, Amherst MA
| |
Collapse
|
103
|
Roberto M, Spierling SR, Kirson D, Zorrilla EP. Corticotropin-Releasing Factor (CRF) and Addictive Behaviors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:5-51. [PMID: 29056155 PMCID: PMC6155477 DOI: 10.1016/bs.irn.2017.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drug addiction is a complex disorder that is characterized by compulsivity to seek and take the drug, loss of control in limiting intake of the drug, and emergence of a withdrawal syndrome in the absence of the drug. The transition from casual drug use to dependence is mediated by changes in reward and brain stress functions and has been linked to a shift from positive reinforcement to negative reinforcement. The recruitment of brain stress systems mediates the negative emotional state produced by dependence that drives drug seeking through negative reinforcement mechanisms, defined as the "dark side" of addiction. In this chapter we focus on behavioral and cellular neuropharmacological studies that have implicated brain stress systems (i.e., corticotropin-releasing factor [CRF]) in the transition to addiction and the predominant brain regions involved. We also discuss the implication of CRF recruitment in compulsive eating disorders.
Collapse
Affiliation(s)
- Marisa Roberto
- The Scripps Research Institute, La Jolla, CA, United States.
| | | | - Dean Kirson
- The Scripps Research Institute, La Jolla, CA, United States
| | | |
Collapse
|
104
|
Kwako LE, Momenan R, Grodin EN, Litten RZ, Koob GF, Goldman D. Addictions Neuroclinical Assessment: A reverse translational approach. Neuropharmacology 2017; 122:254-264. [PMID: 28283392 PMCID: PMC5569299 DOI: 10.1016/j.neuropharm.2017.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 12/21/2022]
Abstract
Incentive salience, negative emotionality, and executive function are functional domains that are etiologic in the initiation and progression of addictive disorders, having been implicated in humans with addictive disorders and in animal models of addictions. Measures of these three neuroscience-based functional domains can capture much of the effects of inheritance and early exposures that lead to trait vulnerability shared across different addictive disorders. For specific addictive disorders, these measures can be supplemented by agent specific measures such as those that access pharmacodynamic and pharmacokinetic variation attributable to agent-specific gatekeeper molecules including receptors and drug-metabolizing enzymes. Herein, we focus on the translation and reverse translation of knowledge derived from animal models of addiction to the human condition via measures of neurobiological processes that are orthologous in animals and humans, and that are shared in addictions to different agents. Based on preclinical data and human studies, measures of these domains in a general framework of an Addictions Neuroclinical Assessment (ANA) can transform the assessment and nosology of addictive disorders, and can be informative for staging disease progression. We consider next steps and challenges for implementation of ANA in clinical care and research. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Laura E Kwako
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Reza Momenan
- Clinical Neuroimaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Erica N Grodin
- Clinical Neuroimaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Raye Z Litten
- Division of Medications Development, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - George F Koob
- Office of the Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Goldman
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA; Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
105
|
Holgate JY, Garcia H, Chatterjee S, Bartlett SE. Social and environmental enrichment has different effects on ethanol and sucrose consumption in mice. Brain Behav 2017; 7:e00767. [PMID: 28828224 PMCID: PMC5561324 DOI: 10.1002/brb3.767] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 05/22/2017] [Accepted: 06/12/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Factors leading to the harmful consumption of substances, like alcohol and sucrose, involve a complex interaction of genes and the environment. While we cannot control the genes we inherit, we can modify our environment. Understanding the role that social and environmental experiences play in alcohol and sucrose consumption is critical for developing preventative interventions and treatments for alcohol use disorders and obesity. METHODS We used the drinking in the dark two-bottle choice (2BC) model of ethanol and sucrose consumption to compare male C57BL/6 mice housed in the IntelliCage (an automated device capable of simultaneously measuring behaviors of up to 16 mice living in an enriched social environment) with mice housed in standard isolated and social environments. RESULTS Consistent with previous publications on ethanol-naïve and -experienced mice, social and environmental enrichment reduced ethanol preference. Isolated mice had the highest ethanol preference and IntelliCage mice the least, regardless of prior ethanol experience. In mice with no prior sucrose experience, the addition of social and environmental enrichment increased sucrose preference. However, moving isolated mice to enriched conditions did not affect sucrose preference in sucrose-experienced mice. CONCLUSIONS The impact of social and environmental enrichment on ethanol consumption differs from sucrose consumption suggesting that interventions and treatments developed for alcohol use disorders may not be suitable for sucrose consumption disorders.
Collapse
Affiliation(s)
- Joan Y Holgate
- Institute of Health and Medical Innovation Translational Research Institute Queensland University of Technology Woolloongabba QLD Australia.,Ernest Gallo Clinical and Research Center University of California San Francisco CA USA
| | - Hilary Garcia
- Ernest Gallo Clinical and Research Center University of California San Francisco CA USA
| | - Susmita Chatterjee
- Ernest Gallo Clinical and Research Center University of California San Francisco CA USA
| | - Selena E Bartlett
- Institute of Health and Medical Innovation Translational Research Institute Queensland University of Technology Woolloongabba QLD Australia.,Ernest Gallo Clinical and Research Center University of California San Francisco CA USA
| |
Collapse
|
106
|
[Oxytocin and the mechanisms of alcohol dependence]. NEUROPSYCHIATRIE : KLINIK, DIAGNOSTIK, THERAPIE UND REHABILITATION : ORGAN DER GESELLSCHAFT ÖSTERREICHISCHER NERVENÄRZTE UND PSYCHIATER 2017. [PMID: 28639210 DOI: 10.1007/s40211-017-0229-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the crucial purposes of treating alcohol-dependent patients is to enhance their ability to stay abstinent after detoxification therapy. Anxiety and stress vulnerability are the main factors provoking alcohol craving and relapse. In the first months of abstinence, alcohol-dependent patients frequently show sleep disturbances, irritability and depression, indicating chronic activation of stress pathways. In addition, the loss of confidence in interpersonal interactions results in social withdrawal and reduced willingness to participate in therapeutic programs.Current research shows that the peptide hormone oxytocin exerts substantial anxiolytic effects and facilitates prosocial behavior. Oxytocin can be safely applied as intranasal preparation. Oxytocin acts by inhibiting the effects of the corticotropin-releasing factor on GABAergic interneurons in the amygdala and paraventricular nucleus of hypothalamus.Recent research strongly suggests that application of oxytocin may beneficially influence the mechanisms of relapse and craving by reduction of anxiety, stress vulnerability and social withdrawal in abstinent alcohol-dependent patients.This article reviews neurobiological mechanisms of oxytocin effects on stress-related pathways and discusses the potential use of oxytocin in the treatment of alcohol addiction.
Collapse
|
107
|
McCaul ME, Hutton HE, Stephens MAC, Xu X, Wand GS. Anxiety, Anxiety Sensitivity, and Perceived Stress as Predictors of Recent Drinking, Alcohol Craving, and Social Stress Response in Heavy Drinkers. Alcohol Clin Exp Res 2017; 41:836-845. [PMID: 28281290 PMCID: PMC5388456 DOI: 10.1111/acer.13350] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/06/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Stress and anxiety are widely considered to be causally related to alcohol craving and consumption, as well as development and maintenance of alcohol use disorder (AUD). However, numerous preclinical and human studies examining effects of stress or anxiety on alcohol use and alcohol-related problems have been equivocal. This study examined relationships between scores on self-report anxiety, anxiety sensitivity, and stress measures and frequency and intensity of recent drinking, alcohol craving during early withdrawal, as well as laboratory measures of alcohol craving and stress reactivity among heavy drinkers with AUD. METHODS Media-recruited, heavy drinkers with AUD (N = 87) were assessed for recent alcohol consumption. Anxiety and stress levels were characterized using paper-and-pencil measures, including the Beck Anxiety Inventory (BAI), the Anxiety Sensitivity Index-3 (ASI-3), and the Perceived Stress Scale (PSS). Eligible subjects (N = 30) underwent alcohol abstinence on the Clinical Research Unit; twice daily measures of alcohol craving were collected. On day 4, subjects participated in the Trier Social Stress Test; measures of cortisol and alcohol craving were collected. RESULTS In multivariate analyses, higher BAI scores were associated with lower drinking frequency and reduced drinks/drinking day; in contrast, higher ASI-3 scores were associated with higher drinking frequency. BAI anxiety symptom and ASI-3 scores also were positively related to Alcohol Use Disorders Identification Test total scores and AUD symptom and problem subscale measures. Higher BAI and ASI-3 scores but not PSS scores were related to greater self-reported alcohol craving during early alcohol abstinence. Finally, BAI scores were positively related to laboratory stress-induced cortisol and alcohol craving. In contrast, the PSS showed no relationship with most measures of alcohol craving or stress reactivity. CONCLUSIONS Overall, clinically oriented measures of anxiety compared with perceived stress were more strongly associated with a variety of alcohol-related measures in current heavy drinkers with AUD.
Collapse
Affiliation(s)
- Mary E McCaul
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Heidi E Hutton
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mary Ann C Stephens
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xiaoqiang Xu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gary S Wand
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
108
|
Blaine SK, Seo D, Sinha R. Peripheral and prefrontal stress system markers and risk of relapse in alcoholism. Addict Biol 2017; 22:468-478. [PMID: 26537217 PMCID: PMC4860170 DOI: 10.1111/adb.12320] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/31/2015] [Accepted: 09/17/2015] [Indexed: 12/15/2022]
Abstract
Previous research has shown that hyperactivation in ventral medial prefrontal cortex (VmPFC) and rostral anterior cingulate cortex (rACC) and high cortisol to corticotrophin ratio (cort:ACTH ratio) during neutral-relaxed states predict relapse in alcohol-dependent (AD) patients. Other studies have shown that VmPFC/rACC deactivation and blunted cortisol release to stress and alcohol cues are predictive of time to relapse and relapse severity. However, no previous study has assessed the relationship between these markers of central and peripheral nervous system dysfunction in AD participants and their potential joint effects on relapse risk. Forty early abstinent, treatment engaged AD patients underwent a laboratory experiment with exposure to neutral, alcohol and stress cues and a separate functional magnetic resonance imaging scan with similar cue exposure. Neutral-relaxed state cort:ACTH ratio was significantly associated with VmPFC hyperreactivity to neutral-relaxing cues, and also with hypoactivation in response to alcohol and stress cues in AD patients. Basal heart rate, neutral cort:ACTH ratio and neutral VmPFC hyperreactivty were each associated with risk of relapse. However, abnormal VmPFC activation and elevated cort:ACTH ratio overlap in predicting risk for relapse, and dysfunctional VmPFC response was the sole significant predictor of odds of relapse in a joint model of relapse risk. These findings suggest that the cort:ACTH ratio may serve as a peripheral marker of VmPFC brain dysfunction, while aberrant VmPFC responses need further evaluation as a potential biomarker of alcohol relapse risk in clinical outcome studies.
Collapse
Affiliation(s)
- Sara K Blaine
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Dongju Seo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Rajita Sinha
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
109
|
Adrenocortical sensitivity, moderated by ongoing stress, predicts drinking intensity in alcohol-dependent men. Psychoneuroendocrinology 2017; 76:67-76. [PMID: 27888772 PMCID: PMC5272781 DOI: 10.1016/j.psyneuen.2016.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/26/2016] [Accepted: 10/15/2016] [Indexed: 11/23/2022]
Abstract
Allostatic load from both environmental stressors and persistent glucocorticoid secretion has been associated with disease severity in alcohol dependence. Heightened relapse risk and/or drinking severity, in particular, may be a reaction to alcohol- and withdrawal-induced changes in physiological stress response systems coupled with ongoing life stress, although their shared contributions upon drinking severity have not been assessed. To investigate the combined contribution of hypothalamic-pituitary-adrenal (HPA) reactivity and environmental stressors (e.g., ongoing life stress) to relapse severity in alcohol-dependent men following treatment, plasma adrenocorticotropin (ACTH) and cortisol were obtained in 4-6 weeks abstinent alcohol-dependent men (n=41) following a psychosocial stressor [the Trier Social Stress Test (TSST)] and two pharmacological provocations [ovine corticotropin releasing factor (oCRH) and cosyntropin]. Following treatment discharge, drinking outcomes (primary outcome: drinks per drinking day (DDD); secondary outcomes: total drinks and drinking days) were assessed weekly and ongoing life stress was assessed biweekly for 24 weeks following treatment discharge. Generalized estimating equation models of drinking severity were fit with basal and stimulated ACTH and cortisol concentrations as predictors and ongoing life stress as the moderator. Greater levels of life stress were independently associated with greater drinking intensity (DDD and total drinks) but not frequency (days drinking). Higher basal cortisol:ACTH or provoked cortisol:ACTH ratios were strongly associated with greater post-treatment DDD in individuals who experienced higher levels of ongoing stress. In conclusion, ongoing life stress is associated with post-treatment drinking intensity in alcohol dependent men; stress also strengthens the relationship between adrenocortical sensitivity and post-treatment drinking. Physiological measures of allostatic load and environmental stressors conjointly increase relapse intensity.
Collapse
|
110
|
Blaine SK, Sinha R. Alcohol, stress, and glucocorticoids: From risk to dependence and relapse in alcohol use disorders. Neuropharmacology 2017; 122:136-147. [PMID: 28159647 DOI: 10.1016/j.neuropharm.2017.01.037] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 01/14/2023]
Abstract
In this review, we detail the clinical evidence supporting the role of psychological and physiological stress in instrumental motivation for alcohol consumption during the development of mild to moderate alcohol use disorders (AUDs) and in the compulsive, habitual alcohol consumption seen in severe, chronic, relapsing AUDs. Traditionally, the study of AUDs has focused on the direct and indirect effects of alcohol on striatal dopaminergic pathways and their role in the reinforcing effects of alcohol. However, growing evidence also suggests that alcohol directly stimulates the hypothalamic pituitary adrenal (HPA) axis and has effects on glucocorticoid receptors in extrahypothalamic, limbic forebrain, and medial Prefrontal Cortex (PFC) circuits, which contribute to the development of AUDs and their progression in severity, chronicity, and relapse risk. Evidence indicates HPA axis, glucocorticoid, and PFC dysfunction during protracted withdrawal and under high arousal conditions in those with severe AUDs, and novel evidence is also emerging to suggest HPA axis dysfunction with binge/heavy drinking, which is associated with motivation for alcohol in non-dependent individuals. Specifically, alcohol-associated alterations in HPA axis responses to stress and alcohol cues may serve as interoceptive physiological signals and facilitate conditioning mechanisms to influence alcohol motivation. Thus, this dysfunction may serve as a potential biomarker of both risk and of relapse. Based on this emerging data, we conceptualize and present early evidence for treatment targets that may improve PFC function and/or normalize HPA axis functioning and may be beneficial in the treatment and relapse prevention of AUDs. Finally, we suggest that individual differences in alcohol-related pathophysiology in these circuits may modulate treatment and recovery response, thereby supporting the need for building personalized medicine algorithms to understand and treat AUDs. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Sara K Blaine
- Department of Psychiatry Yale University School of Medicine, Yale Interdisciplinary Stress Center, 2 Church Street South, Suite 209, New Haven, CT 06519, USA
| | - Rajita Sinha
- Department of Psychiatry Yale University School of Medicine, Yale Interdisciplinary Stress Center, 2 Church Street South, Suite 209, New Haven, CT 06519, USA
| |
Collapse
|
111
|
Brunetti M, Martinotti G, Sepede G, Vellante F, Fiori F, Sarchione F, di Giannantonio M. Alcohol abuse in subjects developing or not developing posttraumatic stress disorder after trauma exposure. ARCHIVES OF TRAUMA RESEARCH 2017. [DOI: 10.4103/atr.atr_12_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
112
|
Warden A, Erickson E, Robinson G, Harris RA, Mayfield RD. The neuroimmune transcriptome and alcohol dependence: potential for targeted therapies. Pharmacogenomics 2016; 17:2081-2096. [PMID: 27918243 DOI: 10.2217/pgs-2016-0062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transcriptome profiling enables discovery of gene networks that are altered in alcoholic brains. This technique has revealed involvement of the brain's neuroimmune system in regulating alcohol abuse and dependence, and has provided potential therapeutic targets. In this review, we discuss Toll-like-receptor pathways, hypothesized to be key players in many stages of the alcohol addiction cycle. The growing appreciation of the neuroimmune system's involvement in alcoholism has also led to consideration of crucial roles for glial cells, including astrocytes and microglia, in the brain's response to alcohol abuse. We discuss current knowledge and hypotheses on the roles that specific neuroimmune cell types may play in addiction. Current strategies for repurposing US FDA-approved drugs for the treatment of alcohol use disorders are also discussed.
Collapse
Affiliation(s)
- Anna Warden
- The University of Texas at Austin, Waggoner Center for Alcohol & Addiction Research, Austin, TX, USA
| | - Emma Erickson
- The University of Texas at Austin, Waggoner Center for Alcohol & Addiction Research, Austin, TX, USA
| | - Gizelle Robinson
- The University of Texas at Austin, Waggoner Center for Alcohol & Addiction Research, Austin, TX, USA
| | - R Adron Harris
- The University of Texas at Austin, Waggoner Center for Alcohol & Addiction Research, Austin, TX, USA
| | - R Dayne Mayfield
- The University of Texas at Austin, Waggoner Center for Alcohol & Addiction Research, Austin, TX, USA
| |
Collapse
|
113
|
Affiliation(s)
- Gabriele Caselli
- Studi Cognitivi, Modena, Italy
- Division of Psychology, School of Applied Sciences, London South Bank University, London, UK
- Sigmund Freud University, Milan, Italy
| | - Marcantonio M. Spada
- Division of Psychology, School of Applied Sciences, London South Bank University, London, UK
| |
Collapse
|
114
|
Zakiniaeiz Y, Scheinost D, Seo D, Sinha R, Constable RT. Cingulate cortex functional connectivity predicts future relapse in alcohol dependent individuals. NEUROIMAGE-CLINICAL 2016; 13:181-187. [PMID: 27981033 PMCID: PMC5144743 DOI: 10.1016/j.nicl.2016.10.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 10/04/2016] [Accepted: 10/24/2016] [Indexed: 01/09/2023]
Abstract
Alcohol dependence is a chronic relapsing illness. Alcohol and stress cues have consistently been shown to increase craving and relapse risk in recovering alcohol dependent (AUD) patients. However, differences in functional connectivity in response to these cues have not been studied using data-driven approaches. Here, voxel-wise connectivity is used in a whole-brain investigation of functional connectivity differences associated with alcohol and stress cues and to examine whether these differences are related to subsequent relapse. In Study 1, 45, 4- to 8-week abstinent, recovering AUD patients underwent functional magnetic resonance imaging during individualized imagery of alcohol, stress, and neutral cues. Relapse measures were collected prospectively for 90 days post-discharge from inpatient treatment. AUD patients showed blunted anterior (ACC), mid (MCC) and posterior cingulate cortex (PCC), voxel-wise connectivity responses to stress compared to neutral cues and blunted PCC response to alcohol compared to neutral cues. Using Cox proportional hazard regression, weaker connectivity in ACC and MCC during neutral exposure was associated with longer time to relapse (better recovery outcome). Similarly, greater connectivity in PCC during alcohol-cue compared to stress cue was associated with longer time to relapse. In Study 2, a sub-group of 30 AUD patients were demographically-matched to 30 healthy control (HC) participants for group comparisons. AUD compared to HC participants showed reduced cingulate connectivity during alcohol and stress cues. Using novel data-driven approaches, the cingulate cortex emerged as a key region in the disruption of functional connectivity during alcohol and stress-cue processing in AUD patients and as a marker of subsequent alcohol relapse. AUD patients showed blunted cingulate connectivity to alcohol and stress cues. Cingulate connectivity predicted time to relapse in AUD patients. Greater PCC connectivity during alcohol cues predicted longer time to relapse. AUD vs. HC subjects showed less cingulate connectivity to alcohol and stress cues. The cingulate cortex emerged as a marker of subsequent alcohol relapse.
Collapse
Affiliation(s)
- Yasmin Zakiniaeiz
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, United States
| | - Dustin Scheinost
- Department Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Dongju Seo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Rajita Sinha
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, United States; Department Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States; Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
115
|
Sharma S, Ceballos N. Predictors of Psychological and Physiological Stress during Inpatient Treatment for Alcohol Use Disorder. ALCOHOLISM TREATMENT QUARTERLY 2016. [DOI: 10.1080/07347324.2016.1217710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
116
|
Seo D, Lacadie CM, Sinha R. Neural Correlates and Connectivity Underlying Stress-Related Impulse Control Difficulties in Alcoholism. Alcohol Clin Exp Res 2016; 40:1884-94. [PMID: 27501356 DOI: 10.1111/acer.13166] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 06/21/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Stress triggers impulsive and addictive behaviors, and alcoholism has been frequently associated with increased stress sensitivity and impulse control problems. However, neural correlates underlying the link between alcoholism and impulsivity in the context of stress in patients with alcohol use disorders (AUD) have not been well studied. METHODS This study investigated neural correlates and connectivity patterns associated with impulse control difficulties in abstinent AUD patients. Using functional magnetic resonance imaging, brain responses of 37 AUD inpatients, and 37 demographically matched healthy controls were examined during brief individualized imagery trials of stress, alcohol cue, and neutral-relaxing conditions. Stress-related impulsivity was measured using a subscale score of impulse control problems from Difficulties in Emotion Regulation Scale. RESULTS Impulse control difficulties in AUD patients were significantly associated with hypo-active response to stress in the ventromedial prefrontal cortex (VmPFC), right caudate, and left lateral PFC (LPFC) compared to the neutral condition (p < 0.01, whole-brain corrected). These regions were used as seed regions to further examine the connectivity patterns with other brain regions. With the VmPFC seed, AUD patients showed reduced connectivity with the anterior cingulate cortex compared to controls, which are core regions of emotion regulation, suggesting AUD patients' decreased ability to modulate emotional response under distressed state. With the right caudate seed, patients showed increased connectivity with the right motor cortex, suggesting increased tendency toward habitually driven behaviors. With the left LPFC seed, decreased connectivity with the dorsomedial PFC (DmPFC), but increased connectivity with sensory and motor cortices were found in AUD patients compared to controls (p < 0.05, whole-brain corrected). Reduced connectivity between the left LPFC and DmPFC was further associated with increased stress-induced anxiety in AUD patients (p < 0.05, with adjusted Bonferroni correction). CONCLUSIONS Hypo-active response to stress and altered connectivity in key emotion regulatory regions may account for greater stress-related impulse control problems in alcoholism.
Collapse
Affiliation(s)
- Dongju Seo
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Cheryl M Lacadie
- Department of Radiology, Yale School of Medicine, New Haven, Connecticut
| | - Rajita Sinha
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut.,Department of Neurobiology and Child Study Center, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
117
|
Knapp DJ, Harper KM, Whitman BA, Zimomra Z, Breese GR. Stress and Withdrawal from Chronic Ethanol Induce Selective Changes in Neuroimmune mRNAs in Differing Brain Sites. Brain Sci 2016; 6:brainsci6030025. [PMID: 27472367 PMCID: PMC5039454 DOI: 10.3390/brainsci6030025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/10/2016] [Accepted: 07/20/2016] [Indexed: 12/12/2022] Open
Abstract
Stress is a strong risk factor in alcoholic relapse and may exert effects that mimic aspects of chronic alcohol exposure on neurobiological systems. With the neuroimmune system becoming a prominent focus in the study of the neurobiological consequences of stress, as well as chronic alcohol exposure proving to be a valuable focus in this regard, the present study sought to compare the effects of stress and chronic ethanol exposure on induction of components of the neuroimmune system. Rats were exposed to either 1 h exposure to a mild stressor (restraint) or exposure to withdrawal from 15 days of chronic alcohol exposure (i.e., withdrawal from chronic ethanol, WCE) and assessed for neuroimmune mRNAs in brain. Restraint stress alone elevated chemokine (C–C motif) ligand 2 (CCL2), interleukin-1-beta (IL-1β), tumor necrosis factor alpha (TNFα) and toll-like receptor 4 (TLR4) mRNAs in the cerebral cortex within 4 h with a return to a control level by 24 h. These increases were not accompanied by an increase in corresponding proteins. Withdrawal from WCE also elevated cytokines, but did so to varying degrees across different cytokines and brain regions. In the cortex, stress and WCE induced CCL2, TNFα, IL-1β, and TLR4 mRNAs. In the hypothalamus, only WCE induced cytokines (CCL2 and IL-1β) while in the hippocampus, WCE strongly induced CCL2 while stress and WCE induced IL-1β. In the amygdala, only WCE induced CCL2. Finally—based on the previously demonstrated role of corticotropin-releasing factor 1 (CRF1) receptor inhibition in blocking WCE-induced cytokine mRNAs—the CRF1 receptor antagonist CP154,526 was administered to a subgroup of stressed rats and found to be inactive against induction of CCL2, TNFα, or IL-1β mRNAs. These differential results suggest that stress and WCE manifest broad neuroimmune effects in brain depending on the cytokine and brain region, and that CRF inhibition may not be a relevant mechanism in non-alcohol exposed animals. Overall, these effects are complex in terms of their neuroimmune targets and neuroanatomical specificity. Further investigation of the differential distribution of cytokine induction across neuroanatomical regions, individual cell types (e.g., neuronal phenotypes and glia), severity of chronic alcohol exposure, as well as across differing stress types may prove useful in understanding differential mechanisms of induction and for targeting select systems for pharmacotherapeutic intervention in alcoholism.
Collapse
Affiliation(s)
- Darin J Knapp
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, CB7178, Chapel Hill, NC 27599-7178, USA.
- Department of Psychiatry, The University of North Carolina at Chapel Hill, CB7178, Chapel Hill, NC 27599-7178, USA.
| | - Kathryn M Harper
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, CB7178, Chapel Hill, NC 27599-7178, USA.
| | - Buddy A Whitman
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, CB7178, Chapel Hill, NC 27599-7178, USA.
- Curriculum in Neurobiology, The University of North Carolina at Chapel Hill, CB7178, Chapel Hill, NC 27599-7178, USA.
| | - Zachary Zimomra
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, CB7178, Chapel Hill, NC 27599-7178, USA.
| | - George R Breese
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, CB7178, Chapel Hill, NC 27599-7178, USA.
- Department of Psychiatry, The University of North Carolina at Chapel Hill, CB7178, Chapel Hill, NC 27599-7178, USA.
- Curriculum in Neurobiology, The University of North Carolina at Chapel Hill, CB7178, Chapel Hill, NC 27599-7178, USA.
- Department of Pharmacology, The University of North Carolina at Chapel Hill, CB7178, Chapel Hill, NC 27599-7178, USA.
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, CB7178, Chapel Hill, NC 27599-7178, USA.
| |
Collapse
|
118
|
Yang X, Tian F, Zhang H, Zeng J, Chen T, Wang S, Jia Z, Gong Q. Cortical and subcortical gray matter shrinkage in alcohol-use disorders: a voxel-based meta-analysis. Neurosci Biobehav Rev 2016; 66:92-103. [PMID: 27108216 DOI: 10.1016/j.neubiorev.2016.03.034] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/17/2016] [Accepted: 03/24/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Xun Yang
- School of Sociality and Psychology, Southwest University for Nationalities, Chengdu 610041, China; Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Fangfang Tian
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Handi Zhang
- School of Sociality and Psychology, Southwest University for Nationalities, Chengdu 610041, China
| | - Jianguang Zeng
- School of Accounting, Southwestern University of Finance and Economics, Chengdu 611130, China
| | - Taolin Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zhiyun Jia
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Psychology, School of Public Administration, Sichuan University, Chengdu 610041, China
| |
Collapse
|
119
|
Belmer A, Patkar OL, Pitman KM, Bartlett SE. Serotonergic Neuroplasticity in Alcohol Addiction. Brain Plast 2016; 1:177-206. [PMID: 29765841 PMCID: PMC5928559 DOI: 10.3233/bpl-150022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Alcohol addiction is a debilitating disorder producing maladaptive changes in the brain, leading drinkers to become more sensitive to stress and anxiety. These changes are key factors contributing to alcohol craving and maintaining a persistent vulnerability to relapse. Serotonin (5-Hydroxytryptamine, 5-HT) is a monoamine neurotransmitter widely expressed in the central nervous system where it plays an important role in the regulation of mood. The serotonin system has been extensively implicated in the regulation of stress and anxiety, as well as the reinforcing properties of all of the major classes of drugs of abuse, including alcohol. Dysregulation within the 5-HT system has been postulated to underlie the negative mood states associated with alcohol use disorders. This review will describe the serotonergic (5-HTergic) neuroplastic changes observed in animal models throughout the alcohol addiction cycle, from prenatal to adulthood exposure. The first section will focus on alcohol-induced 5-HTergic neuroadaptations in offspring prenatally exposed to alcohol and the consequences on the regulation of stress/anxiety. The second section will compare alterations in 5-HT signalling induced by acute or chronic alcohol exposure during adulthood and following alcohol withdrawal, highlighting the impact on the regulation of stress/anxiety signalling pathways. The third section will outline 5-HTergic neuroadaptations observed in various genetically-selected ethanol preferring rat lines. Finally, we will discuss the pharmacological manipulation of the 5-HTergic system on ethanol- and anxiety/stress-related behaviours demonstrated by clinical trials, with an emphasis on current and potential treatments.
Collapse
Affiliation(s)
- Arnauld Belmer
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - Omkar L Patkar
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - Kim M Pitman
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - Selena E Bartlett
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
120
|
Galesi FL, Ayanwuyi LO, Mijares MG, Cippitelli A, Cannella N, Ciccocioppo R, Ubaldi M. Role of Hypothalamic-Pituitary-Adrenal axis and corticotropin-releasing factor stress system on cue-induced relapse to alcohol seeking. Eur J Pharmacol 2016; 788:84-89. [PMID: 27316790 DOI: 10.1016/j.ejphar.2016.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/26/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
A large body of evidence has shown that the Corticotropin Releasing Factor (CRF) system, which plays a key role in stress modulation, is deeply involved in relapse to alcohol seeking induced by exposure to stressful events such as foot shock or yohimbine injections. Exposure to environmental cues is also known to be a trigger for alcohol relapse, nevertheless, the relationship between the relapse evoked by the cue-induced model and the CRF stress systems remains unclear. The purpose of this study was to evaluate, in male Wistar rats, the involvement of the CRF system and Hypothalamic-Pituitary-Adrenal (HPA) axis in relapse induced by environmental cues. Antalarmin, a selective CRF1 receptor antagonist, Metyrapone, a corticosterone (CORT) synthesis inhibitor and CORT were evaluated for their effects on the reinstatement test in a cue-induced relapse model. Antalarmin (20mg/kg) blocked relapse to alcohol seeking induced by environmental cues. Metyrapone (50 and 100mg/kg) also blocked relapse in Wistar rats but only at the highest dose (100mg/kg). Corticosterone had no effect on relapse at the doses tested. The results obtained from this study suggest that the CRF stress system and the HPA axis are involved in cue-induced alcohol relapse.
Collapse
Affiliation(s)
- Fernanda L Galesi
- Universidade de São Paulo, Instituto de Psicologia, Departamento de Psicologia Experimental, Sao Paulo, SP, Brazil
| | - Lydia O Ayanwuyi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, MC 62032, Italy
| | - Miriam Garcia Mijares
- Universidade de São Paulo, Instituto de Psicologia, Departamento de Psicologia Experimental, Sao Paulo, SP, Brazil
| | - Andrea Cippitelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, MC 62032, Italy
| | - Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, MC 62032, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, MC 62032, Italy
| | - Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, MC 62032, Italy.
| |
Collapse
|
121
|
Funk D, Coen K, Tamadon S, Li Z, Loughlin A, Lê AD. Effects of prazosin and doxazosin on yohimbine-induced reinstatement of alcohol seeking in rats. Psychopharmacology (Berl) 2016; 233:2197-2207. [PMID: 27020784 DOI: 10.1007/s00213-016-4273-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/05/2016] [Indexed: 12/16/2022]
Abstract
RATIONALE AND OBJECTIVES Alpha-1 adrenoceptor antagonists, such as prazosin, show promise in treating alcoholism. In rats, prazosin reduces alcohol self-administration and relapse induced by footshock stress and the alpha-2 antagonist yohimbine, but the processes involved in these effects of prazosin are not known. Here, we present studies on the central mechanisms underlying the effects of prazosin on yohimbine-induced reinstatement of alcohol seeking. METHODS In experiment 1, we trained rats to self-administer alcohol (12 % w/v, 1 h/day), extinguished their responding, and tested the effects of prazosin, administered ICV (2 and 6 nmol) or systemically (1 mg/kg) on yohimbine (1.25 mg/kg)-induced reinstatement. In experiment 2, we determined potential central sites of action by analyzing effects of prazosin (1 mg/kg) on yohimbine (1.25 mg/kg)-induced Fos expression. In experiment 3, we determined the effects of doxazosin (1.25, 2.5, and 5 mg/kg), an alpha-1 antagonist with a longer half-life on yohimbine-induced reinstatement. RESULTS Yohimbine-induced reinstatement of alcohol seeking was reduced significantly by ICV and systemic prazosin (50 and 69 % decreases, respectively). Systemic prazosin reduced yohimbine-induced Fos expression in the prefrontal cortex, accumbens shell, ventral bed nucleus of the stria terminalis, and basolateral amygdala (46-67 % decreases). Doxazosin reduced yohimbine-induced reinstatement of alcohol seeking (78 % decrease). CONCLUSIONS Prazosin acts centrally to reduce yohimbine-induced alcohol seeking. The Fos mapping study suggests candidate sites where it may act. Doxazosin is also effective in reducing yohimbine-induced reinstatement. These data provide information on the mechanisms of alpha-1 antagonists on yohimbine-induced alcohol seeking and indicate their further investigation for the treatment of alcoholism.
Collapse
Affiliation(s)
- D Funk
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario, M5S 2S1, Canada.
| | - K Coen
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario, M5S 2S1, Canada
| | - S Tamadon
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario, M5S 2S1, Canada
| | - Z Li
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario, M5S 2S1, Canada
| | - A Loughlin
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario, M5S 2S1, Canada
| | - A D Lê
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario, M5S 2S1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
122
|
Matchynski-Franks JJ, Susick LL, Schneider BL, Perrine SA, Conti AC. Impaired Ethanol-Induced Sensitization and Decreased Cannabinoid Receptor-1 in a Model of Posttraumatic Stress Disorder. PLoS One 2016; 11:e0155759. [PMID: 27186643 PMCID: PMC4871361 DOI: 10.1371/journal.pone.0155759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 04/13/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND AND PURPOSE Impaired striatal neuroplasticity may underlie increased alcoholism documented in those with posttraumatic stress disorder (PTSD). Cannabinoid receptor-1 (CB1) is sensitive to the effects of ethanol (EtOH) and traumatic stress, and is a critical regulator of striatal plasticity. To investigate CB1 involvement in the PTSD-alcohol interaction, this study measured the effects of traumatic stress using a model of PTSD, mouse single-prolonged stress (mSPS), on EtOH-induced locomotor sensitization and striatal CB1 levels. METHODS Mice were exposed to mSPS, which includes: 2-h restraint, 10-min group forced swim, 15-min exposure to rat bedding odor, and diethyl ether exposure until unconsciousness or control conditions. Seven days following mSPS exposure, the locomotor sensitizing effects of EtOH were assessed. CB1, post-synaptic density-95 (PSD95), and dopamine-2 receptor (D2) protein levels were then quantified in the dorsal striatum using standard immunoblotting techniques. RESULTS Mice exposed to mSPS-EtOH demonstrated impaired EtOH-induced locomotor sensitization compared to Control-EtOH mice, which was accompanied by reduced striatal CB1 levels. EtOH increased striatal PSD95 in control and mSPS-exposed mice. Additionally, mSPS-Saline exposure increased striatal PSD95 and decreased D2 protein expression, with mSPS-EtOH exposure alleviating these changes. CONCLUSIONS These data indicate that the mSPS model of PTSD blunts the behavioral sensitizing effects of EtOH, a response that suggests impaired striatal neuroplasticity. Additionally, this study demonstrates that mice exposed to mSPS and repeated EtOH exposure decreases CB1 in the striatum, providing a mechanism of interest for understanding the effects of EtOH following severe, multimodal stress exposure.
Collapse
Affiliation(s)
- Jessica J. Matchynski-Franks
- Research Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Laura L. Susick
- Research Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Brandy L. Schneider
- Research Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Shane A. Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Alana C. Conti
- Research Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
123
|
Hu AM, Zhu T, Dong L, Luo NF, Du GZ. Ethanol alters the expression of ion channel genes in Daphnia pulex. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2016; 42:325-32. [PMID: 27158938 DOI: 10.3109/00952990.2016.1162168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Heavy drinking can increase heart rate and blood glucose, induce hypoxic tolerance, impair brain cognitive functions, and alter gene expressions. These phenomena may occur even in response to small dose of ethanol exposure or during its withdrawal. OBJECTIVES To evaluate whether persistent low concentrations of ethanol exposure affect organism function and the gene expressions of ion channels. METHODS Daphnids were randomized to receive placebo 300 min, 2 mM ethanol 300 min, or 2 mM ethanol 240 min and then placebo 60 min. Heart rate, glucose levels, phototactic behavior, and hypoxic tolerance were recorded during experiment. At the end of the study, changes in the mRNA levels of ion channel genes were assessed in response to exposure to ethanol using quantitative polymerase chain reaction (PCR) techniques. RESULTS Heart rate was reversibly increased by ethanol withdrawal and returned to basal levels upon re-exposure to ethanol. Fifteen of 120 ion channel transcripts were affected by persistent ethanol exposure. Neither ethanol withdrawal nor persistent exposures showed an effect on blood glucose, phototactic behavior, or hypoxic tolerance. CONCLUSIONS Small doses of ethanol can increase heart rate and alter gene expression of multiple ion channels in Daphnia pulex. Affected ion channel genes may assist in understanding the mechanism of ethanol adaptation and tolerance.
Collapse
Affiliation(s)
- An-Min Hu
- a Laboratory of Anesthesia and Critical Care Medicine , West China Hospital of Sichuan University , Chengdu , Sichuan , China
| | - Tao Zhu
- a Laboratory of Anesthesia and Critical Care Medicine , West China Hospital of Sichuan University , Chengdu , Sichuan , China
| | - Li Dong
- a Laboratory of Anesthesia and Critical Care Medicine , West China Hospital of Sichuan University , Chengdu , Sichuan , China.,b Department of Anesthesiology , the Affiliated Hospital of Guiyang Medical College , Guiyang , Guizhou , China
| | - Nan-Fu Luo
- a Laboratory of Anesthesia and Critical Care Medicine , West China Hospital of Sichuan University , Chengdu , Sichuan , China
| | - Gui-Zhi Du
- a Laboratory of Anesthesia and Critical Care Medicine , West China Hospital of Sichuan University , Chengdu , Sichuan , China
| |
Collapse
|
124
|
Breese GR, Knapp DJ. Persistent adaptation by chronic alcohol is facilitated by neuroimmune activation linked to stress and CRF. Alcohol 2016; 52:9-23. [PMID: 27139233 PMCID: PMC4855305 DOI: 10.1016/j.alcohol.2016.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/10/2015] [Accepted: 01/24/2016] [Indexed: 01/11/2023]
Abstract
This review updates the conceptual basis for the association of alcohol abuse with an insidious adaptation that facilitates negative affect during withdrawal from chronic intermittent alcohol (CIA) exposure - a change that later supports sensitization of stress-induced anxiety following alcohol abstinence. The finding that a CRF1-receptor antagonist (CRF1RA) minimized CIA withdrawal-induced negative affect supported an association of alcohol withdrawal with a stress mechanism. The finding that repeated stresses or multiple CRF injections into selected brain sites prior to a single 5-day chronic alcohol (CA) exposure induced anxiety during withdrawal provided critical support for a linkage of CIA withdrawal with stress. The determination that CRF1RA injection into positive CRF-sensitive brain sites prevented CIA withdrawal-induced anxiety provided support that neural path integration maintains the persistent CIA adaptation. Based upon reports that stress increases neuroimmune function, an effort was undertaken to test whether cytokines would support the adaptation induced by stress/CA exposure. Twenty-four hours after withdrawal from CIA, cytokine mRNAs were found to be increased in cortex as well as other sites in brain. Further, repeated cytokine injections into previously identified brain sites substituted for stress and CRF induction of anxiety during CA withdrawal. Discovery that a CRF1RA prevented the brain cytokine mRNA increase induced by CA withdrawal provided critical evidence for CRF involvement in this neuroimmune induction after CA withdrawal. However, the CRF1RA did not block the stress increase in cytokine mRNA increases in controls. The latter data supported the hypothesis that distinct mechanisms linked to stress and CA withdrawal can support common neuroimmune functions within a brain site. As evidence evolves concerning neural involvement in brain neuroimmune function, a better understanding of the progressive adaptation associated with CIA exposure will advance new knowledge that could possibly lead to strategies to combat alcohol abuse.
Collapse
Affiliation(s)
- George R Breese
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA; Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA; Curriculum in Neurobiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA; The UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA.
| | - Darin J Knapp
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA; Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA
| |
Collapse
|
125
|
O'May F, Whittaker A, Black H, Gill J. The families and friends of heavy drinkers: Caught in the cross-fire of policy change? Drug Alcohol Rev 2016; 36:192-199. [PMID: 27071503 DOI: 10.1111/dar.12403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/05/2016] [Indexed: 11/29/2022]
Abstract
INTRODUCTION AND AIMS Research highlights the need to better understand the impact of alcohol-related harm on families and communities. Scottish policy initiatives to reduce alcohol consumption and alcohol-related harm include the planned introduction of a minimum unit price for alcohol. We aimed to explore existing and proposed changes in alcohol policy, from the standpoint of heavy drinkers, through accounts of their involvement and repercussions for family and friends. DESIGN AND METHODS Interviews were conducted with 20 heavy drinkers, recruited from hospital alcohol treatment centres in Scotland's two largest cities. Participants were part of a larger longitudinal mixed methods study. Interviews explored experiences of alcohol-related harm and the impact, or potential impact, of alcohol policy changes on drinking patterns, risk-taking, consumption and wellbeing. Data coded for 'family and friends' were thematically analysed using a constant comparison method. RESULTS Family and friends were portrayed as important for aiding moderation and abstinence, but more often for sustaining continued heavy drinking. Heavy drinkers with complex needs and those living in deprived communities suggested that increased alcohol prices could exacerbate the detrimental effect on their health and social circumstances, and that of their family, should their consumption remain excessive. DISCUSSION AND CONCLUSIONS Population level policy initiatives to reduce alcohol consumption, such as minimum unit pricing, will impact on the families and social networks of heavy drinkers in addition to the drinker. The most vulnerable may be affected disproportionately. Alcohol policy changes and evaluations need to consider consequences for drinkers, families and communities. [O'May F, Whittaker A, Black H, Gill J. The families and friends of heavy drinkers: Caught in the cross-fire of policy change? Drug Alcohol Rev 2017;36:192-199].
Collapse
Affiliation(s)
- Fiona O'May
- School of Health Sciences, Queen Margaret University, Musselburgh, East Lothian, UK
| | - Anne Whittaker
- School of Nursing, Midwifery and Social Care, Edinburgh Napier University, Sighthill Campus, Edinburgh, UK
| | - Heather Black
- School of Nursing, Midwifery and Social Care, Edinburgh Napier University, Sighthill Campus, Edinburgh, UK
| | - Jan Gill
- School of Nursing, Midwifery and Social Care, Edinburgh Napier University, Sighthill Campus, Edinburgh, UK
| |
Collapse
|
126
|
A DNA element in the slo gene modulates ethanol tolerance. Alcohol 2016; 51:37-42. [PMID: 26992698 DOI: 10.1016/j.alcohol.2015.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 12/20/2022]
Abstract
In Drosophila, the slo gene encodes BK-type Ca(2+)-activated K(+) channels and is involved in producing rapid functional tolerance to sedation with ethanol. Drosophila are ideal for the study of functional ethanol tolerance because the adult does not acquire metabolic ethanol tolerance (Scholz, Ramond, Singh, & Heberlein, 2000). It has been shown that mutations in slo block the capacity to acquire tolerance, that sedation with ethanol vapor induces slo gene expression in the nervous system, and that transgenic induction of slo can phenocopy tolerance (Cowmeadow, Krishnan, & Atkinson, 2005; Cowmeadow et al., 2006). Here we use ethanol-induced histone acetylation to map a DNA regulatory element in the slo transcriptional control region and functionally test the element for a role in producing ethanol tolerance. Histone acetylation is commonly associated with activating transcription factors. We used the chromatin immunoprecipitation assay to map histone acetylation changes following ethanol sedation to identify an ethanol-responsive DNA element. Ethanol sedation induced an increase in histone acetylation over a 60 n DNA element called 6b, which is situated between the two ethanol-responsive neural promoters of the slo gene. Removal of the 6b element from the endogenous slo gene affected the production of functional ethanol tolerance as assayed in an ethanol-vapor recovery from sedation assay. Removal of element 6b extended the period of functional ethanol tolerance from ∼10 days to more than 21 days after a single ethanol-vapor sedation. This study demonstrates that mapping the position of ethanol-induced histone acetylation is an effective way to identify DNA regulatory elements that help to mediate the response of a gene to ethanol. Using this approach, we identified a DNA element, which is conserved among Drosophila species, and which is important for producing a behaviorally relevant ethanol response.
Collapse
|
127
|
Blaine SK, Milivojevic V, Fox H, Sinha R. Alcohol Effects on Stress Pathways: Impact on Craving and Relapse Risk. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2016; 61:145-53. [PMID: 27254089 PMCID: PMC4813419 DOI: 10.1177/0706743716632512] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A significant amount of neurobiological research regarding the development of alcohol use disorders (AUDs) has focused on alcohol-related activation and long-term alterations in the mesocortical dopaminergic reward pathways. However, alcohol does not only interact with brain reward systems. Many of its acute and chronic effects may be related to allostatic adaptations in hypothalamic and extrahypothalamic stress regulation pathways. For example, acute binge intoxication is associated with hypothalamically driven increases in blood cortisol, norepinephrine, and sex steroid metabolite levels. This may contribute to the development of mesocortical sensitization to alcohol. Furthermore, chronic alcohol exposure is associated with systemic dysregulation of the hypothalamic pituitary adrenal axis, sympathetic adrenal medullary system, and sex steroid systems. This dysregulation appears to manifest as neuroendocrine tolerance. In this review, we first summarize the literature suggesting that alcohol-induced alterations in these hypothalamic systems influence craving and contribute to the development of AUDs. We note that for women, the effects of alcohol on these neuroendocrine stress regulation systems may be influenced by the rhythmic variations of hormones and steroids across the menstrual cycle. Second, we discuss how changes in these systems may indicate progression of AUDs and increased risk of relapse in both sexes. Specifically, neuroendocrine tolerance may contribute to mesocortical sensitization, which in turn may lead to decreased prefrontal inhibitory control of the dopaminergic reward and hypothalamic stress systems. Thus, pharmacological strategies that counteract alcohol-associated changes in hypothalamic and extrahypothalamic stress regulation pathways may slow the development and progression of AUDs.
Collapse
Affiliation(s)
- Sara K Blaine
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Verica Milivojevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Helen Fox
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Rajita Sinha
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
128
|
Zhou Y, Leri F. Neuroscience of opiates for addiction medicine. PROGRESS IN BRAIN RESEARCH 2016; 223:237-51. [DOI: 10.1016/bs.pbr.2015.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
129
|
Mons N, Beracochea D. Behavioral Neuroadaptation to Alcohol: From Glucocorticoids to Histone Acetylation. Front Psychiatry 2016; 7:165. [PMID: 27766083 PMCID: PMC5052254 DOI: 10.3389/fpsyt.2016.00165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/21/2016] [Indexed: 01/21/2023] Open
Abstract
A prime mechanism that contributes to the development and maintenance of alcoholism is the dysregulation of the hypothalamic-pituitary-adrenal axis activity and the release of glucocorticoids (cortisol in humans and primates, corticosterone in rodents) from the adrenal glands. In the brain, sustained, local elevation of glucocorticoid concentration even long after cessation of chronic alcohol consumption compromises functional integrity of a circuit, including the prefrontal cortex (PFC), the hippocampus (HPC), and the amygdala (AMG). These structures are implicated in learning and memory processes as well as in orchestrating neuroadaptive responses to stress and anxiety responses. Thus, potentiation of anxiety-related neuroadaptation by alcohol is characterized by an abnormally AMG hyperactivity coupled with a hypofunction of the PFC and the HPC. This review describes research on molecular and epigenetic mechanisms by which alcohol causes distinct region-specific adaptive changes in gene expression patterns and ultimately leads to a variety of cognitive and behavioral impairments on prefrontal- and hippocampal-based tasks. Alcohol-induced neuroadaptations involve the dysregulation of numerous signaling cascades, leading to long-term changes in transcriptional profiles of genes, through the actions of transcription factors such as [cAMP response element-binding protein (CREB)] and chromatin remodeling due to posttranslational modifications of histone proteins. We describe the role of prefrontal-HPC-AMG circuit in mediating the effects of acute and chronic alcohol on learning and memory, and region-specific molecular and epigenetic mechanisms involved in this process. This review first discusses the importance of brain region-specific dysregulation of glucocorticoid concentration in the development of alcohol dependence and describes how persistently increased glucocorticoid levels in PFC may be involved in mediating working memory impairments and neuroadaptive changes during withdrawal from chronic alcohol intake. It then highlights the role of cAMP-PKA-CREB signaling cascade and histone acetylation within the PFC and limbic structures in alcohol-induced anxiety and behavioral impairments, and how an understanding of functional alterations of these pathways might lead to better treatments for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Nicole Mons
- CNRS UMR 5287, Institut des Neurosciences cognitives et intégratives d'Aquitaine, Nouvelle Université de Bordeaux , Pessac , France
| | - Daniel Beracochea
- CNRS UMR 5287, Institut des Neurosciences cognitives et intégratives d'Aquitaine, Nouvelle Université de Bordeaux , Pessac , France
| |
Collapse
|
130
|
Hefner KR, Starr MJ, Curtin JJ. Altered subjective reward valuation among drug-deprived heavy marijuana users: Aversion to uncertainty. JOURNAL OF ABNORMAL PSYCHOLOGY 2016; 125:138-150. [PMID: 26595464 PMCID: PMC4701603 DOI: 10.1037/abn0000106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Marijuana is the most commonly used illicit drug in the United States and its use is rising. Nonetheless, scientific efforts to clarify the risk for addiction and other harm associated with marijuana use have been lacking. Maladaptive decision-making is a cardinal feature of addiction that is likely to emerge in heavy users. In particular, distorted subjective reward valuation related to homeostatic or allostatic processes has been implicated for many drugs of abuse. Selective changes in responses to uncertainty have been observed in response to intoxication and deprivation from various drugs of abuse. To assess for these potential neuroadaptive changes in reward valuation associated with marijuana deprivation, we examined the subjective value of uncertain and certain rewards among deprived and nondeprived heavy marijuana users in a behavioral economics decision-making task. Deprived users displayed reduced valuation of uncertain rewards, particularly when these rewards were more objectively valuable. This uncertainty aversion increased with increasing quantity of marijuana use. These results suggest comparable decision-making vulnerability from marijuana use as other drugs of abuse, and highlights targets for intervention.
Collapse
Affiliation(s)
- Kathryn R. Hefner
- Mental Illness Research, Education & Clinical Centers (MIRECC), VA Connecticut Healthcare System, West Haven, CT, United States; Yale University, School of Medicine, Department of Psychiatry, 950 Campbell Avenue, West Haven, CT 06516, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Mark. J. Starr
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - John. J. Curtin
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
131
|
Watson TD, Newton-Mora M, Pirkle J. Event-related potential correlates of processing alcohol-related pictures in young adult binge drinkers. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2015; 42:77-87. [DOI: 10.3109/00952990.2015.1099660] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
132
|
Skelly MJ, Chappell AE, Carter E, Weiner JL. Adolescent social isolation increases anxiety-like behavior and ethanol intake and impairs fear extinction in adulthood: Possible role of disrupted noradrenergic signaling. Neuropharmacology 2015; 97:149-59. [PMID: 26044636 PMCID: PMC4537360 DOI: 10.1016/j.neuropharm.2015.05.025] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/16/2015] [Accepted: 05/14/2015] [Indexed: 11/21/2022]
Abstract
Alcohol use disorder, anxiety disorders, and post-traumatic stress disorder (PTSD) are highly comorbid, and exposure to chronic stress during adolescence may increase the incidence of these conditions in adulthood. Efforts to identify the common stress-related mechanisms driving these disorders have been hampered, in part, by a lack of reliable preclinical models that replicate their comorbid symptomatology. Prior work by us, and others, has shown that adolescent social isolation increases anxiety-like behaviors and voluntary ethanol consumption in adult male Long-Evans rats. Here we examined whether social isolation also produces deficiencies in extinction of conditioned fear, a hallmark symptom of PTSD. Additionally, as disrupted noradrenergic signaling may contribute to alcoholism, we examined the effect of anxiolytic medications that target noradrenergic signaling on ethanol intake following adolescent social isolation. Our results confirm and extend previous findings that adolescent social isolation increases anxiety-like behavior and enhances ethanol intake and preference in adulthood. Additionally, social isolation is associated with a significant deficit in the extinction of conditioned fear and a marked increase in the ability of noradrenergic therapeutics to decrease ethanol intake. These results suggest that adolescent social isolation not only leads to persistent increases in anxiety-like behaviors and ethanol consumption, but also disrupts fear extinction, and as such may be a useful preclinical model of stress-related psychopathology. Our data also suggest that disrupted noradrenergic signaling may contribute to escalated ethanol drinking following social isolation, thus further highlighting the potential utility of noradrenergic therapeutics in treating the deleterious behavioral sequelae associated with early life stress.
Collapse
Affiliation(s)
- M J Skelly
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - A E Chappell
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - E Carter
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - J L Weiner
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
133
|
Back SE, Gros DF, Price M, LaRowe S, Flanagan J, Brady KT, Davis C, Jaconis M, McCauley JL. Laboratory-induced stress and craving among individuals with prescription opioid dependence. Drug Alcohol Depend 2015; 155:60-7. [PMID: 26342626 PMCID: PMC4582004 DOI: 10.1016/j.drugalcdep.2015.08.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/10/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Stress and conditioned drug cues have been implicated in the initiation, maintenance and relapse to substances of abuse. Although stress and drug cues are often encountered together, little research exists on whether stress potentiates the response to drug cues. METHOD Participants (N=75) were 39 community recruited individuals with current prescription opioid (PO) dependence and 36 healthy controls. Participants stayed overnight in the hospital for one night and then completed laboratory testing the following morning. During laboratory testing, participants were randomly assigned to a stress task (Trier Social Stress Task; TSST) or a no-stress condition. Following the stress manipulation, all participants completed a PO cue paradigm. Immediately before and after the stress and cue tasks, the following were assessed: subjective (stress, craving, anger, sadness, happiness), physiological (heart rate, blood pressure, galvanic skin response), and neuroendocrine responses (cortisol and dehydroepiandrosterone). RESULTS Internal validity of the stress task was demonstrated, as evidenced by significantly higher subjective stress, as well as cortisol, heart rate and blood pressure in the TSST compared to the no-stress group. Individuals with PO dependence evidenced significantly greater reactivity to the stress task than controls. Craving increased significantly in response to the drug cue task among PO participants. No stress×cue interaction was observed. CONCLUSIONS In this study, heightened stress reactivity was observed among individuals with PO dependence. Exposure to acute stress, however, did not potentiate craving in response to conditioned drug cues.
Collapse
Affiliation(s)
- Sudie E. Back
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC,Corresponding Author: Sudie E. Back Ph.D., Department of Psychiatry and Behavioral Sciences, Clinical Neuroscience Division, Medical University of South Carolina, 67 President St., P.O. Box 250861, Charleston, SC 29425. Telephone (843) 792-9383, Fax (843) 792-3514.
| | - Daniel F. Gros
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | - Matthew Price
- Department of Psychology, University of Vermont, Burlington, VT
| | - Steve LaRowe
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | - Julianne Flanagan
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC
| | - Kathleen T. Brady
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | - Charles Davis
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC
| | - Maryanne Jaconis
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC
| | - Jenna L. McCauley
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
134
|
Marcinkiewcz CA. Serotonergic Systems in the Pathophysiology of Ethanol Dependence: Relevance to Clinical Alcoholism. ACS Chem Neurosci 2015; 6:1026-39. [PMID: 25654315 DOI: 10.1021/cn5003573] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alcoholism is a progressive brain disorder that is marked by increased sensitivity to the positive and negative reinforcing properties of ethanol, compulsive and habitual use despite negative consequences, and chronic relapse to alcohol drinking despite repeated attempts to reduce intake or abstain from alcohol. Emerging evidence from preclinical and clinical studies implicates serotonin (5-hydroxytryptamine; 5-HT) systems in the pathophysiology of alcohol dependence, suggesting that drugs targeting 5-HT systems may have utility in the treatment of alcohol use disorders. In this Review, we discuss the role of 5-HT systems in alcohol dependence with a focus on 5-HT interactions with neural circuits that govern all three stages of the addiction cycle. We attempt to clarify how 5-HT influences circuit function at these different stages with the goal of identifying neural targets for pharmacological treatment of this debilitating disorder.
Collapse
Affiliation(s)
- Catherine A. Marcinkiewcz
- Bowles Center for
Alcohol
Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
135
|
Early Life Stress, Nicotinic Acetylcholine Receptors and Alcohol Use Disorders. Brain Sci 2015; 5:258-74. [PMID: 26136145 PMCID: PMC4588139 DOI: 10.3390/brainsci5030258] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 01/01/2023] Open
Abstract
Stress is a major driving force in alcohol use disorders (AUDs). It influences how much one consumes, craving intensity and whether an abstinent individual will return to harmful alcohol consumption. We are most vulnerable to the effects of stress during early development, and exposure to multiple traumatic early life events dramatically increases the risk for AUDs. However, not everyone exposed to early life stress will develop an AUD. The mechanisms determining whether an individual’s brain adapts and becomes resilient to the effects of stress or succumbs and is unable to cope with stress remain elusive. Emerging evidence suggests that neuroplastic changes in the nucleus accumbens (NAc) following early life stress underlie the development of AUDs. This review discusses the impact of early life stress on NAc structure and function, how these changes affect cholinergic signaling within the mesolimbic reward pathway and the role nicotinic acetylcholine receptors (nAChRs) play in this process. Understanding the neural pathways and mechanism determining stress resilience or susceptibility will improve our ability to identify individuals susceptible to developing AUDs, formulate cognitive interventions to prevent AUDs in susceptible individuals and to elucidate and enhance potential therapeutic targets, such as the nAChRs, for those struggling to overcome an AUD.
Collapse
|
136
|
van Zyl P, Joubert G. Acetaldehyde production capacity of salivary microflora in alcoholics during early recovery. Alcohol 2015; 49:283-90. [PMID: 25819530 DOI: 10.1016/j.alcohol.2015.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 12/30/2014] [Accepted: 01/23/2015] [Indexed: 11/27/2022]
Abstract
This study investigated whether a relationship exists between the acetaldehyde production capacity of salivary microflora (sAPC) in recovering alcoholics, and craving, and/or resumption of drinking within 12 weeks after embarking on an abstinence-based treatment program. Serial sAPC measurements were determined by gas chromatography on spontaneous saliva samples of 30 male alcoholics on days 2, 4, 11, and 18 during a 21-day in-patient treatment program. Craving was measured simultaneously with the Penn Alcohol Craving Scale. Outcome over 12 weeks was assessed by telephone interviews. There was no significant change in sAPC values from day 2 to day 18, while craving scores decreased markedly between day 2 to day 4. Sixteen participants remained abstinent for the full 12 weeks. Statistically significant differences were found between the sAPC values of the group that remained abstinent and the group that resumed drinking within 12 weeks. The highest sAPC value measured on day 2 had a strong predictive value for maintained abstinence at 12 weeks for beer-only drinkers or drinkers consuming less than 320 g of alcohol per week. The study is the first investigation into a potential relationship between the acetaldehyde production capacity of salivary microflora and early resumption of drinking in recovering alcoholics. The findings suggest that such a relationship indeed exists for beer-only drinkers, possibly linked to lower alcohol intake, and that it is unrelated to withdrawal craving. sAPC is proposed as a candidate biomarker with diagnostic and/or prognostic potential.
Collapse
|
137
|
Telesford QK, Laurienti PJ, Davenport AT, Friedman DP, Kraft RA, Daunais JB. The effects of chronic alcohol self-administration in nonhuman primate brain networks. Alcohol Clin Exp Res 2015; 39:659-71. [PMID: 25833027 PMCID: PMC6724209 DOI: 10.1111/acer.12688] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/21/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Long-term alcohol abuse is associated with change in behavior, brain structure, and brain function. However, the nature of these changes is not well understood. In this study, we used network science to analyze a nonhuman primate model of ethanol self-administration to evaluate functional differences between animals with chronic alcohol use and animals with no exposure to alcohol. Of particular interest was how chronic alcohol exposure may affect the resting state network. METHODS Baseline resting state functional magnetic resonance imaging was acquired in a cohort of vervet monkeys. Animals underwent an induction period where they were exposed to an isocaloric maltose dextrin solution (control) or ethanol in escalating doses over three 30-day epochs. Following induction, animals were given ad libitum access to water and a maltose dextrin solution (control) or water and ethanol for 22 h/d over 12 months. Cross-sectional analyses examined region of interests in hubs and community structure across animals to determine differences between drinking and nondrinking animals after the 12-month free access period. RESULTS Animals were classified as lighter (<2.0 g/kg/d) or heavier drinkers (≥2.0 g/kg/d) based on a median split of their intake pattern during the 12-month ethanol free access period. Statistical analysis of hub connectivity showed significant differences in heavier drinkers for hubs in the precuneus, posterior parietal cortices, superior temporal gyrus, subgenual cingulate, and sensorimotor cortex. Heavier drinkers were also shown to have less consistent communities across the brain compared to lighter drinkers. The different level of consumption between the lighter and heavier drinking monkeys suggests that differences in connectivity may be intake dependent. CONCLUSIONS Animals that consume alcohol show topological differences in brain network organization, particularly in animals that drink heavily. Differences in the resting state network were linked to areas that are associated with spatial association, working memory, and visuomotor processing.
Collapse
Affiliation(s)
- Qawi K Telesford
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Winston-Salem, North Carolina
| | | | | | | | | | | |
Collapse
|
138
|
Irimia C, Wiskerke J, Natividad LA, Polis IY, de Vries TJ, Pattij T, Parsons LH. Increased impulsivity in rats as a result of repeated cycles of alcohol intoxication and abstinence. Addict Biol 2015; 20:263-74. [PMID: 24341858 DOI: 10.1111/adb.12119] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Impulsivity is a risk factor for alcoholism, and long-term alcohol exposure may further impair impulse control in a manner that propels problematic alcohol use. The present study employed the rat 5-choice serial reaction time task (5-CSRTT) to measure behavioral inhibition and attentional capacity during abstinence from repeated 5-day cycles of alcohol liquid diet consumption. Task performance was not disrupted following the first cycle of alcohol exposure; however, evidence of impaired behavioral inhibition emerged following the third cycle of alcohol exposure. In comparison with controls, alcoholic rats exhibited deficits in inhibitory control during cognitively challenging 5-CSRTT tests employing variable intertrial interval (varITI). This behavioral disruption was not present during early abstinence (3 days) but was evident by 7 days of abstinence and persisted for at least 34 days. Interestingly, renewed alcohol consumption ameliorated these disruptions in impulse control, although deficient behavioral inhibition re-emerged during subsequent abstinence. Indices of increased impulsivity were no longer present in tests conducted after 49 days of abstinence. Alcohol-related impairments in impulse control were not evident in sessions employing highly familiar task parameters regardless of the abstinence period, and control experiments confirmed that performance deficits during the challenge sessions were unlikely to result from alcohol-related disruption in the adaptation to repeated varITI testing. Together, the current findings demonstrate that chronic intermittent alcohol consumption results in decreased behavioral inhibition in rats that is temporally similar to clinical observations of disrupted impulsive control in abstinent alcoholics performing tasks of behavioral inhibition.
Collapse
Affiliation(s)
- Cristina Irimia
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute; La Jolla CA USA
| | - Joost Wiskerke
- Department of Anatomy and Neurosciences; Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam The Netherlands
| | - Luis A. Natividad
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute; La Jolla CA USA
| | - Ilham Y. Polis
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute; La Jolla CA USA
| | - Taco J. de Vries
- Department of Anatomy and Neurosciences; Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam The Netherlands
| | - Tommy Pattij
- Department of Anatomy and Neurosciences; Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam The Netherlands
| | - Loren H. Parsons
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute; La Jolla CA USA
| |
Collapse
|
139
|
Polymorphism in the corticotropin-releasing factor receptor 1 (CRF1-R) gene plays a role in shaping the high anxious phenotype of Marchigian Sardinian alcohol-preferring (msP) rats. Psychopharmacology (Berl) 2015; 232:1083-93. [PMID: 25260340 PMCID: PMC4339612 DOI: 10.1007/s00213-014-3743-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Marchigian Sardinian alcohol-preferring (msP) rats exhibit innate preference for alcohol along with anxious phenotype. In these animals, two single-nucleotide polymorphisms in position -1,836 and -2,097 from the first start codon of the CRF1-R transcript have been found. MATERIALS AND METHODS Here, we examined whether these point mutations account for the heightened anxiety-like behavior and stress responsiveness of msP rats. We rederived the msP rats to obtain two distinct lines carrying the wild-type (GG) and point mutations (AA), respectively. RESULTS CRF1-R gene expression analysis revealed significant dysregulation of the system in the extended amygdala of AA rats. At the behavioral level, using the elevated plus maze, we found that both AA and GG lines had higher basal anxiety compared to Wistar rats. In the defensive burying test, AA rats showed decreased burying behavior compared to the GG and the unselected Wistar lines. Freezing/immobility did not differ among AA and GG but was higher than that of Wistars. The selective CRF1-R antagonist antalarmin (0, 10, and 20 mg/kg) reduced burying behavior in Wistar animals. However, antalarmin (10 mg/kg) tended to increase rather than reducing this behavior when tested in the msP lines, an effect that appeared more marked in the GG as compared to the AA line. CONCLUSION The present data suggest that rats with msP genetic background are more anxious and show different sensitivity to stress and CRF1-R blockade than Wistars. The point mutations occurring in the CRF1-R gene do not seem to influence basal anxiety while they appear to affect active responses to stress.
Collapse
|
140
|
Retson TA, Reyes B, Van Bockstaele EJ. Chronic alcohol exposure differentially affects activation of female locus coeruleus neurons and the subcellular distribution of corticotropin releasing factor receptors. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:66-74. [PMID: 25149913 PMCID: PMC4258542 DOI: 10.1016/j.pnpbp.2014.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/09/2014] [Accepted: 08/13/2014] [Indexed: 11/16/2022]
Abstract
Understanding the neurobiological bases for sex differences in alcohol dependence is needed to help guide the development of individualized therapies for alcohol abuse disorders. In the present study, alcohol-induced adaptations in (1) anxiety-like behavior, (2) patterns of c-Fos activation and (3) subcellular distribution of corticotropin releasing factor receptor in locus coeruleus (LC) neurons was investigated in male and female Sprague-Dawley rats that were chronically exposed to ethanol using a liquid diet. Results confirm and extend reports by others showing that chronic ethanol exposure produces an anxiogenic-like response in both male and female subjects. Ethanol-induced sex differences were observed with increased c-Fos expression in LC neurons of female ethanol-treated subjects compared to controls or male subjects. Results also reveal sex differences in the subcellular distribution of the CRFr in LC-noradrenergic neurons with female subjects exposed to ethanol exhibiting a higher frequency of plasmalemmal CRFrs. These adaptations have implications for LC neuronal activity and its neural targets across the sexes. Considering the important role of the LC in ethanol-induced activation of the hypothalamo-pituitary-adrenal (HPA) axis, the present results indicate important sex differences in feed-forward regulation of the HPA axis that may render alcohol dependent females more vulnerable to subsequent stress exposure.
Collapse
Affiliation(s)
- T. A. Retson
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - B.A. Reyes
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA 19102
| | - E. J. Van Bockstaele
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA 19102
| |
Collapse
|
141
|
Seo D. Neuroplasticity and Predictors of Alcohol Recovery. Alcohol Res 2015; 37:143-52. [PMID: 26259094 PMCID: PMC4476600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Chronic alcohol-related neuroadaptations in key neural circuits of emotional and cognitive control play a critical role in the development of, and recovery from, alcoholism. Converging evidence in the neurobiological literature indicates that neuroplastic changes in the prefrontal-striatal-limbic circuit, which governs emotion regulation and decisionmaking and controls physiological responses in the autonomic nervous system and hypothalamic-pituitary-adrenal axis system, contribute to chronic alcoholism and also are significant predictors of relapse and recovery. This paper reviews recent evidence on the neuroplasticity associated with alcoholism in humans, including acute and chronic effects, and how these neurobiological adaptations contribute to alcohol recovery, along with the discussion of relevant clinical implications and future research directions.
Collapse
|
142
|
Tran S, Gerlai R. Recent advances with a novel model organism: alcohol tolerance and sensitization in zebrafish (Danio rerio). Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:87-93. [PMID: 24593943 PMCID: PMC4225077 DOI: 10.1016/j.pnpbp.2014.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/06/2014] [Accepted: 02/06/2014] [Indexed: 11/18/2022]
Abstract
Alcohol abuse and dependence are a rapidly growing problem with few treatment options available. The zebrafish has become a popular animal model for behavioral neuroscience. This species may be appropriate for investigating the effects of alcohol on the vertebrate brain. In the current review, we examine the literature by discussing how alcohol alters behavior in zebrafish and how it may affect biological correlates. We focus on two phenomena that are often examined in the context of alcohol-induced neuroplasticity. Alcohol tolerance (a progressive decrease in the effect of alcohol over time) is often observed following continuous (chronic) exposure to low concentrations of alcohol. Alcohol sensitization also called reverse tolerance (a progressive increase in the effect of alcohol over time) is often observed following repeated discrete exposures to higher concentrations of alcohol. These two phenomena may underlie the development and maintenance of alcohol addiction. The phenotypical characterization of these responses in zebrafish may be the first important steps in establishing this species as a tool for the analysis of the molecular and neurobiological mechanisms underlying human alcohol addiction.
Collapse
Affiliation(s)
- Steven Tran
- University of Toronto, Department of Cell and Systems Biology, Canada
| | - Robert Gerlai
- University of Toronto, Department of Cell and Systems Biology, Canada; University of Toronto at Mississauga, Department of Psychology, Canada.
| |
Collapse
|
143
|
Smith ML, Li J, Ryabinin AE. Increased alcohol consumption in urocortin 3 knockout mice is unaffected by chronic inflammatory pain. Alcohol Alcohol 2014; 50:132-9. [PMID: 25451237 DOI: 10.1093/alcalc/agu084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AIMS Stress neurocircuitry may modulate the relationship between alcohol drinking and chronic pain. The corticotropin-releasing factor (CRF) system is crucial for regulation of stress responses. The current study aimed to elucidate the role of the endogenous CRF ligand Urocortin 3 (Ucn3) in the relationship between alcohol drinking behavior and chronic pain using a genetic approach. METHODS Ucn3 (KO) and wildtype (WT) littermates were subjected to a 24-h access drinking procedure prior to and following induction of chronic inflammatory pain. RESULTS Ucn3 KO mice displayed significantly increased ethanol intake and preference compared with WT across the time course. There were no long-term effects of chronic pain on alcohol drinking behavior, regardless of genotype, nor any evidence for alcohol-induced analgesia. CONCLUSION The increased drinking in Ucn3 KO supports a role for this peptide in alcohol-related behavior. These data suggest the necessity for more research exploring the relationship between alcohol drinking, chronic pain and the CRF system in rodent models.
Collapse
Affiliation(s)
- Monique L Smith
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239-3098, USA
| | - Ju Li
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239-3098, USA
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239-3098, USA
| |
Collapse
|
144
|
Abstract
Military service differs from civilian jobs in the stressors that service members experience, including frequent deployments (eg, to an area of combat operations), obedience, regimentation, subordination of self to the group, integrity, and flexibility. The military culture emphasizes teamwork and peer support. In some cases, service members cannot adapt to military life, become overwhelmed by stress, or cannot overcome a traumatic experience. Clinicians should conduct a thorough evaluation guided by an understanding of the military culture. Every effort should be made to identify the stress and the maladaptive response and provide early clinical interventions to prevent progression.
Collapse
Affiliation(s)
- R Gregory Lande
- Medical Corps (RET), US Army, USA; Psychiatry Continuity Service, Department of Psychiatry, Walter Reed National Military Medical Center, Building 8, 4th Floor, 8901 Wisconsin Avenue, Bethesda, MD 20889-5600, USA.
| |
Collapse
|
145
|
Motaghinejad M, Ghaleni MA, Motaghinejad O. Preventive Effects of Forced Exercise against Alcohol-induced Physical Dependency and Reduction of Pain Perception Threshold. Int J Prev Med 2014; 5:1299-307. [PMID: 25400889 PMCID: PMC4223950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 08/21/2014] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Treatment of postabstinence syndrome of alcohol is one of the major strategies of alcoholism treatment. Exercise can be modulated major brain pathways such as a reward system and pain perception centers. The aim of this study was to evaluation the effects of forced exercise in the management of alcohol dependence and pain perception alteration which induced by alcoholism. METHODS 72 adult male rats were divided into 2 major groups: (1) 40 of them was divided into groups of positive control (alcohol dependent) negative control and alcohol dependent groups under treatment by forced exercise, diazepam (0.4 mg/kg) and forced exercise in combination with diazepam and alcohol withdrawal signs, and blood cortisols, were measured in this groups. (2) 32 rats were divided into control, alcohol dependent (without treatment), and alcohol-dependent groups under treatment by forced exercise or indometacin (5 mg/kg) and then pain perception was assessed by using writhing test, tail-flick and hot plate test. RESULTS Forced exercise, diazepam, and their combinations significantly attenuates withdrawal syndrome to 20 ± 2, 22 ± 1.3 and 16 ± 2 and blood cortisol level to 6.8 ± 1.3,7.9 ± 1.2 and 5.8 ± 1.1, respectively, in comparison with the positive control group (P < 0.05 and P < 0.001). In alcohol dependent animal under treatment by forced exercise, pain response significantly inhibited with 37%, 57% and 38% decreases in writhing test, hot plate, and tail-flick test, respectively, in comparison with alcohol dependent (without treatment) group (P < 0.05). CONCLUSIONS This study suggested that forced exercise can be useful as adjunct therapy in alcoholism patient and also can be effective in modulation of pain threshold reduction that was induced by alcohol dependency.
Collapse
Affiliation(s)
- Majid Motaghinejad
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran,Correspondence to: Dr. Majid Motaghinejad, Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, P.O. Box 14496-14525, Tehran, Iran. E-mail:
| | - Majid Asadi Ghaleni
- Department of Medical Biotechnology, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Ozra Motaghinejad
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
146
|
Impaired flexibility in decision making in rats after administration of the pharmacological stressor yohimbine. Psychopharmacology (Berl) 2014; 231:3941-52. [PMID: 24647923 PMCID: PMC4345043 DOI: 10.1007/s00213-014-3529-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 03/02/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE Stress-induced disruption of decision making has been hypothesized to contribute to drug-seeking behaviors and addiction. Noradrenergic signaling plays a central role in mediating stress responses. However, the effects of acute stress on decision making, and the role of noradrenergic signaling in regulating these effects, have not been well characterized. OBJECTIVE To characterize changes in decision making caused by acute pharmacological stress, the effects of yohimbine (an α2-adrenergic antagonist) were examined in a delay discounting task. Noradrenergic contributions to decision making were further characterized by examining the effects of propranolol (a β antagonist), prazosin (an α1 antagonist), and guanfacine (an α2 agonist). METHODS Sprague-Dawley rats were administered drugs prior to performance on a delay discounting task, in which the delay preceding the large reward increased within each session (ascending delays). To dissociate drug-induced changes in delay sensitivity from behavioral inflexibility, drug effects were subsequently tested in a modified version of the discounting task, in which the delay preceding the large reward decreased within each session (descending delays). RESULTS Yohimbine increased choice of the large reward when tested with ascending delays but decreased choice of the same large reward when tested with descending delays, suggesting that drug effects could be attributed to perseverative choice of the lever preferred at the beginning of the session. Propranolol increased choice of the large reward when tested with ascending delays. Prazosin and guanfacine had no effect on reward choice. CONCLUSIONS The stress-like effects of yohimbine administration may impair decision making by causing inflexible, perseverative behavior.
Collapse
|
147
|
Levetiracetam results in increased and decreased alcohol drinking with different access procedures in C57BL/6J mice. Behav Pharmacol 2014; 25:61-70. [PMID: 24322822 DOI: 10.1097/fbp.0000000000000019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The antiepileptic levetiracetam (LEV) has been investigated for the treatment of alcohol abuse. However, little is known about how LEV alters the behavioral effects of alcohol in laboratory animals. The acute effects of LEV on alcohol drinking by male C57BL/6J mice were investigated using two different drinking procedures, limited access [drinking-in-the-dark (DID)] and intermittent access (IA) drinking. In the first experiment (DID), mice had access to a single bottle containing alcohol or sucrose for 4 h every other day. In the second experiment (IA), mice had IA to two bottles, one containing alcohol or sucrose and one containing water, for 24 h on Monday, Wednesday, and Friday. In both experiments, mice were administered LEV (0.3-100 mg/kg intraperitoneally) or vehicle 30 min before access to the drinking solutions. In the DID mice, LEV increased alcohol intake from 4.3 to 5.4 g/kg, whereas in the IA mice LEV decreased alcohol intake from 4.8 to 3.0 g/kg in the first 4 h of access and decreased 24 h alcohol intake from 20 to ∼15 g/kg. These effects appear specific to alcohol, as LEV did not affect sucrose intake in either experiment. LEV appears to differentially affect drinking in animal models of moderate and heavier alcohol consumption.
Collapse
|
148
|
Lu YL, Richardson HN. Alcohol, stress hormones, and the prefrontal cortex: a proposed pathway to the dark side of addiction. Neuroscience 2014; 277:139-51. [PMID: 24998895 DOI: 10.1016/j.neuroscience.2014.06.053] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 11/17/2022]
Abstract
Chronic exposure to alcohol produces changes in the prefrontal cortex that are thought to contribute to the development and maintenance of alcoholism. A large body of literature suggests that stress hormones play a critical role in this process. Here we review the bi-directional relationship between alcohol and stress hormones, and discuss how alcohol acutely stimulates the release of glucocorticoids and induces enduring modifications to neuroendocrine stress circuits during the transition from non-dependent drinking to alcohol dependence. We propose a pathway by which alcohol and stress hormones elicit neuroadaptive changes in prefrontal circuitry that could contribute functionally to a dampened neuroendocrine state and the increased propensity to relapse-a spiraling trajectory that could eventually lead to dependence.
Collapse
Affiliation(s)
- Y-L Lu
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, United States
| | - H N Richardson
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
149
|
Vanderlinden LA, Saba LM, Printz MP, Flodman P, Koob G, Richardson HN, Hoffman PL, Tabakoff B. Is the alcohol deprivation effect genetically mediated? Studies with HXB/BXH recombinant inbred rat strains. Alcohol Clin Exp Res 2014; 38:2148-57. [PMID: 24961585 DOI: 10.1111/acer.12471] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/16/2014] [Indexed: 01/23/2023]
Abstract
BACKGROUND Two features of alcohol addiction that have been widely studied in animal models are relapse drinking following periods of alcohol abstinence and the escalation of alcohol consumption after chronic continuous or intermittent alcohol exposure. The genetic contribution to these phenotypes has not been systematically investigated. METHODS HXB/BXH recombinant inbred (RI) rat strains were given access to alcohol sequentially as follows: alcohol (10%) as the only fluid for 1 week; alcohol (10%) and water in a 2-bottle choice paradigm for 7 weeks ("pre-alcohol deprivation effect [ADE] alcohol consumption"); 2 weeks of access to water only (alcohol deprivation); and 2 weeks of reaccess to 10% alcohol and water ("post-ADE alcohol consumption"). The periods of deprivation and reaccess to alcohol were repeated 3 times. The ADE was defined as the amount of alcohol consumed in the first 24 hours after deprivation minus the average daily amount of alcohol consumed in the week prior to deprivation. Heritability of the phenotypes was determined by analysis of variance, and quantitative trait loci (QTLs) were identified. RESULTS All strains showed increased alcohol consumption, compared to the predeprivation period, in the first 24 hours after each deprivation (ADE). Broad-sense heritability of the ADEs was low (ADE1, 9.1%; ADE2, 26.2%; ADE3, 16.3%). Alcohol consumption levels were relatively stable over weeks 2 to 7. Post-ADE alcohol consumption levels consistently increased in some strains and were decreased or unchanged in others. Heritability of pre- and post-ADE alcohol consumption was high and increased over time (week 2, 38.5%; week 7, 51.1%; week 11, 56.8%; week 15, 63.3%). QTLs for pre- and post-ADE alcohol consumption were similar, but the strength of the QTL association with the phenotype decreased over time. CONCLUSIONS In the HXB/BXH RI rat strains, genotypic variance does not account for a large proportion of phenotypic variance in the ADE phenotype (low heritability), suggesting a role of environmental factors. In contrast, a large proportion of the variance across the RI strains in pre- and post-ADE alcohol consumption is due to genetically determined variance (high heritability).
Collapse
Affiliation(s)
- Lauren A Vanderlinden
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Oswald LM, Wand GS, Kuwabara H, Wong DF, Zhu S, Brasic JR. History of childhood adversity is positively associated with ventral striatal dopamine responses to amphetamine. Psychopharmacology (Berl) 2014; 231:2417-33. [PMID: 24448898 PMCID: PMC4040334 DOI: 10.1007/s00213-013-3407-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 12/11/2013] [Indexed: 12/17/2022]
Abstract
RATIONALE Childhood exposure to severe or chronic trauma is an important risk factor for the later development of adult mental health problems, such as substance abuse. Even in nonclinical samples of healthy adults, persons with a history of significant childhood adversity seem to experience greater psychological distress than those without this history. Evidence from rodent studies suggests that early life stress may impair dopamine function in ways that increase risks for drug abuse. However, the degree to which these findings translate to other species remains unclear. OBJECTIVES This study was conducted to examine associations between childhood adversity and dopamine and subjective responses to amphetamine in humans. METHODS Following intake assessment, 28 healthy male and female adults, aged 18-29 years, underwent two consecutive 90-min positron emission tomography studies with high specific activity [(11)C]raclopride. The first scan was preceded by intravenous saline; the second by amphetamine (AMPH 0.3 mg/kg). RESULTS Consistent with prior literature, findings showed positive associations between childhood trauma and current levels of perceived stress. Moreover, greater number of traumatic events and higher levels of perceived stress were each associated with higher ventral striatal dopamine responses to AMPH. Findings of mediation analyses further showed that a portion of the relationship between childhood trauma and dopamine release may be mediated by perceived stress. CONCLUSIONS Overall, results are consistent with preclinical findings suggesting that early trauma may lead to enhanced sensitivity to psychostimulants and that this mechanism may underlie increased vulnerability for drug abuse.
Collapse
Affiliation(s)
- Lynn M. Oswald
- Department of Family and Community Health, University of Maryland School of Nursing, Baltimore, MD 21201, USA,Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gary S. Wand
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA,Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hiroto Kuwabara
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dean F. Wong
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA,Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA,Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA,Department of Environmental Health Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shijun Zhu
- Department of Family and Community Health, University of Maryland School of Nursing, Baltimore, MD 21201, USA
| | - James R. Brasic
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|