101
|
Zhai X, Qiao X, Zhang L, Wang D, Zhang L, Feng Q, Wu B, Cao J, Liu Q. I K1 channel agonist zacopride suppresses ventricular arrhythmias in conscious rats with healing myocardial infarction. Life Sci 2019; 239:117075. [PMID: 31751587 DOI: 10.1016/j.lfs.2019.117075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 01/28/2023]
Abstract
AIMS Arrhythmogenesis of chronic myocardial infarction (MI) is associated with the prolongation of action potential, reduction of inward rectifier potassium (IK1, Kir) channels and hyper-activity of Calcium/calmodulin-dependent kinase II (CaMKII) in cardiomyocytes. Zacopride, a selective IK1 agonist, was applied to clarify the cardioprotection of IK1 agonism via a CaMKII signaling on arrhythmias post-MI. METHODS Male SD rats were implanted wireless transmitter in the abdominal cavity and subjected to left main coronary artery ligation or sham operation. The telemetric ECGs were monitored per day throughout 4 weeks. At the endpoint, isoproterenol (1.28 mg/kg, i.v.) was administered for provocation test. The expressions of Kir2.1 (dominant subunit of IK1 in ventricle) and CaMKII were detected by Western-blotting. KEY FINDINGS In the telemetric rats post-MI, zacopride significantly reduced the episodes of atrioventricular conduction block (AVB), premature ventricular contraction (PVC), ventricular tachycardia (VT) and ventricular fibrillation (VF), without significant effect on superventricular premature contraction (SPVC). In provocation test, zacopride suppressed the onset of ventricular arrhythmias in conscious PMI or sham rats. The expression of Kir2.1 was significantly downregulated and p-CaMKII was upregulated post-MI, whereas both were restored by zacopride treatment. SIGNIFICANCE IK1/Kir2.1 might be an attractive target for pharmacological controlling of lethal arrhythmias post MI.
Collapse
Affiliation(s)
- Xuwen Zhai
- Clinical Skills Teaching Simulation Hospital, Shanxi Medical University, Taiyuan, China
| | - Xi Qiao
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
| | - Li Zhang
- Clinical Laboratory, Children's Hospital of Shanxi, Taiyuan, China
| | - Dongming Wang
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lijun Zhang
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
| | - Qilong Feng
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan 030001, China; Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Bowei Wu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan 030001, China; Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan 030001, China; Department of Physiology, Shanxi Medical University, Taiyuan 030001, China.
| | - Qinghua Liu
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
102
|
Joviano-Santos JV, Santos-Miranda A, Joca HC, Cruz JS, Ferreira AJ. Diminazene aceturate (DIZE) has cellular and in vivo antiarrhythmic effects. Clin Exp Pharmacol Physiol 2019; 47:213-219. [PMID: 31643111 DOI: 10.1111/1440-1681.13200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 01/13/2023]
Abstract
Diminazene aceturate (DIZE) is an anti-protozoan compound that has been previously reported to increase the activity of the angiotensin-converting enzyme 2 (ACE2) and thus increase Angiotensin-(1-7) production, leading to cardioprotection against post-myocardial infarction dysfunction and structural remodelling. Moreover, DIZE is able to ameliorate morpho-functional changes after myocardial infarction by enhancing ACE2 activity, thus increasing Angiotensin-(1-7) production (a benefic peptide of the renin-angiotensin system). However, despite the improvement in cardiac function/structure, little is known about DIZE effects on arrhythmia suppression, contraction/excitable aspects of the heart and importantly its mechanisms of action. Thus, our aim was to test the acute effect of DIZE cardioprotection at the specific level of potential antiarrhythmic effects and modulation in excitation-contraction coupling. For this, we performed in vitro and in vivo techniques for arrhythmia induction followed by an acute administration of DIZE. For the first time, we described that DIZE can reduce arrhythmias which is explained by modulation of cardiomyocyte contraction and excitability. Such effects were independent of Mas receptor and nitric oxide release. Development of a new DIZE-based approach to ameliorate myocardial contractile and electrophysiological dysfunction requires further investigation; however, DIZE may provide the basis for a future beneficial therapy to post-myocardial infarction patients.
Collapse
Affiliation(s)
- Julliane V Joviano-Santos
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas, Gerais, Brazil
| | - Artur Santos-Miranda
- Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas, Gerais, Brazil
| | - Humberto C Joca
- Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas, Gerais, Brazil
| | - Jader S Cruz
- Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas, Gerais, Brazil
| | - Anderson J Ferreira
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas, Gerais, Brazil
| |
Collapse
|
103
|
Prado NJ, Egan Beňová T, Diez ER, Knezl V, Lipták B, Ponce Zumino AZ, Llamedo-Soria M, Szeiffová Bačová B, Miatello RM, Tribulová N. Melatonin receptor activation protects against low potassium-induced ventricular fibrillation by preserving action potentials and connexin-43 topology in isolated rat hearts. J Pineal Res 2019; 67:e12605. [PMID: 31408542 DOI: 10.1111/jpi.12605] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/27/2019] [Accepted: 08/05/2019] [Indexed: 12/22/2022]
Abstract
Hypokalemia prolongs the QRS and QT intervals, deteriorates intercellular coupling, and increases the risk for arrhythmia. Melatonin preserves gap junctions and shortens action potential as potential antiarrhythmic mechanisms, but its properties under hypokalemia remain unknown. We hypothesized that melatonin protects against low potassium-induced arrhythmias through the activation of its receptors, resulting in action potential shortening and connexin-43 preservation. After stabilization in Krebs-Henseleit solution (4.5 mEq/L K+ ), isolated hearts from Wistar rats underwent perfusion with low-potassium (1 mEq/L) solution and melatonin (100 μmol/L), a melatonin receptor blocker (luzindole, 5 μmol/L), melatonin + luzindole or vehicle. The primary endpoint of the study was the prevention of ventricular fibrillation. Electrocardiography was used, and epicardial action potentials and heart function were measured and analyzed. The ventricular expression, dephosphorylation, and distribution of connexin-43 were examined. Melatonin reduced the incidence of low potassium-induced ventricular fibrillation from 100% to 59%, delayed the occurrence of ventricular fibrillation and induced a faster recovery of sinus rhythm during potassium restitution. Melatonin prevented QRS widening, action potential activation delay, and the prolongation of action potential duration at 50% of repolarization. Other ECG and action potential parameters, the left ventricular developed pressure, and nonsustained ventricular arrhythmias did not differ among groups. Melatonin prevented connexin-43 dephosphorylation and its abnormal topology (lateralization). Luzindole abrogated the protective effects of melatonin on electrophysiological properties and connexin-43 misdistribution. Our results indicate that melatonin receptor activation protects against low potassium-induced ventricular fibrillation, shortens action potential duration, preserves ventricular electrical activation, and prevents acute changes in connexin-43 distribution. All of these properties make melatonin a remarkable antifibrillatory agent.
Collapse
Affiliation(s)
- Natalia Jorgelina Prado
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
| | - Tamara Egan Beňová
- Center of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Bratislava, Slovakia
| | - Emiliano Raúl Diez
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Vladimír Knezl
- Center of Experimental Medicine, Slovak Academy of Sciences, Institute of Experimental Pharmacology and Toxicology, Bratislava, Slovakia
| | - Boris Lipták
- Center of Experimental Medicine, Slovak Academy of Sciences, Institute of Experimental Pharmacology and Toxicology, Bratislava, Slovakia
| | - Amira Zulma Ponce Zumino
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Mariano Llamedo-Soria
- Department of Electronic Engineering, Universidad Tecnológica Nacional, Buenos Aires, Argentina
| | - Barbara Szeiffová Bačová
- Center of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Bratislava, Slovakia
| | - Roberto Miguel Miatello
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Narcisa Tribulová
- Center of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Bratislava, Slovakia
| |
Collapse
|
104
|
Jungen C, Scherschel K, Flenner F, Jee H, Rajendran P, De Jong KA, Nikolaev V, Meyer C, Ardell JL, Tompkins JD. Increased arrhythmia susceptibility in type 2 diabetic mice related to dysregulation of ventricular sympathetic innervation. Am J Physiol Heart Circ Physiol 2019; 317:H1328-H1341. [PMID: 31625779 DOI: 10.1152/ajpheart.00249.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Patients with type 2 diabetes mellitus (T2DM) have a greater risk of developing life-threatening cardiac arrhythmias. Because the underlying mechanisms and potential influence of diabetic autonomic neuropathy are not well understood, we aimed to assess the relevance of a dysregulation in cardiac autonomic tone. Ventricular arrhythmia susceptibility was increased in Langendorff-perfused hearts isolated from mice with T2DM (db/db). Membrane properties and synaptic transmission were similar at cardiac postganglionic parasympathetic neurons from diabetic and control mice; however, a greater asynchronous neurotransmitter release was present at sympathetic postganglionic neurons from the stellate ganglia of db/db mice. Western blot analysis showed a reduction of tyrosine hydroxylase (TH) from the ventricles of db/db mice, which was confirmed with confocal imaging as a heterogeneous loss of TH-immunoreactivity from the left ventricular wall but not the apex. In vivo stimulation of cardiac parasympathetic (vagus) or cardiac sympathetic (stellate ganglion) nerves induced similar changes in heart rate in control and db/db mice, and the kinetics of pacing-induced Ca2+ transients (recorded from isolated cardiomyocytes) were similar in control and db/db cells. Antagonism of cardiac muscarinic receptors did not affect the frequency or severity of arrhythmias in db/db mice, but sympathetic blockade with propranolol completely inhibited arrhythmogenicity. Collectively, these findings suggest that the increased ventricular arrhythmia susceptibility of type 2 diabetic mouse hearts is due to dysregulation of the sympathetic ventricular control.NEW & NOTEWORTHY Patients with type 2 diabetes mellitus have greater risk of suffering from sudden cardiac death. We found that the increased ventricular arrhythmia susceptibility in type 2 diabetic mouse hearts is due to cardiac sympathetic dysfunction. Sympathetic dysregulation is indicated by an increased asynchronous release at stellate ganglia, a heterogeneous loss of tyrosine hydroxylase from the ventricular wall but not apex, and inhibition of ventricular arrhythmias in db/db mice after β-sympathetic blockade.
Collapse
Affiliation(s)
- Christiane Jungen
- Department of Cardiology-Electrophysiology, cNEP, cardiac Neuro- and Electrophysiology research group, University Heart Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Katharina Scherschel
- Department of Cardiology-Electrophysiology, cNEP, cardiac Neuro- and Electrophysiology research group, University Heart Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Frederik Flenner
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Haesung Jee
- University of California, Los Angeles Cardiac Arrhythmia Center, Neurocardiology Research Program of Excellence, Department of Medicine-Cardiology, Los Angeles, California
| | - Pradeep Rajendran
- University of California, Los Angeles Cardiac Arrhythmia Center, Neurocardiology Research Program of Excellence, Department of Medicine-Cardiology, Los Angeles, California
| | - Kirstie A De Jong
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, University of Hamburg, Germany
| | - Viacheslav Nikolaev
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, University of Hamburg, Germany
| | - Christian Meyer
- Department of Cardiology-Electrophysiology, cNEP, cardiac Neuro- and Electrophysiology research group, University Heart Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Jeffrey L Ardell
- University of California, Los Angeles Cardiac Arrhythmia Center, Neurocardiology Research Program of Excellence, Department of Medicine-Cardiology, Los Angeles, California
| | - John D Tompkins
- University of California, Los Angeles Cardiac Arrhythmia Center, Neurocardiology Research Program of Excellence, Department of Medicine-Cardiology, Los Angeles, California
| |
Collapse
|
105
|
Palee S, McSweeney CM, Maneechote C, Moisescu DM, Jaiwongkam T, Kerdphoo S, Chattipakorn SC, Chattipakorn N. PCSK9 inhibitor improves cardiac function and reduces infarct size in rats with ischaemia/reperfusion injury: Benefits beyond lipid-lowering effects. J Cell Mol Med 2019; 23:7310-7319. [PMID: 31557388 PMCID: PMC6815840 DOI: 10.1111/jcmm.14586] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/13/2019] [Indexed: 12/13/2022] Open
Abstract
During acute cardiac ischaemia/reperfusion (I/R), an increased plasma proprotein convertase subtilisin/kexin 9 (PCSK9) level instigates inflammatory and oxidative processes within ventricular myocytes, resulting in cardiac dysfunction. Therefore, PCSK9 inhibitor (PCSK9i) might exert cardioprotection against I/R injury. However, the effects of PCSK9i on the heart during I/R injury have not been investigated. The effects of PCSK9i given at different time-points during I/R injury on left ventricular (LV) function were investigated. Male Wistar rats were subjected to cardiac I/R injury and divided into 3 treatment groups (n = 10/group): pre-ischaemia, during ischaemia and upon onset of reperfusion. The treatment groups received PCSK9i (Pep2-8, 10 μg/kg) intravenously. A control group (n = 10) received saline solution. During the I/R protocol, arrhythmia scores and LV function were determined. Then, the infarct size, mitochondrial function, mitochondrial dynamics and level of apoptosis were determined. PCSK9i given prior to ischaemia exerted cardioprotection through protection of cardiac mitochondrial function, decreased infarct size and improved LV function, compared with control. PCSK9i administered during ischaemia and upon the onset of reperfusion did not provide any of those benefits. PCSK9i administered before ischaemia exerts cardioprotection, as demonstrated by the attenuation of infarct size and cardiac arrhythmia during cardiac I/R injury. The attenuation is associated with improved mitochondrial function and connexin43 phosphorylation, leading to improved LV function.
Collapse
Affiliation(s)
- Siripong Palee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Christian M McSweeney
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, England
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Dalila M Moisescu
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, England
| | - Thidarat Jaiwongkam
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
106
|
Salem JE, Waintraub X, Courtillot C, Shaffer CM, Gandjbakhch E, Maupain C, Moslehi JJ, Badilini F, Haroche J, Gougis P, Fressart V, Glazer AM, Hidden-Lucet F, Touraine P, Lebrun-Vignes B, Roden DM, Bachelot A, Funck-Brentano C. Hypogonadism as a Reversible Cause of Torsades de Pointes in Men. Circulation 2019; 138:110-113. [PMID: 29967236 DOI: 10.1161/circulationaha.118.034282] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Joe-Elie Salem
- Department of Pharmacology, Pharmacovigilance Unit (J.-E.S., P.G., B.L.-V., C.F.-B.) .,Department of Cardiology, CIC 1421, Cardiogenetic Unit, Arrhythmology Unit (J.-E.S., X.W., E.G., C.M., V.F., F.H.-L.).,Institut National de la Santé et de la Recherche Médicale (J.-E.S., P.G., B.L.-V., C.F.-B.).,UMR Institute of Cardiometabolism and Nutrition (J.-E.S., X.W., E.G., C.M., V.F., F.H.-L.), Paris, France.,Sorbonne Université, Faculty of Medicine, Paris, France (J.-E.S., P.G., B.L.-V., C.F.-B., A.B., P.T., E.G.).,Departments of Medicine, Pharmacology, and Biomedical Informatics (J.-E.S., C.M.S., A.M.G., D.M.R.).,Departments of Medicine, Cardiology, and Cardio-Oncology Program, Vanderbilt University Medical Center, Nashville, TN (J.-E.S., J.J.M.)
| | - Xavier Waintraub
- Department of Cardiology, CIC 1421, Cardiogenetic Unit, Arrhythmology Unit (J.-E.S., X.W., E.G., C.M., V.F., F.H.-L.).,UMR Institute of Cardiometabolism and Nutrition (J.-E.S., X.W., E.G., C.M., V.F., F.H.-L.), Paris, France
| | - Carine Courtillot
- Department of Endocrinology and Reproductive Medicine (C.C., P.T., A.B.), AP-HP, Pitié-Salpêtrière Hospital, Paris, France.,Centre de Référence des Maladies Endocriniennes Rares de la Croissance et Centre des Pathologies Gynécologiques Rares (C.C., P.T., A.B.)
| | - Christian M Shaffer
- Departments of Medicine, Pharmacology, and Biomedical Informatics (J.-E.S., C.M.S., A.M.G., D.M.R.)
| | - Estelle Gandjbakhch
- Department of Cardiology, CIC 1421, Cardiogenetic Unit, Arrhythmology Unit (J.-E.S., X.W., E.G., C.M., V.F., F.H.-L.).,UMR Institute of Cardiometabolism and Nutrition (J.-E.S., X.W., E.G., C.M., V.F., F.H.-L.), Paris, France.,Sorbonne Université, Faculty of Medicine, Paris, France (J.-E.S., P.G., B.L.-V., C.F.-B., A.B., P.T., E.G.)
| | - Carole Maupain
- Department of Cardiology, CIC 1421, Cardiogenetic Unit, Arrhythmology Unit (J.-E.S., X.W., E.G., C.M., V.F., F.H.-L.).,UMR Institute of Cardiometabolism and Nutrition (J.-E.S., X.W., E.G., C.M., V.F., F.H.-L.), Paris, France
| | - Javid J Moslehi
- Departments of Medicine, Cardiology, and Cardio-Oncology Program, Vanderbilt University Medical Center, Nashville, TN (J.-E.S., J.J.M.)
| | | | - Julien Haroche
- Department of Internal Medicine (J.H.).,Sorbonne Université, Faculty of Medicine, Paris, France (J.H.)
| | - Paul Gougis
- Department of Pharmacology, Pharmacovigilance Unit (J.-E.S., P.G., B.L.-V., C.F.-B.).,Institut National de la Santé et de la Recherche Médicale (J.-E.S., P.G., B.L.-V., C.F.-B.).,Sorbonne Université, Faculty of Medicine, Paris, France (J.-E.S., P.G., B.L.-V., C.F.-B., A.B., P.T., E.G.)
| | - Veronique Fressart
- Department of Cardiology, CIC 1421, Cardiogenetic Unit, Arrhythmology Unit (J.-E.S., X.W., E.G., C.M., V.F., F.H.-L.).,UMR Institute of Cardiometabolism and Nutrition (J.-E.S., X.W., E.G., C.M., V.F., F.H.-L.), Paris, France
| | - Andrew M Glazer
- Departments of Medicine, Pharmacology, and Biomedical Informatics (J.-E.S., C.M.S., A.M.G., D.M.R.)
| | - Francoise Hidden-Lucet
- Department of Cardiology, CIC 1421, Cardiogenetic Unit, Arrhythmology Unit (J.-E.S., X.W., E.G., C.M., V.F., F.H.-L.).,UMR Institute of Cardiometabolism and Nutrition (J.-E.S., X.W., E.G., C.M., V.F., F.H.-L.), Paris, France
| | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine (C.C., P.T., A.B.), AP-HP, Pitié-Salpêtrière Hospital, Paris, France.,Centre de Référence des Maladies Endocriniennes Rares de la Croissance et Centre des Pathologies Gynécologiques Rares (C.C., P.T., A.B.).,Sorbonne Université, Faculty of Medicine, Paris, France (J.-E.S., P.G., B.L.-V., C.F.-B., A.B., P.T., E.G.)
| | - Benedicte Lebrun-Vignes
- Department of Pharmacology, Pharmacovigilance Unit (J.-E.S., P.G., B.L.-V., C.F.-B.).,Institut National de la Santé et de la Recherche Médicale (J.-E.S., P.G., B.L.-V., C.F.-B.).,Sorbonne Université, Faculty of Medicine, Paris, France (J.-E.S., P.G., B.L.-V., C.F.-B., A.B., P.T., E.G.)
| | - Dan M Roden
- Departments of Medicine, Pharmacology, and Biomedical Informatics (J.-E.S., C.M.S., A.M.G., D.M.R.)
| | - Anne Bachelot
- Department of Endocrinology and Reproductive Medicine (C.C., P.T., A.B.), AP-HP, Pitié-Salpêtrière Hospital, Paris, France.,Centre de Référence des Maladies Endocriniennes Rares de la Croissance et Centre des Pathologies Gynécologiques Rares (C.C., P.T., A.B.).,Sorbonne Université, Faculty of Medicine, Paris, France (J.-E.S., P.G., B.L.-V., C.F.-B., A.B., P.T., E.G.)
| | - Christian Funck-Brentano
- Department of Pharmacology, Pharmacovigilance Unit (J.-E.S., P.G., B.L.-V., C.F.-B.).,Institut National de la Santé et de la Recherche Médicale (J.-E.S., P.G., B.L.-V., C.F.-B.).,Sorbonne Université, Faculty of Medicine, Paris, France (J.-E.S., P.G., B.L.-V., C.F.-B., A.B., P.T., E.G.)
| |
Collapse
|
107
|
Clinical characterization of men with long QT syndrome and torsades de pointes associated with hypogonadism: A review and pharmacovigilance study. Arch Cardiovasc Dis 2019; 112:699-712. [PMID: 31477476 DOI: 10.1016/j.acvd.2019.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Long QT syndrome (LQTS) can cause the potentially fatal ventricular tachycardia torsades de pointes (TdP). QT interval corrected for heart rate (QTc) is shorter in men than in women, with testosterone contributing to shorten QTc. We recently described male hypogonadism as a reversible risk factor for acquired LQTS and TdP, but the clinical characteristics of such patients have not been characterized. AIMS To describe the clinical characteristics of men with acquired LQTS or TdP associated with hypogonadism caused by endocrine conditions or androgen deprivation therapy (ADT), and to evaluate the relationship between testosterone concentrations and electrocardiographic changes. METHODS We searched MEDLINE (to 04 January 2019) and the French pharmacovigilance database (to 09 August 2018) to identify male cases of acquired LQTS and TdP associated with endocrine hypogonadism or ADT; their narratives were gathered from reporting collaborators. RESULTS We identified seven cases of TdP (one fatal) with endocrine hypogonadism, abnormally long QTc and morphologically abnormal T-wave notches. After reversion of low testosterone concentrations in the surviving patients (N=6), QTc shortened, T-wave morphology normalized and there was no TdP recurrence. Among these cases, none had mutation in the LQTS genes, three men required testosterone and three had reversible hypogonadism after resolution of a concurrent acute severe illness. We found an additional 27 reports of men with LQTS (N=6), TdP (N=9; 2/9 fatal) or sudden death (N=12; 10/12 fatal) suspected to be induced or favoured by ADT (24/27 for prostate cancer). Generally, after ADT withdrawal, QTc shortened and no TdP recurred. CONCLUSION We propose seeking for hypogonadism caused by endocrine conditions or ADT in men presenting with TdP. Caution is warranted when ADT is used in situations at risk of TdP. Testosterone may be useful to treat or prevent TdP.
Collapse
|
108
|
Dhanjal TS, Lellouche N, von Ruhland CJ, Abehsira G, Edwards DH, Dubois-Randé JL, Moschonas K, Teiger E, Williams AJ, George CH. Massive Accumulation of Myofibroblasts in the Critical Isthmus Is Associated With Ventricular Tachycardia Inducibility in Post-Infarct Swine Heart. JACC Clin Electrophysiol 2019; 3:703-714. [PMID: 28770255 PMCID: PMC5527067 DOI: 10.1016/j.jacep.2016.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Objectives In this study the authors determined the extent of cellular infiltration and dispersion, and regional vascularization in electrophysiologically (EP) defined zones in post–myocardial infarction (MI) swine ventricle. Background The critical isthmus (CI) in post-MI re-entrant ventricular tachycardia (VT) is a target for catheter ablation. In vitro evidence suggests that myofibroblasts (MFB) within the scar border zone (BZ) may increase the susceptibility to slow conduction and VT, but whether this occurs in vivo remains unproven. Methods Six weeks after mid–left anterior descending coronary artery occlusion, EP catheter-based mapping was used to assess susceptibility to VT induction. EP data were correlated with detailed cellular profiling of ventricular zones using immunohistochemistry and spatial distribution analysis of cardiomyocytes, fibroblasts, MFB, and vascularization. Results In pigs with induced sustained monomorphic VT (mean cycle length: 353 ± 89 ms; n = 6) the area of scar that consisted of the BZ (i.e., between the normal and the low-voltage area identified by substrate mapping) was greater in VT-inducible hearts (iVT) than in noninducible hearts (non-VT) (p < 0.05). Scar in iVT hearts was characterized by MFB accumulation in the CI (>100 times that in normal myocardium and >5 times higher than that in the BZ in non-VT hearts) and by a 1.7-fold increase in blood vessel density within the dense scar region extending towards the CI. Sites of local abnormal ventricular activity potentials exhibited cellularity and vascularization that were intermediate to the CI in iVT and BZ in non-VT hearts. Conclusions The authors reported the first cellular analysis of the VT CI following an EP-based zonal analysis of iVT and non-VT hearts in pigs post-MI. The data suggested that VT susceptibility was defined by a remarkable number of MFB in the VT CI, which appeared to bridge the few remaining dispersed clusters of cardiomyocytes. These findings define the cellular substrate for the proarrhythmic slow conduction pathway.
Collapse
Key Words
- BZ, border zone
- CI, critical isthmus
- CM, cardiomyocytes
- ECM, extracellular matrix
- EP, electrophysiology
- FB, fibroblasts
- IHC, immunohistochemistry
- LAD, left anterior descending
- LAVA, local abnormal ventricular activity
- MFB, myofibroblasts
- MI, myocardial infarction
- MRI, magnetic resonance imaging
- VT
- VT, ventricular tachycardia
- Vim, vimentin
- border zone
- cTnT, cardiac troponin T
- critical isthmus
- iVT, inducible ventricular tachycardia
- myocardial infarction
- myofibroblasts
- pig
- vWF, von Willebrand factor
- α-SMA, α-smooth muscle actin
Collapse
Affiliation(s)
- Tarvinder S. Dhanjal
- School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
- Hôpital Henri Mondor Albert Chenevier, DHU-ATVB, Inserm U955, IMRB, University Paris Est Creteil Paris XII, Paris, France
| | - Nicolas Lellouche
- Hôpital Henri Mondor Albert Chenevier, DHU-ATVB, Inserm U955, IMRB, University Paris Est Creteil Paris XII, Paris, France
| | | | - Guillaume Abehsira
- Hôpital Henri Mondor Albert Chenevier, DHU-ATVB, Inserm U955, IMRB, University Paris Est Creteil Paris XII, Paris, France
| | - David H. Edwards
- School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
- Institute of Life Sciences, Swansea University Medical School, Swansea, Wales, United Kingdom
| | - Jean-Luc Dubois-Randé
- Hôpital Henri Mondor Albert Chenevier, DHU-ATVB, Inserm U955, IMRB, University Paris Est Creteil Paris XII, Paris, France
| | | | - Emmanuel Teiger
- Hôpital Henri Mondor Albert Chenevier, DHU-ATVB, Inserm U955, IMRB, University Paris Est Creteil Paris XII, Paris, France
| | - Alan J. Williams
- School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
- Institute of Life Sciences, Swansea University Medical School, Swansea, Wales, United Kingdom
| | - Christopher H. George
- School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
- Institute of Life Sciences, Swansea University Medical School, Swansea, Wales, United Kingdom
- Address for correspondence: Dr. Christopher H. George, Swansea University Medical School, Institute of Life Sciences, Singleton Park, Swansea, Wales SA2 8PP, United Kingdom.Swansea University Medical SchoolInstitute of Life Sciences, Singleton ParkSwanseaWales SA2 8PPUnited Kingdom
| |
Collapse
|
109
|
Pironet A, Syam N, Vandewiele F, Van den Haute C, Kerselaers S, Pinto S, Vande Velde G, Gijsbers R, Vennekens R. AAV9-Mediated Overexpression of TRPM4 Increases the Incidence of Stress-Induced Ventricular Arrhythmias in Mice. Front Physiol 2019; 10:802. [PMID: 31316392 PMCID: PMC6610516 DOI: 10.3389/fphys.2019.00802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/06/2019] [Indexed: 11/13/2022] Open
Abstract
Ca2+ activated non-selective (CAN) cation channels have been described in cardiomyocytes since the advent of the patch clamp technique. It has been hypothesized that this type of ion channel contributes to the triggering of cardiac arrhythmias. TRPM4 is to date the only molecular candidate for a CAN cation channel in cardiomyocytes. Its significance for arrhythmogenesis in living animals remains, however, unclear. In this study, we have tested whether increased expression of wild-type (WT) TRPM4 augments the risk of arrhythmias in living mice. Overexpression of WT TRPM4 was achieved via tail vein injection of adeno-associated viral vector serotype 9 (AAV9) particles, which have been described to be relatively cardiac specific in mice. Subsequently, we performed ECG-measurements in freely moving mice to determine their in vivo cardiac phenotype. Though cardiac muscle was transduced with TRPM4 viral particles, the majority of viral particles accumulated in the liver. We did not observe any difference in arrhythmic incidents during baseline conditions. Instead, WT mice that overexpress TRPM4 were more vulnerable to develop premature ventricular ectopic beats during exercise-induced β-adrenergic stress. Conduction abnormalities were rare and not more frequent in transduced mice compare to WT mice. Taken together, we provide evidence that overexpression of TRPM4 increases the susceptibility of living mice to stress-induced arrhythmias.
Collapse
Affiliation(s)
- Andy Pironet
- Laboratory of Ion Channel Research, TRP Research Platform Leuven, VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ninda Syam
- Laboratory of Ion Channel Research, TRP Research Platform Leuven, VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frone Vandewiele
- Laboratory of Ion Channel Research, TRP Research Platform Leuven, VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Chris Van den Haute
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Sara Kerselaers
- Laboratory of Ion Channel Research, TRP Research Platform Leuven, VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Silvia Pinto
- Laboratory of Ion Channel Research, TRP Research Platform Leuven, VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Rik Gijsbers
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, TRP Research Platform Leuven, VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
110
|
Dietary flaxseed protects against ventricular arrhythmias and left ventricular dilation after a myocardial infarction. J Nutr Biochem 2019; 71:63-71. [PMID: 31284167 DOI: 10.1016/j.jnutbio.2019.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 02/02/2023]
Abstract
Dietary omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been associated with a lower incidence of cardiovascular events and sudden cardiac death. Flaxseed is a rich plant source of n-3 PUFAs and can retard the progression and accelerate the regression of atherosclerotic plaques. The aim of the study was to examine the preventive and therapeutic effects of dietary flaxseed on arrhythmias and heart dysfunction that develops after a myocardial infarction (MI). The left anterior descending coronary artery was ligated in rats to induce the MI. Rats were randomized into five groups: sham MI with normal chow, MI with normal chow, MI with 10% milled flaxseed supplementation (flax), MI with 4.4% supplemented flax oil enriched in alpha-linolenic acid (ALA) and MI with flax lignan secoisolariciresinol diglucoside (SDG) supplementation (0.44%). Animals were fed with their respective diets for 2 weeks before and for 8 weeks after the surgery. Echocardiography and continuous electrocardiographic recordings were obtained after ligation to confirm the induction of the MI, to check for arrhythmias and to assess cardiac function. Histological examination was also performed to evaluate cardiac fibrosis. Dietary supplementation with flaxseed, ALA or SDG before and after the induction of the MI significantly reduced the incidence of arrhythmias and resulted in significantly smaller infarct size, less left ventricle dilation, and decreased myocardial fibrosis and tumor necrosis factor-α levels compared to the control MI group. Together, this study supports a beneficial effect of dietary flaxseed in patients for the prevention and treatment of arrhythmias and ventricular remodeling post-MI.
Collapse
|
111
|
Bezzerides VJ, Caballero A, Wang S, Ai Y, Hylind RJ, Lu F, Heims-Waldron DA, Chambers KD, Zhang D, Abrams DJ, Pu WT. Gene Therapy for Catecholaminergic Polymorphic Ventricular Tachycardia by Inhibition of Ca 2+/Calmodulin-Dependent Kinase II. Circulation 2019; 140:405-419. [PMID: 31155924 PMCID: PMC7274838 DOI: 10.1161/circulationaha.118.038514] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited cardiac arrhythmia characterized by adrenergically triggered arrhythmias, is inadequately treated by current standard of care. Ca2+/calmodulin-dependent protein kinase II (CaMKII), an adrenergically activated kinase that contributes to arrhythmogenesis in heart disease models, is a candidate therapeutic target in CPVT. However, translation of CaMKII inhibition has been limited by the need for selective CaMKII inhibition in cardiomyocytes. Here, we tested the hypothesis that CaMKII inhibition with a cardiomyocyte-targeted gene therapy strategy would suppress arrhythmia in CPVT mouse models. METHODS We developed AAV9-GFP-AIP, an adeno-associated viral vector in which a potent CaMKII inhibitory peptide, autocamtide-2-related inhibitory peptide [AIP], is fused to green fluorescent protein (GFP) and expressed from a cardiomyocyte selective promoter. The vector was delivered systemically. Arrhythmia burden was evaluated with invasive electrophysiology testing in adult mice. AIP was also tested on induced pluripotent stem cells derived from patients with CPVT with different disease-causing mutations to determine the effectiveness of our proposed therapy on human induced pluripotent stem cell-derived cardiomyocytes and different pathogenic genotypes. RESULTS AAV9-GFP-AIP was robustly expressed in the heart without significant expression in extracardiac tissues, including the brain. Administration of AAV9-GFP-AIP to neonatal mice with a known CPVT mutation (RYR2R176Q/+) effectively suppressed ventricular arrhythmias induced by either β-adrenergic stimulation or programmed ventricular pacing, without significant proarrhythmic effect. Intravascular delivery of AAV9-GFP-AIP to adolescent mice transduced ≈50% of cardiomyocytes and was effective in suppressing arrhythmia in CPVT mice. Induced pluripotent stem cell-derived cardiomyocytes derived from 2 different patients with CPVT with different pathogenic mutations demonstrated increased frequency of abnormal calcium release events, which was suppressed by a cell-permeable form of AIP. CONCLUSIONS This proof-of-concept study showed that AAV-mediated delivery of a CaMKII peptide inhibitor to the heart was effective in suppressing arrhythmias in a murine model of CPVT. CaMKII inhibition also reversed the arrhythmia phenotype in human CPVT induced pluripotent stem cell-derived cardiomyocyte models with different pathogenic mutations.
Collapse
Affiliation(s)
- Vassilios J Bezzerides
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - Ana Caballero
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - Suya Wang
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - Yulan Ai
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - Robyn J Hylind
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - Fujian Lu
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - Danielle A Heims-Waldron
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - Kristina D Chambers
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - Donghui Zhang
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - Dominic J Abrams
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - William T Pu
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.).,Harvard Stem Cell Institute, Cambridge, MA (W.T.P.)
| |
Collapse
|
112
|
Adameova A, Elimban V, Ganguly PK, Dhalla NS. β-1 adrenoceptors and AT1 receptors may not be involved in catecholamine-induced lethal arrhythmias. Can J Physiol Pharmacol 2019; 97:570-576. [DOI: 10.1139/cjpp-2018-0531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An excessive amount of catecholamines produce arrhythmias, but the exact mechanisms of this action are not fully understood. For this purpose, Sprague–Dawley rats were treated with or without atenolol, a β1-adrenoceptor blocker (20 mg/kg per day), for 15 days followed by injections of epinephrine for cumulative doses of 4 to 128 μg/kg. Another group of animals were pretreated with losartan, an angiotensin receptor (AT1) blocker (20 mg/kg per day), for comparison. Control animals received saline. Varying degrees of ventricular arrhythmias were seen upon increasing the dose of epinephrine, but the incidence and duration of the rhythm abnormalities as well as the number of episodes and severity of arrhythmias were not affected by treating the animals with atenolol or losartan. The levels of both epinephrine and norepinephrine were increased in the atenolol-treated rats but were unchanged in the losartan-treated animals after the last injection of epinephrine; the severity of arrhythmias did not correlate with the circulating catecholamine levels. These results indicate that both β1-adrenoceptors and AT1 receptors may not be involved in the pathogenesis of catecholamine-induced arrhythmias and support the view that other mechanisms, such as the oxidation products of catecholamines, may play a crucial role in the occurrence of lethal arrhythmias.
Collapse
Affiliation(s)
- Adriana Adameova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University 832 32 Bratislava, Odbojarov 10, Slovakia
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre and Department of Physiology & Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Paul K. Ganguly
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre and Department of Physiology & Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre and Department of Physiology & Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
113
|
Pereira PJS, Pugsley MK, Troncy E, Tan W, Pouliot M, Harper C, Prefontaine A, Easter A, Wallis R, Miraucourt L, Huang H, Accardi MV, Boulay E, Maghezzi MS, Authier S. Incidence of spontaneous arrhythmias in freely moving healthy untreated Sprague-Dawley rats. J Pharmacol Toxicol Methods 2019; 99:106589. [PMID: 31154034 DOI: 10.1016/j.vascn.2019.106589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/07/2019] [Accepted: 05/25/2019] [Indexed: 12/18/2022]
Abstract
Spontaneous arrhythmia characterization in healthy rats can support interpretation when studying novel therapies. Male (n = 55) and female (n = 40) Sprague-Dawley rats with telemetry transmitters for a derivation II ECG. Arrhythmias were assessed from continuous ECG monitoring over a period of 24-48 h, and data analyzed using an automated detection algorithm with 100% manual over-read. While a total of 1825 spontaneous ventricular premature beats (VPB) were identified, only 7 rats (or 7.4%) did not present with any over the recording period. Spontaneous episode(s) of ventricular tachycardia (VT) were noted in males (27%) and females (3%). The incidence of VPB was significantly higher (p < 0.01) during the night time (7 pm-7 am) compared to daytime, while males presented with significantly (p < 0.001) more VPB than females. Most VPB were observed as single ectopic beats, followed by salvos (2 or 3 consecutive VPBs), and VT (i.e. 4 consecutive VPBs). Most VPBs were single premature ventricular contractions (PVCs) (57%), while the remaining were escape complexes (43%). Spontaneous premature junctional complexes (PJC) were also observed and were significantly more frequent during the night, and in males. Lastly, 596 episodes of spontaneous 2nd-degree atrioventricular (AV) block were identified and were significantly more frequent during the day time in males. Most 2nd-degree AV block episodes were Mobitz type I (57%), with a significantly (p < 0.05) higher incidence in males. This work emphasizes the importance of obtaining sufficient baseline data when undertaking arrhythmia analysis in safety study and provides a better understanding of both sex- and time- dependent effects of spontaneous arrhythmias in rats.
Collapse
Affiliation(s)
| | | | - Eric Troncy
- Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Wendy Tan
- Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC, Canada
| | | | | | | | - Alison Easter
- Praxis Precision Medicines, Cambridge, MA, United States of America
| | - Rob Wallis
- Safety Pharmacology Consultant, London, United Kingdom
| | | | | | | | - Emmanuel Boulay
- Citoxlab, Laval, QC, Canada; Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC, Canada
| | | | - Simon Authier
- Citoxlab, Laval, QC, Canada; Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC, Canada.
| |
Collapse
|
114
|
Carnevali L, Statello R, Sgoifo A. Resting Heart Rate Variability Predicts Vulnerability to Pharmacologically-Induced Ventricular Arrhythmias in Male Rats. J Clin Med 2019; 8:jcm8050655. [PMID: 31083474 PMCID: PMC6572182 DOI: 10.3390/jcm8050655] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 12/03/2022] Open
Abstract
The electrical stability of the myocardium is dependent on the dynamic balance between sympathetic and parasympathetic influences on the heart, which is reflected by heart rate variability (HRV). Reduced HRV is a proposed predictor of sudden death caused by ventricular tachyarrhythmias in cardiac patients. However, the link between individual differences in HRV and ventricular tachyarrhythmic risk in populations without known pre-existing cardiac conditions is less well explored. In this study we investigated the extent to which individual differences in resting state HRV predict susceptibility to spontaneous and pharmacologically-induced ventricular arrhythmias in healthy rats. Radiotelemetric transmitters were implanted in 42 adult male Wild-type Groningen rats. ECG signals were recorded during 24-h resting conditions and under β-adrenoceptor pharmacological stimulation with isoproterenol and analyzed by means of time- and frequency-domain indexes of HRV. No significant association was found between individual differences in resting measures of HRV and spontaneous incidence of ventricular arrhythmias. However, lower resting values of HRV predicted a higher number of ventricular ectopic beats following β-adrenergic pharmacological stimulation with isoproterenol (0.02 mg/kg). Moreover, after isoproterenol administration, one rat with low resting HRV developed sustained ventricular tachycardia that led to death. The present results might be indicative of the potential utility of HRV measures of resting cardiac autonomic function for the prediction of ventricular arrhythmias, particularly during conditions of strong sympathetic activation, in populations without known cardiac disease.
Collapse
Affiliation(s)
- Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43121 Parma, Italy.
| | - Rosario Statello
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43121 Parma, Italy.
| | - Andrea Sgoifo
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43121 Parma, Italy.
| |
Collapse
|
115
|
Karpov AA, Puzanov MV, Ivkin DY, Krasnova MV, Anikin NA, Docshin PM, Moiseeva OM, Galagudza MM. Non-inferiority of microencapsulated mesenchymal stem cells to free cells in cardiac repair after myocardial infarction: A rationale for using paracrine factor(s) instead of cells. Int J Exp Pathol 2019; 100:102-113. [PMID: 31017330 DOI: 10.1111/iep.12312] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 02/06/2019] [Accepted: 02/24/2019] [Indexed: 12/30/2022] Open
Abstract
A major translational barrier to the use of stem cell (SC)-based therapy in patients with myocardial infarction (MI) is the lack of a clear understanding of the mechanism(s) underlying the cardioprotective effect of SCs. Numerous paracrine factors from SCs may account for reduction in infarct size, but myocardial salvage associated with transdifferentiation of SCs into vascular cells as well as cardiomyocyte-like cells may be involved too. In this study, bone marrow-derived rat mesenchymal SC (MSCs) were microencapsulated in alginate preventing viable cell release while supporting their secretory phenotype. The hypothesis on the key role of paracrine factors from MSCs in their cardioprotective activity was tested by comparison of the effect of encapsulated vs free MSCs in the rat model of MI. Intramyocardial administration of both free and encapsulated MSCs after MI caused reduction in scar size (12.1 ± 6.83 and 14.7 ± 4.26%, respectively, vs 21.7 ± 6.88% in controls, P = 0.015 and P = 0.03 respectively). Scar size was not different in animals treated with free and encapsulated MSC (P = 0.637). These data provide evidence that MSC-derived growth factors and cytokines are crucial for cardioprotection elicited by MSC. Administration of either free or encapsulated MSCs was not arrhythmogenic in non-infarcted rats. The consistency of our data with the results of other studies on the major role of MSC secretome components in cardiac protection further support the theory that the use of live, though encapsulated, cells for MI therapy may be replaced with heart-targeted-sustained delivery of growth factors/cytokines.
Collapse
Affiliation(s)
- Andrey A Karpov
- Almazov National Medical Research Centre, St-Petersburg, Russia
| | - Maxim V Puzanov
- Almazov National Medical Research Centre, St-Petersburg, Russia
| | - Dmitry Yu Ivkin
- Saint Petersburg State Chemical Pharmaceutical Academy, St. Petersburg, Russia
| | - Marina V Krasnova
- Saint Petersburg State Chemical Pharmaceutical Academy, St. Petersburg, Russia
| | - Nikita A Anikin
- Department of Pathophysiology, First Pavlov State Medical, University of Saint Petersburg, St. Petersburg, Russia
| | - Pavel M Docshin
- Almazov National Medical Research Centre, St-Petersburg, Russia
| | - Olga M Moiseeva
- Almazov National Medical Research Centre, St-Petersburg, Russia
| | | |
Collapse
|
116
|
Exogenous GDF11 attenuates non-canonical TGF-β signaling to protect the heart from acute myocardial ischemia-reperfusion injury. Basic Res Cardiol 2019; 114:20. [PMID: 30900023 DOI: 10.1007/s00395-019-0728-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/14/2019] [Indexed: 12/13/2022]
Abstract
Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor beta 1 (TGF-β1) superfamily that reverses age-related cardiac hypertrophy, improves muscle regeneration and angiogenesis, and maintains progenitor cells in injured tissue. Recently, targeted myocardial delivery of the GDF11 gene in aged mice was found to reduce heart failure and enhance the proliferation of cardiac progenitor cells after myocardial ischemia-reperfusion (I-R). No investigations have as yet explored the cardioprotective effect of exogenous recombinant GDF11 in acute I-R injury, despite the convenience of its clinical application. We sought to determine whether exogenous recombinant GDF11 protects against acute myocardial I-R injury and investigate the underlying mechanism in Sprague-Dawley rats. We found that GDF11 reduced arrhythmia severity and successfully attenuated myocardial infarction; GDF11 also increased cardiac function after I-R, enhanced HO-1 expression and decreased oxidative damage. GDF11 activated the canonical TGF-β signaling pathway and inactivated the non-canonical pathways, ERK and JNK signaling pathways. Moreover, administration of GDF11 prior to reperfusion protected the heart from reperfusion damage. Notably, pretreatment with the activin-binding protein, follistatin (FST), inhibited the cardioprotective effects of GDF11 by blocking its activation of Smad2/3 signaling and its inactivation of detrimental TGF-β signaling. Our data suggest that exogenous GDF11 has cardioprotective effects and may have morphologic and functional recovery in the early stage of myocardial I-R injury. GDF11 may be an innovative therapeutic approach for reducing myocardial I-R injury.
Collapse
|
117
|
Pugsley M, Hayes E, Saint D, Walker M. The antiarrhythmic actions of bisaramil and penticainide result from mixed cardiac ion channel blockade. Biomed Pharmacother 2019; 111:427-435. [DOI: 10.1016/j.biopha.2018.12.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 01/27/2023] Open
|
118
|
Acute dietary zinc deficiency in rats exacerbates myocardial ischaemia–reperfusion injury through depletion of glutathione. Br J Nutr 2019; 121:961-973. [DOI: 10.1017/s0007114519000230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractZn plays an important role in maintaining the anti-oxidant status within the heart and helps to counter the acute redox stress that occurs during myocardial ischaemia and reperfusion. Individuals with low Zn levels are at greater risk of developing an acute myocardial infarction; however, the impact of this on the extent of myocardial injury is unknown. The present study aimed to compare the effects of dietary Zn depletion with in vitro removal of Zn (N,N,N′,N′-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN)) on the outcome of acute myocardial infarction and vascular function. Male Sprague–Dawley rats were fed either a Zn-adequate (35 mg Zn/kg diet) or Zn-deficient (<1 mg Zn/kg diet) diet for 2 weeks before heart isolation. Perfused hearts were subjected to a 30 min ischaemia/2 h reperfusion (I/R) protocol, during which time ventricular arrhythmias were recorded and after which infarct size was measured, along with markers of anti-oxidant status. In separate experiments, hearts were challenged with the Zn chelator TPEN (10 µm) before ischaemia onset. Both dietary and TPEN-induced Zn depletion significantly extended infarct size; dietary Zn depletion was associated with reduced total cardiac glutathione (GSH) levels, while TPEN decreased cardiac superoxide dismutase 1 levels. TPEN, but not dietary Zn depletion, also suppressed ventricular arrhythmias and depressed vascular responses to nitric oxide. These findings demonstrate that both modes of Zn depletion worsen the outcome from I/R but through different mechanisms. Dietary Zn deficiency, resulting in reduced cardiac GSH, is the most appropriate model for determining the role of endogenous Zn in I/R injury.
Collapse
|
119
|
Flores DJ, Duong T, Brandenberger LO, Mitra A, Shirali A, Johnson JC, Springer D, Noguchi A, Yu ZX, Ebert SN, Ludwig A, Knollmann BC, Levin MD, Pfeifer K. Conditional ablation and conditional rescue models for Casq2 elucidate the role of development and of cell-type specific expression of Casq2 in the CPVT2 phenotype. Hum Mol Genet 2019; 27:1533-1544. [PMID: 29452352 DOI: 10.1093/hmg/ddy060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/12/2018] [Indexed: 01/30/2023] Open
Abstract
Cardiac calsequestrin (Casq2) associates with the ryanodine receptor 2 channel in the junctional sarcoplasmic reticulum to regulate Ca2+ release into the cytoplasm. Patients carrying mutations in CASQ2 display low resting heart rates under basal conditions and stress-induced polymorphic ventricular tachycardia (CPVT). In this study, we generate and characterize novel conditional deletion and conditional rescue mouse models to test the influence of developmental programs on the heart rate and CPVT phenotypes. We also compare the requirements for Casq2 function in the cardiac conduction system (CCS) and in working cardiomyocytes. Our study shows that the CPVT phenotype is dependent upon concurrent loss of Casq2 function in both the CCS and in working cardiomyocytes. Accordingly, restoration of Casq2 in only the CCS prevents CPVT. In addition, occurrence of CPVT is independent of the developmental history of Casq2-deficiency. In contrast, resting heart rate depends upon Casq2 gene activity only in the CCS and upon developmental history. Finally, our data support a model where low basal heart rate is a significant risk factor for CPVT.
Collapse
Affiliation(s)
- Daniel J Flores
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - ThuyVy Duong
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luke O Brandenberger
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Apratim Mitra
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aditya Shirali
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - John C Johnson
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danielle Springer
- Murine Phenotyping Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Audrey Noguchi
- Murine Phenotyping Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zu-Xi Yu
- Pathology Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven N Ebert
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Andreas Ludwig
- Institut fuer Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen 91054, Germany
| | - Bjorn C Knollmann
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mark D Levin
- Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karl Pfeifer
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
120
|
Pugsley MK, Yong SL, Goldin AL, Hayes ES, Walker MJA. Molecular charge associated with antiarrhythmic actions in a series of amino-2-cyclohexyl ester derivatives. Eur J Pharmacol 2019; 844:241-252. [PMID: 30571955 DOI: 10.1016/j.ejphar.2018.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/12/2018] [Accepted: 12/12/2018] [Indexed: 11/15/2022]
Abstract
A series of amino-2-cyclohexyl ester derivatives were studied for their ion channel blocking and antiarrhythmic actions in the rat and a structure-activity analysis was conducted. The compounds are similar in chemical structure except for ionizable amine groups (pK values 6.1-8.9) and the positional arrangements of aromatic naphthyl moieties. Ventricular arrhythmias were produced in rats by coronary-artery occlusion or electrical stimulation. The electrophysiological effects of these compounds on rat heart sodium channels (Nav1.5) expressed in Xenopus laevis oocytes and transient outward potassium currents (Kv4.3) from isolated rat ventricular myocytes were examined. The compounds reduced the incidence of ischemia-related arrhythmias and increased current threshold for induction of ventricular fibrillo-flutter (VFt) dose-dependently. As pK increased compounds showed a diminished effectiveness against ischemia-induced arrhythmias, and were less selective for ischemia- versus electrically-induced arrhythmias. Where tested, compounds produced a concentration-dependent tonic block of Nav1.5 channels. An increased potency for inhibition of Nav1.5 occurred when the external pH (pHo) was reduced to 6.5. Some compounds inhibited Kv4.3 in a pH-independent manner. Overall, the differences in antiarrhythmic and ion channel blocking properties in this series of compounds can be explained by differences in chemical structure. Antiarrhythmic activity for the amino-2-cyclohexyl ester derivatives is likely a function of mixed ion channel blockade in ischemic myocardium. These studies show that drug inhibition of Nav1.5 occurred at lower concentrations than Kv4.3 and was more sensitive to changes in the ionizable amine groups rather than on positional arrangements of the naphthyl constituents. These results offer insight into antiarrhythmic mechanisms of drug-ion channel interactions.
Collapse
Affiliation(s)
- Michael K Pugsley
- Safety Pharmacology & Toxicology, Fairfield, CT 06825, USA; Department of Pharmacology & Therapeutics, Faculty of Medicine, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC, Canada, V6T 1Z3.
| | - Sandro L Yong
- Department of Pharmacology & Therapeutics, Faculty of Medicine, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC, Canada, V6T 1Z3
| | - Alan L Goldin
- Department of Microbiology & Molecular Genetics, University of California, Irvine, California, CA 92697-4025, USA
| | - Eric S Hayes
- BioCurate Pty Ltd., Parkville, Victoria, Australia
| | - Michael J A Walker
- Department of Pharmacology & Therapeutics, Faculty of Medicine, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC, Canada, V6T 1Z3
| |
Collapse
|
121
|
Kamada R, Yokoshiki H, Mitsuyama H, Watanabe M, Mizukami K, Tenma T, Takahashi M, Takada S, Anzai T. Arrhythmogenic β-adrenergic signaling in cardiac hypertrophy: The role of small-conductance calcium-activated potassium channels via activation of CaMKII. Eur J Pharmacol 2019; 844:110-117. [DOI: 10.1016/j.ejphar.2018.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 10/27/2022]
|
122
|
Xu X, Zhang Q, Song H, Ao Z, Li X, Cheng C, Shi M, Fu F, Sun C, Liu Y, Han D. Effects of artemisinin on ventricular arrhythmias in response to left ventricular afterload increase and microRNA expression profiles in Wistar rats. PeerJ 2018; 6:e6110. [PMID: 30595983 PMCID: PMC6304267 DOI: 10.7717/peerj.6110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 11/08/2018] [Indexed: 11/23/2022] Open
Abstract
Background Patients with dilated cardiomyopathy, increased ventricular volume, pressure overload or dysynergistic ventricular contraction and relaxation are susceptible to develop serious ventricular arrhythmias (VA). These phenomena are primarily based on a theory of mechanoelectric feedback, which reflects mechanical changes that produce alterations in electrical activity. However, very few systematic studies have provided evidence of the preventive effects of artemisinin (ART) on VA in response to left ventricle (LV) afterload increases. MicroRNAs (miRNAs) are endogenous small non-coding RNAs that regulate expression of multiple genes by suppressing mRNAs post-transcriptionally. Aims The aims of this study were to investigate preventive effects of ART on mechanical VA and the underling molecular mechanisms of differentially expressed miRNAs (DEMs). Methods For the study, 70 male Wistar rats were randomly divided into seven groups: group 1 was a control group (sham surgery); group 2 was a model group that underwent transverse aortic constriction (TAC) surgery; groups 3, 4, 5 and 6 were administered ART 75, 150, 300 and 600 mg/kg before TAC surgery, respectively; and group 7 was administered verapamil (VER) 1 mg/kg before TAC surgery. A ventricular arrhythmia score (VAS) was calculated to evaluate preventive effects of ART and VER on mechanical VA. The high throughput sequencing-based approach provided DEMs that were altered by ART pretreatment between group 2 and group 4. All predicted mRNAs of DEMs were enriched by gene ontology (GO) and Kyoto Encyclopedia annotation of Genes and Genomes (KEGG) databases. These DEMs were validated by a real time quantitative polymerase chain reaction (RT-qPCR). Results The average VASs of groups 3, 4, 5, 6 and 7 were significantly reduced compared with those of group 2 (2.70 ± 0.48, 1.70 ± 0.95, 2.80 ± 0.79, 2.60 ± 0.97, 1.40 ± 0.52, vs 3.70 ± 0.67, p < 0.01, respectively). The three top GO terms were neuron projection, organ morphogenesis and protein domain specific binding. KEGG enrichment of the 16 DEMs revealed that MAPK, Wnt and Hippo signaling pathways were likely to play a substantial role in the preventive effects of ART on mechanical VA in response to LV afterload increases. All candidate DEMs with the exception of rno-miR-370-3p, rno-miR-6319, rno-miR-21-3p and rno-miR-204-5p showed high expression levels validated by RT-qPCR. Conclusions Artemisinin could prevent mechanical VA in response to LV afterload increases. Validated DEMs could be biomarkers and therapeutic targets of ART regarding its prevention of VA induced by pressure overload. The KEGG pathway and GO annotation analyses of the target mRNAs could indicate the potential functions of candidate DEMs. These results will help to elucidate the functional and regulatory roles of candidate DEMs associated with antiarrhythmic effects of ART.
Collapse
Affiliation(s)
- Xue Xu
- Department of Cardiology, Peking University People's Hospital, Beijing, China
| | - Qiang Zhang
- National Center for Nanoscience and Technology, Beijing, China
| | - Huanqiu Song
- Emergency Department, Peking University People's Hospital, Beijing, China
| | - Zhuo Ao
- National Center for Nanoscience and Technology, Beijing, China
| | - Xiang Li
- National Center for Nanoscience and Technology, Beijing, China
| | - Cheng Cheng
- Emergency Department, Peking University People's Hospital, Beijing, China
| | - Maojing Shi
- Emergency Department, Peking University People's Hospital, Beijing, China
| | - Fengying Fu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Beijing, China
| | - Chengtao Sun
- Department of Radiotherapy, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong, China
| | - Yuansheng Liu
- Emergency Department, Peking University People's Hospital, Beijing, China
| | - Dong Han
- National Center for Nanoscience and Technology, Beijing, China
| |
Collapse
|
123
|
Vesely P, Stracina T, Hlavacova M, Halamek J, Kolarova J, Olejnickova V, Mrkvicova V, Paulova H, Novakova M. Haloperidol affects coupling between QT and RR intervals in guinea pig isolated heart. J Pharmacol Sci 2018; 139:23-28. [PMID: 30528680 DOI: 10.1016/j.jphs.2018.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 11/25/2022] Open
Abstract
Prolonged QT interval is an independent risk factor for development of ventricular arrhythmias. Haloperidol is one of the drugs inducing QT prolongation. Previous studies showed that haloperidol affects not only QT duration but also heart rate (RR interval). The present work focused on relationship between QT and RR and its changes under acute and chronic haloperidol administration. The study included 14 male guinea pigs divided into control and haloperidol-treated group. After 21-days administration of haloperidol or vehiculum, electrograms in isolated hearts were recorded. QT/RR and dQT/dRR coupling were calculated. Chronic haloperidol administration significantly decreases the coupling between QT and RR. Acute haloperidol exposure significantly decreases the dQT/dRR coupling in both treated and untreated guinea pig hearts. Flatter QT/RR relationship reveals a lack of QT adaptation to increased heart rate. It should be emphasized that in such situation ECG recording will not show significant QT prolongation evaluated according to clinical rules. However, if QT interval does not adapt to increased heart rate sufficiently, the risk of ventricular arrhythmias may be increased despite practically normal QT interval length. The results are supported by findings in biochemical analyses, which proved eligibility of the used model.
Collapse
Affiliation(s)
- Petr Vesely
- International Clinical Research Center, St. Anne's Faculty Hospital, Brno, Czech Republic; Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Tibor Stracina
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Miroslava Hlavacova
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Josef Halamek
- Institute of Scientific Instruments, Academy of Sciences, Brno, Czech Republic
| | - Jana Kolarova
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Veronika Olejnickova
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Veronika Mrkvicova
- Department of Sports Medicine and Rehabilitation (KFDR), St. Anne's Faculty Hospital, Masaryk University, Brno, Czech Republic; Department of Public Health, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Paulova
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marie Novakova
- International Clinical Research Center, St. Anne's Faculty Hospital, Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
124
|
Langhof H, Chin WWL, Wieschowski S, Federico C, Kimmelman J, Strech D. Preclinical efficacy in therapeutic area guidelines from the U.S. Food and Drug Administration and the European Medicines Agency: a cross-sectional study. Br J Pharmacol 2018; 175:4229-4238. [PMID: 30153701 DOI: 10.1111/bph.14485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/28/2018] [Accepted: 08/06/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Therapeutic area guidelines (TAGs) published by the EMA and the FDA offer guidance in planning the launch of a trial in a certain indication. We assessed and compared the guidance on preclinical efficacy of all available TAGs from EMA and FDA. EXPERIMENTAL APPROACH EMA and FDA websites and databases were searched for all TAGs. A mixed deductive and inductive approach was applied to analyse and cluster content for preclinical efficacy. KEY RESULTS A total of 114 EMA and 120 FDA TAGs were identified, covering 126 indications. Our core finding is that 75% of EMA TAGs and 58% from the FDA TAGs do not offer any guidance on preclinical efficacy. TAGs varied widely on the extent, nature and detail of guidance. CONCLUSIONS AND IMPLICATIONS Guidance on preclinical efficacy in a consistent, comprehensive and explicit way that still allows for justified deviations is an important but neglected aspect of transparency for drug development. This transparency would help sponsors in designing preclinical studies and in negotiating more efficiently with regulators.
Collapse
Affiliation(s)
- Holger Langhof
- Charité - University Medicine Berlin, QUEST - Center for Transforming Biomedical Research, Berlin Institute of Health (BIH), Berlin, Germany.,Institute for History, Ethics and Philosophy of Medicine, Hannover Medical School (MHH), Hannover, Germany
| | - William Wei Lim Chin
- Institute for History, Ethics and Philosophy of Medicine, Hannover Medical School (MHH), Hannover, Germany
| | - Susanne Wieschowski
- Institute for History, Ethics and Philosophy of Medicine, Hannover Medical School (MHH), Hannover, Germany
| | - Carole Federico
- STREAM (Studies of Translation, Ethics and Medicine), Biomedical Ethics Unit, McGill University, Montreal, QC, Canada
| | - Jonathan Kimmelman
- STREAM (Studies of Translation, Ethics and Medicine), Biomedical Ethics Unit, McGill University, Montreal, QC, Canada
| | - Daniel Strech
- Charité - University Medicine Berlin, QUEST - Center for Transforming Biomedical Research, Berlin Institute of Health (BIH), Berlin, Germany.,Institute for History, Ethics and Philosophy of Medicine, Hannover Medical School (MHH), Hannover, Germany
| |
Collapse
|
125
|
Walker MJA, Hayes ES, Saint DA, Adaikan G, Abraham S, Goldin AL, Beatch GN, MacLeod BA, Wall RA, Pugsley MK. Pharmacological and toxicological activity of RSD921, a novel sodium channel blocker. Biomed Pharmacother 2018; 106:510-522. [PMID: 29990839 PMCID: PMC6492542 DOI: 10.1016/j.biopha.2018.06.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND RSD921, the R,R enantiomer of the kappa (k) agonist PD117,302, lacks significant activity on opioid receptors. METHODS The pharmacological and toxicological actions were studied with reference to cardiovascular, cardiac, antiarrhythmic, toxic and local anaesthetic activity. RESULTS In rats, dogs and baboons, RSD921 dose-dependently reduced blood pressure and heart rate. In a manner consistent with sodium channel blockade it prolonged the PR and QRS intervals of the ECG. Furthermore, in rats and NHP, RSD921 increased the threshold currents for induction of extra-systoles and ventricular fibrillation (VFt), and prolonged effective refractory period (ERP). In rats, RSD921 was protective against arrhythmias induced by electrical stimulation and coronary artery occlusion. Application of RSD921 to voltage-clamped rat cardiac myocytes blocked sodium currents. RSD921 also blocked transient (ito) and sustained (IKsus) outward potassium currents, albeit with reduced potency relative to sodium current blockade. Sodium channel blockade due to RSD921 in myocytes and isolated hearts was enhanced under ischaemic conditions (low pH and high extracellular potassium concentration). When tested on the cardiac, neuronal and skeletal muscle forms of sodium channels expressed in Xenopus laevis oocytes, RSD921 produced equipotent tonic block of sodium currents, enhanced channel block at reduced pH (6.4) and marked use-dependent block of the cardiac isoform. RSD921 had limited but quantifiable effects in subacute toxicology studies in rats and dogs. Pharmacokinetic analyses were performed in baboons. Plasma concentrations producing cardiac actions in vivo after intravenous administration of RSD921 were similar to the concentrations effective in the in vitro assays utilized. CONCLUSIONS RSD921 primarily blocks sodium currents, and possesses antiarrhythmic and local anaesthetic activity.
Collapse
MESH Headings
- Action Potentials
- Administration, Intravenous
- Anesthetics, Local/administration & dosage
- Anesthetics, Local/pharmacokinetics
- Anesthetics, Local/pharmacology
- Anesthetics, Local/toxicity
- Animals
- Anti-Arrhythmia Agents/administration & dosage
- Anti-Arrhythmia Agents/pharmacokinetics
- Anti-Arrhythmia Agents/pharmacology
- Anti-Arrhythmia Agents/toxicity
- Antihypertensive Agents/pharmacology
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/prevention & control
- Blood Pressure/drug effects
- Disease Models, Animal
- Dogs
- Dose-Response Relationship, Drug
- Female
- Guinea Pigs
- Heart Rate/drug effects
- Humans
- Injections, Intradermal
- Isolated Heart Preparation
- Male
- Mice
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Neural Conduction/drug effects
- Pain Threshold/drug effects
- Papio
- Pyrroles/pharmacology
- Rats
- Rats, Sprague-Dawley
- Sodium Channel Blockers/administration & dosage
- Sodium Channel Blockers/pharmacokinetics
- Sodium Channel Blockers/pharmacology
- Sodium Channel Blockers/toxicity
- Sodium Channels/drug effects
- Sodium Channels/metabolism
- Thiophenes/pharmacology
- Time Factors
- Xenopus laevis
Collapse
Affiliation(s)
- M J A Walker
- Department of Anesthesia, Pharmacology & Therapeutics, Faculty of Medicine, The University of British Columbia, 2176 Health Sciences Mall, Vancouver BC, V6T 1Z3, Canada.
| | - E S Hayes
- BioCurate Pty Ltd, Parkville, VIC, Australia.
| | - D A Saint
- Department of Physiology, Faculty of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia.
| | - G Adaikan
- Department of Obstetrics & Gynecology, Faculty of Medicine, National University of Singapore, Singapore.
| | - S Abraham
- Department of Pharmacology, IIBR, Ness Ziona, Israel.
| | - A L Goldin
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, United States.
| | - G N Beatch
- Clinical Science, Xenon Pharmaceuticals, Burnaby, BC, Canada.
| | - B A MacLeod
- Department of Anesthesia, Pharmacology & Therapeutics, Faculty of Medicine, The University of British Columbia, 2176 Health Sciences Mall, Vancouver BC, V6T 1Z3, Canada
| | - R A Wall
- Department of Anesthesia, Pharmacology & Therapeutics, Faculty of Medicine, The University of British Columbia, 2176 Health Sciences Mall, Vancouver BC, V6T 1Z3, Canada
| | - M K Pugsley
- Safety Pharmacology/Toxicology Consultant, Fairfield, CT, 06825, United States.
| |
Collapse
|
126
|
Alwan Y, Cvetkovic Z, Curtis MJ. Methods for Improved Discrimination Between Ventricular Fibrillation and Tachycardia. IEEE Trans Biomed Eng 2018; 65:2143-2151. [DOI: 10.1109/tbme.2017.2785442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
127
|
Deng L, Chen H, Wei N, Zhang Z, Wang G. The cardioprotective effect of dexmedetomidine on regional ischemia/reperfusion injury in type 2 diabetic rat hearts. Microvasc Res 2018; 123:1-6. [PMID: 30179598 DOI: 10.1016/j.mvr.2018.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/17/2018] [Accepted: 08/26/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Dexmedetomidine (DEX) is an α2-adrenergic receptor agonist commonly used during perioperative periods due to its sedation and analgesia effect. It is confirmed that DEX has cardioprotective effects against ischemia/reperfusion (I/R) injury. We investigated whether DEX administration is beneficial to type 2 diabetic rats subjected to I/R injury. METHODS The diabetes model was established by providing a high-fat diet for 2 weeks followed by injecting 35 mg/kg streptozotocin (STZ). The myocardial I/R model consisted of left anterior descending coronary artery occlusion for 30 min followed by reperfusion for two-hours. DEX was administered before ischemia; alternatively, yohimbine was administered with or without DEX before ischemia. At the end of reperfusion, the rats were sacrificed, and hearts were isolated for histology. The levels of glycogen synthase kinase-3β (GSK-3β) and phosphorylated GSK-3β (p-GSK-3β) were quantitatively analyzed. The infarct size was measured via Evans Blue and 2,3,5‑triphenyltetrazolium chloride (TTC) staining. Plasma samples were collected to measure the levels of cardiac Troponin T (cTnT). Arrhythmia scores were recorded during the first few minutes of reperfusion. RESULTS DEX preconditioning significantly reduced myocardial infarct size, arrhythmia scores and the plasma cTnT levels, and increased the p-GSK-3β levels. All of these protective effects of DEX were reversed by co-administration of yohimbine. CONCLUSIONS These results suggested that DEX preconditioning exerted a cardioprotective effect against regional I/R injury in diabetic rats.
Collapse
Affiliation(s)
- Lin Deng
- No. 150 Haping Rd., Nangang District, Harbin 150081, China
| | - Hong Chen
- No. 150 Haping Rd., Nangang District, Harbin 150081, China
| | - Na Wei
- No. 150 Haping Rd., Nangang District, Harbin 150081, China
| | - Zhaodi Zhang
- No. 150 Haping Rd., Nangang District, Harbin 150081, China
| | - Guonian Wang
- No. 150 Haping Rd., Nangang District, Harbin 150081, China.
| |
Collapse
|
128
|
Szobi A, Farkašová‐Ledvényiová V, Lichý M, Muráriková M, Čarnická S, Ravingerová T, Adameová A. Cardioprotection of ischaemic preconditioning is associated with inhibition of translocation of MLKL within the plasma membrane. J Cell Mol Med 2018; 22:4183-4196. [PMID: 29921042 PMCID: PMC6111849 DOI: 10.1111/jcmm.13697] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/26/2018] [Indexed: 12/17/2022] Open
Abstract
Necroptosis, a form of cell loss involving the RIP1-RIP3-MLKL axis, has been identified in cardiac pathologies while its inhibition is cardioprotective. We investigated whether the improvement of heart function because of ischaemic preconditioning is associated with mitigation of necroptotic signaling, and these effects were compared with a pharmacological antinecroptotic approach targeting RIP1. Langendorff-perfused rat hearts were subjected to ischaemic preconditioning with or without a RIP1 inhibitor (Nec-1s). Necroptotic signaling and the assessment of oxidative damage and a putative involvement of CaMKII in this process were analysed in whole tissue and subcellular fractions. Ischaemic preconditioning, Nec-1s and their combination improved postischaemic heart function recovery and reduced infarct size to a similar degree what was in line with the prevention of MLKL oligomerization and translocation to the membrane. On the other hand, membrane peroxidation and apoptosis were unchanged by either approach. Ischaemic preconditioning failed to ameliorate ischaemia-reperfusion-induced increase in RIP1 and RIP3 while pSer229-RIP3 levels were reduced only by Nec-1s. In spite of the additive phosphorylation of CaMKII and PLN because of ditherapy, the postischaemic contractile force and relaxation was comparably improved in all the intervention groups while antiarrhythmic effects were observed in the ischaemic preconditioning group only. Necroptosis inhibition seems to be involved in cardioprotection of ischaemic preconditioning and is comparable but not intensified by an anti-RIP1 agent. Changes in oxidative stress nor CaMKII signaling are unlikely to explain the beneficial effects.
Collapse
Affiliation(s)
- Adrián Szobi
- Faculty of PharmacyComenius University in BratislavaBratislavaSlovakia
| | | | - Martin Lichý
- Faculty of PharmacyComenius University in BratislavaBratislavaSlovakia
| | - Martina Muráriková
- Centre of Experimental MedicineInstitute for Heart ResearchSlovak Academy of SciencesBratislavaSlovakia
| | - Slávka Čarnická
- Centre of Experimental MedicineInstitute for Heart ResearchSlovak Academy of SciencesBratislavaSlovakia
| | - Tatiana Ravingerová
- Centre of Experimental MedicineInstitute for Heart ResearchSlovak Academy of SciencesBratislavaSlovakia
| | - Adriana Adameová
- Faculty of PharmacyComenius University in BratislavaBratislavaSlovakia
| |
Collapse
|
129
|
A modified approach for programmed electrical stimulation in mice: Inducibility of ventricular arrhythmias. PLoS One 2018; 13:e0201910. [PMID: 30133474 PMCID: PMC6104969 DOI: 10.1371/journal.pone.0201910] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/24/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Electrophysiological studies in mice, the prevailing model organism in the field of basic cardiovascular research, are impeded by the low yield of programmed electrical stimulation (PES). OBJECTIVE To investigate a modified approach for ventricular arrhythmia (VA) induction and a novel scoring system in mice. METHOD A systematic review of literature on current methods for PES in mice searching the PubMed database revealed that VA inducibility was low and ranged widely (4.6 ± 10.7%). Based on this literature review, a modified PES protocol with 3 to 10 extrastimuli was developed and tested in comparison to the conventional PES protocol using up to 3 extrastimuli in anesthetized wildtype mice (C57BL/6J, n = 12). Induced VA, classified according to the Lambeth Convention, were assessed by established arrhythmia scores as well as a novel arrhythmia score based on VA duration. RESULTS PES with the modified approach raised both the occurrence and the duration of VA compared to conventional PES (0% vs 50%; novel VA score p = 0.0002). Particularly, coupling of >6 extrastimuli raised the induction of VA. Predominantly, premature ventricular complexes (n = 6) and ventricular tachycardia <1s (n = 4) were observed. Repeated PES after adrenergic stimulation using isoprenaline resulted in enhanced induction of ventricular tachycardia <1s in both protocols. CONCLUSION Our findings suggest that the presented approach of modified PES enables effective induction and quantification of VA in wildtype mice and may well be suited to document and evaluate detailed VA characteristics in mice.
Collapse
|
130
|
Differential temporal inhibition of mitochondrial fission by Mdivi-1 exerts effective cardioprotection in cardiac ischemia/reperfusion injury. Clin Sci (Lond) 2018; 132:1669-1683. [PMID: 30065084 DOI: 10.1042/cs20180510] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/28/2018] [Accepted: 07/31/2018] [Indexed: 12/26/2022]
Abstract
Altered cardiac mitochondrial dynamics with excessive fission is a predominant cause of cardiac dysfunction during ischemia/reperfusion (I/R) injury. Although pre-ischemic inhibition of mitochondrial fission has been shown to improve cardiac function in I/R injury, the effects of this inhibitor given at different time-points during cardiac I/R injury are unknown. Fifty male Wistar rats were subjected to sham and cardiac I/R injury. For cardiac I/R injury, rats were randomly divided into pre-ischemia, during-ischemia, and upon onset of reperfusion group. A mitochondrial fission inhibitor, Mdivi-1 (mitochondrial division inhibitor 1) (1.2 mg/kg) was used. During I/R protocols, the left ventricular (LV) function, arrhythmia score, and mortality rate were determined. Then, the heart was removed to determine infarct size, mitochondrial function, mitochondrial dynamics, and apoptosis. Our results showed that Mdivi-1 given prior to ischemia, exerted the highest level of cardioprotection quantitated through the attenuated incidence of arrhythmia, reduced infarct size, improved cardiac mitochondrial function and fragmentation, and decreased cardiac apoptosis, leading to preserved LV function during I/R injury. Mdivi-1 administered during ischemia and upon the onset of reperfusion also improved cardiac mitochondrial function and LV function, but at a lower efficacy than when it was given prior to ischemia. Taken together, mitochondrial fission inhibition after myocardial ischemic insults still exerts cardioprotection by attenuating mitochondrial dysfunction and dynamic imbalance, leading to decreased infarct size and ultimately improved LV function after acute cardiac I/R injury in rats. These findings indicate its potential clinical usefulness.
Collapse
|
131
|
Orgah JO, Yu J, Zhao T, Wang L, Yang M, Zhang Y, Fan G, Zhu Y. Danhong Injection Reversed Cardiac Abnormality in Brain-Heart Syndrome via Local and Remote β-Adrenergic Receptor Signaling. Front Pharmacol 2018; 9:692. [PMID: 30018549 PMCID: PMC6037833 DOI: 10.3389/fphar.2018.00692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/07/2018] [Indexed: 12/18/2022] Open
Abstract
Ischemic brain injury impacts cardiac dysfunction depending on the part of the brain affected, with a manifestation of irregular blood pressure, arrhythmia, and heart failure. Generally called brain–heart syndrome in traditional Chinese medicine, few mechanistic understanding and treatment options are available at present. We hypothesize that considering the established efficacy for both ischemic stroke and myocardial infarction (MI), Danhong injection (DHI), a multicomponent Chinese patent medicine, may have a dual pharmacological potential for treating the brain–heart syndrome caused by cerebral ischemic stroke through its multi-targeted mechanisms. We investigated the role of DHI in the setting of brain–heart syndrome and determined the mechanism by which it regulates this process. We induced Ischemia/Reperfusion in Wistar rats and administered intravenous dose of DHI twice daily for 14 days. We assessed the neurological state, infarct volume, CT scan, arterial blood pressure, heart rhythm, and the hemodynamics. We harvested the brain and heart tissues for immunohistochemistry and western blot analyses. Our data show that DHI exerts potent anti-stroke effects (infarct volume reduction: ∗∗p < 0.01 and ∗∗∗p < 0.001 vs. vehicle. Neurological deficit correction: ∗p < 0.05 and ∗∗∗p < 0.001 vs. vehicle), and effectively reversed the abnormal arterial pressure (∗p < 0.05 vs. vehicle) and heart rhythm (∗∗p < 0.01 vs. vehicle). The phenotype of this brain–heart syndrome is strikingly similar to those of MI model. Quantitative assessment of hemodynamic in cardiac functionality revealed a positive uniformity in the PV-loop after administration with DHI and valsartan in the latter. Immunohistochemistry and western blot results showed the inhibitory effect of DHI on the β-adrenergic pathway as well as protein kinase C epsilon (PKCε) (∗∗p < 0.01 vs. model). Our data showed the underlying mechanisms of the brain–heart interaction and offer the first evidence that DHI targets the adrenergic pathway to modulate cardiac function in the setting of brain–heart syndrome. This study has made a novel discovery for proper application of the multi-target DHI and could serve as a therapeutic option in the setting of brain–heart syndrome.
Collapse
Affiliation(s)
- John O Orgah
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Jiahui Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Tiechan Zhao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Lingyan Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingzhu Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Yan Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| |
Collapse
|
132
|
Wang YH, Li SA, Huang CH, Su HH, Chen YH, Chang JT, Huang SS. Sirt1 Activation by Post-ischemic Treatment With Lumbrokinase Protects Against Myocardial Ischemia-Reperfusion Injury. Front Pharmacol 2018; 9:636. [PMID: 29962953 PMCID: PMC6013847 DOI: 10.3389/fphar.2018.00636] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/29/2018] [Indexed: 01/01/2023] Open
Abstract
Lumbrokinase is used as an oral supplement to support and maintain healthy cardiovascular function, and to treat cardiovascular diseases in clinical for more than 10 years. Up until now, the mechanism of the cardioprotective effects of post-ischemic treatment with lumbrokinase has remained unclear. We therefore investigated the signaling pathways involved in the amelioration of myocardial ischemia-reperfusion (I-R) injury in rats treated with lumbrokinase 20 min after myocardial ischemia. Compared to vehicle-treated rats, post-ischemic treatment with lumbrokinase was associated with significant reductions in myocardial I-R-induced arrhythmias and myocardial damage, and an improvement in cardiac function. Moreover, lumbrokinase significantly upregulated levels of silent information regulator 1 (Sirt1). In addition, lumbrokinase significantly increased manganese-dependent superoxide dismutase expression, decreased Cleaved-Caspase-3 expression, and induced deacetylation of FoxO1. On the other hand, lumbrokinase also significantly downregulated levels of succinate dehydrogenase, cytochrome c oxidase, nuclear factor kappa B (NF-κB) and elevated levels of microtubule-associated protein light chain 3. Notably, the cardioprotective effects of lumbrokinase were abolished by administration of the specific Sirt1 inhibitor EX527. These findings demonstrate that post-ischemic treatment with lumbrokinase attenuates myocardial I-R injury through the activation of Sirt1 signaling, and thus enhances autophagic flux and reduces I-R-induced oxidative damage, inflammation and apoptosis.
Collapse
Affiliation(s)
- Yi-Hsin Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-An Li
- Superintendent Office, Yuanli Lee's General Hospital, Lee's Medical Corporation, Miaoli, Taiwan
| | - Chao-Hsin Huang
- Department of Internal Medicine, Dajia Lee's General Hospital, Lee's Medical Corporation, Taichung, Taiwan
| | - Hsing-Hui Su
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science and Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung, Taiwan.,Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan
| | - Jinghua T Chang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shiang-Suo Huang
- Department of Pharmacology and Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
133
|
Javidanpour S, Dianat M, Badavi M, Mard SA. The inhibitory effect of rosmarinic acid on overexpression of NCX1 and stretch- induced arrhythmias after acute myocardial infarction in rats. Biomed Pharmacother 2018; 102:884-893. [PMID: 29710544 DOI: 10.1016/j.biopha.2018.03.103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/10/2018] [Accepted: 03/17/2018] [Indexed: 11/19/2022] Open
Abstract
The incidence of arrhythmias is the main cause of high mortality after myocardial infarction (AMI). The aim of the present study was to determine whether the rosmarinic acid (RA) could reduce the stretch-induced arrhythmias (SIAs) related to overexpression of NCX1 after AMI. Adult male Sprague-Dawley rats were randomly allocated into six groups: Sham, MI (100 mg/kg of isoproterenol (Iso), subcutaneously, on two consecutive days), RA (30 mg/kg, orally, 14 days), and RA (10, 15 and 30 mg/kg, 14 days) + I. MI induction was performed on the 13th and 14th days of the study period. Forty-eight hours after the first injection of Iso, the parameters of hypertrophy, plasma levels of malondialdehyde (MDA) and lipid profile were evaluated. Using Langendorff apparatus, the isolated hearts were transiently stretched for 5 s with three different end-diastolic volumes (ΔV1to3 = 0.05, 0.1 and 0.2 mL). Cardiac function parameters were measured for 30 s, and ventricular arrhythmias were recorded for 3 min after each stretch. Finally, the levels of cardiac troponin-I and NCX1 mRNA expression were examined. The rats of MI group showed a significant increase in hypertrophy index, MDA, triglyceride and cholesterol (P < 0.001). Additionally, a marked impairment in cardiac parameters, an increase in the rates of SIAs and NCX1 expression, and a decrease in troponin-I (P < 0.001) were observed. RA at three doses especially 15 mg/kg strongly improved almost all the mentioned factors (P < 0.001). Our results confirm that RA pretreatment could prevent hypertrophia, arrhythmia and cardiac dysfunction following AMI which is associated with inhibition of lipid peroxidation and overexpression of NCX1.
Collapse
MESH Headings
- Animals
- Arrhythmias, Cardiac/blood
- Arrhythmias, Cardiac/complications
- Arrhythmias, Cardiac/drug therapy
- Arrhythmias, Cardiac/physiopathology
- Blood Pressure/drug effects
- Cardiomegaly/blood
- Cardiomegaly/complications
- Cardiomegaly/drug therapy
- Cardiomegaly/physiopathology
- Cholesterol, HDL/blood
- Cholesterol, LDL/blood
- Cinnamates/pharmacology
- Cinnamates/therapeutic use
- Depsides/pharmacology
- Depsides/therapeutic use
- Diastole/drug effects
- Electrocardiography
- Gene Expression Regulation/drug effects
- Heart Ventricles/drug effects
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Male
- Malondialdehyde/blood
- Myocardial Infarction/blood
- Myocardial Infarction/complications
- Myocardial Infarction/drug therapy
- Myocardial Infarction/physiopathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Sodium-Calcium Exchanger/genetics
- Sodium-Calcium Exchanger/metabolism
- Stress, Mechanical
- Tachycardia/blood
- Tachycardia/complications
- Tachycardia/drug therapy
- Tachycardia/physiopathology
- Triglycerides/blood
- Troponin I/metabolism
- Ventricular Premature Complexes/blood
- Ventricular Premature Complexes/complications
- Ventricular Premature Complexes/physiopathology
- Rosmarinic Acid
Collapse
Affiliation(s)
- Somayeh Javidanpour
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohammad Badavi
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
134
|
Jungen C, Scherschel K, Bork NI, Kuklik P, Eickholt C, Kniep H, Klatt N, Willems S, Nikolaev VO, Meyer C. Impact of Intracardiac Neurons on Cardiac Electrophysiology and Arrhythmogenesis in an Ex Vivo Langendorff System. J Vis Exp 2018. [PMID: 29889210 DOI: 10.3791/57617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Since its invention in the late 19th century, the Langendorff ex vivo heart perfusion system continues to be a relevant tool for studying a broad spectrum of physiological, biochemical, morphological, and pharmacological parameters in centrally denervated hearts. Here, we describe a setup for the modulation of the intracardiac autonomic nervous system and the assessment of its influence on basic electrophysiology, arrhythmogenesis, and cyclic adenosine monophosphate (cAMP) dynamics. The intracardiac autonomic nervous system is modulated by the mechanical dissection of atrial fat pads-in which murine ganglia are located mainly-or by the usage of global as well as targeted pharmacological interventions. An octapolar electrophysiological catheter is introduced into the right atrium and the right ventricle, and epicardial-placed multi-electrode arrays (MEA) for high-resolution mapping are used to determine cardiac electrophysiology and arrhythmogenesis. Förster resonance energy transfer (FRET) imaging is performed for the real-time monitoring of cAMP levels in different cardiac regions. Neuromorphology is studied by means of antibody-based staining of whole hearts using neuronal markers to guide the identification and modulation of specific targets of the intracardiac autonomic nervous system in the performed studies. The ex vivo Langendorff setup allows for a high number of reproducible experiments in a short time. Nevertheless, the partly open nature of the setup (e.g., during MEA measurements) makes constant temperature control difficult and should be kept to a minimum. This described method makes it possible to analyze and modulate the intracardiac autonomic nervous system in decentralized hearts.
Collapse
Affiliation(s)
- Christiane Jungen
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Center, University Hospital Hamburg-Eppendorf; DZHK (German Center for Cardiovascular Research)
| | - Katharina Scherschel
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Center, University Hospital Hamburg-Eppendorf; DZHK (German Center for Cardiovascular Research)
| | - Nadja I Bork
- DZHK (German Center for Cardiovascular Research); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf
| | - Pawel Kuklik
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Center, University Hospital Hamburg-Eppendorf
| | - Christian Eickholt
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Center, University Hospital Hamburg-Eppendorf
| | - Helge Kniep
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Center, University Hospital Hamburg-Eppendorf
| | - Niklas Klatt
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Center, University Hospital Hamburg-Eppendorf; DZHK (German Center for Cardiovascular Research)
| | - Stephan Willems
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Center, University Hospital Hamburg-Eppendorf; DZHK (German Center for Cardiovascular Research)
| | - Viacheslav O Nikolaev
- DZHK (German Center for Cardiovascular Research); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf
| | - Christian Meyer
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Center, University Hospital Hamburg-Eppendorf; DZHK (German Center for Cardiovascular Research);
| |
Collapse
|
135
|
Nuntaphum W, Pongkan W, Wongjaikam S, Thummasorn S, Tanajak P, Khamseekaew J, Intachai K, Chattipakorn SC, Chattipakorn N, Shinlapawittayatorn K. Vagus nerve stimulation exerts cardioprotection against myocardial ischemia/reperfusion injury predominantly through its efferent vagal fibers. Basic Res Cardiol 2018; 113:22. [PMID: 29744667 DOI: 10.1007/s00395-018-0683-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/17/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023]
Abstract
Vagus nerve stimulation (VNS) has been shown to exert cardioprotection against myocardial ischemia/reperfusion (I/R) injury. However, whether the cardioprotection of VNS is mainly due to direct activation through its ipsilateral efferent fibers (motor) rather than indirect effects mediated by the afferent fibers (sensory) have not been clearly understood. We hypothesized that VNS exerts cardioprotection predominantly through its efferent vagal fibers. Thirty swine (30-35 kg) were randomized into five groups: I/R no VNS (I/R), and left mid-cervical VNS with both vagal trunks intact (LC-VNS), with left vagus nerve transection (LtVNX), with right vagus nerve transection (RtVNX) and with atropine pretreatment (Atropine), respectively. VNS was applied at the onset of ischemia (60 min) and continued until the end of reperfusion (120 min). Cardiac function, infarct size, arrhythmia score, myocardial connexin43 expression, apoptotic markers, oxidative stress markers, inflammatory markers (TNF-α and IL-10) and cardiac mitochondrial function, dynamics and fatty acid oxidation (MFN2, OPA1, DRP1, PGC1α and CPT1) were determined. LC-VNS exerted cardioprotection against myocardial I/R injury via improvement of mitochondrial function and dynamics and shifted cardiac fatty acid metabolism toward beta oxidation. However, LC-VNS and LtVNX, both efferent vagal fibers are intact, produced more profound cardioprotection, particularly infarct size reduction, decreased arrhythmia score, oxidative stress and apoptosis and attenuated mitochondrial dysfunction compared to RtVNX. These beneficial effects of VNS were abolished by atropine. Our findings suggest that selective efferent VNS may potentially be effective in attenuating myocardial I/R injury. Moreover, VNS required the contralateral efferent vagal activities to fully provide its cardioprotection.
Collapse
Affiliation(s)
- Watthana Nuntaphum
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wanpitak Pongkan
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Suwakon Wongjaikam
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Savitree Thummasorn
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pongpan Tanajak
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Juthamas Khamseekaew
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kannaporn Intachai
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Krekwit Shinlapawittayatorn
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
136
|
Wilder CDE, Pavlaki N, Dursun T, Gyimah P, Caldwell‐Dunn E, Ranieri A, Lewis HR, Curtis MJ. Facilitation of ischaemia-induced ventricular fibrillation by catecholamines is mediated by β 1 and β 2 agonism in the rat heart in vitro. Br J Pharmacol 2018; 175:1669-1690. [PMID: 29473948 PMCID: PMC5913407 DOI: 10.1111/bph.14176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/26/2018] [Accepted: 02/08/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Antiarrhythmic β-blockers are used in patients at risk of myocardial ischaemia, but the survival benefit and mechanisms are unclear. We hypothesized that β-blockers do not prevent ventricular fibrillation (VF) but instead inhibit the ability of catecholamines to facilitate ischaemia-induced VF, limiting the scope of their usefulness. EXPERIMENTAL APPROACH ECGs were analysed from ischaemic Langendorff-perfused rat hearts perfused with adrenoceptor antagonists and/or exogenous catecholamines (CATs: 313 nM noradrenaline + 75 nM adrenaline) in a blinded and randomized study. Ischaemic zone (IZ) size was deliberately made small or large. KEY RESULTS In rat hearts with large IZs, ischaemia-induced VF incidence was high in controls. Atenolol, butoxamine and trimazosin did not affect VF at concentrations with β1 -, β2 - or α1 - adrenoceptor specificity and selectivity (confirmed in separate rat aortae myography experiments). In hearts with small IZs and low baseline incidence of ischaemia-induced VF, CATs, delivered to the uninvolved zone (UZ), increased ischaemia-induced VF incidence. This effect was not mimicked by atrial pacing, hence, not due to sinus tachycardia. However, the CATs-facilitated increase in ischaemia-induced VF was inhibited by atenolol and butoxamine (but not trimazosin), indicative of β1 - and β2 - but not α1 -adrenoceptor involvement (confirmed by immunoblot analysis of downstream phosphoproteins). CATs did not facilitate VF in low-flow globally ischaemic hearts, which have no UZ. CONCLUSIONS AND IMPLICATIONS Catecholamines facilitated ischaemia-induced VF when risk was low, acting via β1 - and β2 - adrenoceptors located in the UZ. There was no scope for facilitation when VF risk was high (large IZ), which may explain why β-blockers have equivocal effectiveness in humans.
Collapse
Affiliation(s)
- Catherine D E Wilder
- Cardiovascular Division, Faculty of Life Sciences and Medicine, The Rayne InstituteSt Thomas' HospitalLondonSE1 7EHUK
| | - Nikoleta Pavlaki
- Cardiovascular Division, Faculty of Life Sciences and Medicine, The Rayne InstituteSt Thomas' HospitalLondonSE1 7EHUK
| | - Tutku Dursun
- Cardiovascular Division, Faculty of Life Sciences and Medicine, The Rayne InstituteSt Thomas' HospitalLondonSE1 7EHUK
| | - Paul Gyimah
- Cardiovascular Division, Faculty of Life Sciences and Medicine, The Rayne InstituteSt Thomas' HospitalLondonSE1 7EHUK
| | - Ellice Caldwell‐Dunn
- Cardiovascular Division, Faculty of Life Sciences and Medicine, The Rayne InstituteSt Thomas' HospitalLondonSE1 7EHUK
| | - Antonella Ranieri
- Cardiovascular Division, Faculty of Life Sciences and Medicine, The Rayne InstituteSt Thomas' HospitalLondonSE1 7EHUK
| | - Hannah R Lewis
- Cardiovascular Division, Faculty of Life Sciences and Medicine, The Rayne InstituteSt Thomas' HospitalLondonSE1 7EHUK
| | - Michael J Curtis
- Cardiovascular Division, Faculty of Life Sciences and Medicine, The Rayne InstituteSt Thomas' HospitalLondonSE1 7EHUK
| |
Collapse
|
137
|
Alexandre J, Moslehi JJ, Bersell KR, Funck-Brentano C, Roden DM, Salem JE. Anticancer drug-induced cardiac rhythm disorders: Current knowledge and basic underlying mechanisms. Pharmacol Ther 2018; 189:89-103. [PMID: 29698683 DOI: 10.1016/j.pharmthera.2018.04.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significant advances in cancer treatment have resulted in decreased cancer related mortality for many malignancies with some cancer types now considered chronic diseases. Despite these improvements, there is increasing recognition that many cancer patients or cancer survivors can develop cardiovascular diseases, either due to the cancer itself or as a result of anticancer therapy. Much attention has focused on heart failure; however, other cardiotoxicities, notably cardiac rhythm disorders, can occur without underlying cardiomyopathy. Supraventricular tachycardias occur in cancer patients treated with cytotoxic chemotherapy (anthracyclines, gemcitabine, cisplatin and alkylating-agents) or kinase-inhibitors (KIs) such as ibrutinib. Ventricular arrhythmias, with a subset of them being torsades-de-pointes (TdP) favored by QTc prolongation have been reported: this may be the result of direct hERG-channel inhibition or a more recently-described mechanism of phosphoinositide-3-kinase inhibition. The major anticancer drugs responsible for QTc prolongation in this context are KIs, arsenic trioxide, anthracyclines, histone deacetylase inhibitors, and selective estrogen receptor modulators. Anticancer drug-induced cardiac rhythm disorders remain an underappreciated complication even by experienced clinicians. Moreover, the causal relationship of a particular anticancer drug with cardiac arrhythmia occurrence remains challenging due in part to patient comorbidities and complex treatment regimens. For example, any cancer patient may also be diagnosed with common diseases such as hypertension, diabetes or heart failure which increase an individual's arrhythmia susceptibility. Further, anticancer drugs are generally usually used in combination, increasing the challenge around establishing causation. Thus, arrhythmias appear to be an underappreciated adverse effect of anticancer agents and the incidence, significance and underlying mechanisms are now being investigated.
Collapse
Affiliation(s)
- Joachim Alexandre
- CHU Caen, PICARO Cardio-oncology Program, Department of Pharmacology, F-14033 Caen, France; Normandie Univ, UNICAEN, CHU Caen, EA 4650, Signalisation, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, 14000 Caen, France
| | - Javid J Moslehi
- Vanderbilt University Medical Center, Cardio-oncology Program, Department of Medicine, Nashville, Tennessee, USA
| | - Kevin R Bersell
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christian Funck-Brentano
- Sorbonne Université, INSERM CIC Paris-Est, AP-HP, ICAN, Pitié-Salpêtrière Hospital, Department of Pharmacology, F-75013 Paris, France
| | - Dan M Roden
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joe-Elie Salem
- Vanderbilt University Medical Center, Cardio-oncology Program, Department of Medicine, Nashville, Tennessee, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA; Sorbonne Université, INSERM CIC Paris-Est, AP-HP, ICAN, Pitié-Salpêtrière Hospital, Department of Pharmacology, F-75013 Paris, France.
| |
Collapse
|
138
|
Najafi M, Noroozi E, Javadi A, Badalzadeh R. Anti-arrhythmogenic and anti-inflammatory effects of troxerutin in ischemia/reperfusion injury of diabetic myocardium. Biomed Pharmacother 2018; 102:385-391. [PMID: 29573617 DOI: 10.1016/j.biopha.2018.03.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Medicinal plants are increasingly used in the treatment of cardiovascular diseases due to their multifaceted properties. This study was designed to investigate anti-arrhythmic and anti-inflammatory potentials of the natural bioflavonoid, troxerutin (TXR) in myocardial ischemia/reperfusion (I/R) injury in diabetic rats. METHODS Male Wistar rats were randomly divided into 4 groups (control, control + TXR [150 mg/kg, daily], diabetic, and diabetic + TXR). Type-1 diabetes was induced by an intraperitoneal injection of streptozotocin (50 mg/kg) and lasted for 10 weeks. After mounting on the Langendorff apparatus, isolated hearts in all groups received a normal Krebs-Henseleit solution for 20 min of stabilization period, followed by 30 min of regional ischemia through ligation of the left anterior descending coronary artery, and 60 min of full reperfusion. During the experiment, the electrocardiograms were recorded and the arrhythmias [number, duration and incidence of premature ventricular complexes (PVC), ventricular tachycardia (VT), ventricular fibrillation (VF), and arrhythmia score] during I/R phases were assessed based on the Lambeth Convention. Ischemic left ventricular samples were used to determine the activities of lactate dehydrogenase (LDH), interleukin-1beta (IL-1β), and tumor necrosis factor (TNF-α). RESULTS The arrhythmias induced by I/R were not significantly changed in diabetic group as compared to the control group. However, pretreatment with TXR significantly reduced the number of PVC and duration and incidence of VF in ischemic phase in comparison to the untreated animals (P < 0.05). In addition, the duration, and incidence of most arrhythmias during reperfusion phase were significantly declined by TXR administration in both control and diabetic groups (P < 0.05). Pretreatment of rats with TXR significantly reduced myocardial inflammatory cytokines TNF-α and IL-1β levels after I/R insult in diabetic as well as control hearts (P < 0.05). CONCLUSION Preconditioning with TXR could provide cardioprotection by anti-arrhythmic and anti-inflammatory effects against I/R injury in rat hearts. This effect of TXR can introduce this material as a protective agent in cardiovascular diseases.
Collapse
Affiliation(s)
- Moslem Najafi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Elham Noroozi
- Department of Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aniseh Javadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Biomedicine Institute, Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Badalzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Biomedicine Institute, Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
139
|
Yeo JM, Tse V, Kung J, Lin HY, Lee YT, Kwan J, Yan BP, Tse G. Isolated heart models for studying cardiac electrophysiology: a historical perspective and recent advances. J Basic Clin Physiol Pharmacol 2018; 28:191-200. [PMID: 28063261 DOI: 10.1515/jbcpp-2016-0110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/12/2016] [Indexed: 01/25/2023]
Abstract
Experimental models used in cardiovascular research range from cellular to whole heart preparations. Isolated whole hearts show higher levels of structural and functional integration than lower level models such as tissues or cellular fragments. Cardiovascular diseases are multi-factorial problems that are dependent on highly organized structures rather than on molecular or cellular components alone. This article first provides a general introduction on the animal models of cardiovascular diseases. It is followed by a detailed overview and a historical perspective of the different isolated heart systems with a particular focus on the Langendorff perfusion method for the study of cardiac arrhythmias. The choice of species, perfusion method, and perfusate composition are discussed in further detail with particular considerations of the theoretical and practical aspects of experimental settings.
Collapse
Affiliation(s)
- Jie Ming Yeo
- School of Medicine, Imperial College London, London
| | - Vivian Tse
- Department of Physiology, McGill University, Montreal, Quebec
| | - Judy Kung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R
| | - Hiu Yu Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R
| | - Yee Ting Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R
| | - Joseph Kwan
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R
| | - Bryan P Yan
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne
| | - Gary Tse
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR, P.R
| |
Collapse
|
140
|
Li X, Bilali A, Qiao R, Paerhati T, Yang Y. Association of the PPARγ/PI3K/Akt pathway with the cardioprotective effects of tacrolimus in myocardial ischemic/reperfusion injury. Mol Med Rep 2018; 17:6759-6767. [PMID: 29488613 DOI: 10.3892/mmr.2018.8649] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/02/2017] [Indexed: 11/06/2022] Open
Abstract
Myocardial ischemia/reperfusion injury (MIRI) induces severe arrhythmias and has a high risk of mortality. The aim of the present study was to investigate the effect of tacrolimus on arrhythmias, cardiac function, oxidative stress and myocardium apoptosis induced by MIRI, and to elucidate the underlying mechanism. The effects of MIRI and tacrolimus on arrhythmias, cardiac function parameters, myocardial oxidative stress and apoptosis were investigated in a rat model of MIRI. The phosphorylation of peroxisome proliferator‑activated receptor γ (PPARγ) and protein kinase B (Akt) was investigated via western blotting. After rats were treated with inhibitors of PPARγ/phosphoinositide 3‑kinase (PI3K)/Akt, cardiac function parameters were measured. The results demonstrated that the MIRI procedure induced arrhythmias and significant impairment of cardiac function, oxidative stress and apoptosis in cardiomyocytes (P<0.05). Tacrolimus significantly alleviated the arrhythmias and impairment of cardiac function and inhibited the oxidative stress and apoptosis in cardiomyocytes (P<0.05). The phosphorylation of PPARγ and Akt was significantly activated by tacrolimus, whereas inhibitors of PPARγ/PI3K/Akt significantly abolished the effects of tacrolimus (P<0.05). Together, these results suggest that tacrolimus may protect rats from MIRI through activation of the PPARγ/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xiufen Li
- Cardiac Care Unit, The Traditional Hospital Affiliated to Xinjiang Medical University, Ürümqi, Xinjiang 830001, P.R. China
| | - Aishan Bilali
- Cardiac Care Unit, The Traditional Hospital Affiliated to Xinjiang Medical University, Ürümqi, Xinjiang 830001, P.R. China
| | - Rui Qiao
- Cardiac Care Unit, The Traditional Hospital Affiliated to Xinjiang Medical University, Ürümqi, Xinjiang 830001, P.R. China
| | - Tuerxun Paerhati
- Cardiac Care Unit, The Traditional Hospital Affiliated to Xinjiang Medical University, Ürümqi, Xinjiang 830001, P.R. China
| | - Yan Yang
- Cardiac Care Unit, The Traditional Hospital Affiliated to Xinjiang Medical University, Ürümqi, Xinjiang 830001, P.R. China
| |
Collapse
|
141
|
Tanajak P, Sa-Nguanmoo P, Sivasinprasasn S, Thummasorn S, Siri-Angkul N, Chattipakorn SC, Chattipakorn N. Cardioprotection of dapagliflozin and vildagliptin in rats with cardiac ischemia-reperfusion injury. J Endocrinol 2018; 236:69-84. [PMID: 29142025 DOI: 10.1530/joe-17-0457] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/15/2017] [Indexed: 12/16/2022]
Abstract
Sodium-glucose cotransporter 2 inhibitor (SGLT2-i) effects on cardiac ischemia/reperfusion (I/R) injury are unclear. Unlike SGLT2-i, dipeptidyl peptidase 4 inhibitors (DPP4-i) have shown effective cardioprotection in cardiac I/R injury. We aimed to investigate whether SGLT2-i reduces myocardial dysfunction and myocardial injury to a greater extent than DPP4-i in obese insulin-resistant rats with/without cardiac I/R injury. The high-fat (HF) diet-induced obese insulin-resistant rats were divided into 4 groups and received the following treatments for 28 days: vehicle (HFV); vildagliptin at a dosage of 3 mg/kg/day (HFVil); dapagliflozin at a dosage of 1 mg/kg/day (HFDa) and combination drugs (HFDaVil). At the end, I/R injury was induced by a 30-min left anterior descending coronary occlusion and 120-min reperfusion. Dapagliflozin showed a greater efficacy than vildagliptin in improving the metabolic impairments, low frequency/high frequency (LF/HF) ratio, systolic blood pressure and left ventricular (LV) function in comparison to HFV rats. In cardiac I/R injury, dapagliflozin had a greater efficacy than vildagiptin in decreasing mitochondrial DRP1, cleaved caspase 3, LV dysfunction and infarct size in comparison to HFV rats. However, the combined therapy showed the greatest efficacy in attenuating LV dysfunction, mitochondrial DRP1 and infarct size in comparison to HFV rats. In conclusion, dapagliflozin has a more pronounced effect than vildagliptin in obese insulin-resistant rats for the improvement of LV function. In rats with cardiac I/R injury, although dapagliflozin had a greater efficacy on cardioprotection than vildagliptin, the combined therapy exerted the highest cardioprotective effects potentially by reducing mitochondrial fission.
Collapse
Affiliation(s)
- Pongpan Tanajak
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| | - Piangkwan Sa-Nguanmoo
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| | - Sivaporn Sivasinprasasn
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Savitree Thummasorn
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| | - Natthaphat Siri-Angkul
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic SciencesFaculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
142
|
Lindsey ML, Bolli R, Canty JM, Du XJ, Frangogiannis NG, Frantz S, Gourdie RG, Holmes JW, Jones SP, Kloner RA, Lefer DJ, Liao R, Murphy E, Ping P, Przyklenk K, Recchia FA, Schwartz Longacre L, Ripplinger CM, Van Eyk JE, Heusch G. Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol 2018; 314:H812-H838. [PMID: 29351451 PMCID: PMC5966768 DOI: 10.1152/ajpheart.00335.2017] [Citation(s) in RCA: 369] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myocardial infarction is a prevalent major cardiovascular event that arises from myocardial ischemia with or without reperfusion, and basic and translational research is needed to better understand its underlying mechanisms and consequences for cardiac structure and function. Ischemia underlies a broad range of clinical scenarios ranging from angina to hibernation to permanent occlusion, and while reperfusion is mandatory for salvage from ischemic injury, reperfusion also inflicts injury on its own. In this consensus statement, we present recommendations for animal models of myocardial ischemia and infarction. With increasing awareness of the need for rigor and reproducibility in designing and performing scientific research to ensure validation of results, the goal of this review is to provide best practice information regarding myocardial ischemia-reperfusion and infarction models. Listen to this article’s corresponding podcast at ajpheart.podbean.com/e/guidelines-for-experimental-models-of-myocardial-ischemia-and-infarction/.
Collapse
Affiliation(s)
- Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,Research Service, G. V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Roberto Bolli
- Division of Cardiovascular Medicine and Institute of Molecular Cardiology, University of Louisville , Louisville, Kentucky
| | - John M Canty
- Division of Cardiovascular Medicine, Departments of Biomedical Engineering and Physiology and Biophysics, The Veterans Affairs Western New York Health Care System and Clinical and Translational Science Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo, New York
| | - Xiao-Jun Du
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital , Würzburg , Germany
| | - Robert G Gourdie
- Center for Heart and Regenerative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia Health System , Charlottesville, Virginia
| | - Steven P Jones
- Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Robert A Kloner
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes , Pasadena, California.,Division of Cardiovascular Medicine, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center , New Orleans, Louisiana
| | - Ronglih Liao
- Harvard Medical School , Boston, Massachusetts.,Division of Genetics and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts
| | - Elizabeth Murphy
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Peipei Ping
- National Institutes of Health BD2KBig Data to Knowledge (BD2K) Center of Excellence and Department of Physiology, Medicine and Bioinformatics, University of California , Los Angeles, California
| | - Karin Przyklenk
- Cardiovascular Research Institute and Departments of Physiology and Emergency Medicine, Wayne State University School of Medicine , Detroit, Michigan
| | - Fabio A Recchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Fondazione G. Monasterio, Pisa , Italy.,Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University , Philadelphia, Pennsylvania
| | - Lisa Schwartz Longacre
- Heart Failure and Arrhythmias Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Crystal M Ripplinger
- Department of Pharmacology, School of Medicine, University of California , Davis, California
| | - Jennifer E Van Eyk
- The Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center , Los Angeles, California
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School , Essen , Germany
| |
Collapse
|
143
|
Liu X, Song H, Yang J, Zhou C, Kang Y, Yang L, Liu J, Zhang W. The etomidate analog ET-26 HCl retains superior myocardial performance: Comparisons with etomidate in vivo and in vitro. PLoS One 2018; 13:e0190994. [PMID: 29324898 PMCID: PMC5764323 DOI: 10.1371/journal.pone.0190994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/22/2017] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE (R)-2-methoxyethyl1-(1-phenylethyl)-1H-imidazole-5-carboxylate hydrochloride (ET-26 HCl) is a novel etomidate analogue. The purpose of this study was to characterize whether ET-26 HCl could retain the superior myocardial performance of etomidate in vivo and in vitro. METHODS In vivo, the influence of ET-26 HCl and etomidate on the cardiac function of dogs was confirmed using echocardiography and electrocardiogram. In vitro, a Langendorff preparation was used to examine direct myocardial performance in isolated rat hearts, and a whole-cell patch-clamp technique was used to study effects on the human ether-a-go-go-related gene (hERG) channel. RESULTS In vivo, after a single bolus administration of ET-26 HCl or etomidate, no significant difference in echocardiography and electrocardiogram parameters was observed. No arrhythmia occurred and no QT interval prolongation happened during the study period. In the in vitro Langendorff preparation, none of the cardiac parameters were abnormal, and the hERG recordings showed that ET-26 HCl and etomidate inhibited the tail current of the hERG in a concentration-dependent manner with an IC50 of 742.51 μM and 263.60 μM, respectively. CONCLUSIONS In conclusion, through an in vivo experiment and a whole organ preparation, the current study found that ET-26 HCl can maintain a myocardial performance that is similar to that of etomidate. In addition, the electrophysiology study indicated that ET-26 HCl and etomidate inhibited the hERG at a supra-therapeutic concentration.
Collapse
Affiliation(s)
- Xingxing Liu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Haibo Song
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Jun Yang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yi Kang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Linghui Yang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Jin Liu
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Wensheng Zhang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
144
|
Estrogen deficiency compromised the β 2AR-Gs/Gi coupling: implications for arrhythmia and cardiac injury. Pflugers Arch 2018; 470:559-570. [PMID: 29297096 DOI: 10.1007/s00424-017-2098-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/24/2017] [Accepted: 12/17/2017] [Indexed: 01/03/2023]
Abstract
Estrogen and β2-adrenergic receptors (β2AR) play important roles in the processes that protect the heart. Here, we investigated how ovariectomy influenced the β2AR downstream pathways in the context of catecholaminergic stress. In vivo and in vitro stress models were developed in female Sprague-Dawley (SD) rats by epinephrine (Epi) treatments. The cardiac function was evaluated at in vivo and in vitro levels in terms of contraction, rhythm, and injury. We found that myocardial contractility was not significantly different between Sham and ovariectomized (OVX) group rats in the normal state. However, Epi pretreatment decreased the contractility and increased abnormal rhythms especially in OVX group, which were attributed to lack of estrogen. Inhibition of the β2AR-Gi-PI3K/p38MAPK pathway with ICI118,551, PTX or LY294002 increased contractility and aggravated Epi-induced injury on cardiomyocytes, decreased p38MAPK phosphorylation, and only increased arrhythmia in Sham group. These results indicated that OVX exacerbated cardiac injury and abnormal rhythms through β2AR-Gi-PI3K and β2AR-Gi-p38MAPK pathways, respectively. In normal state, the levels of activated Gi were similar in both groups, but those of cAMP and activated Gs were higher in OVX group. Epi treatment increased activated Gi (especially in Sham group) and activated Gs and cAMP in Sham group but decreased it in OVX group. These results suggested that estrogen increased the Gi activity in normal and stress states and Gs activity in stress state. These results indicated that lack of estrogen impaired the β2AR-Gs/Gi coupling during stress which compromised cardiac contractility and increased abnormal rhythms.
Collapse
|
145
|
Lujan HL, DiCarlo SE. Fundamental hemodynamic mechanisms mediating the response to myocardial ischemia in conscious paraplegic mice: cardiac output versus peripheral resistance. Physiol Rep 2017; 5:5/6/e13214. [PMID: 28336819 PMCID: PMC5371571 DOI: 10.14814/phy2.13214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 11/25/2022] Open
Abstract
Autonomic dysfunction, a relative sedentary lifestyle, a reduced muscle mass and increased adiposity leads to metabolic abnormalities that accelerate the development of coronary artery disease (CAD) in individuals living with spinal cord injury (SCI). An untoward cardiac incident is related to the degree of CAD, suggesting that the occurrence of a significant cardiac event is significantly higher for individuals with SCI. Thus, understanding the fundamental hemodynamic mechanisms mediating the response to myocardial ischemia has the potential to positively impact individuals and families living with SCI. Accordingly, we systematically investigated if thoracic level 5 spinal cord transection (T5X; paraplegia) alters the arterial blood pressure response to coronary artery occlusion and if the different arterial blood pressure responses to coronary artery occlusion between intact and paraplegic mice are mediated by changes in cardiac output and or systemic peripheral resistance and whether differences in cardiac output are caused by changes in heart rate and or stroke volume. To achieve this goal, the tolerance to 3 min of coronary artery occlusion was determined in conscious intact and paraplegic mice. Paraplegic mice had an impaired ability to maintain arterial blood pressure during coronary artery occlusion as arterial pressure fell to near lethal levels by 1.38 ± 0.64 min. The lower arterial pressure was mediated by a lower cardiac output as systemic peripheral resistance was elevated in paraplegic mice. The lower cardiac output was mediated by a reduced heart rate and stroke volume. These results indicate that in paraplegic mice, the arterial pressure response to coronary artery occlusion is hemodynamically mediated primarily by cardiac output which is determined by heart rate and stroke volume.
Collapse
Affiliation(s)
- Heidi L Lujan
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Stephen E DiCarlo
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
146
|
Amoni M, Kelly-Laubscher R, Petersen M, Gwanyanya A. Cardioprotective and Anti-arrhythmic Effects of Magnesium Pretreatment Against Ischaemia/Reperfusion Injury in Isoprenaline-Induced Hypertrophic Rat Heart. Cardiovasc Toxicol 2017; 17:49-57. [PMID: 26696240 DOI: 10.1007/s12012-015-9355-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The effects of magnesium (Mg2+) on ischaemic complications of pathological cardiac hypertrophy are unclear. In this study, we investigated effects of Mg2+ pretreatment on ischaemia/reperfusion (I/R) injury in isoprenaline (ISO)-induced hypertrophic hearts. Wistar rats were treated for 7 days with different combinations of ISO (1.25 mg/kg) subcutaneously, MgSO4 (270 mg/kg) intraperitoneally, or vehicle (saline). On the eighth day, hearts were either subjected to regional I/R during Langendorff perfusion or histologically stained with haematoxylin and eosin and Masson's trichrome. Haemodynamic and electrocardiographic parameters were recorded using the PowerLab data-acquisition system. Infarcts were identified by triphenyltetrazolium chloride staining. Plasma Mg2+ was measured using photometric assays. Mg2+ pretreatment significantly decreased I/R-induced infarct size (p = 0.001) and the overall arrhythmia score (p < 0.001) of I/R-induced ventricular ectopics, ventricular tachycardia, and ventricular fibrillation in hypertrophic hearts, but not non-hypertrophied hearts. Mg2+ also improved post-I/R left ventricular developed pressure in hypertrophic hearts. However, Mg2+ did not reverse the ISO-induced myocyte thickening and interstitial fibrosis or increases in heart weight. Plasma Mg2+ was not different among treatment groups. These results suggest that Mg2+ pretreatment may protect against I/R-induced injury and malignant arrhythmias in hypertrophic hearts, possibly via mechanisms unrelated to long-lasting changes in plasma Mg2+ or prevention of structural changes such as fibrosis.
Collapse
Affiliation(s)
- Matthew Amoni
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Roisin Kelly-Laubscher
- Department of Biological Sciences, Faculty of Science, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa.,Academic Development Programme, Centre for Higher Education Development, University of Cape Town, Cape Town, South Africa
| | - Morea Petersen
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Asfree Gwanyanya
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| |
Collapse
|
147
|
Hung YC, Kuo YJ, Huang SS, Huang TF. Trimucrin, an Arg-Gly-Asp containing disintegrin, attenuates myocardial ischemia-reperfusion injury in murine by inhibiting platelet function. Eur J Pharmacol 2017; 813:24-32. [DOI: 10.1016/j.ejphar.2017.07.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 01/04/2023]
|
148
|
Marino A, Sakamoto T, Robador PA, Tomita K, Levi R. S1P receptor 1-Mediated Anti-Renin-Angiotensin System Cardioprotection: Pivotal Role of Mast Cell Aldehyde Dehydrogenase Type 2. J Pharmacol Exp Ther 2017; 362:230-242. [PMID: 28500264 PMCID: PMC5502378 DOI: 10.1124/jpet.117.241976] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/09/2017] [Indexed: 12/13/2022] Open
Abstract
In the ischemic-reperfused (I/R) heart, renin-containing mast cells (MC) release enzymatically active renin, activating a local renin-angiotensin system (RAS), causing excessive norepinephrine release and arrhythmic dysfunction. Activation of Gi-receptors on MC and/or ischemic preconditioning (IPC) prevent renin release, thus providing anti-RAS cardioprotection. We questioned whether sphingosine-1-phosphate (S1P), a sphingolipid produced in the I/R heart, might afford anti-RAS cardioprotection by activating Gi-coupled S1P1 receptors (S1P1R) on MC. We report that activation of Gi-coupled S1P1R in cardiac MC confers IPC-like anti-RAS cardioprotection due to S1P1R-mediated inhibition of I/R-induced cardiac MC degranulation and renin release. This results from an initial translocation of protein kinase C subtype-ε and subsequent activation of aldehyde dehydrogenase type 2 (ALDH2), culminating in the elimination of the MC-degranulating effects of acetaldehyde and other toxic species produced during I/R. Inhibition of toxic aldehydes-induced MC-renin release prevents local RAS activation, reduces infarct size, and alleviates arrhythmias. Notably, these cardioprotective effects are lacking in hearts and MC from gene-targeted knock-in mice (ALDH2*2) in which ALDH2 enzymatic activity is maximally reduced. Thus, ALDH2 appears to play a pivotal role in this protective process. Our findings suggest that MC S1P1R may represent a new pharmacologic and therapeutic target for the direct alleviation of RAS-induced cardiac dysfunctions, including ischemic heart disease and congestive heart failure.
Collapse
Affiliation(s)
- Alice Marino
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Takuya Sakamoto
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Pablo A Robador
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Kengo Tomita
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Roberto Levi
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| |
Collapse
|
149
|
Chen C, Lu W, Wu G, Lv L, Chen W, Huang L, Wu X, Xu N, Wu Y. Cardioprotective effects of combined therapy with diltiazem and superoxide dismutase on myocardial ischemia-reperfusion injury in rats. Life Sci 2017; 183:50-59. [PMID: 28666765 DOI: 10.1016/j.lfs.2017.06.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 12/21/2022]
Abstract
AIMS Our experiments were designed to study the effect of diltiazem (DIL) combined with superoxide dismutase (SOD) on myocardial ischemia-reperfusion (MIRI) injury in a rat model. MAIN METHODS Fifty rats were randomly separated into sham, ischemia-reperfusion (IR), DIL (5mg/kg), SOD (10,000U/kg) and combinatorial therapy (DIL plus SOD) groups. MIRI was induced by ligating the left anterior descending coronary artery for 30min and then reperfusing for 60min. The cardioprotective effects of combinatorial therapy were evaluated using hemodynamics, biochemical indices, histopathology and apoptotic-related proteins and gene expression. KEY FINDINGS Compared with the IR group, combinatorial therapy significantly improved cardiac function and decreased arrhythmia, myocardial infarction area and release of myocardial enzyme. In addition, combinatorial therapy protected the myocardial cell structure as well as markedly alleviated oxidative stress, resulting in upregulation of Bcl-2 and adenine nucleotide transporter-1 expression as well as downregulation of Bax, caspase-3 and cleaved caspase-3 expression. SIGNIFICANCE Our results indicated that DIL combined with SOD can provide protection against MIRI in rats, and these effects may be attributed to a reduction in oxygen stress damage, attenuation of calcium overload, and inhibition of cell apoptosis.
Collapse
Affiliation(s)
- Chunxia Chen
- Department of Hyperbaric Oxygen, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, PR China
| | - Wensheng Lu
- Department of Endocrinology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, PR China
| | - Guangwei Wu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, PR China
| | - Liwen Lv
- Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, PR China
| | - Wan Chen
- Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, PR China
| | - Luying Huang
- Department of Respiratory Diseases, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, PR China
| | - Xubin Wu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, PR China
| | - Nengwen Xu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, PR China
| | - Yinxiong Wu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, PR China.
| |
Collapse
|
150
|
Alánová P, Chytilová A, Neckář J, Hrdlička J, Míčová P, Holzerová K, Hlaváčková M, Macháčková K, Papoušek F, Vašinová J, Benák D, Nováková O, Kolář F. Myocardial ischemic tolerance in rats subjected to endurance exercise training during adaptation to chronic hypoxia. J Appl Physiol (1985) 2017; 122:1452-1461. [DOI: 10.1152/japplphysiol.00671.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic hypoxia and exercise are natural stimuli that confer sustainable cardioprotection against ischemia-reperfusion (I/R) injury, but it is unknown whether they can act in synergy to enhance ischemic resistance. Inflammatory response mediated by tumor necrosis factor-α (TNF-α) plays a role in the infarct size limitation by continuous normobaric hypoxia (CNH), whereas exercise is associated with anti-inflammatory effects. This study was conducted to determine if exercise training performed under conditions of CNH (12% O2) affects myocardial ischemic resistance with respect to inflammatory and redox status. Adult male Wistar rats were assigned to one of the following groups: normoxic sedentary, normoxic trained, hypoxic sedentary, and hypoxic trained. ELISA and Western blot analysis, respectively, were used to quantify myocardial cytokines and the expression of TNF-α receptors, nuclear factor-κB (NF-κB), and selected components of related signaling pathways. Infarct size and arrhythmias were assessed in open-chest rats subjected to I/R. CNH increased TNF-α and interleukin-6 levels and the expression of TNF-α type 2 receptor, NF-κB, inducible nitric oxide synthase (iNOS), cytosolic phospholipase A2α, cyclooxygenase-2, manganese superoxide dismutase (MnSOD), and catalase. None of these effects occurred in the normoxic trained group, whereas exercise in hypoxia abolished or significantly attenuated CNH-induced responses, except for NF-κB, iNOS, and MnSOD. Both CNH and exercise reduced infarct size, but their combination provided the same degree of protection as CNH alone. In conclusion, exercise training does not amplify the cardioprotection conferred by CNH. High ischemic tolerance of the CNH hearts persists after exercise, possibly by maintaining the increased antioxidant capacity despite attenuating TNF-α-dependent protective signaling. NEW & NOTEWORTHY Chronic hypoxia and regular exercise are natural stimuli that confer sustainable myocardial protection against acute ischemia-reperfusion injury. Signaling mediated by TNF-α via its type 2 receptor plays a role in the cardioprotective mechanism of chronic hypoxia. In the present study, we found that exercise training of rats during adaptation to hypoxia does not amplify the infarct size-limiting effect. Ischemia-resistant phenotype is maintained in the combined hypoxia-exercise setting despite exercise-induced attenuation of TNF-α-dependent protective signaling.
Collapse
Affiliation(s)
- Petra Alánová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and
| | - Anna Chytilová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and
| | - Jan Neckář
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and
| | - Jaroslav Hrdlička
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and
| | - Petra Míčová
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Kristýna Holzerová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and
| | - Markéta Hlaváčková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Kristýna Macháčková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and
| | - František Papoušek
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and
| | - Jana Vašinová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and
| | - Daniel Benák
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and
| | - Olga Nováková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - František Kolář
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; and
| |
Collapse
|