101
|
Abstract
Phytoplankton inhabiting oligotrophic ocean gyres actively reduce their phosphorus demand by replacing polar membrane phospholipids with those lacking phosphorus. Although the synthesis of nonphosphorus lipids is well documented in some heterotrophic bacterial lineages, phosphorus-free lipid synthesis in oligotrophic marine chemoheterotrophs has not been directly demonstrated, implying they are disadvantaged in phosphate-deplete ecosystems, relative to phytoplankton. Here, we show the SAR11 clade chemoheterotroph Pelagibacter sp. str. HTCC7211 renovates membrane lipids when phosphate starved by replacing a portion of its phospholipids with monoglucosyl- and glucuronosyl-diacylglycerols and by synthesizing new ornithine lipids. Lipid profiles of cells grown with excess phosphate consisted entirely of phospholipids. Conversely, up to 40% of the total lipids were converted to nonphosphorus lipids when cells were starved for phosphate, or when growing on methylphosphonate. Cells sequentially limited by phosphate and methylphosphonate transformed >75% of their lipids to phosphorus-free analogs. During phosphate starvation, a four-gene cluster was significantly up-regulated that likely encodes the enzymes responsible for lipid renovation. These genes were found in Pelagibacterales strains isolated from a phosphate-deficient ocean gyre, but not in other strains from coastal environments, suggesting alternate lipid synthesis is a specific adaptation to phosphate scarcity. Similar gene clusters are found in the genomes of other marine α-proteobacteria, implying lipid renovation is a common strategy used by heterotrophic cells to reduce their requirement for phosphorus in oligotrophic habitats.
Collapse
|
102
|
Putker F, Bos MP, Tommassen J. Transport of lipopolysaccharide to the Gram-negative bacterial cell surface. FEMS Microbiol Rev 2015; 39:985-1002. [DOI: 10.1093/femsre/fuv026] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2015] [Indexed: 12/15/2022] Open
|
103
|
Comadira G, Rasool B, Karpinska B, Morris J, Verrall SR, Hedley PE, Foyer CH, Hancock RD. Nitrogen deficiency in barley (Hordeum vulgare) seedlings induces molecular and metabolic adjustments that trigger aphid resistance. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3639-55. [PMID: 26038307 PMCID: PMC4463806 DOI: 10.1093/jxb/erv276] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Agricultural nitrous oxide (N2O) pollution resulting from the use of synthetic fertilizers represents a significant contribution to anthropogenic greenhouse gas emissions, providing a rationale for reduced use of nitrogen (N) fertilizers. Nitrogen limitation results in extensive systems rebalancing that remodels metabolism and defence processes. To analyse the regulation underpinning these responses, barley (Horedeum vulgare) seedlings were grown for 7 d under N-deficient conditions until net photosynthesis was 50% lower than in N-replete controls. Although shoot growth was decreased there was no evidence for the induction of oxidative stress despite lower total concentrations of N-containing antioxidants. Nitrogen-deficient barley leaves were rich in amino acids, sugars and tricarboxylic acid cycle intermediates. In contrast to N-replete leaves one-day-old nymphs of the green peach aphid (Myzus persicae) failed to reach adulthood when transferred to N-deficient barley leaves. Transcripts encoding cell, sugar and nutrient signalling, protein degradation and secondary metabolism were over-represented in N-deficient leaves while those associated with hormone metabolism were similar under both nutrient regimes with the exception of mRNAs encoding proteins involved in auxin metabolism and responses. Significant similarities were observed between the N-limited barley leaf transcriptome and that of aphid-infested Arabidopsis leaves. These findings not only highlight significant similarities between biotic and abiotic stress signalling cascades but also identify potential targets for increasing aphid resistance with implications for the development of sustainable agriculture.
Collapse
Affiliation(s)
- Gloria Comadira
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Brwa Rasool
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Barbara Karpinska
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Jenny Morris
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | | | - Peter E Hedley
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Christine H Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|
104
|
Sohlenkamp C, Geiger O. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 2015; 40:133-59. [DOI: 10.1093/femsre/fuv008] [Citation(s) in RCA: 571] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2015] [Indexed: 12/22/2022] Open
|
105
|
Li S, Xu J, Jiang Y, Zhou C, Yu X, Zhong Y, Chen J, Yan X. Lipidomic analysis can distinguish between two morphologically similar strains of Nannochloropsis oceanica. JOURNAL OF PHYCOLOGY 2015; 51:264-276. [PMID: 26986522 DOI: 10.1111/jpy.12271] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 11/24/2014] [Indexed: 06/05/2023]
Abstract
The two morphologically similar microalgae NMBluh014 and NMBluh-X belong to two different strains of Nannochloropsis oceanica. They possess obviously different feeding effects on bivalves, but are indistinguishable by 18S rRNA and morphological features. In this work, lipidomic analysis followed by principal component analysis and orthogonal projections to latent structures discriminant analysis provided a clear distinction between these strains. Metabolites that definitively contribute to the classification were selected as potential biomarkers. The most important difference in polar lipids were sulfoquinovosyldiacylglycerol (containing 18:1/16:0 and 18:3/16:0) and monogalactosyldiacylglycerol (containing 18:3/16:3 and 20:5/14:0), which were detected only in NMBluh-X. Additionally, an exhaustive qualitative and quantitative profiling of the neutral lipid triacylglycerol (TAG) in the two strains was carried out. The predominant species of TAG containing 16:1/16:1/16:1 acyl groups was detected only in NMBluh-X with a content of ~93.67 ± 11.85 nmol · mg(-1) dry algae at the onset of stationary phase. Meanwhile, TAG containing 16:0/16:0/16:0 was the main TAG in NMBluh014 with a content of 40.25 ± 3.92 nmol · mg(-1) . These results provided the most straightforward evidence for differentiating the two species. The metabolomic profiling indicated that NMBluh-X underwent significant chemical and physiological changes during the growth process, whereas NMBluh014 did not show such noticeable time-dependent metabolite change. This study is the first using Ultra Performance Liquid Chromatography coupled with Electrospray ionization-Quadrupole-Time of Flight Mass Spectrometry (UPLC-Q-TOF-MS) for lipidomic profiling with multivariate statistical analysis to explore lipidomic differences of plesiomorphous microalgae. Our results demonstrate that lipidomic profiling is a valid chemotaxonomic tool in the study of microalgal systematics.
Collapse
Affiliation(s)
- Shuang Li
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, Zhejiang, 315211, China
- Ningbo Entry-Exit Inspection and Quarantine Bureau Technology Center of the People's Republic of China, Ningbo, Zhejiang, 315211, China
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jilin Xu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, Zhejiang, 315211, China
| | - Ying Jiang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chengxu Zhou
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xuejun Yu
- Ningbo Entry-Exit Inspection and Quarantine Bureau Technology Center of the People's Republic of China, Ningbo, Zhejiang, 315211, China
| | - Yingying Zhong
- Ningbo Entry-Exit Inspection and Quarantine Bureau Technology Center of the People's Republic of China, Ningbo, Zhejiang, 315211, China
| | - Juanjuan Chen
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, Zhejiang, 315211, China
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
106
|
Bernklau EJ, Hibbard BE, Dick DL, Rithner CD, Bjostad LB. Monogalactosyldiacylglycerols as Host Recognition Cues for Western Corn Rootworm Larvae (Coleoptera: Chrysomelidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:539-548. [PMID: 26470164 DOI: 10.1093/jee/tov025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/10/2015] [Indexed: 06/05/2023]
Abstract
Monogalactosyldiacylglycerol (MGDG) was identified as a host recognition cue for larvae of the western corn rootworm Diabrotica virgifera virgifera LeConte. An active glycolipid fraction obtained from an extract of germinating maize roots was isolated with thin layer chromatography using a bioassay-driven approach. When analyzed with LC-MS (positive ion scanning), the assay-active spot was found to contain four different MGDG species: 18:3-18:3 (1,2-dilinolenoyl), 18:2-18:3 (1-linoleoyl, 2-linolenoyl), 18:2-18:2 (1,2-dilinoleoyl), and 18:2-16:0 (1-linoleoyl, 2-palmitoyl). A polar fraction was also needed for activity. When combined with a polar fraction containing a blend of sugars (glucose:fructose:sucrose:myoinositol), the isolated MGDG elicited a unique tight-turning behavior by neonate western corn rootworm larvae that is indicative of host recognition. In behavioral bioassays where disks treated with the active blend were exposed to successive sets of rootworm larvae, the activity of MGDG increased over four exposures, suggesting that larvae may be responding to compounds produced after enzymatic breakdown of MGDG. In subsequent tests with synthetic blends composed of theoretical MGDG-breakdown products, larval responses to four synthetic blends were not significantly different (P<0.5) than the response to isolated MGDG. GC-MS analysis showed modest increases in the amounts of the 16:0, 18:0, and 18:3 free fatty acids released from MGDG after a 30-min exposure to rootworm larvae, which is consistent with the enzymatic breakdown hypothesis.
Collapse
Affiliation(s)
- E J Bernklau
- Department of Bioagricultural Sciences & Pest Management, Colorado State University, Fort Collins, CO 80523.
| | - B E Hibbard
- USDA-ARS, 205 Curtis Hall, University of Missouri, Columbia, MO 65211
| | - D L Dick
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523
| | - C D Rithner
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523
| | - L B Bjostad
- Department of Bioagricultural Sciences & Pest Management, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
107
|
Melo T, Alves E, Azevedo V, Martins AS, Neves B, Domingues P, Calado R, Abreu MH, Domingues MR. Lipidomics as a new approach for the bioprospecting of marine macroalgae — Unraveling the polar lipid and fatty acid composition of Chondrus crispus. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.02.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
108
|
Yao L, Gerde JA, Lee SL, Wang T, Harrata KA. Microalgae lipid characterization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1773-1787. [PMID: 25608629 DOI: 10.1021/jf5050603] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To meet the growing interest of utilizing microalgae biomass in the production of biofuels and nutraceutical and pharmaceutical lipids, we need suitable analytical methods and a comprehensive database for their lipid components. The objective of the present work was to demonstrate methodology and provide data on fatty acid composition, lipid class content and composition, characteristics of the unsaponifiables, and type of chlorophylls of five microalgae. Microalgae lipids were fractionated into TAG, FFA, and polar lipids using TLC, and the composition of fatty acids in total lipids and in each lipid class, hydrocarbons, and sterols were determined by GC-MS. Glyco- and phospholipids were profiled by LC/ESI-MS. Chlorophylls and their related metabolites were qualified by LC/APCI-MS. The melting and crystallization profiles of microalgae total lipids and their esters were analyzed by DSC to evaluate their potential biofuel applications. Significant differences and complexities of lipid composition among the algae tested were observed. The compositional information is valuable for strain selection, downstream biomass fractionation, and utilization.
Collapse
Affiliation(s)
- Linxing Yao
- Department of Food Science and Human Nutrition and ‡Department of Chemistry, Iowa State University , Ames, Iowa 50011, United States
| | | | | | | | | |
Collapse
|
109
|
Yoshinaga MY, Gagen EJ, Wörmer L, Broda NK, Meador TB, Wendt J, Thomm M, Hinrichs KU. Methanothermobacter thermautotrophicus modulates its membrane lipids in response to hydrogen and nutrient availability. Front Microbiol 2015; 6:5. [PMID: 25657645 PMCID: PMC4302986 DOI: 10.3389/fmicb.2015.00005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 01/04/2015] [Indexed: 11/13/2022] Open
Abstract
Methanothermobacter thermautotrophicus strain ΔH is a model hydrogenotrophic methanogen, for which extensive biochemical information, including the complete genome sequence, is available. Nevertheless, at the cell membrane lipid level, little is known about the responses of this archaeon to environmental stimuli. In this study, the lipid composition of M. thermautotrophicus was characterized to verify how this archaeon modulates its cell membrane components during growth phases and in response to hydrogen depletion and nutrient limitation (potassium and phosphate). As opposed to the higher abundance of phospholipids in the stationary phase of control experiments, cell membranes under nutrient, and energy stress were dominated by glycolipids that likely provided a more effective barrier against ion leakage. We also identified particular lipid regulatory mechanisms in M. thermautotrophicus, which included the accumulation of polyprenols under hydrogen-limited conditions and an increased content of sodiated adducts of lipids in nutrient-limited cells. These findings suggest that M. thermautotrophicus intensely modulates its cell membrane lipid composition to cope with energy and nutrient availability in dynamic environments.
Collapse
Affiliation(s)
- Marcos Y Yoshinaga
- Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| | - Emma J Gagen
- Department of Microbiology and Archaea Center, University of Regensburg Regensburg, Germany
| | - Lars Wörmer
- Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| | - Nadine K Broda
- Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| | - Travis B Meador
- Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| | - Jenny Wendt
- Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| | - Michael Thomm
- Department of Microbiology and Archaea Center, University of Regensburg Regensburg, Germany
| | - Kai-Uwe Hinrichs
- Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| |
Collapse
|
110
|
Vetro M, Costa B, Donvito G, Arrighetti N, Cipolla L, Perego P, Compostella F, Ronchetti F, Colombo D. Anionic glycolipids related to glucuronosyldiacylglycerol inhibit protein kinase Akt. Org Biomol Chem 2015; 13:1091-9. [DOI: 10.1039/c4ob01602e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Long chain GlcADG analogues synthesized as PI3P mimics inhibited isolated Akt and proliferation of human ovarian carcinoma IGROV-1 cells.
Collapse
Affiliation(s)
- Maria Vetro
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Barbara Costa
- Dipartimento di Biotecnologie e Bioscienze
- Università degli Studi di Milano-Bicocca
- 20126 Milano
- Italy
| | - Giulia Donvito
- Dipartimento di Biotecnologie e Bioscienze
- Università degli Studi di Milano-Bicocca
- 20126 Milano
- Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit
- Fondazione IRCCS Istituto Nazionale dei Tumori
- 20133 Milan
- Italy
| | - Laura Cipolla
- Dipartimento di Biotecnologie e Bioscienze
- Università degli Studi di Milano-Bicocca
- 20126 Milano
- Italy
| | - Paola Perego
- Molecular Pharmacology Unit
- Fondazione IRCCS Istituto Nazionale dei Tumori
- 20133 Milan
- Italy
| | - Federica Compostella
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Fiamma Ronchetti
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Diego Colombo
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale
- Università degli Studi di Milano
- 20133 Milano
- Italy
| |
Collapse
|
111
|
Plouguerné E, da Gama BAP, Pereira RC, Barreto-Bergter E. Glycolipids from seaweeds and their potential biotechnological applications. Front Cell Infect Microbiol 2014; 4:174. [PMID: 25566511 PMCID: PMC4269193 DOI: 10.3389/fcimb.2014.00174] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/24/2014] [Indexed: 11/16/2022] Open
Abstract
Marine macroalgae, or seaweeds, are a formidable source of natural compounds with diverse biological activities. In the last five decades it has been estimated that more than 3000 natural compounds were discovered from these organisms. The great majority of the published works have focused on terpenoids. In comparison, glycolipids are a neglected class of macroalgal secondary metabolites therefore remaining as a largely unknown reservoir of molecular diversity. Nevertheless, the interest regarding these compounds has been growing fast in the last decades as activities of ecological or pharmaceutical interest have been highlighted. This paper will review recent work regarding isolation and structural characterization of glycolipids from seaweeds and their prospective biological activities.
Collapse
Affiliation(s)
- Erwan Plouguerné
- Laboratório de Produtos Naturais e Ecologia Química Marinha, Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense Niterói, Brazil
| | - Bernardo A P da Gama
- Laboratório de Produtos Naturais e Ecologia Química Marinha, Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense Niterói, Brazil
| | - Renato C Pereira
- Laboratório de Produtos Naturais e Ecologia Química Marinha, Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense Niterói, Brazil
| | - Eliana Barreto-Bergter
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
112
|
Accumulation of novel glycolipids and ornithine lipids in Mesorhizobium loti under phosphate deprivation. J Bacteriol 2014; 197:497-509. [PMID: 25404698 DOI: 10.1128/jb.02004-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycolipids are found mainly in photosynthetic organisms (plants, algae, and cyanobacteria), Gram-positive bacteria, and a few other bacterial phyla. They serve as membrane lipids and play a role under phosphate deprivation as surrogates for phospholipids. Mesorhizobium loti accumulates different di- and triglycosyl diacylglycerols, synthesized by the processive glycosyltransferase Pgt-Ml, and two so far unknown glycolipids, which were identified in this study by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy as O-methyl-digalactosyl diacylglycerol (Me-DGD) and glucuronosyl diacylglycerol (GlcAD). Me-DGD is a novel glycolipid, whose synthesis depends on Pgt-Ml activity and the involvement of an unknown methyltransferase, while GlcAD is formed by a novel glycosyltransferase encoded by the open reading frame (ORF) mlr2668, using UDP-glucuronic acid as a sugar donor. Deletion mutants lacking GlcAD are not impaired in growth. Our data suggest that the different glycolipids in Mesorhizobium can mutually replace each other. This may be an adaptation mechanism to enhance the competitiveness in natural environments. A further nonphospholipid in Mesorhizobium was identified as a hydroxylated form of an ornithine lipid with the additional hydroxy group linked to the amide-bound fatty acid, introduced by the hydroxylase OlsD. The presence of this lipid has not been reported for rhizobia yet. The hydroxy group is placed on the C-2 position of the acyl chain as determined by NMR spectroscopy. Furthermore, the isolated ornithine lipids contained up to 80 to 90% d-configured ornithine, a stereoform so far undescribed in bacteria.
Collapse
|
113
|
Kind T, Okazaki Y, Saito K, Fiehn O. LipidBlast templates as flexible tools for creating new in-silico tandem mass spectral libraries. Anal Chem 2014; 86:11024-7. [PMID: 25340521 PMCID: PMC4238643 DOI: 10.1021/ac502511a] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
![]()
Tandem mass spectral libraries (MS/MS)
are usually built by acquiring
experimentally measured mass spectra from chemical reference compounds.
We here show the versatility of in-silico or computer generated tandem
mass spectra that are directly obtained from compound structures.
We use the freely available LipidBlast development software to generate
15 000 MS/MS spectra of the glucuronosyldiacylglycerol (GlcADG)
lipid class, recently discovered for the first time in plants. The
generation of such an in-silico MS/MS library for positive and negative
ionization mode took 5 h development time, including the validation
of the obtained mass spectra. Such libraries allow for high-throughput
annotations of previously unknown glycolipids. The publicly available
LipidBlast templates are universally applicable for the development
of MS/MS libraries for novel lipid classes.
Collapse
Affiliation(s)
- Tobias Kind
- West Coast Metabolomics Center, University of California Davis , Davis, California 95616, United States
| | | | | | | |
Collapse
|
114
|
Ishibashi Y, Nagamatsu Y, Miyamoto T, Matsunaga N, Okino N, Yamaguchi K, Ito M. A novel ether-linked phytol-containing digalactosylglycerolipid in the marine green alga, Ulva pertusa. Biochem Biophys Res Commun 2014; 452:873-80. [DOI: 10.1016/j.bbrc.2014.08.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 08/13/2014] [Indexed: 12/01/2022]
|
115
|
Timmer MSM, Sauvageau J, Foster AJ, Ryan J, Lagutin K, Shaw O, Harper JL, Sims IM, Stocker BL. Discovery of Lipids from B. longum subsp. infantis using Whole Cell MALDI Analysis. J Org Chem 2014; 79:7332-41. [DOI: 10.1021/jo501016c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mattie S. M. Timmer
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Janelle Sauvageau
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Amy J. Foster
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Jason Ryan
- Ferrier
Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Kirill Lagutin
- Ferrier
Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Odette Shaw
- Malaghan Institute of Medical Research, P.O. Box
7060, Wellington 6242, New Zealand
| | - Jacquie L. Harper
- Malaghan Institute of Medical Research, P.O. Box
7060, Wellington 6242, New Zealand
| | - Ian M. Sims
- Ferrier
Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Bridget L. Stocker
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
- Malaghan Institute of Medical Research, P.O. Box
7060, Wellington 6242, New Zealand
| |
Collapse
|
116
|
Ge C, Gómez-Llobregat J, Skwark MJ, Ruysschaert JM, Wieslander A, Lindén M. Membrane remodeling capacity of a vesicle-inducing glycosyltransferase. FEBS J 2014; 281:3667-84. [PMID: 24961908 DOI: 10.1111/febs.12889] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/21/2014] [Accepted: 06/19/2014] [Indexed: 11/28/2022]
Abstract
Intracellular vesicles are abundant in eukaryotic cells but absent in the Gram-negative bacterium Escherichia coli. However, strong overexpression of a monotopic glycolipid-synthesizing enzyme, monoglucosyldiacylglycerol synthase from Acholeplasma laidlawii (alMGS), leads to massive formation of vesicles in the cytoplasm of E. coli. More importantly, alMGS provides a model system for the regulation of membrane properties by membrane-bound enzymes, which is critical for maintaining cellular integrity. Both phenomena depend on how alMGS binds to cell membranes, which is not well understood. Here, we carry out a comprehensive investigation of the membrane binding of alMGS by combining bioinformatics methods with extensive biochemical studies, structural modeling and molecular dynamics simulations. We find that alMGS binds to the membrane in a fairly upright manner, mainly by residues in the N-terminal domain, and in a way that induces local enrichment of anionic lipids and a local curvature deformation. Furthermore, several alMGS variants resulting from substitution of residues in the membrane anchoring segment are still able to generate vesicles, regardless of enzymatic activity. These results clarify earlier theories about the driving forces for vesicle formation, and shed new light on the membrane binding properties and enzymatic mechanism of alMGS and related monotopic GT-B fold glycosyltransferases.
Collapse
Affiliation(s)
- Changrong Ge
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Sweden; Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Belgium; Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
117
|
Wang S, Uddin MI, Tanaka K, Yin L, Shi Z, Qi Y, Mano J, Matsui K, Shimomura N, Sakaki T, Deng X, Zhang S. Maintenance of Chloroplast Structure and Function by Overexpression of the Rice MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE Gene Leads to Enhanced Salt Tolerance in Tobacco. PLANT PHYSIOLOGY 2014; 165:1144-1155. [PMID: 24843077 PMCID: PMC4081328 DOI: 10.1104/pp.114.238899] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/15/2014] [Indexed: 05/18/2023]
Abstract
In plants, the galactolipids monogalactosyldiacylglycerol (MGDG) and digalactodiacylglycerol (DGDG) are major constituents of photosynthetic membranes in chloroplasts. One of the key enzymes for the biosynthesis of these galactolipids is MGDG synthase (MGD). To investigate the role of MGD in the plant's response to salt stress, we cloned an MGD gene from rice (Oryza sativa) and generated tobacco (Nicotiana tabacum) plants overexpressing OsMGD. The MGD activity in OsMGD transgenic plants was confirmed to be higher than that in the wild-type tobacco cultivar SR1. Immunoblot analysis indicated that OsMGD was enriched in the outer envelope membrane of the tobacco chloroplast. Under salt stress, the transgenic plants exhibited rapid shoot growth and high photosynthetic rate as compared with the wild type. Transmission electron microscopy observation showed that the chloroplasts from salt-stressed transgenic plants had well-developed thylakoid membranes and properly stacked grana lamellae, whereas the chloroplasts from salt-stressed wild-type plants were fairly disorganized and had large membrane-free areas. Under salt stress, the transgenic plants also maintained higher chlorophyll levels. Lipid composition analysis showed that leaves of transgenic plants consistently contained significantly higher MGDG (including 18:3-16:3 and 18:3-18:3 species) and DGDG (including 18:3-16:3, 18:3-16:0, and 18:3-18:3 species) contents and higher DGDG-MGDG ratios than the wild type did under both control and salt stress conditions. These results show that overexpression of OsMGD improves salt tolerance in tobacco and that the galactolipids MGDG and DGDG play an important role in the regulation of chloroplast structure and function in the plant salt stress response.
Collapse
Affiliation(s)
- Shiwen Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China (S.W., L.Y., Z.S., X.D., S.Z.);Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China (S.W., L.Y., X.D., S.Z.);Faculty of Agriculture, Tottori University, Tottori 680-8533, Japan (M.I.U., K.T., L.Y., N.S.);State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China (Y.Q.);Science Research Center (J.M.) and Department of Biological Chemistry, Faculty of Agriculture, and Department of Applied Molecular Bioscience, Graduate School of Medicine (K.M.), Yamaguchi University, Yamaguchi 753-8515, Japan; andDepartment of Biology, School of Biological Science, Tokai University, Minami-ku, Sapporo 005-8601, Japan (T.S.)
| | - M Imtiaz Uddin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China (S.W., L.Y., Z.S., X.D., S.Z.);Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China (S.W., L.Y., X.D., S.Z.);Faculty of Agriculture, Tottori University, Tottori 680-8533, Japan (M.I.U., K.T., L.Y., N.S.);State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China (Y.Q.);Science Research Center (J.M.) and Department of Biological Chemistry, Faculty of Agriculture, and Department of Applied Molecular Bioscience, Graduate School of Medicine (K.M.), Yamaguchi University, Yamaguchi 753-8515, Japan; andDepartment of Biology, School of Biological Science, Tokai University, Minami-ku, Sapporo 005-8601, Japan (T.S.)
| | - Kiyoshi Tanaka
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China (S.W., L.Y., Z.S., X.D., S.Z.);Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China (S.W., L.Y., X.D., S.Z.);Faculty of Agriculture, Tottori University, Tottori 680-8533, Japan (M.I.U., K.T., L.Y., N.S.);State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China (Y.Q.);Science Research Center (J.M.) and Department of Biological Chemistry, Faculty of Agriculture, and Department of Applied Molecular Bioscience, Graduate School of Medicine (K.M.), Yamaguchi University, Yamaguchi 753-8515, Japan; andDepartment of Biology, School of Biological Science, Tokai University, Minami-ku, Sapporo 005-8601, Japan (T.S.)
| | - Lina Yin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China (S.W., L.Y., Z.S., X.D., S.Z.);Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China (S.W., L.Y., X.D., S.Z.);Faculty of Agriculture, Tottori University, Tottori 680-8533, Japan (M.I.U., K.T., L.Y., N.S.);State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China (Y.Q.);Science Research Center (J.M.) and Department of Biological Chemistry, Faculty of Agriculture, and Department of Applied Molecular Bioscience, Graduate School of Medicine (K.M.), Yamaguchi University, Yamaguchi 753-8515, Japan; andDepartment of Biology, School of Biological Science, Tokai University, Minami-ku, Sapporo 005-8601, Japan (T.S.)
| | - Zhonghui Shi
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China (S.W., L.Y., Z.S., X.D., S.Z.);Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China (S.W., L.Y., X.D., S.Z.);Faculty of Agriculture, Tottori University, Tottori 680-8533, Japan (M.I.U., K.T., L.Y., N.S.);State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China (Y.Q.);Science Research Center (J.M.) and Department of Biological Chemistry, Faculty of Agriculture, and Department of Applied Molecular Bioscience, Graduate School of Medicine (K.M.), Yamaguchi University, Yamaguchi 753-8515, Japan; andDepartment of Biology, School of Biological Science, Tokai University, Minami-ku, Sapporo 005-8601, Japan (T.S.)
| | - Yanhua Qi
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China (S.W., L.Y., Z.S., X.D., S.Z.);Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China (S.W., L.Y., X.D., S.Z.);Faculty of Agriculture, Tottori University, Tottori 680-8533, Japan (M.I.U., K.T., L.Y., N.S.);State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China (Y.Q.);Science Research Center (J.M.) and Department of Biological Chemistry, Faculty of Agriculture, and Department of Applied Molecular Bioscience, Graduate School of Medicine (K.M.), Yamaguchi University, Yamaguchi 753-8515, Japan; andDepartment of Biology, School of Biological Science, Tokai University, Minami-ku, Sapporo 005-8601, Japan (T.S.)
| | - Jun'ichi Mano
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China (S.W., L.Y., Z.S., X.D., S.Z.);Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China (S.W., L.Y., X.D., S.Z.);Faculty of Agriculture, Tottori University, Tottori 680-8533, Japan (M.I.U., K.T., L.Y., N.S.);State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China (Y.Q.);Science Research Center (J.M.) and Department of Biological Chemistry, Faculty of Agriculture, and Department of Applied Molecular Bioscience, Graduate School of Medicine (K.M.), Yamaguchi University, Yamaguchi 753-8515, Japan; andDepartment of Biology, School of Biological Science, Tokai University, Minami-ku, Sapporo 005-8601, Japan (T.S.)
| | - Kenji Matsui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China (S.W., L.Y., Z.S., X.D., S.Z.);Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China (S.W., L.Y., X.D., S.Z.);Faculty of Agriculture, Tottori University, Tottori 680-8533, Japan (M.I.U., K.T., L.Y., N.S.);State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China (Y.Q.);Science Research Center (J.M.) and Department of Biological Chemistry, Faculty of Agriculture, and Department of Applied Molecular Bioscience, Graduate School of Medicine (K.M.), Yamaguchi University, Yamaguchi 753-8515, Japan; andDepartment of Biology, School of Biological Science, Tokai University, Minami-ku, Sapporo 005-8601, Japan (T.S.)
| | - Norihiro Shimomura
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China (S.W., L.Y., Z.S., X.D., S.Z.);Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China (S.W., L.Y., X.D., S.Z.);Faculty of Agriculture, Tottori University, Tottori 680-8533, Japan (M.I.U., K.T., L.Y., N.S.);State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China (Y.Q.);Science Research Center (J.M.) and Department of Biological Chemistry, Faculty of Agriculture, and Department of Applied Molecular Bioscience, Graduate School of Medicine (K.M.), Yamaguchi University, Yamaguchi 753-8515, Japan; andDepartment of Biology, School of Biological Science, Tokai University, Minami-ku, Sapporo 005-8601, Japan (T.S.)
| | - Takeshi Sakaki
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China (S.W., L.Y., Z.S., X.D., S.Z.);Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China (S.W., L.Y., X.D., S.Z.);Faculty of Agriculture, Tottori University, Tottori 680-8533, Japan (M.I.U., K.T., L.Y., N.S.);State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China (Y.Q.);Science Research Center (J.M.) and Department of Biological Chemistry, Faculty of Agriculture, and Department of Applied Molecular Bioscience, Graduate School of Medicine (K.M.), Yamaguchi University, Yamaguchi 753-8515, Japan; andDepartment of Biology, School of Biological Science, Tokai University, Minami-ku, Sapporo 005-8601, Japan (T.S.)
| | - Xiping Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China (S.W., L.Y., Z.S., X.D., S.Z.);Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China (S.W., L.Y., X.D., S.Z.);Faculty of Agriculture, Tottori University, Tottori 680-8533, Japan (M.I.U., K.T., L.Y., N.S.);State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China (Y.Q.);Science Research Center (J.M.) and Department of Biological Chemistry, Faculty of Agriculture, and Department of Applied Molecular Bioscience, Graduate School of Medicine (K.M.), Yamaguchi University, Yamaguchi 753-8515, Japan; andDepartment of Biology, School of Biological Science, Tokai University, Minami-ku, Sapporo 005-8601, Japan (T.S.)
| | - Suiqi Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China (S.W., L.Y., Z.S., X.D., S.Z.);Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China (S.W., L.Y., X.D., S.Z.);Faculty of Agriculture, Tottori University, Tottori 680-8533, Japan (M.I.U., K.T., L.Y., N.S.);State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China (Y.Q.);Science Research Center (J.M.) and Department of Biological Chemistry, Faculty of Agriculture, and Department of Applied Molecular Bioscience, Graduate School of Medicine (K.M.), Yamaguchi University, Yamaguchi 753-8515, Japan; andDepartment of Biology, School of Biological Science, Tokai University, Minami-ku, Sapporo 005-8601, Japan (T.S.)
| |
Collapse
|
118
|
Liu Y, Zhang J, Nie H, Dong C, Li Z, Zheng Z, Bai Y, Liu H, Zhao J. Study on Variation of Lipids during Different Growth Phases of Living Cyanobacteria Using Easy Ambient Sonic-Spray Ionization Mass Spectrometry. Anal Chem 2014; 86:7096-102. [DOI: 10.1021/ac501596v] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yiqun Liu
- State
Key Lab of Protein and Plant Sciences, School of Life Science, Peking University, Beijing, 100871, P. R. China
| | - Jialing Zhang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Institute
of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Honggang Nie
- Analytical
Instrumentation Center, Peking University, Beijing, 100871, P. R. China
| | - Chunxia Dong
- State
Key Lab of Protein and Plant Sciences, School of Life Science, Peking University, Beijing, 100871, P. R. China
| | - Ze Li
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Institute
of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhenggao Zheng
- State
Key Lab of Protein and Plant Sciences, School of Life Science, Peking University, Beijing, 100871, P. R. China
| | - Yu Bai
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Institute
of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Huwei Liu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Institute
of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jindong Zhao
- State
Key Lab of Protein and Plant Sciences, School of Life Science, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
119
|
Total synthesis and structure-activity relationship of glycoglycerolipids from marine organisms. Mar Drugs 2014; 12:3634-59. [PMID: 24945415 PMCID: PMC4071594 DOI: 10.3390/md12063634] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/29/2014] [Accepted: 06/10/2014] [Indexed: 12/05/2022] Open
Abstract
Glycoglycerolipids occur widely in natural products, especially in the marine species. Glycoglycerolipids have been shown to possess a variety of bioactivities. This paper will review the different methodologies and strategies for the synthesis of biological glycoglycerolipids and their analogs for bioactivity assay. In addition, the bioactivities and structure-activity relationship of the glycoglycerolipids are also briefly outlined.
Collapse
|
120
|
Migas UM, Abbey L, Velasco-Torrijos T, McManus JJ. Adding glycolipid functionality to model membranes--phase behaviour of a synthetic glycolipid in a phospholipid membrane. SOFT MATTER 2014; 10:3978-3983. [PMID: 24733306 DOI: 10.1039/c4sm00147h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Glycolipid phase behaviour is less well understood than for many phospholipids, but due to their structural and functional diversity, glycolipids represent an important group of amphiphiles from which biological function is derived. Here we have incorporated a synthetic glycolipid in binary mixtures with DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) into giant unilamellar vesicles (GUVs) at biologically relevant concentrations and observed the phase behaviour of the lipid mixtures for a range of glycolipid concentrations. At low concentrations, the glycolipid is fully dispersed in the GUV membrane. At glycolipid molar concentrations above 10%, the formation of lipid tubules is observed, and is consistent with the formation of a columnar lipid phase. Lipid tubules are observed in aqueous and oil solvents, suggesting that both hexagonal and inverted hexagonal lipid arrangements can be formed. This work may offer insights into the biological function of glycolipids and the challenges in formulating them for use in industrial applications.
Collapse
Affiliation(s)
- Urszula M Migas
- Department of Chemistry, National University of Ireland Maynooth, Maynooth Co. Kildare, Ireland.
| | | | | | | |
Collapse
|
121
|
Glycoglycerolipids Isolated from Marine DerivedStreptomyces coelescensPK206-15. Biosci Biotechnol Biochem 2014; 76:1746-51. [DOI: 10.1271/bbb.120354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
122
|
Banskota AH, Stefanova R, Sperker S, Lall SP, Craigie JS, Hafting JT, Critchley AT. Polar lipids from the marine macroalga Palmaria palmata inhibit lipopolysaccharide-induced nitric oxide production in RAW264.7 macrophage cells. PHYTOCHEMISTRY 2014; 101:101-8. [PMID: 24569177 DOI: 10.1016/j.phytochem.2014.02.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/11/2014] [Accepted: 02/03/2014] [Indexed: 05/05/2023]
Abstract
The EtOAc soluble fraction of a MeOH/CHCl3 extract of Palmaria palmata showed strong nitric oxide (NO) inhibitory activity against lipopolysaccharide (LPS)-induced NO production in murine RAW264.7 cells. NO inhibition-guided isolation led to identification of three new polar lipids including a sulfoquinovosyl diacylglycerol (SQDG) (2S)-1-O-eicosapentaenoyl-2-O-myristoyl-3-O-(6-sulfo-α-D-quinovopyranosyl)-glycerol (1) and two phosphatidylglycerols, 1-O-eicosapentaenoyl-2-O-trans-3-hexadecenoyl-3-phospho-(1'-glycerol)-glycerol (3) and 1-O-eicosapentaenoyl-2-O-palmitoyl-3-phospho-(1'-glycerol)-glycerol (4) from the EtOAc fraction. Seven known lipids were also isolated including a SQDG (2), a phospholipid (5) and five galactolipids (6-10). Structures of the isolated lipids were elucidated by spectral analyses. The isolated SQDGs, phosphatidylglycerols and phospholipid possessed strong and dose-dependent NO inhibitory activity compared to N(G)-methyl-L-arginine acetate salt (L-NMMA), a well-known NO inhibitor used as a positive control. Further study suggested that these polar lipids suppressed NO production through down-regulation of inducible nitric oxide synthase (iNOS).
Collapse
Affiliation(s)
- Arjun H Banskota
- Aquatic and Crop Resource Development, National Research Council Canada, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada.
| | - Roumiana Stefanova
- Aquatic and Crop Resource Development, National Research Council Canada, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| | - Sandra Sperker
- Aquatic and Crop Resource Development, National Research Council Canada, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| | - Santosh P Lall
- Aquatic and Crop Resource Development, National Research Council Canada, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| | - James S Craigie
- Aquatic and Crop Resource Development, National Research Council Canada, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| | - Jeff T Hafting
- Acadian Seaplants Limited, 30 Brown Avenue, Dartmouth, Nova Scotia B3B 1X8, Canada
| | - Alan T Critchley
- Acadian Seaplants Limited, 30 Brown Avenue, Dartmouth, Nova Scotia B3B 1X8, Canada
| |
Collapse
|
123
|
Semeniuk A, Sohlenkamp C, Duda K, Hölzl G. A bifunctional glycosyltransferase from Agrobacterium tumefaciens synthesizes monoglucosyl and glucuronosyl diacylglycerol under phosphate deprivation. J Biol Chem 2014; 289:10104-14. [PMID: 24558041 PMCID: PMC3974981 DOI: 10.1074/jbc.m113.519298] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 02/14/2014] [Indexed: 12/31/2022] Open
Abstract
Glycolipids are mainly found in phototrophic organisms (like plants and cyanobacteria), in Gram-positive bacteria, and a few other bacterial phyla. Besides the function as bulk membrane lipids, they often play a role under phosphate deprivation as surrogates for phospholipids. The Gram-negative Agrobacterium tumefaciens accumulates four different glycolipids under phosphate deficiency, including digalactosyl diacylglycerol and glucosylgalactosyl diacylglycerol synthesized by a processive glycosyltransferase. The other two glycolipids have now been identified by mass spectrometry and nuclear magnetic resonance spectroscopy as monoglucosyl diacylglycerol and glucuronosyl diacylglycerol. These two lipids are synthesized by a single promiscuous glycosyltransferase encoded by the ORF atu2297, with UDP-glucose or UDP-glucuronic acid as sugar donors. The transfer of sugars differing in their chemistry is a novel feature not observed before for lipid glycosyltransferases. Furthermore, this enzyme is the first glucuronosyl diacylglycerol synthase isolated. Deletion mutants of Agrobacterium lacking monoglucosyl diacylglycerol and glucuronosyl diacylglycerol or all glycolipids are not impaired in growth or virulence during infection of tobacco leaf discs. Our data suggest that the four glycolipids and the nonphospholipid diacylglyceryl trimethylhomoserine can mutually replace each other during phosphate deprivation. This redundancy of different nonphospholipids may represent an adaptation mechanism to enhance the competitiveness in nature.
Collapse
Affiliation(s)
- Adrian Semeniuk
- From the Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53113 Bonn, Germany
| | - Christian Sohlenkamp
- the Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos CP62210, Mexico, and
| | - Katarzyna Duda
- the Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, 23845 Borstel, Germany
| | - Georg Hölzl
- From the Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53113 Bonn, Germany
| |
Collapse
|
124
|
Lukasik A, Pietrykowska H, Paczek L, Szweykowska-Kulinska Z, Zielenkiewicz P. High-throughput sequencing identification of novel and conserved miRNAs in the Brassica oleracea leaves. BMC Genomics 2013; 14:801. [PMID: 24245539 PMCID: PMC3840582 DOI: 10.1186/1471-2164-14-801] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 11/14/2013] [Indexed: 11/20/2022] Open
Abstract
Background Plant microRNAs are short (~21 nt) non-coding molecules that regulate gene expression by targeting the mRNA cleavage or protein translation inhibition. In this manner, they play many important roles in the cells of living organisms. One of the plant species in which the entire set of miRNAs has not been yet completely identified is Brassica oleracea var. capitata (cabbage). For this reason and for the economic and nutritional importance of this food crop, high-throughput small RNAs sequencing has been performed to discover the novel and conserved miRNAs in mature cabbage leaves. Results In this study, raw reads generated from three small RNA libraries were bioinformatically processed and further analyzed to select sequences homologous to known B. oleracea and other plant miRNAs. As a result of this analysis, 261 conserved miRNAs (belonging to 62 families) have been discovered. MIR169, MIR167 and MIR166 were the largest miRNA families, while the highest abundance molecules were miR167, miR166, miR168c and miR157a. Among the generated sequencing reads, miRNAs* were also found, such as the miR162c*, miR160a* and miR157a*. The unannotated tags were used in the prediction and evaluation of novel miRNAs, which resulted in the 26 potential miRNAs proposal. The expressions of 13 selected miRNAs were analyzed by northern blot hybridization. The target prediction and annotation for identified miRNAs were performed, according to which discovered molecules may target mRNAs encoding several potential proteins – e.g., transcription factors, polypeptides that regulate hormone stimuli and abiotic stress response, and molecules participating in transport and cell communication. Additionally, KEGG maps analysis suggested that the miRNAs in cabbage are involved in important processing pathways, including glycolysis, glycerolipid metabolism, flavonoid biosynthesis and oxidative phosphorylation. Conclusions Conclusively, for the first time, the large set of miRNAs was identified in mature cabbage leaves. Potential targets designation for these miRNAs may suggest their essential role in many plants primary biological processes. Presented study not only supplements the knowledge about B. oleracea miRNAs, but additionally it may be used in other research concerning the improvement of the cabbage cultivation.
Collapse
Affiliation(s)
| | | | | | | | - Piotr Zielenkiewicz
- Institute of Biophysics and Biochemistry, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
125
|
Schubotz F, Meyer-Dombard DR, Bradley AS, Fredricks HF, Hinrichs KU, Shock EL, Summons RE. Spatial and temporal variability of biomarkers and microbial diversity reveal metabolic and community flexibility in Streamer Biofilm Communities in the Lower Geyser Basin, Yellowstone National Park. GEOBIOLOGY 2013; 11:549-569. [PMID: 23981055 DOI: 10.1111/gbi.12051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 07/19/2013] [Indexed: 06/02/2023]
Abstract
Detailed analysis of 16S rRNA and intact polar lipids (IPLs) from streamer biofilm communities (SBCs), collected from geochemically similar hot springs in the Lower Geyser Basin, Yellowstone National Park, shows good agreement and affirm that IPLs can be used as reliable markers for the microbial constituents of SBCs. Uncultured Crenarchaea are prominent in SBS, and their IPLs contain both glycosidic and mixed glyco-phospho head groups with tetraether cores, having 0-4 rings. Archaeal IPL contributions increase with increasing temperature and comprise up to one-fourth of the total IPL inventory at >84 °C. At elevated temperatures, bacterial IPLs contain abundant glycosidic glycerol diether lipids. Diether and diacylglycerol (DAG) lipids with aminopentanetetrol and phosphatidylinositol head groups were identified as lipids diagnostic of Aquificales, while DAG glycolipids and glyco-phospholipids containing N-acetylgycosamine as head group were assigned to members of the Thermales. With decreasing temperature and concomitant changes in water chemistry, IPLs typical of phototrophic bacteria, such as mono-, diglycosyl, and sulfoquinovosyl DAG, which are specific for cyanobacteria, increase in abundance, consistent with genomic data from the same samples. Compound-specific stable carbon isotope analysis of IPL breakdown products reveals a large isotopic diversity among SBCs in different hot springs. At two of the hot springs, 'Bison Pool' and Flat Cone, lipids derived from Aquificales are enriched in (13) C relative to biomass and approach values close to dissolved inorganic carbon (DIC) (approximately 0‰), consistent with fractionation during autotrophic carbon fixation via the reversed tricarboxylic acid pathway. At a third site, Octopus Spring, the same Aquificales-diagnostic lipids are 10‰ depleted relative to biomass and resemble stable carbon isotope values of dissolved organic carbon (DOC), indicative of heterotrophy. Other bacterial and archaeal lipids show a similar variance, with values resembling the DIC or DOC pool or a mixture thereof. This variance cannot be explained by hot spring chemistry or temperature alone, but instead, we argue that intermittent input of exogenous organic carbon can result in metabolic shifts of the chemotrophic communities from autotrophy to heterotrophy and vice versa.
Collapse
MESH Headings
- Archaea/classification
- Archaea/genetics
- Bacteria/classification
- Bacteria/genetics
- Biofilms
- Biota
- Cluster Analysis
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Genes, rRNA
- Hot Springs/microbiology
- Lipids/analysis
- Molecular Sequence Data
- Phylogeny
- RNA, Archaeal/genetics
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Temperature
- United States
Collapse
Affiliation(s)
- F Schubotz
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | | | | | |
Collapse
|
126
|
Critical assessment of glyco- and phospholipid separation by using silica chromatography. Appl Environ Microbiol 2013; 80:360-5. [PMID: 24162579 DOI: 10.1128/aem.02817-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipid-derived fatty acids (PLFAs) are commonly used to characterize microbial communities in situ and the phylogenetic positions of newly isolated microorganisms. PLFAs are obtained through separation of phospholipids from glycolipids and neutral lipids using silica column chromatography. We evaluated the performance of this separation method for the first time using direct detection of intact polar lipids (IPLs) with high-performance liquid chromatography-mass spectrometry (HPLC-MS). We show that under either standard or modified conditions, the phospholipid fraction contains not only phospholipids but also other lipid classes such as glycolipids, betaine lipids, and sulfoquinovosyldiacylglycerols. Thus, commonly reported PLFA compositions likely are not derived purely from phospholipids and perhaps may not be representative of fatty acids present in living microbes.
Collapse
|
127
|
Kim SH, Liu KH, Lee SY, Hong SJ, Cho BK, Lee H, Lee CG, Choi HK. Effects of light intensity and nitrogen starvation on glycerolipid, glycerophospholipid, and carotenoid composition in Dunaliella tertiolecta culture. PLoS One 2013; 8:e72415. [PMID: 24039760 PMCID: PMC3764108 DOI: 10.1371/journal.pone.0072415] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/09/2013] [Indexed: 11/18/2022] Open
Abstract
Time-course variation of lipid and carotenoid production under high light (300 μE/m2s) and nitrogen starvation conditions was determined in a Dunaliella tertiolecta strain. Nanoelectrospray (nanoESI) chip based direct infusion was used for lipid analysis and ultra-performance liquid chromatography (UPLC) coupled with a photodiode array (PDA) or atmospheric chemical ionization mass spectrometry (APCI-MS) was used for carotenoid analysis. A total of 29 lipids and 7 carotenoids were detected. Alterations to diacylglyceryltrimethylhomoserine (DGTS) and digalactosyldiacylglycerol (DGDG) species were significant observations under stress conditions. Their role in relation to the regulation of photosynthesis under stress condition is discussed in this study. The total carotenoid content was decreased under stress conditions, while ã-carotene was increased under nitrate-deficient cultivation. The highest productivity of carotenoid was attained under high light and nitrate sufficiency (HLNS) condition, which result from the highest level of biomass under HLNS. When stress was induced at stationary phase, the substantial changes to the lipid composition occurred, and the higher carotenoid content and productivity were exhibited. This is the first report to investigate the variation of lipids, including glycerolipid, glycerophospholipid, and carotenoid in D. tertiolecta in response to stress conditions using lipidomics tools.
Collapse
Affiliation(s)
- So-Hyun Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Kwang-Hyeon Liu
- College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Seok-Young Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Seong-Joo Hong
- Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Hookeun Lee
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Choul-Gyun Lee
- Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
128
|
Synthesis and antiviral evaluation of 6'-acylamido-6'-deoxy-α-D-mannoglycerolipids. Carbohydr Res 2013; 381:74-82. [PMID: 24076433 DOI: 10.1016/j.carres.2013.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/12/2013] [Accepted: 08/14/2013] [Indexed: 11/21/2022]
Abstract
Eight new aminomannoglycerolipids (2a-h) with linear, branched, or aromatic acyl chains were synthesized and evaluated for their anti-influenza A virus (IAV) activity. By comparing six mannosyl donors with different protecting and leaving groups, the critical glycosylation reaction employed mannosyl trichloroacetimidate with 2-O-benzoyl protecting group as the donor to give the glycoside with absolute α-anomeric selectivity. The bioactivity results showed that the branched compound 2g could effectively inhibit IAV multiplication in MDCK cells with IC50 69.9μM.
Collapse
|
129
|
A new class of plant lipid is essential for protection against phosphorus depletion. Nat Commun 2013; 4:1510. [PMID: 23443538 PMCID: PMC3586718 DOI: 10.1038/ncomms2512] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 01/17/2013] [Indexed: 11/21/2022] Open
Abstract
Phosphorus supply is a major factor responsible for reduced crop yields. As a result, plants utilize various adaptive mechanisms against phosphorus depletion, including lipid remodelling. Here we report the involvement of a novel plant lipid, glucuronosyldiacylglycerol, against phosphorus depletion. Lipidomic analysis of Arabidopsis plants cultured in phosphorus-depleted conditions revealed inducible accumulation of glucuronosyldiacylglycerol. Investigation using a series of sulfolipid sulfoquinovosyldiacylglycerol synthesis-deficient mutants of Arabidopsis determined that the biosynthesis of glucuronosyldiacylglycerol shares the pathway of sulfoquinovosyldiacylglycerol synthesis in chloroplasts. Under phosphorus-depleted conditions, the Arabidopsis sqd2 mutant, which does not accumulate either sulfoquinovosyldiacylglycerol or glucuronosyldiacylglycerol, was the most severely damaged of three sulfoquinovosyldiacylglycerol-deficient mutants. As glucuronosyldiacylglycerol is still present in the other two mutants, this result indicates that glucuronosyldiacylglycerol has a role in the protection of plants against phosphorus limitation stress. Glucuronosyldiacylglycerol was also found in rice, and its concentration increased significantly following phosphorus limitation, suggesting a shared physiological significance of this novel lipid against phosphorus depletion in plants. Phosphorus supply is one of the major factors responsible for reduced crop yields. Here Okazaki et al. use untargeted lipidomics to elucidate the biosynthetic pathway of a novel plant lipid, glucuronosyldiacylglycerol, which is essential for the protection of plants against phosphorus depletion.
Collapse
|
130
|
Colombo D, Gagliardi C, Vetro M, Ronchetti F, Takasaki M, Konoshima T, Suzuki N, Tokuda H. New 6-amino-6-deoxy-glycoglycerolipids derived from 2-O-β-d-glucopyranosylglycerol: insights into the structure–activity relationship of glycoglycerolipids as anti-tumor promoters. Carbohydr Res 2013; 373:64-74. [DOI: 10.1016/j.carres.2013.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/05/2013] [Accepted: 03/08/2013] [Indexed: 11/26/2022]
|
131
|
Lu N, Wei D, Chen F, Yang ST. Lipidomic profiling reveals lipid regulation in the snow alga Chlamydomonas nivalis in response to nitrate or phosphate deprivation. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.02.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
132
|
Okazaki Y, Kamide Y, Hirai MY, Saito K. Plant lipidomics based on hydrophilic interaction chromatography coupled to ion trap time-of-flight mass spectrometry. Metabolomics 2013; 9:121-131. [PMID: 23463370 PMCID: PMC3580141 DOI: 10.1007/s11306-011-0318-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 05/12/2011] [Indexed: 01/16/2023]
Abstract
Plants synthesize a wide range of hydrophobic compounds, generally known as lipids. Here, we report an application of liquid chromatography ion trap time-of-flight mass spectrometry (LC-IT-TOF-MS) for plant lipidomics. Using hydrophilic interaction chromatography (HILIC) for class separation, typical membrane lipids including glycerolipids, steryl glucosides and glucosylceramides, and hydrophobic plant secondary metabolites such as saponins were analyzed simultaneously. By this method, we annotated approximately 100 molecules from Arabidopsis thaliana. To demonstrate the application of this method to biological study, we analyzed Arabidopsis mutant trigalactosyldiacylglycerol3 (tgd3), which has a complex metabolic phenotype including the accumulation of unusual forms of galactolipids. Lipid profiling by LC-MS revealed that tgd3 accumulated an unusual form of digalactosyldiacylglycerol, annotated as Gal(β1 → 6)βGalDG. The compositional difference between normal and unusual forms of digalactosyldiacylglycerol was detected by this method. In addition, we analyzed well-known Arabidopsis mutants ats1-1, fad6-1, and fad7-2, which are also disrupted in lipid metabolic genes. Untargeted lipidome analysis coupled with multivariate analysis clearly discriminated the mutants and their distinctive metabolites. These results indicated that HILIC-MS is an efficient method for plant lipidomics.
Collapse
Affiliation(s)
- Yozo Okazaki
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Yukiko Kamide
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Masami Yokota Hirai
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, 230-0045 Japan
- Japan Science and Technology Agency, CREST, Tokyo, Japan
| | - Kazuki Saito
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, 230-0045 Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Inage-ku, Chiba, 263-8522 Japan
| |
Collapse
|
133
|
Lanekoff I, Geydebrekht O, Pinchuk GE, Konopka AE, Laskin J. Spatially resolved analysis of glycolipids and metabolites in living Synechococcus sp. PCC 7002 using nanospray desorption electrospray ionization. Analyst 2013; 138:1971-8. [PMID: 23392077 DOI: 10.1039/c3an36716a] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms release a diversity of organic compounds that couple interspecies metabolism, enable communication, or provide benefits to other microbes. Increased knowledge of microbial metabolite production will contribute to understanding of the dynamic microbial world and can potentially lead to new developments in drug discovery, biofuel production, and clinical research. Nanospray desorption electrospray ionization (nano-DESI) is an ambient ionization technique that enables detailed chemical characterization of molecules from a specific location on a surface without special sample pretreatment. Due to its ambient nature, living bacterial colonies growing on agar plates can be rapidly analyzed without affecting the viability of the colony. In this study we demonstrate for the first time the utility of nano-DESI for spatial profiling of chemical gradients generated by microbial communities on agar plates. We found that despite the high salt content of the agar used in this study (~350 mM), nano-DESI analysis enables detailed characterization of metabolites produced by the Synechococcus sp. PCC 7002 colonies. High resolution mass spectrometry and MS/MS analysis of the living Synechococcus sp. PCC 7002 colonies allowed us to detect metabolites and lipids on the colony and on the surrounding agar, and confirm their identities. High sensitivity of nano-DESI enabled identification of several glycolipids that have not been previously reported by extracting the cells using conventional methods. Spatial profiling demonstrated that a majority of lipids and metabolites were localized on the colony while sucrose and glucosylglycerol, an osmoprotective compound produced by cyanobacteria, were secreted onto agar. Furthermore, we demonstrated that the chemical gradients of sucrose and glucosylglycerol on agar depend on the age of the colony. The methodology presented in this study will facilitate future studies focused on molecular-level characterization of interactions between bacterial colonies.
Collapse
Affiliation(s)
- Ingela Lanekoff
- Chemical and Materials Sciences Division, Pacific Northwest National Laboratory, PO Box 999, K8-88 Richland, WA 99352, USA.
| | | | | | | | | |
Collapse
|
134
|
Ye W, Liebau J, Mäler L. New Membrane Mimetics with Galactolipids: Lipid Properties in Fast-Tumbling Bicelles. J Phys Chem B 2013; 117:1044-50. [DOI: 10.1021/jp311093p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weihua Ye
- Department
of Biochemistry and Biophysics, The Arrhenius
Laboratory, Stockholm University, 106 91
Stockholm, Sweden
| | - Jobst Liebau
- Department
of Biochemistry and Biophysics, The Arrhenius
Laboratory, Stockholm University, 106 91
Stockholm, Sweden
| | - Lena Mäler
- Department
of Biochemistry and Biophysics, The Arrhenius
Laboratory, Stockholm University, 106 91
Stockholm, Sweden
| |
Collapse
|
135
|
Kobayashi K, Narise T, Sonoike K, Hashimoto H, Sato N, Kondo M, Nishimura M, Sato M, Toyooka K, Sugimoto K, Wada H, Masuda T, Ohta H. Role of galactolipid biosynthesis in coordinated development of photosynthetic complexes and thylakoid membranes during chloroplast biogenesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:250-61. [PMID: 22978702 DOI: 10.1111/tpj.12028] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 08/21/2012] [Accepted: 09/10/2012] [Indexed: 05/17/2023]
Abstract
The galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the predominant lipids in thylakoid membranes and indispensable for photosynthesis. Among the three isoforms that catalyze MGDG synthesis in Arabidopsis thaliana, MGD1 is responsible for most galactolipid synthesis in chloroplasts, whereas MGD2 and MGD3 are required for DGDG accumulation during phosphate (Pi) starvation. A null mutant of Arabidopsis MGD1 (mgd1-2), which lacks both galactolipids and shows a severe defect in chloroplast biogenesis under nutrient-sufficient conditions, accumulated large amounts of DGDG, with a strong induction of MGD2/3 expression, during Pi starvation. In plastids of Pi-starved mgd1-2 leaves, biogenesis of thylakoid-like internal membranes, occasionally associated with invagination of the inner envelope, was observed, together with chlorophyll accumulation. Moreover, the mutant accumulated photosynthetic membrane proteins upon Pi starvation, indicating a compensation for MGD1 deficiency by Pi stress-induced galactolipid biosynthesis. However, photosynthetic activity in the mutant was still abolished, and light-harvesting/photosystem core complexes were improperly formed, suggesting a requirement for MGDG for proper assembly of these complexes. During Pi starvation, distribution of plastid nucleoids changed concomitantly with internal membrane biogenesis in the mgd1-2 mutant. Moreover, the reduced expression of nuclear- and plastid-encoded photosynthetic genes observed in the mgd1-2 mutant under Pi-sufficient conditions was restored after Pi starvation. In contrast, Pi starvation had no such positive effects in mutants lacking chlorophyll biosynthesis. These observations demonstrate that galactolipid biosynthesis and subsequent membrane biogenesis inside the plastid strongly influence nucleoid distribution and the expression of both plastid- and nuclear-encoded photosynthetic genes, independently of photosynthesis.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Takafumi Narise
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Yokohama, 226-8501, Midori-ku, Japan
| | - Kintake Sonoike
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Tokyo, 162-8480, Shinjuku-ku, Japan
| | - Haruki Hashimoto
- Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan
| | - Naoki Sato
- Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan
| | - Maki Kondo
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Mayuko Sato
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kiminori Toyooka
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Keiko Sugimoto
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Hajime Wada
- Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan
| | - Tatsuru Masuda
- Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan
| | - Hiroyuki Ohta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Yokohama, 226-8501, Midori-ku, Japan
| |
Collapse
|
136
|
Mora-Buyé N, Faijes M, Planas A. An engineered E.coli strain for the production of glycoglycerolipids. Metab Eng 2012; 14:551-9. [DOI: 10.1016/j.ymben.2012.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/12/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
|
137
|
Geske T, Vom Dorp K, Dörmann P, Hölzl G. Accumulation of glycolipids and other non-phosphorous lipids in Agrobacterium tumefaciens grown under phosphate deprivation. Glycobiology 2012; 23:69-80. [PMID: 22923441 DOI: 10.1093/glycob/cws124] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phosphate deficiency is characteristic for many natural habitats, resulting in different physiological responses in plants and bacteria including the replacement of phospholipids by glycolipids and other phosphorous-free lipids. The plant pathogenic bacterium Agrobacterium tumefaciens, which is free of glycolipids under full nutrition, harbors an open reading frame (ORF) coding for a processive glycosyltransferase (named as Pgt). This glycosyltransferase was previously shown to synthesize glucosylgalactosyldiacylglycerol (GGD) and digalactosyldiacylglycerol (DGD) after heterologous expression. The native function of this enzyme and the conditions for its activation remained unknown. We show here that Pgt is active under phosphate deprivation synthesizing GGD and DGD in Agrobacterium. A corresponding deletion mutant (Δpgt) is free of these two glycolipids. Glycolipid accumulation is mainly regulated by substrate (diacylglycerol) availability. Diacylglycerol and the total fatty acid pool are characterized by an altered acyl composition in dependence of the phosphate status with a strong decrease of 18:1 and concomitant increase of 19:0 cyclo during phosphate deprivation. Furthermore, Agrobacterium accumulates two additional unknown glycolipids and diacylglycerol trimethylhomoserine (DGTS) during phosphate deprivation. Accumulation of all these lipids is accompanied by a reduction in phospholipids from 75 to 45% in the wild type. A further non-phosphorous lipid, ornithine lipid, was not increased but its degree of hydroxylation was elevated under phosphate deprivation. The lack of GGD and DGD in the Δpgt mutant has no effect on growth and virulence of Agrobacterium, suggesting that these two lipids are functionally replaced by DGTS and the two unknown glycolipids under phosphate deprivation.
Collapse
Affiliation(s)
- Thomas Geske
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | | | | | | |
Collapse
|
138
|
Changes in membrane lipids and carotenoids during light acclimation in a marine cyanobacterium Synechococcus sp. J Biosci 2012; 37:635-45. [DOI: 10.1007/s12038-012-9234-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
139
|
Regulation of lipid metabolism in the snow alga Chlamydomonas nivalis in response to NaCl stress: An integrated analysis by cytomic and lipidomic approaches. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.04.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
140
|
Andrés E, Biarnés X, Faijes M, Planas A. Bacterial glycoglycerolipid synthases: processive and non-processive glycosyltransferases in mycoplasma. BIOCATAL BIOTRANSFOR 2012. [DOI: 10.3109/10242422.2012.674733] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
141
|
Analysis of plant galactolipids by reversed-phase high-performance liquid chromatography/mass spectrometry with accurate mass measurement. Chem Phys Lipids 2012; 165:601-7. [PMID: 22465211 DOI: 10.1016/j.chemphyslip.2012.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 01/28/2023]
Abstract
The composition of plant membrane lipids was investigated by reversed-phase high performance liquid chromatography mass spectrometry with accurate mass measurement. The data dependent methods for the analysis of monogalactosyldiacylglycerols (MGDGs) and digalactosyldiacylglycerols (DGDGs) have been developed. The optimised chromatographic systems were based on a 2.0 mm i.d. Nucleosil C18 column with methanol/water (MGDGs) or acetonitrile/methanol/water (DGDGs) gradients. The galactolipids were ionised by electrospray operated in the positive ion mode and identified based on their MS/MS spectra. High resolution spectra with accurate masses were found to be essential for correct interpretation of the MS data. The elution order of non-oxidised MGDGs and DGDGs followed the equivalent carbon numbers. The methods were applied for detailed characterisation of the MGDGs and DGDGs in the leaves of Arabidopsis thaliana and Melissa officinalis.
Collapse
|
142
|
Yuzawa Y, Nishihara H, Haraguchi T, Masuda S, Shimojima M, Shimoyama A, Yuasa H, Okada N, Ohta H. Phylogeny of galactolipid synthase homologs together with their enzymatic analyses revealed a possible origin and divergence time for photosynthetic membrane biogenesis. DNA Res 2011; 19:91-102. [PMID: 22210603 PMCID: PMC3276260 DOI: 10.1093/dnares/dsr044] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The photosynthetic membranes of cyanobacteria and chloroplasts of higher plants have remarkably similar lipid compositions. In particular, thylakoid membranes of both cyanobacteria and chloroplasts are composed of galactolipids, of which monogalactosyldiacylglycerol (MGDG) is the most abundant, although MGDG biosynthetic pathways are different in these organisms. Comprehensive phylogenetic analysis revealed that MGDG synthase (MGD) homologs of filamentous anoxygenic phototrophs Chloroflexi have a close relationship with MGDs of Viridiplantae (green algae and land plants). Furthermore, analyses for the sugar specificity and anomeric configuration of the sugar head groups revealed that one of the MGD homologs exhibited a true MGDG synthetic activity. We therefore presumed that higher plant MGDs are derived from this ancestral type of MGD genes, and genes involved in membrane biogenesis and photosystems have been already functionally associated at least at the time of Chloroflexi divergence. As MGD gene duplication is an important event during plastid evolution, we also estimated the divergence time of type A and B MGDs. Our analysis indicated that these genes diverged ∼323 million years ago, when Spermatophyta (seed plants) were appearing. Galactolipid synthesis is required to produce photosynthetic membranes; based on MGD gene sequences and activities, we have proposed a novel evolutionary model that has increased our understanding of photosynthesis evolution.
Collapse
Affiliation(s)
- Yuichi Yuzawa
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 B-65 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Lu N, Wei D, Chen F, Yang ST. Lipidomic profiling and discovery of lipid biomarkers in snow alga Chlamydomonas nivalis under salt stress. EUR J LIPID SCI TECH 2011. [DOI: 10.1002/ejlt.201100248] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
144
|
Andrés E, Martínez N, Planas A. Expression and characterization of a Mycoplasma genitalium glycosyltransferase in membrane glycolipid biosynthesis: potential target against mycoplasma infections. J Biol Chem 2011; 286:35367-35379. [PMID: 21835921 DOI: 10.1074/jbc.m110.214148] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycoplasmas contain glycoglycerolipids in their plasma membrane as key structural components involved in bilayer properties and stability. A membrane-associated glycosyltransferase (GT), GT MG517, has been identified in Mycoplasma genitalium, which sequentially produces monoglycosyl- and diglycosyldiacylglycerols. When recombinantly expressed in Escherichia coli, the enzyme was functional in vivo and yielded membrane glycolipids from which Glcβ1,6GlcβDAG was identified as the main product. A chaperone co-expression system and extraction with CHAPS detergent afforded soluble protein that was purified by affinity chromatography. GT MG517 transfers glucosyl and galactosyl residues from UDP-Glc and UDP-Gal to dioleoylglycerol (DOG) acceptor to form the corresponding β-glycosyl-DOG, which then acts as acceptor to give β-diglycosyl-DOG products. The enzyme (GT2 family) follows Michaelis-Menten kinetics. k(cat) is about 5-fold higher for UDP-Gal with either DOG or monoglucosyldioleoylglycerol acceptors, but it shows better binding for UDP-Glc than UDP-Gal, as reflected by the lower K(m), which results in similar k(cat)/K(m) values for both donors. Although sequentially adding glycosyl residues with β-1,6 connectivity, the first glycosyltransferase activity (to DOG) is about 1 order of magnitude higher than the second (to monoglucosyldioleoylglycerol). Because the ratio between the non-bilayer-forming monoglycosyldiacylglycerols and the bilayer-prone diglycosyldiacylglycerols contributes to regulate the properties of the plasma membrane, both synthase activities are probably regulated. Dioleoylphosphatidylglycerol (anionic phospholipid) activates the enzyme, k(cat) linearly increasing with dioleoylphosphatidylglycerol concentration. GT MG517 is shown to be encoded by an essential gene, and the addition of GT inhibitors results in cell growth inhibition. It is proposed that glycolipid synthases are potential targets for drug discovery against infections by mycoplasmas.
Collapse
Affiliation(s)
- Eduardo Andrés
- Laboratory of Biochemistry, Bioengineering Department, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain
| | - Núria Martínez
- Laboratory of Biochemistry, Bioengineering Department, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain
| | - Antoni Planas
- Laboratory of Biochemistry, Bioengineering Department, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain.
| |
Collapse
|
145
|
Ellnain M, Hubicka U, Żuromska B, Janeczko Z, Krzek J. Densitometric quantification of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) in extracts of fresh samples ofErigeron canadensiscollected at different stages of growth. JPC-J PLANAR CHROMAT 2011. [DOI: 10.1556/jpc.24.2011.3.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
146
|
Myers AM, James MG, Lin Q, Yi G, Stinard PS, Hennen-Bierwagen TA, Becraft PW. Maize opaque5 encodes monogalactosyldiacylglycerol synthase and specifically affects galactolipids necessary for amyloplast and chloroplast function. THE PLANT CELL 2011; 23:2331-47. [PMID: 21685260 PMCID: PMC3160020 DOI: 10.1105/tpc.111.087205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The maize (Zea mays) opaque5 (o5) locus was shown to encode the monogalactosyldiacylglycerol synthase MGD1. Null and point mutations of o5 that affect the vitreous nature of mature endosperm engendered an allelic series of lines with stepwise reductions in gene function. C(18:3)/C(18:2) galactolipid abundance in seedling leaves was reduced proportionally, without significant effects on total galactolipid content. This alteration in polar lipid composition disrupted the organization of thylakoid membranes into granal stacks. Total galactolipid abundance in endosperm was strongly reduced in o5(-) mutants, causing developmental defects and changes in starch production such that the normal simple granules were replaced with compound granules separated by amyloplast membrane. Complete loss of MGD1 function in a null mutant caused kernel lethality owing to failure in both endosperm and embryo development. The data demonstrate that low-abundance galactolipids with five double bonds serve functions in plastid membranes that are not replaced by the predominant species with six double bonds. Furthermore, the data identify a function of amyloplast membranes in the development of starch granules. Finally, the specific changes in lipid composition suggest that MGD1 can distinguish the constituency of acyl groups on its diacylglycerol substrate based upon the degree of desaturation.
Collapse
Affiliation(s)
- Alan M. Myers
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Martha G. James
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Qiaohui Lin
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Gibum Yi
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Philip S. Stinard
- U.S. Department of Agriculture/Agricultural Research Service, Maize Genetics Cooperation Stock Center, Urbana, Illinois 61801
| | | | - Philip W. Becraft
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
- Address correspondence to
| |
Collapse
|
147
|
Yang FL, Yang YL, Wu SH. Structure and function of glycolipids in thermophilic bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:367-80. [PMID: 21618118 DOI: 10.1007/978-1-4419-7877-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Feng-Ling Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | | | | |
Collapse
|
148
|
Glycoglycerolipid analogues inhibit PKC translocation to the plasma membrane and downstream signaling pathways in PMA-treated fibroblasts and human glioblastoma cells, U87MG. Eur J Med Chem 2011; 46:1827-34. [DOI: 10.1016/j.ejmech.2011.02.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 01/03/2023]
|
149
|
Shimojima M, Ohta H. Critical regulation of galactolipid synthesis controls membrane differentiation and remodeling in distinct plant organs and following environmental changes. Prog Lipid Res 2011; 50:258-66. [PMID: 21414359 DOI: 10.1016/j.plipres.2011.03.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/06/2010] [Accepted: 03/04/2011] [Indexed: 01/08/2023]
Abstract
The plant galactolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), are the most abundant lipids in chloroplast membranes, and they constitute the majority of total membrane lipids in plants. MGDG is synthesized by two types of MGDG synthase, type-A (MGD1) and type-B (MGD2, MGD3). These MGDG synthases have distinct roles in Arabidopsis. In photosynthetic organs, Type A MGD is responsible for the bulk of MGDG synthesis, whereas Type B MGD is expressed in non-photosynthetic organs such as roots and flowers and mainly contributes to DGDG accumulation under phosphate deficiency. Similar to MGDG synthesis, DGDG is synthesized by two synthases, DGD1 and DGD2; DGD1 is responsible for the majority of DGDG synthesis, whereas DGD2 makes its main contribution under phosphate deficiency. These galactolipid synthases are regulated by light, plant hormones, redox state, phosphatidic acid levels, and various stress conditions such as drought and nutrient limitation. Maintaining the appropriate ratio of these two galactolipids in chloroplasts is important for stabilizing thylakoid membranes and maximizing the efficiency of photosynthesis. Here we review progress made in the last decade towards a better understanding of the pathways regulating plant galactolipid biosynthesis.
Collapse
Affiliation(s)
- Mie Shimojima
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | |
Collapse
|
150
|
Bühring SI, Sievert SM, Jonkers HM, Ertefai T, Elshahed MS, Krumholz LR, Hinrichs KU. Insights into chemotaxonomic composition and carbon cycling of phototrophic communities in an artesian sulfur-rich spring (Zodletone, Oklahoma, USA), a possible analog for ancient microbial mat systems. GEOBIOLOGY 2011; 9:166-179. [PMID: 21244620 DOI: 10.1111/j.1472-4669.2010.00268.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Zodletone spring in Oklahoma is a unique environment with high concentrations of dissolved-sulfide (10 mm) and short-chain gaseous alkanes, exhibiting characteristics that are reminiscent of conditions that are thought to have existed in Earth's history, in particular the late Archean and early-to-mid Proterozoic. Here, we present a process-oriented investigation of the microbial community in two distinct mat formations at the spring source, (1) the top of the sediment in the source pool and (2) the purple streamers attached to the side walls. We applied a combination of pigment and lipid biomarker analyses, while functional activities were investigated in terms of oxygen production (microsensor analysis) and carbon utilization ((13)C incorporation experiments). Pigment analysis showed cyanobacterial pigments, in addition to pigments from purple sulfur bacteria (PSB), green sulfur bacteria (GSB) and Chloroflexus-like bacteria (CLB). Analysis of intact polar lipids (IPLs) in the source sediment confirmed the presence of phototrophic organisms via diacylglycerol phospholipids and betaine lipids, whereas glyceroldialkylglyceroltetraether additionally indicated the presence of archaea. No archaeal IPLs were found in the purple streamers, which were strongly dominated by betaine lipids. (13)C-bicarbonate- and -acetate-labeling experiments indicated cyanobacteria as predominant phototrophs in the source sediment, carbon was actively fixed by PSB/CLB/GSB in purple streamers by using near infrared light. Despite the presence of cyanobacteria, no oxygen could be detected in the presence of light, suggesting anoxygenic photosynthesis as the major metabolic process at this site. Our investigations furthermore indicated photoheterotrophy as an important process in both habitats. We obtained insights into a syntrophically operating phototrophic community in an ecosystem that bears resemblance to early Earth conditions, where cyanobacteria constitute an important contributor to carbon fixation despite the presence of high sulfide concentrations.
Collapse
Affiliation(s)
- S I Bühring
- Department of Geosciences, Universität Bremen, Bremen, Germany.
| | | | | | | | | | | | | |
Collapse
|