101
|
Telmisartan attenuates diabetes induced depression in rats. Pharmacol Rep 2017; 69:358-364. [DOI: 10.1016/j.pharep.2016.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/09/2016] [Accepted: 12/08/2016] [Indexed: 01/19/2023]
|
102
|
A Unique "Angiotensin-Sensitive" Neuronal Population Coordinates Neuroendocrine, Cardiovascular, and Behavioral Responses to Stress. J Neurosci 2017; 37:3478-3490. [PMID: 28219987 DOI: 10.1523/jneurosci.3674-16.2017] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/20/2017] [Accepted: 02/13/2017] [Indexed: 01/19/2023] Open
Abstract
Stress elicits neuroendocrine, autonomic, and behavioral responses that mitigate homeostatic imbalance and ensure survival. However, chronic engagement of such responses promotes psychological, cardiovascular, and metabolic impairments. In recent years, the renin-angiotensin system has emerged as a key mediator of stress responding and its related pathologies, but the neuronal circuits that orchestrate these interactions are not known. These studies combine the use of the Cre-recombinase/loxP system in mice with optogenetics to structurally and functionally characterize angiotensin type-1a receptor-containing neurons of the paraventricular nucleus of the hypothalamus, the goal being to determine the extent of their involvement in the regulation of stress responses. Initial studies use neuroanatomical techniques to reveal that angiotensin type-1a receptors are localized predominantly to the parvocellular neurosecretory neurons of the paraventricular nucleus of the hypothalamus. These neurons are almost exclusively glutamatergic and send dense projections to the exterior portion of the median eminence. Furthermore, these neurons largely express corticotrophin-releasing hormone or thyrotropin-releasing hormone and do not express arginine vasopressin or oxytocin. Functionally, optogenetic stimulation of these neurons promotes the activation of the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-thyroid axes, as well as a rise in systolic blood pressure. When these neurons are optogenetically inhibited, the activity of these neuroendocrine axes are suppressed and anxiety-like behavior in the elevated plus maze is dampened. Collectively, these studies implicate this neuronal population in the integration and coordination of the physiological responses to stress and may therefore serve as a potential target for therapeutic intervention for stress-related pathology.SIGNIFICANCE STATEMENT Chronic stress leads to an array of physiological responses that ultimately rouse psychological, cardiovascular, and metabolic impairments. As a consequence, there is an urgent need for the development of novel therapeutic approaches to prevent or dampen deleterious aspects of "stress." While the renin-angiotensin system has received some attention in this regard, the neural mechanisms by which this endocrine system may impact stress-related pathologies and consequently serve as targets for therapeutic intervention are not clear. The present studies provide substantial insight in this regard. That is, they reveal that a distinct population of angiotensin-sensitive neurons is integral to the coordination of stress responses. The implication is that this neuronal phenotype may serve as a target for stress-related disease.
Collapse
|
103
|
A Calibrated Method of Massage Therapy Decreases Systolic Blood Pressure Concomitant With Changes in Heart Rate Variability in Male Rats. J Manipulative Physiol Ther 2017; 40:77-88. [DOI: 10.1016/j.jmpt.2016.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 11/23/2022]
|
104
|
Hay M, Vanderah TW, Samareh-Jahani F, Constantopoulos E, Uprety AR, Barnes CA, Konhilas J. Cognitive impairment in heart failure: A protective role for angiotensin-(1-7). Behav Neurosci 2017; 131:99-114. [PMID: 28054808 DOI: 10.1037/bne0000182] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Patients with congestive heart failure (CHF) have increased hospital readmission rates and mortality if they are concomitantly diagnosed with cognitive decline and memory loss. Accordingly, we developed a preclinical model of CHF-induced cognitive impairment with the goal of developing novel protective therapies against CHF related cognitive decline. CHF was induced by ligation of the left coronary artery to instigate a myocardial infarction (MI). By 4- and 8-weeks post-MI, CHF mice had approximately a 50% and 70% decline in ejection fraction as measured by echocardiography. At both 4- and 8-weeks post-MI, spatial memory performance in CHF mice as tested using the Morris water task was significantly impaired as compared with sham. In addition, CHF mice had significantly worse performance on object recognition when compared with shams as measured by discrimination ratios during the novel object recognition NOR task. At 8-weeks post-MI, a subgroup of CHF mice were given Angiotensin (Ang)-(1-7) (50mcg/kg/hr) subcutaneously for 4 weeks. Following 3 weeks treatment with systemic Ang-(1-7), the CHF mice NOR discrimination ratios were similar to shams and significantly better than the performance of CHF mice treated with saline. Ang-(1-7) also improved spatial memory in CHF mice as compared with shams. Ang-(1-7) had no effect on cardiac function. Inflammatory biomarker studies from plasma revealed a pattern of neuroprotection that may underlie the observed improvements in cognition. These results demonstrate a preclinical mouse model of CHF that exhibits both spatial memory and object recognition dysfunction. Furthermore, this CHF-induced cognitive impairment is attenuated by treatment with systemic Ang-(1-7). (PsycINFO Database Record
Collapse
Affiliation(s)
| | | | | | | | - Ajay R Uprety
- Evelyn F. McKnight Brain Institute, University of Arizona
| | - Carol A Barnes
- Evelyn F. McKnight Brain Institute, University of Arizona
| | - John Konhilas
- Department of Physiology and Sarver Heart Center, University of Arizona
| |
Collapse
|
105
|
Zhou J, Burns MP, Huynh L, Villapol S, Taub DD, Saavedra JM, Blackman MR. Temporal Changes in Cortical and Hippocampal Expression of Genes Important for Brain Glucose Metabolism Following Controlled Cortical Impact Injury in Mice. Front Endocrinol (Lausanne) 2017; 8:231. [PMID: 28955302 PMCID: PMC5601958 DOI: 10.3389/fendo.2017.00231] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) causes transient increases and subsequent decreases in brain glucose utilization. The underlying molecular pathways are orchestrated processes and poorly understood. In the current study, we determined temporal changes in cortical and hippocampal expression of genes important for brain glucose/lactate metabolism and the effect of a known neuroprotective drug telmisartan on the expression of these genes after experimental TBI. Adult male C57BL/6J mice (n = 6/group) underwent sham or unilateral controlled cortical impact (CCI) injury. Their ipsilateral and contralateral cortex and hippocampus were collected 6 h, 1, 3, 7, 14, 21, and 28 days after injury. Expressions of several genes important for brain glucose utilization were determined by qRT-PCR. In results, (1) mRNA levels of three key enzymes in glucose metabolism [hexo kinase (HK) 1, pyruvate kinase, and pyruvate dehydrogenase (PDH)] were all increased 6 h after injury in the contralateral cortex, followed by decreases at subsequent times in the ipsilateral cortex and hippocampus; (2) capillary glucose transporter Glut-1 mRNA increased, while neuronal glucose transporter Glut-3 mRNA decreased, at various times in the ipsilateral cortex and hippocampus; (3) astrocyte lactate transporter MCT-1 mRNA increased, whereas neuronal lactate transporter MCT-2 mRNA decreased in the ipsilateral cortex and hippocampus; (4) HK2 (an isoform of hexokinase) expression increased at all time points in the ipsilateral cortex and hippocampus. GPR81 (lactate receptor) mRNA increased at various time points in the ipsilateral cortex and hippocampus. These temporal alterations in gene expression corresponded closely to the patterns of impaired brain glucose utilization reported in both TBI patients and experimental TBI rodents. The observed changes in hippocampal gene expression were delayed and prolonged, when compared with those in the cortex. The patterns of alterations were specific to different brain regions and exhibited different recovery periods following TBI. Oral administration of telmisartan (1 mg/kg, for 7 days, n = 10 per group) ameliorated cortical or hippocampal mRNA for Glut-1/3, MCT-1/2 and PDH in CCI mice. These data provide molecular evidence for dynamic alteration of multiple critical factors in brain glucose metabolism post-TBI and can inform further research for treating brain metabolic disorders post-TBI.
Collapse
Affiliation(s)
- June Zhou
- Research Service, Washington DC VA Medical Center, Washington, DC, United States
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine, Washington, DC, United States
- *Correspondence: June Zhou,
| | - Mark P. Burns
- Department of Neuroscience, Georgetown University School of Medicine, Washington, DC, United States
| | - Linda Huynh
- Research Service, Washington DC VA Medical Center, Washington, DC, United States
| | - Sonia Villapol
- Department of Neuroscience, Georgetown University School of Medicine, Washington, DC, United States
| | - Daniel D. Taub
- Translational Medicine Section, Washington DC VA Medical Center, Washington, DC, United States
- Department of Biochemistry and Molecular and Cell Biology, Georgetown University School of Medicine, Washington, DC, United States
| | - Juan M. Saavedra
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC, United States
| | - Marc R. Blackman
- Research Service, Washington DC VA Medical Center, Washington, DC, United States
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine, Washington, DC, United States
- Department of Medicine George Washington University School of Medicine, Washington, DC, United States
- Department of Medicine, Georgetown University School of Medicine, Washington, DC, United States
| |
Collapse
|
106
|
Marchese NA, Paz MC, Caeiro X, Dadam FM, Baiardi G, Perez MF, Bregonzio C. Angiotensin II AT 1 receptors mediate neuronal sensitization and sustained blood pressure response induced by a single injection of amphetamine. Neuroscience 2016; 340:521-529. [PMID: 27856342 DOI: 10.1016/j.neuroscience.2016.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/27/2016] [Accepted: 08/25/2016] [Indexed: 11/28/2022]
Abstract
A single exposure to amphetamine induces neurochemical sensitization in striatal areas. The neuropeptide angiotensin II, through AT1 receptors (AT1-R) activation, is involved in these responses. However, amphetamine-induced alterations can be extended to extra-striatal areas involved in blood pressure control and their physiological outcomes. Our aim for the present study was to analyze the possible role for AT1-R in these events using a two-injection protocol and to further characterize the proposed AT1-R antagonism protocol. Central effect of orally administered AT1-R blocker (Candesartan, 3mg/kg p.o.×5days) in male Wistar rats was analyzed by spontaneous activity of neurons within locus coeruleus. In another group of animals pretreated with the AT1-R blocker or vehicle, sensitization was achieved by a single administration of amphetamine (5mg/kg i.p. - day 6) followed by a 3-week period off drug. On day 27, after receiving an amphetamine challenge (0.5mg/kg i.p.), we evaluated: (1) the sensitized c-Fos expression in locus coeruleus (LC), nucleus of the solitary tract (NTS), caudal ventrolateral medulla (A1) and central amygdala (CeAmy); and (2) the blood pressure response. AT1-R blockade decreased LC neurons' spontaneous firing rate. Moreover, sensitized c-Fos immunoreactivity in TH+neurons was found in LC and NTS; and both responses were blunted by the AT1-R blocker pretreatment. Meanwhile, no differences were found neither in CeAmy nor A1. Sensitized blood pressure response was observed as sustained changes in mean arterial pressure and was effectively prevented by AT1-R blockade. Our results extend AT1-R role in amphetamine-induced sensitization over noradrenergic nuclei and their cardiovascular output.
Collapse
Affiliation(s)
- N A Marchese
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M C Paz
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba, Argentina
| | - X Caeiro
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - F M Dadam
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - G Baiardi
- Laboratorio de Neurofarmacología, (IIBYT-CONICET) Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M F Perez
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba, Argentina
| | - C Bregonzio
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
107
|
Pulopulos MM, Hidalgo V, Puig-Perez S, Salvador A. Cortisol awakening response and cognitive performance in hypertensive and normotensive older people. Horm Behav 2016; 83:75-82. [PMID: 27208824 DOI: 10.1016/j.yhbeh.2016.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 02/28/2016] [Accepted: 05/16/2016] [Indexed: 01/22/2023]
Abstract
Healthy older people with a cortisol awakening response (CAR) of decreased magnitude show worse frontal cortex-related cognitive performance. Systemic hypertension has been related to a CAR of decreased magnitude. Additionally, worse executive function and processing speed have been observed in older people with systemic hypertension. This is the first study to examine the relationship between the CAR (measured with six saliva samples at home on two consecutive weekdays) and cognitive performance, in both hypertensive (n=26) and normotensive (n=28) older people (from 56 to 78years old). Hypertensive participants showed lower morning cortisol secretion, and they also woke up earlier. No differences in CAR were observed. A CAR of decreased magnitude was related to worse executive function in both hypertensive and normotensive participants, but to slower processing speed only in normotensive participants. Being treated with antihypertensive for a longer period of time was related to a CAR of increased magnitude and better performance on executive function. Our findings suggest that earlier awakening time in hypertensive older people might underlie the lower overall morning cortisol secretion observed in previous studies. Additionally, this study confirms that a dysregulation of the CAR is related to worse executive function, and it extends this association to hypertensive older people. Finally, it is worth noting that hypertension may moderate the relationship between CAR and processing speed.
Collapse
Affiliation(s)
- Matias M Pulopulos
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology and IDOCAL, University of Valencia, Spain.
| | - Vanesa Hidalgo
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology and IDOCAL, University of Valencia, Spain
| | - Sara Puig-Perez
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology and IDOCAL, University of Valencia, Spain
| | - Alicia Salvador
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology and IDOCAL, University of Valencia, Spain
| |
Collapse
|
108
|
Cao GP, Gui D, Fu LD, Guo ZK, Fu WJ. Anxiolytic and neuroprotective effects of the Traditional Chinese Medicinal formulation Dan-zhi-xiao-yao-san in a rat model of chronic stress. Mol Med Rep 2016; 14:1247-54. [PMID: 27279479 DOI: 10.3892/mmr.2016.5382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 04/08/2016] [Indexed: 11/06/2022] Open
Abstract
Dan-zhi-xiao-yao-san is a Traditional Chinese Medicinal formulation widely used for the treatment of neuropsychological disorders. The present study examined the anxiolytic and neuroprotective effects of Dan-zhi-xiao-yao-san in a rat model of chronic stress. The results of an elevated plus maze test showed that Dan‑zhi‑xiao‑yao‑san significantly attenuated the levels of anxiety-induced stress as evidenced by increases in the time spent in the open arm region, as well as the percentage of entries into this area. In addition, Dan-zhi-xiao-yao-san alleviated stress‑induced neuronal death, as indicated by histological examination. Furthermore, mechanistic studies suggested that the anxiolytic and neuroprotective effects of Dan-zhi-xiao-yao-san may be mediated via attenuation of chronic stress‑induced upregulation of α‑synuclein and corticosterone, and downregulation of protein phosphatase 2A (PP2A) in the hippocampal region of the brain at the mRNA and protein level. In addition, Dan‑zhi‑xiao‑yao‑san decreased the serum levels of stress‑induced corticosterone in the model animals. In conclusion, the present study demonstrated that Dan‑zhi‑xiao‑yao‑san exerted anxiolytic and neuroprotective effects in a rat model of chronic stress via attenuation of stress‑induced upregulation of α‑synuclein and corticosterone, and downregulation of PP2A in the hippocampus.
Collapse
Affiliation(s)
- Guo-Ping Cao
- Department of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Dan Gui
- Department of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Lu-Di Fu
- Department of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Zhou-Ke Guo
- Department of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Wen-Jun Fu
- Department of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
109
|
Linares A, Couling LE, Carrera EJ, Speth RC. Receptor Autoradiography Protocol for the Localized Visualization of Angiotensin II Receptors. J Vis Exp 2016. [PMID: 27341008 DOI: 10.3791/53866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This protocol describes receptor binding patterns for Angiotensin II (Ang II) in the rat brain using a radioligand specific for Ang II receptors to perform receptor autoradiographic mapping. Tissue specimens are harvested and stored at -80 °C. A cryostat is used to coronally section the tissue (brain) and thaw-mount the sections onto charged slides. The slide-mounted tissue sections are incubated in (125)I-SI-Ang II to radiolabel Ang II receptors. Adjacent slides are separated into two sets: 'non-specific binding' (NSP) in the presence of a receptor saturating concentration of non-radiolabeled Ang II, or an AT1 Ang II receptor subtype (AT1R) selective Ang II receptor antagonist, and 'total binding' with no AT1R antagonist. A saturating concentration of AT2 Ang II receptor subtype (AT2R) antagonist (PD123319, 10 µM) is also present in the incubation buffer to limit (125)I-SI-Ang II binding to the AT1R subtype. During a 30 min pre-incubation at ~22 °C, NSP slides are exposed to 10 µM PD123319 and losartan, while 'total binding' slides are exposed to 10 µM PD123319. Slides are then incubated with (125)I-SI-Ang II in the presence of PD123319 for 'total binding', and PD123319 and losartan for NSP in assay buffer, followed by several 'washes' in buffer, and water to remove salt and non-specifically bound radioligand. The slides are dried using blow-dryers, then exposed to autoradiography film using a specialized film and cassette. The film is developed and the images are scanned into a computer for visual and quantitative densitometry using a proprietary imaging system and a spreadsheet. An additional set of slides are thionin-stained for histological comparisons. The advantage of using receptor autoradiography is the ability to visualize Ang II receptors in situ, within a section of a tissue specimen, and anatomically identify the region of the tissue by comparing it to an adjacent histological reference section.
Collapse
Affiliation(s)
- Andrea Linares
- Farquhar College of Arts and Sciences, Nova Southeastern University
| | - Leena E Couling
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University
| | | | - Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University;
| |
Collapse
|
110
|
Influence of ACE gene on differential response to sertraline versus fluoxetine in patients with major depression: a randomized controlled trial. Eur J Clin Pharmacol 2016; 72:1059-64. [PMID: 27262302 DOI: 10.1007/s00228-016-2079-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Extensive distribution of the different components of renin angiotensin system (RAS) in the brain, along with their roles in promoting anxiety, depression and brain inflammation, opposes RAS as a potential therapeutic target in major depression. Actions of angiotensin II, the main product of RAS, are reduced by antidepressants and this signifies the complex interplay of different mechanisms involved in response to therapy. Here, we hypothesized that genetic polymorphisms of RAS may affect the outcome of therapy in depressed patients. METHODS The frequencies of variants of genes encoding for angiotensin-converting enzyme (ACE) insertion/deletion (I/D), rs4291 and rs4343 polymorphisms were determined in extracted DNAs of 200 newly diagnosed depressed patients. Patients were randomly divided into two groups, one treated with fluoxetine and the other treated with sertraline for 12 weeks. Responsive patients were determined by psychiatrist using Hamilton questionnaire and were compared with regard to their genetic variants. RESULTS Carriers of the D allele and patients with DD genotype responded significantly better to sertraline than to fluoxetine (P = 0.0006, odds ratio (OR) = 3.0, 95 % confidence interval (CI) = 1.80-5.08; P = 0.006, OR = 3.7, 95 % CI = 1.66-8.29, respectively). Mutant genotypes (GG and TT) of rs4343 and rs4291 polymorphisms were also more frequent in patients responding to sertraline, though not achieving the significance level (P = 0.162 and P = 0.256, respectively). CONCLUSION These findings suggest that special genetic variants of RAS may influence or be an indicator for better response to sertraline.
Collapse
|
111
|
Juth V, Holman EA, Chan MK, Cramer SC. Genetics as a molecular window into recovery, its treatment, and stress responses after stroke. J Investig Med 2016; 64:983-8. [PMID: 27045100 PMCID: PMC4942179 DOI: 10.1136/jim-2016-000126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2016] [Indexed: 01/13/2023]
Abstract
Stroke remains a major source of adult disability in the USA and worldwide. Most patients show some recovery during the weeks to months following a stroke, but this is generally incomplete. An emerging branch of therapeutics targets the processes underlying this behavioral recovery from stroke toward the goal of reducing long-term disability. A key factor hampering these efforts is the very large degree of variability between stroke survivors. Available data suggest that genetic differences could explain an important fraction of the differences between subjects. The current review considers this from several angles, including genetic differences in relation to drugs that promote recovery. Genetic factors related to physiological and psychological stress responses may also be critically important to understanding recovery after stroke and its treatment. The studies reviewed provide insights into recovery and suggest directions for further research to improve clinical decision-making in this setting. Genetic differences between patients might be used to help clinical trials select specific patient subgroups, on a biological basis, in order to sharpen the precision with which new treatments are evaluated. Pharmacogenomic factors might also provide insights into inter-subject differences in treatment side effects for pharmacological prescriptions, and behavioral interventions, and others. These efforts must be conducted with the strictest ethical standards given the highly sensitive nature of genetic data. Understanding the effect of selected genetic measures could improve a clinician's ability to predict the risk and efficacy of a restorative therapy and to make maximally informed decisions, and in so doing, facilitate individual patient care.
Collapse
Affiliation(s)
- Vanessa Juth
- Program in Nursing Science, UC Irvine, Irvine, California, USA
| | - E Alison Holman
- Program in Nursing Science, UC Irvine, Irvine, California, USA
| | - Michelle K Chan
- Program in Nursing Science, UC Irvine, Irvine, California, USA
| | | |
Collapse
|
112
|
Torika N, Asraf K, Danon A, Apte RN, Fleisher-Berkovich S. Telmisartan Modulates Glial Activation: In Vitro and In Vivo Studies. PLoS One 2016; 11:e0155823. [PMID: 27187688 PMCID: PMC4871324 DOI: 10.1371/journal.pone.0155823] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/04/2016] [Indexed: 12/16/2022] Open
Abstract
The circulating renin-angiotensin system (RAS), including the biologically active angiotensin II, is a fundamental regulatory mechanism of blood pressure conserved through evolution. Angiotensin II components of the RAS have also been identified in the brain. In addition to pro-inflammatory cytokines, neuromodulators, such as angiotensin II can induce (through angiotensin type 1 receptor (AT1R)) some of the inflammatory actions of brain glial cells and influence brain inflammation. Moreover, in Alzheimer’s disease (AD) models, where neuroinflammation occurs, increased levels of cortical AT1Rs have been shown. Still, the precise role of RAS in neuroinflammation is not completely clear. The overall aim of the present study was to elucidate the role of RAS in the modulation of glial functions and AD pathology. To reach this goal, the specific aims of the present study were a. to investigate the long term effect of telmisartan (AT1R blocker) on tumor necrosis factor-α (TNF-α), interleukin 1-β (IL1-β) and nitric oxide (NO) release from glial cells. b. to examine the effect of intranasally administered telmisartan on amyloid burden and microglial activation in 5X familial AD (5XFAD) mice. Telmisartan effects in vivo were compared to those of perindopril (angiotensin converting enzyme inhibitor). Long-term-exposure of BV2 microglia to telmisartan significantly decreased lipopolysaccharide (LPS) -induced NO, inducible NO synthase, TNF-α and IL1-β synthesis. The effect of Telmisartan on NO production in BV2 cells was confirmed also in primary neonatal rat glial cells. Intranasal administration of telmisartan (1 mg/kg/day) for up to two months significantly reduced amyloid burden and CD11b expression (a marker for microglia) both in the cortex and hipoccampus of 5XFAD. Based on the current view of RAS and our data, showing reduced amyloid burden and glial activation in the brains of 5XFAD transgenic mice, one may envision potential intervention with the progression of glial activation and AD by using AT1R blockers.
Collapse
Affiliation(s)
- Nofar Torika
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva P.O.B 653, Israel
| | - Keren Asraf
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva P.O.B 653, Israel
| | - Abraham Danon
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva P.O.B 653, Israel
| | - Ron N. Apte
- Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva P.O.B 653, Israel
| | - Sigal Fleisher-Berkovich
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva P.O.B 653, Israel
- * E-mail:
| |
Collapse
|
113
|
Li Z, Mo N, Li L, Cao Y, Wang W, Liang Y, Deng H, Xing R, Yang L, Ni C, Chui D, Guo X. Surgery-Induced Hippocampal Angiotensin II Elevation Causes Blood-Brain Barrier Disruption via MMP/TIMP in Aged Rats. Front Cell Neurosci 2016; 10:105. [PMID: 27199659 PMCID: PMC4844612 DOI: 10.3389/fncel.2016.00105] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 04/11/2016] [Indexed: 11/17/2022] Open
Abstract
Reversible blood-brain barrier (BBB) disruption has been uniformly reported in several animal models of postoperative cognitive dysfunction (POCD). Nevertheless, the precise mechanism underlying this occurrence remains unclear. Using an aged rat model of POCD, we investigated the dynamic changes in expression of molecules involved in BBB disintegration, matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9), as well as three of their endogenous tissue inhibitors of MMP (TIMP-1, -2, -3), and tried to establish the correlation between MMP/TIMP balance and surgery-induced hippocampal BBB disruption. We validated the increased hippocampal expression of angiotensin II (Ang II) and Ang II receptor type 1 (AT1) after surgery. We also found MMP/TIMP imbalance as early as 6 h after surgery, together with increased BBB permeability and decreased expression of Occludin and zonula occludens-1 (ZO-1), as well as increased basal lamina protein laminin at 24 h postsurgery. The AT1 antagonist candesartan restored MMP/TIMP equilibrium and modulated expression of Occludin and laminin, but not ZO-1, thereby improving BBB permeability. These events were accompanied by suppression of the surgery-induced canonical nuclear factor-κB (NF-κB) activation cascade. Nevertheless, AT1 antagonism did not affect nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) expression. Collectively, these findings suggest that surgery-induced Ang II release impairs BBB integrity by activating NF-κB signaling and disrupting downstream MMP/TIMP balance via AT1 receptor.
Collapse
Affiliation(s)
- Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital (PUTH) Beijing, China
| | - Na Mo
- Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Pathology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University Beijing, China
| | - Lunxu Li
- Department of Anesthesiology, Peking University Third Hospital (PUTH) Beijing, China
| | - Yiyun Cao
- Department of Anesthesiology, Peking University Third Hospital (PUTH) Beijing, China
| | - Wenming Wang
- Department of Hematology, Peking University Third Hospital (PUTH) Beijing, China
| | - Yaoxian Liang
- Department of Nephrology, Peking University People's Hospital Beijing, China
| | - Hui Deng
- Department of Nephrology, Peking University Third Hospital (PUTH) Beijing, China
| | - Rui Xing
- Department of Rheumatology and Immunology, Peking University Third Hospital (PUTH) Beijing, China
| | - Lin Yang
- Department of Rheumatology and Immunology, Peking University Third Hospital (PUTH) Beijing, China
| | - Cheng Ni
- Department of Anesthesiology, Peking University Third Hospital (PUTH) Beijing, China
| | - Dehua Chui
- Key Laboratory for Neuroscience, Department of Neurobiology, Neuroscience Research Institute, Ministry of Education and Ministry of Public Health, Peking University Health Science Center Beijing, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital (PUTH) Beijing, China
| |
Collapse
|
114
|
Firouzabadi N, Ghazanfari N, Alavi Shoushtari A, Erfani N, Fathi F, Bazrafkan M, Bahramali E. Genetic Variants of Angiotensin-Converting Enzyme Are Linked to Autism: A Case-Control Study. PLoS One 2016; 11:e0153667. [PMID: 27082637 PMCID: PMC4833406 DOI: 10.1371/journal.pone.0153667] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/01/2016] [Indexed: 12/31/2022] Open
Abstract
Background Autism is a disease of complex nature with a significant genetic component. The importance of renin-angiotensin system (RAS) elements in cognition and behavior besides the interaction of angiotensin II (Ang II), the main product of angiotensin-converting enzyme (ACE), with neurotransmitters in CNS, especially dopamine, proposes the involvement of RAS in autism. Since the genetic architecture of autism has remained elusive, here we postulated that genetic variations in RAS are associated with autism. Methods Considering the relation between the three polymorphisms of ACE (I/D, rs4343 and rs4291) with the level of ACE activity, we have investigated this association with autism, in a case-control study. Genotype and allele frequencies of polymorphisms were determined in DNAs extracted from venous blood of 120 autistic patients and their age and sex-matched healthy controls, using polymerase chain reaction (PCR) and PCR–restriction fragment length polymorphism (PCR–RFLP) methods. Results There were strong associations between both DD genotype of ACE I/D and the D allele, with autism (P = 0.006, OR = 2.9, 95% CI = 1.64–5.13 and P = 0.006, OR = 2.18, 95% CI = 1.37–3.48 respectively). Furthermore, a significant association between the G allele of rs4343 and autism was observed (P = 0.006, OR = 1.84, 95%CI = 1.26–2.67). Moreover, haplotype analysis revealed an association between DTG haplotype and autism (P = 0.008). Conclusion Our data suggests the involvement of RAS genetic diversity in increasing the risk of autism.
Collapse
Affiliation(s)
- Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- * E-mail: ;
| | - Nima Ghazanfari
- Department of Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, International Branch, Shiraz, Iran
| | - Ali Alavi Shoushtari
- Department of Psychiatry, School of Medicine, Hafez Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrallah Erfani
- Cancer Immunology Group, Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farshid Fathi
- Cancer Immunology Group, Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhdeh Bazrafkan
- Department of Speech Therapy, School of Rehabilitation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Bahramali
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
115
|
Efficient and biologically relevant consensus strategy for Parkinson's disease gene prioritization. BMC Med Genomics 2016; 9:12. [PMID: 26961748 PMCID: PMC4784386 DOI: 10.1186/s12920-016-0173-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/01/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The systemic information enclosed in microarray data encodes relevant clues to overcome the poorly understood combination of genetic and environmental factors in Parkinson's disease (PD), which represents the major obstacle to understand its pathogenesis and to develop disease-modifying therapeutics. While several gene prioritization approaches have been proposed, none dominate over the rest. Instead, hybrid approaches seem to outperform individual approaches. METHODS A consensus strategy is proposed for PD related gene prioritization from mRNA microarray data based on the combination of three independent prioritization approaches: Limma, machine learning, and weighted gene co-expression networks. RESULTS The consensus strategy outperformed the individual approaches in terms of statistical significance, overall enrichment and early recognition ability. In addition to a significant biological relevance, the set of 50 genes prioritized exhibited an excellent early recognition ability (6 of the top 10 genes are directly associated with PD). 40 % of the prioritized genes were previously associated with PD including well-known PD related genes such as SLC18A2, TH or DRD2. Eight genes (CCNH, DLK1, PCDH8, SLIT1, DLD, PBX1, INSM1, and BMI1) were found to be significantly associated to biological process affected in PD, representing potentially novel PD biomarkers or therapeutic targets. Additionally, several metrics of standard use in chemoinformatics are proposed to evaluate the early recognition ability of gene prioritization tools. CONCLUSIONS The proposed consensus strategy represents an efficient and biologically relevant approach for gene prioritization tasks providing a valuable decision-making tool for the study of PD pathogenesis and the development of disease-modifying PD therapeutics.
Collapse
|
116
|
Abstract
Refugees are a highly traumatized and culturally diverse group of patients who present many clinical challenges. Refugees have a high prevalence of traumas from torture, ethnic cleansing, and the effects of long civil wars. The most common diagnoses associated with the effects of such traumas are posttraumatic stress disorder (PTSD) or PTSD with comorbid depression; however, psychosis and neurocognitive disorders are also common. For those with PTSD, a suggested treatment approach is long-term supportive psychotherapy with drug treatment directed at reducing the most disruptive symptoms, such as insomnia, nightmares, and irritability or psychosis. The author recommends a sedative tricyclic antidepressant, clonidine or prazosin, and aripiprazole as a useful combination of medications to provide rapid relief. In addition to PTSD, long-term studies indicate a high prevalence of diabetes and hypertension in traumatized refugees. It is therefore important to perform a thorough evaluation for these disorders that includes the measurement of blood pressure and a blood test for diabetes. When managed with such a medical approach, refugees are generally accepting of psychiatric treatment and can obtain relief from the symptoms associated with the massive trauma and losses they have experienced.
Collapse
|
117
|
Larmuth KM, Masuyer G, Douglas RG, Schwager SL, Acharya KR, Sturrock ED. Kinetic and structural characterization of amyloid-β peptide hydrolysis by human angiotensin-1-converting enzyme. FEBS J 2016; 283:1060-76. [PMID: 26748546 PMCID: PMC4950319 DOI: 10.1111/febs.13647] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/24/2015] [Accepted: 01/06/2016] [Indexed: 12/25/2022]
Abstract
Angiotensin‐1‐converting enzyme (ACE), a zinc metallopeptidase, consists of two homologous catalytic domains (N and C) with different substrate specificities. Here we report kinetic parameters of five different forms of human ACE with various amyloid beta (Aβ) substrates together with high resolution crystal structures of the N‐domain in complex with Aβ fragments. For the physiological Aβ(1–16) peptide, a novel ACE cleavage site was found at His14‐Gln15. Furthermore, Aβ(1–16) was preferentially cleaved by the individual N‐domain; however, the presence of an inactive C‐domain in full‐length somatic ACE (sACE) greatly reduced enzyme activity and affected apparent selectivity. Two fluorogenic substrates, Aβ(4–10)Q and Aβ(4–10)Y, underwent endoproteolytic cleavage at the Asp7‐Ser8 bond with all ACE constructs showing greater catalytic efficiency for Aβ(4–10)Y. Surprisingly, in contrast to Aβ(1–16) and Aβ(4–10)Q, sACE showed positive domain cooperativity and the double C‐domain (CC‐sACE) construct no cooperativity towards Aβ(4–10)Y. The structures of the Aβ peptide–ACE complexes revealed a common mode of peptide binding for both domains which principally targets the C‐terminal P2′ position to the S2′ pocket and recognizes the main chain of the P1′ peptide. It is likely that N‐domain selectivity for the amyloid peptide is conferred through the N‐domain specific S2′ residue Thr358. Additionally, the N‐domain can accommodate larger substrates through movement of the N‐terminal helices, as suggested by the disorder of the hinge region in the crystal structures. Our findings are important for the design of domain selective inhibitors as the differences in domain selectivity are more pronounced with the truncated domains compared to the more physiological full‐length forms. Database The atomic coordinates and structure factors for N‐domain ACE with Aβ peptides 4–10 (5AM8), 10–16 (5AM9), 1–16 (5AMA), 35–42 (5AMB) and (4–10)Y (5AMC) complexes have been deposited in the Protein Data Bank, Research Collaboratory for Structural Bioinformatics, Rutgers University, New Brunswick, NJ, USA (http://www.rcsb.org/).
Collapse
Affiliation(s)
- Kate M Larmuth
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | | | - Ross G Douglas
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Sylva L Schwager
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, UK
| | - Edward D Sturrock
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| |
Collapse
|
118
|
Abstract
OBJECTIVE The purpose of the study was to determine whether exposure to chronic mild stress (CMS) affects expression of angiotensin II Type 1a receptor (AT1aR) messenger RNA (mRNA) in the brain and kidney. METHODS Male Sprague-Dawley rats were divided into an unchallenged control group, which remained at rest, and an experimental group, exposed to CMS produced by a series of unexpected, disturbing stimuli applied at random over a period of 4 weeks. After sacrificing the animals, samples of the septal/accumbal and hypothalamic/thalamic diencephalon, brain medulla, cerebellum, and the renal medulla were harvested for determination of AT1aR mRNA. RESULTS Expression of AT1a receptor mRNA was significantly greater in the rats in the CMS condition than in the controls (septal/accumbal diencephalon: 1.689 [0.205] versus 0.027 [0.004], hypothalamic/thalamic diencephalon: 1.239 [0.101] versus 0.003 [0.001], brain medulla: 2.694 [0.295] versus 0.028 [0.003], cerebellum: 0.013 [0.002] versus 0.005 [0.001; p < .001 for all comparisons], and renal medulla: 409.92 [46.92] versus 208.06 [30.56; p < .01]). There was a significant positive correlation between AT1a mRNA expression in the septal/accumbal diencephalon and brain medulla (p < .025). CONCLUSIONS The results provide evidence that CMS significantly enhances expression of the AT1aR gene in the brain and kidney and indicate that changes in expression of AT1aR mRNA in different brain regions during CMS may be causally related. It is suggested that the up-regulation of AT1a receptors by chronic stress may potentiate negative effects of angiotensin II in pathologies associated with activation of the renin-angiotensin system.
Collapse
|
119
|
The emerging role of signal transducer and activator of transcription 3 in cerebral ischemic and hemorrhagic stroke. Prog Neurobiol 2016; 137:1-16. [DOI: 10.1016/j.pneurobio.2015.11.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 10/13/2015] [Accepted: 11/18/2015] [Indexed: 01/05/2023]
|
120
|
Elkahloun AG, Hafko R, Saavedra JM. An integrative genome-wide transcriptome reveals that candesartan is neuroprotective and a candidate therapeutic for Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2016; 8:5. [PMID: 26822027 PMCID: PMC4731966 DOI: 10.1186/s13195-015-0167-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Alzheimer's disease is the most frequent age-related dementia, and is currently without treatment. To identify possible targets for early therapeutic intervention we focused on glutamate excitotoxicity, a major early pathogenic factor, and the effects of candesartan, an angiotensin receptor blocker of neuroprotective efficacy in cell cultures and rodent models of Alzheimer's disease. The overall goal of the study was to determine whether gene analysis of drug effects in a primary neuronal culture correlate with alterations in gene expression in Alzheimer's disease, thus providing further preclinical evidence of beneficial therapeutic effects. METHODS Primary neuronal cultures were treated with candesartan at neuroprotective concentrations followed by excitotoxic glutamate amounts. We performed genome-wide expression profile analysis and data evaluation by ingenuity pathway analysis and gene set enrichment analysis, compared with alterations in gene expression from two independent published datasets identified by microarray analysis of postmortem hippocampus from Alzheimer's disease patients. Preferential expression in cerebrovascular endothelial cells or neurons was analyzed by comparison to published gene expression in these cells isolated from human cortex by laser capture microdissection. RESULTS Candesartan prevented glutamate upregulation or downregulation of several hundred genes in our cultures. Ingenuity pathway analysis and gene set enrichment analysis revealed that inflammation, cardiovascular disease and diabetes signal transduction pathways and amyloid β metabolism were major components of the neuronal response to glutamate excitotoxicity. Further analysis showed associations of glutamate-induced changes in the expression of several hundred genes, normalized by candesartan, with similar alterations observed in hippocampus from Alzheimer's disease patients. Gene analysis of neurons and cerebrovascular endothelial cells obtained by laser capture microdissection revealed that genes up- and downregulated by glutamate were preferentially expressed in endothelial cells and neurons, respectively. CONCLUSIONS Our data may be interpreted as evidence of direct candesartan neuroprotection beyond its effects on blood pressure, revealing common and novel disease mechanisms that may underlie the in vitro gene alterations reported here and glutamate-induced cell injury in Alzheimer's disease. Our observations provide novel evidence for candesartan neuroprotection through early molecular mechanisms of injury in Alzheimer's disease, supporting testing this compound in controlled clinical studies in the early stages of the illness.
Collapse
Affiliation(s)
- Abdel G Elkahloun
- Comparative genomics and Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Roman Hafko
- Section on Pharmacology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Juan M Saavedra
- Section on Pharmacology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA. .,Department of Pharmacology and Physiology, Georgetown University Medical Center, SE402 Med/Dent, 3900 Reservoir Road, Washington, DC, 20057, USA.
| |
Collapse
|
121
|
Wang L, de Kloet AD, Pati D, Hiller H, Smith JA, Pioquinto DJ, Ludin JA, Oh SP, Katovich MJ, Frazier CJ, Raizada MK, Krause EG. Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavior in male mice by activating central Mas receptors. Neuropharmacology 2016; 105:114-123. [PMID: 26767952 DOI: 10.1016/j.neuropharm.2015.12.026] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/04/2015] [Accepted: 12/31/2015] [Indexed: 12/25/2022]
Abstract
Over-activation of the brain renin-angiotensin system (RAS) has been implicated in the etiology of anxiety disorders. Angiotensin converting enzyme 2 (ACE2) inhibits RAS activity by converting angiotensin-II, the effector peptide of RAS, to angiotensin-(1-7), which activates the Mas receptor (MasR). Whether increasing brain ACE2 activity reduces anxiety by stimulating central MasR is unknown. To test the hypothesis that increasing brain ACE2 activity reduces anxiety-like behavior via central MasR stimulation, we generated male mice overexpressing ACE2 (ACE2 KI mice) and wild type littermate controls (WT). ACE2 KI mice explored the open arms of the elevated plus maze (EPM) significantly more than WT, suggesting increasing ACE2 activity is anxiolytic. Central delivery of diminazene aceturate, an ACE2 activator, to C57BL/6 mice also reduced anxiety-like behavior in the EPM, but centrally administering ACE2 KI mice A-779, a MasR antagonist, abolished their anxiolytic phenotype, suggesting that ACE2 reduces anxiety-like behavior by activating central MasR. To identify the brain circuits mediating these effects, we measured Fos, a marker of neuronal activation, subsequent to EPM exposure and found that ACE2 KI mice had decreased Fos in the bed nucleus of stria terminalis but had increased Fos in the basolateral amygdala (BLA). Within the BLA, we determined that ∼62% of GABAergic neurons contained MasR mRNA and expression of MasR mRNA was upregulated by ACE2 overexpression, suggesting that ACE2 may influence GABA neurotransmission within the BLA via MasR activation. Indeed, ACE2 overexpression was associated with increased frequency of spontaneous inhibitory postsynaptic currents (indicative of presynaptic release of GABA) onto BLA pyramidal neurons and central infusion of A-779 eliminated this effect. Collectively, these results suggest that ACE2 may reduce anxiety-like behavior by activating central MasR that facilitate GABA release onto pyramidal neurons within the BLA.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA
| | - Annette D de Kloet
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 32611, USA
| | - Dipanwita Pati
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA
| | - Helmut Hiller
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA
| | - Justin A Smith
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA
| | - David J Pioquinto
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 32611, USA
| | - Jacob A Ludin
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 32611, USA
| | - S Paul Oh
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 32611, USA
| | - Michael J Katovich
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA
| | - Charles J Frazier
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 32611, USA
| | - Eric G Krause
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA.
| |
Collapse
|
122
|
Abstract
Alkali metals, especially sodium and potassium, are plentiful and vital in biological systems. They take on important roles in health and disease. Such roles include the regulation of homeostasis, osmosis, blood pressure, electrolytic equilibria, and electric current. However, there is a limit to our present understanding; the ions have a great ability and capacity for action in health and disease, much greater than our current understanding. For the regulation of physiological homeostasis, there is a crucial regulator (renin-angiotensin system, RAS), found at both peripheral and central levels. Misregulation of the Na(+)-K(+) pump, and sodium channels in RAS are important for the understanding of disease progression, hypertension, diabetes, and neurodegenerative diseases, etc. In particular, RAS displays direct or indirect interaction important to Parkinson's disease (PD). In this chapter, the relationship between the regulation of sodium/potassium concentration and PD was sought. In addition, some recent biochemical and clinical findings are also discussed that help describe sodium and potassium in the context of traumatic brain injury (TBI). TBI is caused from the heavy striking of the head; this strongly affects ion flux in the affected tissue (brain) and damages cellular regulation systems. Thus, inappropriate concentrations of ions (hyper- and hyponatremia, and hyper- and hypokalemia) will perturb homeostasis giving rise to important and far reaching effects. These changes also impact osmotic pressure and the concentration of other metal ions, such as the calcium(II) ion.
Collapse
|
123
|
Chronic Brain Inflammation: The Neurochemical Basis for Drugs to Reduce Inflammation. Neurochem Res 2015; 41:523-33. [PMID: 26177578 DOI: 10.1007/s11064-015-1661-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 12/11/2022]
Abstract
It is now recognised that the brain and the peripheral immune system have bidirectional communication in both health and neuronal diseases. Brain inflammation results after both acute injury and also with the appearance of mutated proteins or endogenous neurotoxic metabolites associated with slow neurodegenerative diseases such as Alzheimer's and Parkinson's diseases and some psychiatric disorders. Microglia play a key role in brain inflammation by the release of pro-inflammatory cytokines and with ageing, microglia exhibit 'priming' leading to increased basal release of the pro-inflammatory cytokines. Neurochemical targets to reduce or slow chronic brain inflammation include cyclooxygenase enzymes, Nrf2 transcription factor, angiotensin AT1 receptors and sigma-1 receptors. Development of more selective drugs to act at these targets is occurring but large scale clinical trials to validate the drugs will take significant time.
Collapse
|
124
|
Kumar A, Singh B, Mishra J, Sah SP, Pottabathini R. Neuroprotective mechanism of losartan and its interaction with nimesulide against chronic fatigue stress. Inflammopharmacology 2015; 23:291-305. [PMID: 26122818 DOI: 10.1007/s10787-015-0238-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/13/2015] [Indexed: 01/04/2023]
Abstract
Potential role of angiotensin-II and cyclooxygenase have been suggested in the pathophysiology of chronic fatigue stress. The present study has been designed to evaluate the neuroprotective effect of losartan and its interaction with nimesulide against chronic fatigue stress and related complications in mice. In the present study, male Laca mice (20-30 g) were subjected to running wheel activity test session (RWATS) for 6 min daily for 21 days. Losartan, nimesulide and their combinations were administered daily for 21 days, 45 min before being subjected to RWATS. Various behavioral and biochemical and neuroinflammatory mediators were assessed subsequently. 21 days RWATS treatment significantly decreased number of wheel rotations/6 min indicating fatigue stress like behaviors as compared to naive group. 21 days treatment with losartan (10 and 20 mg/kg, ip), nimesulide (5 and 10 mg/kg, po) and their combinations significantly improved behavior [increased number of wheel rotations, reversal of post-exercise fatigue, locomotor activity, antianxiety-like behavior (number of entries, latency to enter and time spent in mirror chamber), and memory performance (transfer latency in plus-maze performance task)], biochemical parameters (reduced serum corticosterone, brain lipid peroxidation, nitrite concentration, acetylcholinesterase activity, restored reduced glutathione levels and catalase activity) as compared to RWATS control. Besides, TNF-α, CRP levels were significantly attenuated by these drugs and their combinations as compared to control. The present study highlights the role of cyclooxygenase modulation in the neuroprotective effect of losartan against chronic fatigue stress-induced behavioral, biochemical and cellular alterations in mice.
Collapse
Affiliation(s)
- Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-Center of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India.
| | - Barinder Singh
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-Center of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Jitendriya Mishra
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-Center of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Sangeeta Pilkhwal Sah
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-Center of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Raghavender Pottabathini
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-Center of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| |
Collapse
|
125
|
Nylocks KM, Michopoulos V, Rothbaum AO, Almli L, Gillespie CF, Wingo A, Schwartz AC, Habib L, Gamwell KL, Marvar PJ, Bradley B, Ressler KJ. An angiotensin-converting enzyme (ACE) polymorphism may mitigate the effects of angiotensin-pathway medications on posttraumatic stress symptoms. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:307-15. [PMID: 25921615 DOI: 10.1002/ajmg.b.32313] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/23/2015] [Indexed: 11/06/2022]
Abstract
Angiotensin, which regulates blood pressure may also act within the brain to mediate stress and fear responses. Common antihypertensive medication classes of angiotensin-converting enzyme inhibitors (ACE-Is) and angiotensin receptor blockers (ARBs) have been associated with lower PTSD symptoms. Here we examine the rs4311 SNP in the ACE gene, previously implicated in panic attacks, in the relationship between ACE-I/ARB medications and PTSD symptoms. Participants were recruited from outpatient wait rooms between 2006 and March 2014 (n= 803). We examined the interaction between rs4311 genotype and the presence of blood pressure medication on PTSD symptoms and diagnosis. PTSD symptoms were lower in individuals taking ACE-Is or ARBs (N = 776). The rs4311 was associated with PTSD symptoms and diagnosis (N = 3803), as the T-carriers at the rs4311 SNP had significantly greater likelihood of a PTSD diagnosis. Lastly, the rs4311 genotype modified the effect of ACE-Is or ARBs on PTSD symptoms (N = 443; F1,443 = 4.41, P < 0.05). Individuals with the CC rs4311 genotype showed lower PTSD symptoms in the presence of ACE-Is or ARBs. In contrast, T- carriers showed the opposite, such that the presence of ACE-Is or ARBs was associated with higher PTSD symptoms. These data suggest that the renin-angiotensin system may be important in PTSD, as ACE-I/ARB usage associates with lower symptoms. Furthermore, we provide genetic evidence that some individuals are comparatively more benefitted by ACE-Is/ARBs in PTSD treatment. Future research should examine the mechanisms by which ACE-Is/ARBs affect PTSD symptoms such that pharmaco-genetically informed interventions may be used to treat PTSD.
Collapse
Affiliation(s)
- K M Nylocks
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - V Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia.,Yerkes National Primate Research Center, Atlanta, Georgia
| | - A O Rothbaum
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - L Almli
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - C F Gillespie
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - A Wingo
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - A C Schwartz
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - L Habib
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - K L Gamwell
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - P J Marvar
- Department of Pharmacology & Physiology, Institute of Neuroscience, George Washington University, Washington, District of Columbia
| | - B Bradley
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia.,Atlanta Veterans Affairs Medical Center, Mental Health Services, Atlanta, Georgia
| | - K J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia.,Yerkes National Primate Research Center, Atlanta, Georgia
| |
Collapse
|
126
|
Daniele SG, Béraud D, Davenport C, Cheng K, Yin H, Maguire-Zeiss KA. Activation of MyD88-dependent TLR1/2 signaling by misfolded α-synuclein, a protein linked to neurodegenerative disorders. Sci Signal 2015; 8:ra45. [PMID: 25969543 DOI: 10.1126/scisignal.2005965] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Synucleinopathies, such as Parkinson's disease and diffuse Lewy body disease, are progressive neurodegenerative disorders characterized by selective neuronal death, abnormal accumulation of misfolded α-synuclein, and sustained microglial activation. In addition to inducing neuronal toxicity, higher-ordered oligomeric α-synuclein causes proinflammatory responses in the brain parenchyma by triggering microglial activation, which may exacerbate pathogenic processes by establishing a chronic neuroinflammatory milieu. We found that higher-ordered oligomeric α-synuclein induced a proinflammatory microglial phenotype by directly engaging the heterodimer TLR1/2 (Toll-like receptor 1 and 2) at the cell membrane, leading to the nuclear translocation of NF-κB (nuclear factor κB) and the increased production of the proinflammatory cytokines TNF-α (tumor necrosis factor-α) and IL-1β (interleukin-1β) in a MyD88-dependent manner. Blocking signaling through the TLR1/2 heterodimer with the small-molecule inhibitor CU-CPT22 reduced the nuclear translocation of NF-κB and secretion of TNF-α from cultured primary mouse microglia. Candesartan cilexetil, a drug approved for treating hypertension and that inhibits the expression of TLR2, reversed the activated proinflammatory phenotype of primary microglia exposed to oligomeric α-synuclein, supporting the possibility of repurposing this drug for synucleinopathies.
Collapse
Affiliation(s)
- Stefano G Daniele
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Dawn Béraud
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA. Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Connor Davenport
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Kui Cheng
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA. Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hang Yin
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA. Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Kathleen A Maguire-Zeiss
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA. Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
127
|
Abstract
Angiotensin II receptor blockers (ARBs, collectively called sartans) are widely used compounds therapeutically effective in cardiovascular disorders, renal disease, the metabolic syndrome, and diabetes. It has been more recently recognized that ARBs are neuroprotective and have potential therapeutic use in many brain disorders. ARBs ameliorate inflammatory and apoptotic responses to glutamate, interleukin 1β and bacterial endotoxin in cultured neurons, astrocytes, microglial, and endothelial cerebrovascular cells. When administered systemically, ARBs enter the brain, protecting cerebral blood flow, maintaining blood brain barrier function and decreasing cerebral hemorrhage, excessive brain inflammation and neuronal injury in animal models of stroke, traumatic brain injury, Alzheimer's and Parkinson's disease and other brain conditions. Epidemiological analyses reported that ARBs reduced the progression of Alzheimer's disease, and clinical studies suggested amelioration of cognitive loss following stroke and aging. ARBs are pharmacologically heterogeneous; their effects are not only the result of Ang II type 1(AT1) receptor blockade but also of additional mechanisms selective for only some compounds of the class. These include peroxisome proliferator-activated receptor gamma activation and other still poorly defined mechanisms. However, the complete pharmacological spectrum and therapeutic efficacy of individual ARBs have never been systematically compared, and the neuroprotective efficacy of these compounds has not been rigorously determined in controlled clinical studies. The accumulation of pre-clinical evidence should promote further epidemiological and controlled clinical studies. Repurposing ARBs for the treatment of brain disorders, currently without effective therapy, may be of immediate and major translational value.
Collapse
Affiliation(s)
- Sonia Villapol
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA.
| |
Collapse
|
128
|
Sun H, Wu H, Yu X, Zhang G, Zhang R, Zhan S, Wang H, Bu N, Ma X, Li Y. Angiotensin II and its receptor in activated microglia enhanced neuronal loss and cognitive impairment following pilocarpine-induced status epilepticus. Mol Cell Neurosci 2015; 65:58-67. [PMID: 25724109 DOI: 10.1016/j.mcn.2015.02.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 01/19/2015] [Accepted: 02/23/2015] [Indexed: 11/27/2022] Open
Abstract
Neuroinflammation plays a role in the pathology of epilepsy and in cognitive impairment. Angiotensin II (AII) and the angiotensin receptor type 1 (AT1) have been shown to regulate seizure susceptibility in different models of epilepsy. Inhibition of AT1 attenuates neuroinflammatory responses in different neurological diseases. In the present study, we showed that the protein expression of AII and AT1 was increased in activated microglia following lithium pilocarpine-induced status epilepticus (SE) in rats. Furthermore, the AT1 receptor antagonist, losartan, significantly inhibited SE-induced cognitive impairment and microglia-mediated inflammation. Losartan also prevented SE induced neuronal loss in the hippocampus and exerted neuroprotection. These data suggest that losartan improves SE-induced cognitive impairment by suppressing microglia mediated inflammatory responses and attenuating hippocampal neuronal loss. Overall, our findings provide a possible therapeutic strategy for the treatment of cognitive impairment in epilepsy.
Collapse
Affiliation(s)
- Hong Sun
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China.
| | - HaiQin Wu
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China.
| | - Xin Yu
- Department of Neurology, People's Liberation Army 401 Hospital, Qingdao, Shandong 266071, China
| | - GuiLian Zhang
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Ru Zhang
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - ShuQin Zhan
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - HuQing Wang
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Ning Bu
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - XiaoLing Ma
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - YongNan Li
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
129
|
Tchekalarova JD, Ivanova NM, Pechlivanova DM, Atanasova D, Lazarov N, Kortenska L, Mitreva R, Lozanov V, Stoynev A. Antiepileptogenic and neuroprotective effects of losartan in kainate model of temporal lobe epilepsy. Pharmacol Biochem Behav 2014; 127:27-36. [DOI: 10.1016/j.pbb.2014.10.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 10/06/2014] [Accepted: 10/12/2014] [Indexed: 11/26/2022]
|
130
|
Yuan X, Guo X, Deng Y, Zhu D, Shang J, Liu H. Chronic intermittent hypoxia-induced neuronal apoptosis in the hippocampus is attenuated by telmisartan through suppression of iNOS/NO and inhibition of lipid peroxidation and inflammatory responses. Brain Res 2014; 1596:48-57. [PMID: 25463026 DOI: 10.1016/j.brainres.2014.11.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 11/04/2014] [Accepted: 11/16/2014] [Indexed: 01/14/2023]
Abstract
Obstructive sleep apnea syndrome (OSAS) plays a critical role in the initiation and progression of Alzheimer׳s disease (AD), but little is known about the precise mechanism of OSAS-induced AD. Nitric oxide synthase (NOS) and nitric oxide (NO) are known to play key roles in the development of AD. Several studies have confirmed that an angiotensin II type 1 receptor blocker, telmisartan, beneficially regulates NOS and NO. Here, we examined the neuroprotective effects of telmisartan against hippocampal apoptosis induced by chronic intermittent hypoxia (CIH), the most characteristic pathophysiological change of OSAS. Adult male Sprague Dawley rats were subjected to 8h of intermittent hypoxia per day with or without telmisartan for eight weeks. Neuronal apoptosis in the hippocampal CA1 region, NOS activity, NO content, and the presence of inflammatory agents and radical oxygen species in the hippocampus were determined. The results showed that CIH activated inducible nitric oxide synthase (iNOS), increased NO content, and enhanced lipid peroxidation and inflammatory responses in the hippocampus. Treatment with telmisartan inhibited excessive iNOS and NO generation and reduced lipid peroxidation and inflammatory responses. In addition, telmisartan significantly ameliorated the hippocampal apoptosis induced by CIH. In conclusion, Pre-CIH telmisartan administration attenuated CIH-induced hippocampal apoptosis partly by regulating NOS activity, inhibiting excessive NO generation, and reducing lipid peroxidation and inflammatory responses.
Collapse
Affiliation(s)
- Xiao Yuan
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China
| | - Xueling Guo
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China
| | - Yan Deng
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China
| | - Die Zhu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China
| | - Jin Shang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China.
| |
Collapse
|
131
|
Yuan X, Zhu D, Guo XL, Deng Y, Shang J, Liu K, Liu HG. Telmisartan attenuates myocardial apoptosis induced by chronic intermittent hypoxia in rats: modulation of nitric oxide metabolism and inflammatory mediators. Sleep Breath 2014; 19:703-9. [PMID: 25413957 DOI: 10.1007/s11325-014-1081-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/09/2014] [Accepted: 11/10/2014] [Indexed: 11/26/2022]
Abstract
PURPOSE NO and NO synthase (NOS) are known to play key roles in the development of myocardial apoptosis induced by ischemia/hypoxia. Current evidence suggests that angiotensin II type 1 receptor blockers, such as telmisartan, lower blood pressure and produce beneficial regulatory effects on NO and NOS. Here, we examined the protective role of telmisartan in myocardial apoptosis induced by chronic intermittent hypoxia (CIH). METHODS Adult male Sprague-Dawley rats were subjected to 8 h of intermittent hypoxia/day, with/without telmisartan for 8 weeks. Myocardial apoptosis, NO and NOS activity, and levels of inflammatory mediators and radical oxygen species were determined. RESULTS Treatment with telmisartan preserved endothelial NOS expression and inhibited inducible NOS and excessive NO generation, while reducing oxidation/nitration stress and inflammatory responses. Administration of telmisartan before CIH significantly ameliorated the CIH-induced myocardial apoptosis. CONCLUSIONS This study show that pre-CIH telmisartan administration ameliorated myocardial injury following CIH by attenuating CIH-induced myocardial apoptosis via regulation of NOS activity and inhibition of excessive NO generation, oxidation/nitration stress, and inflammatory responses.
Collapse
Affiliation(s)
- Xiao Yuan
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430030, China
| | | | | | | | | | | | | |
Collapse
|
132
|
Zannas AS, McQuoid DR, Payne ME, MacFall JR, Ashley-Koch A, Steffens DC, Potter GG, Taylor WD. Association of gene variants of the renin-angiotensin system with accelerated hippocampal volume loss and cognitive decline in old age. Am J Psychiatry 2014; 171:1214-21. [PMID: 25124854 PMCID: PMC4329281 DOI: 10.1176/appi.ajp.2014.13111543] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Genetic factors confer risk for neuropsychiatric phenotypes, but the polygenic etiology of these phenotypes makes identification of genetic culprits challenging. An approach to this challenge is to examine the effects of genetic variation on relevant endophenotypes, such as hippocampal volume loss. A smaller hippocampus is associated with gene variants of the renin-angiotensin system (RAS), a system implicated in vascular disease. However, no studies to date have investigated longitudinally the effects of genetic variation of RAS on the hippocampus. METHOD The authors examined the effects of polymorphisms of AGTR1, the gene encoding angiotensin-II type 1 receptor of RAS, on longitudinal hippocampal volumes of older adults. In all, 138 older adults (age ≥60 years) were followed for an average of about 4 years. The participants underwent repeated structural MRI and comprehensive neurocognitive testing, and they were genotyped for four AGTR1 single-nucleotide polymorphisms (SNPs) with low pairwise linkage disequilibrium values and apolipoprotein E (APOE) genotype. RESULTS Genetic variants at three AGTR1 SNPs (rs2638363, rs1492103, and rs2675511) were independently associated with accelerated hippocampal volume loss over the 4-year follow-up period in the right but not left hemisphere. Intriguingly, these AGTR1 risk alleles also predicted worse episodic memory performance but were not related to other cognitive measures. Two risk variants (rs2638363 and rs12721331) interacted with the APOE4 allele to accelerate right hippocampal volume loss. CONCLUSIONS Risk genetic variants of the RAS may accelerate memory decline in older adults, an effect that may be conferred by accelerated hippocampal volume loss. Molecules involved in this system may hold promise as early therapeutic targets for late-life neuropsychiatric disorders.
Collapse
Affiliation(s)
- Anthony S. Zannas
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27710,Max Planck Institute of Psychiatry, Munich, 80804, Germany,Correspondence: Anthony S. Zannas, MD, MSc, Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804, Munich, Germany, , Telephone: 00498930622323
| | - Douglas R. McQuoid
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27710
| | - Martha E Payne
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27710,Neuropsychiatric Imaging Research Laboratory, Duke University Medical Center, Durham, NC 27705
| | - James R. MacFall
- Department of Radiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Allison Ashley-Koch
- Center for Human Genetics, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - David C. Steffens
- Department of Psychiatry, University of Connecticut Health Sciences Center, Farmington, CT, 06030
| | - Guy G. Potter
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27710
| | - Warren D. Taylor
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, 37212
| |
Collapse
|
133
|
Brzozowski T. Role of renin-angiotensin system and metabolites of angiotensin in the mechanism of gastric mucosal protection. Curr Opin Pharmacol 2014; 19:90-8. [PMID: 25238456 DOI: 10.1016/j.coph.2014.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/29/2014] [Accepted: 08/29/2014] [Indexed: 12/29/2022]
Abstract
Angiotensin II, the main effector of the renin-angiotensin system (RAS), is generated from the precursor angiotensinogen by the actions of renin, angiotensin-converting enzyme, chymase and various peptidases. RAS is essential in the control of blood pressure and body fluid homeostasis but their involvement in the mechanism of the protection of gastric mucosa has not been extensively studied. On the other hand, angiotensin-(1-7) which acts on the Mas receptor, exhibits a potent vasodilatory activity and attenuates the gastric lesions induced by various ulcerogens. In this review, the mechanism of RAS, the antagonists of angiotensin AT1 and AT2 receptors and angiotensin-(1-7) in formation of gastric damage is discussed with possible translating relevance to treatment modalities in the protection against gastric mucosal injury.
Collapse
Affiliation(s)
- Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland.
| |
Collapse
|
134
|
Duzyj CM, Paidas MJ, Jebailey L, Huang JS, Barnea ER. PreImplantation factor (PIF*) promotes embryotrophic and neuroprotective decidual genes: effect negated by epidermal growth factor. J Neurodev Disord 2014; 6:36. [PMID: 26085845 PMCID: PMC4470351 DOI: 10.1186/1866-1955-6-36] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/29/2014] [Indexed: 12/19/2022] Open
Abstract
Background Intimate embryo-maternal interaction is paramount for pregnancy success post-implantation. The embryo follows a specific developmental timeline starting with neural system, dependent on endogenous and decidual factors. Beyond altered genetics/epigenetics, post-natal diseases may initiate at prenatal/neonatal, post-natal period, or through a continuum. Preimplantation factor (PIF) secreted by viable embryos promotes implantation and trophoblast invasion. Synthetic PIF reverses neuroinflammation in non-pregnant models. PIF targets embryo proteins that protect against oxidative stress and protein misfolding. We report of PIF’s embryotrophic role and potential to prevent developmental disorders by regulating uterine milieu at implantation and first trimester. Methods PIF’s effect on human implantation (human endometrial stromal cells (HESC)) and first-trimester decidua cultures (FTDC) was examined, by global gene expression (Affymetrix), disease-biomarkers ranking (GeneGo), neuro-specific genes (Ingenuity) and proteins (mass-spectrometry). PIF co-cultured epidermal growth factor (EGF) in both HESC and FTDC (Affymetrix) was evaluated. Results In HESC, PIF promotes neural differentiation and transmission genes (TLX2, EPHA10) while inhibiting retinoic acid receptor gene, which arrests growth. PIF promotes axon guidance and downregulates EGF-dependent neuroregulin signaling. In FTDC, PIF promotes bone morphogenetic protein pathway (SMAD1, 53-fold) and axonal guidance genes (EPH5) while inhibiting PPP2R2C, negative cell-growth regulator, involved in Alzheimer’s and amyotrophic lateral sclerosis. In HESC, PIF affects angiotensin via beta-arrestin, transforming growth factor-beta (TGF-β), notch, BMP, and wingless-int (WNT) signaling pathways that promote neurogenesis involved in childhood neurodevelopmental diseases—autism and also affected epithelial-mesenchymal transition involved in neuromuscular disorders. In FTDC, PIF upregulates neural development and hormone signaling, while downregulating genes protecting against xenobiotic response leading to connective tissue disorders. In both HESC and FTDC, PIF affects neural development and transmission pathways. In HESC interactome, PIF promotes FUS gene, which controls genome integrity, while in FTDC, PIF upregulates STAT3 critical transcription signal. EGF abolished PIF’s effect on HESC, decreasing metalloproteinase and prolactin receptor genes, thereby interfering with decidualization, while in FTDC, EGF co-cultured with PIF reduced ZHX2, gene that regulates neural AFP secretion. Conclusions PIF promotes decidual trophic genes and proteins to regulate neural development. By regulating the uterine milieu, PIF may decrease embryo vulnerability to post-natal neurodevelopmental disorders. Examination of PIF-based intervention strategies used during embryogenesis to improve pregnancy prognosis and reduce post-natal vulnerability is clearly in order.
Collapse
Affiliation(s)
- Christina M Duzyj
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Women and Children's Center for Blood Disorders, Yale University School of Medicine, 333 Cedar St, P.O. Box 208063, New Haven, CT 06520, USA
| | - Michael J Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Women and Children's Center for Blood Disorders, Yale University School of Medicine, 333 Cedar St, P.O. Box 208063, New Haven, CT 06520, USA
| | - Lellean Jebailey
- GeneGo Inc., A Thomson Reuters Business, 5901 Priestly Drive Suite 200, Carlsbad, CA 92008, USA
| | - Jing Shun Huang
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, The Ohio State University, Columbus, OH 43210, USA
| | - Eytan R Barnea
- Society for the Investigation of Early Pregnancy, 1697 Lark Lane, Cherry Hill, NJ 08003, USA ; BioIncept LLC (PIF Proprietary), 1697 Lark Lane, Cherry Hill, NJ 08003, USA
| |
Collapse
|
135
|
Færch LH, Thorsteinsson B, Tarnow L, Holst JJ, Kjær T, Kanters J, Larroude C, Dela F, Pedersen-Bjergaard U. Effects of angiotensin II receptor blockade on cerebral, cardiovascular, counter-regulatory, and symptomatic responses during hypoglycaemia in patients with type 1 diabetes. J Renin Angiotensin Aldosterone Syst 2014; 16:1036-45. [DOI: 10.1177/1470320314529356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Louise H Færch
- Department of Cardiology, Nephrology and Endocrinology, Nordsjællands Hospital – Hillerød, Denmark
| | - Birger Thorsteinsson
- Department of Cardiology, Nephrology and Endocrinology, Nordsjællands Hospital – Hillerød, Denmark
- Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Lise Tarnow
- HIH Research Unit, Nordsjællands Hospital – Hillerød, Denmark
- Department of Health, University of Aarhus, Denmark
| | - Jens Juul Holst
- NNF Centre for Basic Metabolic Research, Department of Biomedical Sciences, the Panum Institute, University of Copenhagen, Denmark
| | - Troels Kjær
- Clinic of Neurophysiology, The Neuroscience Centre, Rigshospitalet, Copenhagen University Hospital, Denmark
| | - Jørgen Kanters
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Denmark
- Department of Cardiology, Nephrology and Endocrinology, Nordsjællands Hospital – Frederikssund, Denmark
| | - Charlotte Larroude
- Department of Cardiology, Nephrology and Endocrinology, Nordsjællands Hospital – Frederikssund, Denmark
- Department of Cardiology, Bispebjerg Hospital, Copenhagen, Denmark
| | - Flemming Dela
- Xlab, Centre for Healthy Ageing, University of Copenhagen, Denmark
| | - Ulrik Pedersen-Bjergaard
- Department of Cardiology, Nephrology and Endocrinology, Nordsjællands Hospital – Hillerød, Denmark
- Department of Clinical Medicine, University of Copenhagen, Denmark
| |
Collapse
|
136
|
Umschweif G, Liraz-Zaltsman S, Shabashov D, Alexandrovich A, Trembovler V, Horowitz M, Shohami E. Angiotensin receptor type 2 activation induces neuroprotection and neurogenesis after traumatic brain injury. Neurotherapeutics 2014; 11:665-78. [PMID: 24957202 PMCID: PMC4121449 DOI: 10.1007/s13311-014-0286-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Angiotensin II receptor type 2 (AT(2)) agonists have been shown to limit brain ischemic insult and to improve its outcome. The activation of AT(2) was also linked to induced neuronal proliferation and differentiation in vitro. In this study, we examined the therapeutic potential of AT(2) activation following traumatic brain injury (TBI) in mice, a brain pathology that displays ischemia-like secondary damages. The AT(2) agonist CGP42112A was continuously infused immediately after closed head injury (CHI) for 3 days. We have followed the functional recovery of the injured mice for 35 days post-CHI, and evaluated cognitive function, lesion volume, molecular signaling, and neurogenesis at different time points after the impact. We found dose-dependent improvement in functional recovery and cognitive performance after CGP42112A treatment that was accompanied by reduced lesion volume and induced neurogenesis in the neurogenic niches of the brain and also in the injury region. At the cellular/molecular level, CGP42112A induced early activation of neuroprotective kinases protein kinase B (Akt) and extracellular-regulated kinases ½ (ERK½), and the neurotrophins nerve growth factor and brain-derived neurotrophic factor; all were blocked by treatment with the AT(2) antagonist PD123319. Our results suggest that AT(2) activation after TBI promotes neuroprotection and neurogenesis, and may be a novel approach for the development of new drugs to treat victims of TBI.
Collapse
Affiliation(s)
- Gali Umschweif
- />Department of Pharmacology, The Hebrew University, Jerusalem, Israel
- />Laboratory of Environmental Physiology, The Hebrew University, Jerusalem, Israel
| | | | - Dalia Shabashov
- />Department of Pharmacology, The Hebrew University, Jerusalem, Israel
| | | | | | - Michal Horowitz
- />Laboratory of Environmental Physiology, The Hebrew University, Jerusalem, Israel
| | - Esther Shohami
- />Department of Pharmacology, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
137
|
Salminen LE, Schofield PR, Pierce KD, Conturo TE, Tate DF, Lane EM, Heaps JM, Bolzenius JD, Baker LM, Akbudak E, Paul RH. Impact of the AGTR1 A1166C polymorphism on subcortical hyperintensities and cognition in healthy older adults. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9664. [PMID: 24981111 PMCID: PMC4150909 DOI: 10.1007/s11357-014-9664-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 06/18/2014] [Indexed: 05/19/2023]
Abstract
Vascular aging consists of complex and multifaceted processes that may be influenced by genetic polymorphisms of the renin-angiotensin system. A polymorphism in the angiotensin II type 1 receptor gene (AGTR1/rs5186) has been associated with an increased risk for arterial stiffness, hypertension, and ischemic stroke. Despite these identified relationships, the impact of AGTR1 A1166C on white matter integrity and cognition is less clear in a healthy aging population. The present study utilized indices of neuroimaging and neuropsychological assessment to examine the impact of the A1166C polymorphism on subcortical hyperintensities (SH) and cognition in 49 healthy adults between ages 51-85. Using a dominant statistical model (CC + CA (risk) vs. AA), results revealed significantly larger SH volume for individuals with the C1166 variant (p < 0.05, partial eta(2) = 0.117) compared with those with the AA genotype. Post hoc analyses indicated that increased SH volume in C allele carriers could not be explained by vascular factors such as pulse pressure or body mass index. In addition, cognitive performance did not differ significantly between groups and was not significantly associated with SH in this cohort. Results suggest that presence of the C1166 variant may serve as a biomarker of risk for suboptimal brain integrity in otherwise healthy older adults prior to changes in cognition.
Collapse
Affiliation(s)
- Lauren E Salminen
- Department of Psychology, University of Missouri-Saint Louis, 1 University Boulevard, Stadler Hall 442 A, St. Louis, MO, 63121, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Angiotensin converting enzyme inhibition reduces cardiovascular responses to acute stress in myocardially infarcted and chronically stressed rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:385082. [PMID: 25045668 PMCID: PMC4087298 DOI: 10.1155/2014/385082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/29/2014] [Accepted: 06/01/2014] [Indexed: 11/17/2022]
Abstract
Previous studies showed that chronically stressed and myocardially infarcted rats respond with exaggerated cardiovascular responses to acute stress. The present experiments were designed to elucidate whether this effect can be abolished by treatment with the angiotensin converting enzyme (ACE) inhibitor captopril. Sprague Dawley rats were subjected either to sham surgery (Groups 1 and 2) or to myocardial infarction (Groups 3 and 4). The rats of Groups 2 and 4 were also exposed to mild chronic stressing. Four weeks after the operation, mean arterial blood pressure (MABP) and heart rate (HR) were measured under resting conditions and after application of acute stress. The cardiovascular responses to the acute stress were determined again 24 h after administration of captopril orally. Captopril significantly reduced resting MABP in each group. Before administration of captopril, the maximum increases in MABP evoked by the acute stressor in all (infarcted and sham-operated) chronically stressed rats and also in the infarcted nonchronically stressed rats were significantly greater than in the sham-operated rats not exposed to chronic stressing. These differences were abolished by captopril. The results suggest that ACE may improve tolerance of acute stress in heart failure and during chronic stressing.
Collapse
|
139
|
da C Silva D, Maltarollo VG, de Lima EF, Weber KC, Honorio KM. Understanding electrostatic and steric requirements related to hypertensive action of AT(1) antagonists using molecular modeling techniques. J Mol Model 2014; 20:2231. [PMID: 24935104 DOI: 10.1007/s00894-014-2231-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/02/2014] [Indexed: 12/01/2022]
Abstract
AT1 receptor is an interesting biological target involved in several important diseases, such as blood hypertension and cardiovascular pathologies. In this study we investigated the main electrostatic and steric features of a series of AT1 antagonists related to hypertensive activity using structure and ligand-based strategies (docking and CoMFA). The generated 3D model had good internal and external consistency and was used to predict the potency of an external test set. The predicted values of pIC50 are in good agreement with the experimental results of biological activity, indicating that the 3D model can be used to predict the biological property of untested compounds. The electrostatic and steric CoMFA maps showed molecular recognition patterns, which were analyzed with structure-based molecular modeling studies (docking). The most and the least potent compounds docked into the AT1 binding site were subjected to molecular dynamics simulations with the aim to verify the stability and the flexibility of the ligand-receptor interactions. These results provided valuable insights on the electronic/structural requirements to design novel AT1 antagonists.
Collapse
Affiliation(s)
- Danielle da C Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | | | | | | | | |
Collapse
|
140
|
Telmisartan attenuates cognitive impairment caused by chronic stress in rats. Pharmacol Rep 2014; 66:436-41. [DOI: 10.1016/j.pharep.2013.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 11/08/2013] [Accepted: 11/26/2013] [Indexed: 01/05/2023]
|
141
|
Angiotensin type 1 receptor antagonists-a novel approach to augmenting posttraumatic stress disorder and phobia therapies? Biol Psychiatry 2014; 75:836-7. [PMID: 24837620 DOI: 10.1016/j.biopsych.2014.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 11/20/2022]
|
142
|
Wincewicz D, Braszko JJ. Angiotensin II AT1 receptor blockade by telmisartan reduces impairment of spatial maze performance induced by both acute and chronic stress. J Renin Angiotensin Aldosterone Syst 2014; 16:495-505. [DOI: 10.1177/1470320314526269] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 01/26/2014] [Indexed: 01/02/2023] Open
Affiliation(s)
- Dominik Wincewicz
- Department of Clinical Pharmacology, Medical University of Bialystok, Poland
| | - Jan J Braszko
- Department of Clinical Pharmacology, Medical University of Bialystok, Poland
| |
Collapse
|
143
|
Gyires K, Rónai AZ, Zádori ZS, Tóth VE, Németh J, Szekeres M, Hunyady L. Angiotensin II-induced activation of central AT1 receptors exerts endocannabinoid-mediated gastroprotective effect in rats. Mol Cell Endocrinol 2014; 382:971-8. [PMID: 24145131 DOI: 10.1016/j.mce.2013.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 10/01/2013] [Accepted: 10/01/2013] [Indexed: 12/29/2022]
Abstract
The aim of the present study was to analyze whether angiotensin II via the endocannabinoid system can induce gastric mucosal protection, since transactivation of cannabinoid CB1 receptors by angiotensin AT1 receptor in CHO cells was described. Experimental ulcer was induced by acidified ethanol given orally in male Wistar rats, CB1(+/+) wild type and CB1(-/-) knockout mice. The compounds were administered intracerebroventricularly. It was found, that 1. Angiotensin II inhibited the ethanol-induced gastric lesions (11.9-191pmol); the effect of angiotensin II (191pmol) was inhibited by the CB1 receptor inverse agonist AM 251 (1.8nmol) and the inhibitor of diacylglycerol lipase (DAGL), tetrahydrolipstatin (0.2nmol). 2. Angiotensin II exerted gastroprotection in wild type, but not in CB1(-/-) mice. 3. The gastroprotective effect of angiotensin II (191pmol) was reduced by atropine (1mg/kg i.v.) and bilateral cervical vagotomy. In conclusion, stimulation of central angiotensin AT1 receptors via activation of cannabinoid CB1 receptors induces gastroprotection in a DAGL-dependent and vagus-mediated mechanism.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Atropine/pharmacology
- CHO Cells
- Cricetulus
- Ethanol
- Gastric Mucosa/metabolism
- Gene Expression Regulation
- Injections, Intraventricular
- Lactones/pharmacology
- Lipoprotein Lipase/antagonists & inhibitors
- Lipoprotein Lipase/genetics
- Lipoprotein Lipase/metabolism
- Male
- Mice
- Mice, Knockout
- Orlistat
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- Rats
- Rats, Wistar
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Signal Transduction
- Stomach/drug effects
- Stomach/pathology
- Stomach Ulcer/chemically induced
- Stomach Ulcer/drug therapy
- Stomach Ulcer/metabolism
- Stomach Ulcer/pathology
- Vagotomy
- Vagus Nerve
Collapse
Affiliation(s)
- Klára Gyires
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary.
| | - András Z Rónai
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary
| | - Viktória E Tóth
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary
| | - József Németh
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary
| | - Mária Szekeres
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó u. 37-47., 1094 Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó u. 37-47., 1094 Budapest, Hungary; Laboratory of Molecular Physiology, Semmelweis University and Hungarian Academy of Sciences, Tűzoltó u. 37-47., 1094 Budapest, Hungary
| |
Collapse
|
144
|
Angiotensin (1–7) protects against stress-induced gastric lesions in rats. Biochem Pharmacol 2014; 87:467-76. [DOI: 10.1016/j.bcp.2013.10.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/29/2013] [Accepted: 10/31/2013] [Indexed: 10/26/2022]
|
145
|
Pereira Dias G, Hollywood R, Bevilaqua MCDN, da Luz ACDDS, Hindges R, Nardi AE, Thuret S. Consequences of cancer treatments on adult hippocampal neurogenesis: implications for cognitive function and depressive symptoms. Neuro Oncol 2014; 16:476-92. [PMID: 24470543 DOI: 10.1093/neuonc/not321] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human brain is capable of generating new functional neurons throughout life, a phenomenon known as adult neurogenesis. The generation of new neurons is sustained throughout adulthood due to the proliferation and differentiation of adult neural stem cells. This process in humans is uniquely located in the subgranular zone of the dentate gyrus in the hippocampus. Adult hippocampal neurogenesis (AHN) is thought to play a major role in hippocampus-dependent functions, such as spatial awareness, long-term memory, emotionality, and mood. The overall aim of current treatments for cancer (such as radiotherapy and chemotherapy) is to prevent aberrant cell division of cell populations associated with malignancy. However, the treatments in question are absolutist in nature and hence inhibit all cell division. An unintended consequence of this cessation of cell division is the impairment of adult neural stem cell proliferation and AHN. Patients undergoing treatment for cancerous malignancies often display specific forms of memory deficits, as well as depressive symptoms. This review aims to discuss the effects of cancer treatments on AHN and propose a link between the inhibition of the neurogenetic process in the hippocampus and the advent of the cognitive and mood-based deficits observed in patients and animal models undergoing cancer therapies. Possible evidence for coadjuvant interventions aiming to protect neural cells, and subsequently the mood and cognitive functions they regulate, from the ablative effects of cancer treatment are discussed as potential clinical tools to improve mental health among cancer patients.
Collapse
Affiliation(s)
- Gisele Pereira Dias
- Institute of Psychiatry, King's College London, The James Black Centre, London, UK (G.P.D., R.H., S.T.); Translational Neurobiology Unit, Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil (G.P.D., M.C.N.B., A.C.D.dS.d.L., A.E.N.); MRC Centre for Developmental Neurobiology, King's College London, London, UK (M.C.N.B., R.H.)
| | | | | | | | | | | | | |
Collapse
|
146
|
Driessen TM, Eisinger BE, Zhao C, Stevenson SA, Saul MC, Gammie SC. Genes showing altered expression in the medial preoptic area in the highly social maternal phenotype are related to autism and other disorders with social deficits. BMC Neurosci 2014; 15:11. [PMID: 24423034 PMCID: PMC3906749 DOI: 10.1186/1471-2202-15-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/30/2013] [Indexed: 11/15/2022] Open
Abstract
Background The mother-child relationship is the most fundamental social bond in mammals, and previous studies indicate that the medial preoptic area (MPOA) contributes to this increase in sociability. It is possible that the same genes that lead to elevated sociability in one condition (the maternal state) might also be dysregulated in some disorders with social deficits (e.g. autism). In this study, we examined whether there was enrichment (greater than chance overlap) for social deficit disorder related genes in MPOA microarray results between virgin and postpartum female mice. We utilized microarrays to assess large scale gene expression changes in the MPOA of virgin and postpartum mice. The Modular Single Set Enrichment Test (MSET) was used to determine if mental health disorder related genes were enriched in significant microarray results. Additional resources, such as ToppCluster, NIH DAVID, and weighted co-expression network analysis (WGCNA) were used to analyze enrichment for specific gene clusters or indirect relationships between significant genes of interest. Finally, a subset of microarray results was validated using quantitative PCR. Results Significant postpartum MPOA microarray results were enriched for multiple disorders that include social deficits, including autism, bipolar disorder, depression, and schizophrenia. Together, 98 autism-related genes were identified from the significant microarray results. Further, ToppCluser and NIH DAVID identified a large number of postpartum genes related to ion channel activity and CNS development, and also suggested a role for microRNAs in regulating maternal gene expression. WGCNA identified a module of genes associated with the postpartum phenotype, and identified indirect links between transcription factors and other genes of interest. Conclusion The transition to the maternal state involves great CNS plasticity and increased sociability. We identified multiple novel genes that overlap between the postpartum MPOA (high sociability) and mental health disorders with low sociability. Thus, the activity or interactions of the same genes may be altering social behaviors in different directions in different conditions. Maternity also involves elevated risks for disorders, including depression, psychosis, and BPD, so identification of maternal genes common to these disorders may provide insights into the elevated vulnerability of the maternal brain.
Collapse
Affiliation(s)
- Terri M Driessen
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | | | | | | | |
Collapse
|
147
|
Belem da Silva CT, Costa MDA, Manfro GG. From brain to heart: a (not so) long way to go. Expert Rev Neurother 2014; 13:873-5. [DOI: 10.1586/14737175.2013.814932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
148
|
Holman EA, Guijarro A, Lim J, Piomelli D. Effects of acute stress on cardiac endocannabinoids, lipogenesis, and inflammation in rats. Psychosom Med 2014; 76:20-28. [PMID: 24367128 PMCID: PMC3988664 DOI: 10.1097/psy.0000000000000025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Trauma exposure can precipitate acute stress (AS) and cardiovascular disorders (CVD). Identifying AS-related physiologic changes that affect CVD risk could inform development of early CVD prevention strategies. The endocannabinoid system (ECS) regulates hypothalamic-pituitary-adrenal axis and stress-related cardiovascular function. We examine stress-related ECS activity and its association with cardiovascular biochemistry/function after AS. METHODS Rodents (n = 8-16/group) were exposed to predator odor or saline; elevated plus maze, blood pressure, serum and cardiac ECS markers, and lipid metabolism were assessed 24 hours and 2 weeks postexposure. RESULTS At 24 hours, the predator odor group demonstrated anxiety-like behavior and had a) elevated serum markers of cardiac failure/damage (brain natriuretic peptide: 275.1 versus 234.6, p = .007; troponin I: 1.50 versus 0.78, p = .076), lipogenesis (triacylglycerols: 123.5 versus 85.93, p = .018), and inflammation (stearoyl delta-9 desaturase activity: 0.21 versus 0.07, p < .001); b) decreased cardiac 2-arachidonoyl-sn-glycerol (29.90 versus 65.95, p < .001), oleoylethanolamide (114.3 versus 125.4, p = .047), and palmitoylethanolamide (72.96 versus 82.87, p = .008); and c) increased cardiac inflammation (interleukin [IL]-1β/IL-6 ratio: 19.79 versus 13.57, p = .038; tumor necrosis factor α/IL-6 ratio: 1.73 versus 1.03, p = .019) and oxidative stress (thiobarbituric acid reactive substances: 7.81 versus 7.05, p = .022), which were associated with cardiac steatosis (higher triacylglycerol: 1.09 versus 0.72, p < .001). Cardiac lipogenesis persisted, and elevated blood pressure emerged 2 weeks postexposure. CONCLUSIONS Acute psychological stress elicits ECS-related cardiac responses associated with persistent, potentially pathological changes in rat cardiovascular biochemistry/function.
Collapse
|
149
|
Abstract
High levels of several proinflammatory components of the immune system, such as interleukin-6, C-reactive protein, tumor necrosis factor (TNF)-α, or neopterin in patients suffering from major depression (MD) point to the involvement of an inflammatory process in the pathophysiology of MD. The direct and indirect effects of cytokines on neurotransmitter storage and release - mediated by microglia cells and astrocytes - are discussed. The tryptophan/kynurenine metabolism is one of the indirect mechanisms because the enzyme indoleamine 2,3-dioxygenase - a key enzyme of this metabolism in the central nervous system - is driven by pro- and anti-inflammatory cytokines and degrades serotonin. Moreover, neuroactive kynurenines such as kynurenic acid and quinolinic acid act on the glutamatergic neurotransmission as N-methyl-D-aspartate antagonists and agonists, respectively. Alterations of the serotonergic, noradrenergic and glutamatergic neurotransmission have been shown with low-level neuroinflammation and may be involved in symptom generation. Epidemiological and clinical studies show a role for inflammation as a risk factor for MD. A large-scale epidemiological study in MD clearly demonstrates that severe infections and autoimmune disorders are lifetime risk factors for MD. The vulnerability-stress-inflammation model matches with this view as stress may increase proinflammatory cytokines and even contribute to a lasting proinflammatory state. Further support comes from the therapeutic benefit of anti-inflammatory medications such as the cyclo-oxygenase-2 inhibitors, TNF-α antagonists and others, and the anti-inflammatory and immunomodulatory intrinsic effects of antidepressants.
Collapse
Affiliation(s)
- Norbert Müller
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University of Munich, Munich, Germany
| |
Collapse
|
150
|
Wang J, Pang T, Hafko R, Benicky J, Sanchez-Lemus E, Saavedra JM. Telmisartan ameliorates glutamate-induced neurotoxicity: roles of AT(1) receptor blockade and PPARγ activation. Neuropharmacology 2013; 79:249-61. [PMID: 24316465 DOI: 10.1016/j.neuropharm.2013.11.022] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 01/22/2023]
Abstract
Sartans (Angiotensin II AT(1) Receptor Blockers, ARBs) are powerful neuroprotective agents in vivo and protect against IL-1β neurotoxicity in vitro. The purpose of this research was to determine the extent of sartan neuroprotection against glutamate excitotoxicity, a common cause of neuronal injury and apoptosis. The results show that sartans are neuroprotective, significantly reducing glutamate-induced neuronal injury and apoptosis in cultured rat primary cerebellar granule cells (CGCs). Telmisartan was the most potent sartan studied, with an order of potency telmisartan > candesartan > losartan > valsartan. Mechanisms involved reduction of pro-apoptotic caspase-3 activation, protection of the survival PI3K/Akt/GSK-3β pathway and prevention of glutamate-induced ERK1/2 activation. NMDA receptor stimulation was essential for glutamate-induced cell injury and apoptosis. Participation of AT(1A) receptor was supported by glutamate-induced upregulation of AT(1A) gene expression and AT(1) receptor binding. Conversely, AT(1B) or AT(2) receptors played no role. Glutamate-induced neuronal injury and the neuroprotective effect of telmisartan were decreased, but not abolished, in CGCs obtained from AT(1A) knock-out mice. This indicates that although AT(1) receptors are necessary for glutamate to exert its full neurotoxic potential, part of the neuroprotective effect of telmisartan is independent of AT(1) receptor blockade. PPARγ activation was also involved in the neuroprotective effects of telmisartan, as telmisartan enhanced PPARγ nuclear translocation and the PPARγ antagonist GW9662 partially reversed the neuroprotective effects of telmisartan. The present results substantiate the therapeutic use of sartans, in particular telmisartan, in neurodegenerative diseases and traumatic brain disorders where glutamate neurotoxicity plays a significant role.
Collapse
Affiliation(s)
- Juan Wang
- Section on Pharmacology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA.
| | - Tao Pang
- Section on Pharmacology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA; New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, PR China
| | - Roman Hafko
- Section on Pharmacology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Julius Benicky
- Section on Pharmacology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA.
| | - Enrique Sanchez-Lemus
- Section on Pharmacology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA.
| | - Juan M Saavedra
- Section on Pharmacology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA; Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|