101
|
Berg-Johansen B, Jain D, Liebenberg EC, Fields AJ, Link TM, O'Neill CW, Lotz JC. Tidemark Avulsions are a Predominant Form of Endplate Irregularity. Spine (Phila Pa 1976) 2018; 43:1095-1101. [PMID: 29315127 PMCID: PMC6035893 DOI: 10.1097/brs.0000000000002545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Descriptive histologic and magnetic resonance imaging study of human cadaveric spines. OBJECTIVE To identify and characterize common endplate pathologies to form a histologic foundation for an etiology-based classification system. SUMMARY OF BACKGROUND DATA Irregularities at the spinal disc-vertebra interface are associated with back pain and intervertebral disc herniation injuries. However, there is currently a lack of consensus regarding terminology for classification. This limits the potential for advancing understanding of back pain mechanisms, and prohibits meaningful comparisons for identifying priorities for prevention and treatment. Prior classification systems largely rely on observations from clinical imaging, which may miss subtle pathologic features. METHODS Fifteen cadaveric spines with moderate to severe disc degeneration were obtained and scanned with MRI in the sagittal plane using two-dimensional T1-weighted and T2-weighted fast spin-echo sequences. Eighty-nine lumbar and lower thoracic bone-disc-bone motion segments were extracted, fixed, sectioned, and stained for histologic evaluation. Focal endplate irregularities were identified and categorized based on features that inferred causation. The presence, type, and anatomic location were recorded. A classification system with three major categories of focal endplate irregularities was created. RESULTS Disc-vertebra avulsion and vertebral rim degeneration were more common than subchondral nodes: 50% of irregularities were classified as rim degeneration (75/150), 35% were classified as avulsions (52/150), and 15% were classified as nodes (23/150). Ninety percent of avulsions were subclassified as "tidemark avulsions," a highly prevalent form of endplate irregularity in which the outer annulus separates from the vertebra at the tidemark. These tidemark avulsions have not been previously described, yet are visible on T2-weighted MRI as high-intensity regions. CONCLUSION This study provides histologic basis for a system to classify focal endplate irregularities. Included is a previously unidentified but prevalent finding of tidemark avulsions, which are visible with both histology and magnetic resonance imaging. These observations will help clinicians better organize patients into meaningful groups to facilitate diagnosis, treatment, and clinical research. LEVEL OF EVIDENCE 3.
Collapse
|
102
|
Lumbar Vertebral Endplate Defects on Magnetic Resonance Images: Classification, Distribution Patterns, and Associations with Modic Changes and Disc Degeneration. Spine (Phila Pa 1976) 2018; 43:919-927. [PMID: 29019806 DOI: 10.1097/brs.0000000000002450] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A cross-sectional magnetic resonance (MR) imaging study. OBJECTIVE To classify and characterize endplate defects using routine lumbar MR images and to determine associations of endplate defects with Modic changes (MCs) and disc degeneration. SUMMARY OF BACKGROUND DATA Previously, a cadaveric study revealed that endplate lesions were common and associated with back pain history. New in vivo approaches appropriate for clinical studies are needed to further this potentially important line of research on the clinical significance of endplate lesions, including their relation with MCs, disc degeneration, and back pain. METHODS Using a MRI archive, 1564 endplates of 133 subjects (59 men and 74 women, mean age 58.9 ± 11.9 years) with the presence of MCs were retrospectively collected from April of 2014 to June of 2015. On the basis of morphological characteristics, a protocol was proposed to identify three distinct types of endplate defects, including focal, corner, and erosive defects. The location, size, and distribution patterns of various endplate lesions were characterized. MCs and disc degeneration were measured to examine their associations with endplate defects. RESULTS Endplate defects were observed in 27.8% of endplates studied. Greater age was associated with the presence of endplate defects. Focal defects were the most common (13.5%), followed by erosive defects (11.1%) and corner defects (3.2%). Defect types also differed in size and distribution patterns. Endplate defects and MCs had similar distribution patterns in the lumbar spine. The presence of endplate defects were associated with the presence of MCs (odds ratio = 4.29, P < 0.001), and associated with less disc signal intensity and disc height, and greater disc bulging (P < 0.05). CONCLUSION The three endplate defects identified on routine MR images appear to represent different pathologies and may play a key role in the pathogenesis of MCs. This classification system may facilitate clinical studies on endplate defects. LEVEL OF EVIDENCE 4.
Collapse
|
103
|
Berg-Johansen B, Han M, Fields AJ, Liebenberg EC, Lim BJ, Larson PE, Gunduz-Demir C, Kazakia GJ, Krug R, Lotz JC. Cartilage Endplate Thickness Variation Measured by Ultrashort Echo-Time MRI Is Associated With Adjacent Disc Degeneration. Spine (Phila Pa 1976) 2018; 43:E592-E600. [PMID: 28984733 PMCID: PMC5882595 DOI: 10.1097/brs.0000000000002432] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A magnetic resonance imaging study of human cadaver spines. OBJECTIVE To investigate associations between cartilage endplate (CEP) thickness and disc degeneration. SUMMARY OF BACKGROUND DATA Damage to the CEP is associated with spinal injury and back pain. However, CEP morphology and its association with disc degeneration have not been well characterized. METHODS Ten lumbar motion segments with varying degrees of disc degeneration were harvested from six cadaveric spines and scanned with magnetic resonance imaging in the sagittal plane using a T2-weighted two-dimensional (2D) sequence, a three-dimensional (3D) ultrashort echo-time (UTE) imaging sequence, and a 3D T1ρ mapping sequence. CEP thicknesses were calculated from 3D UTE image data using a custom, automated algorithm, and these values were validated against histology measurements. Pfirrmann grades and T1ρ values in the disc were assessed and correlated with CEP thickness. RESULTS The mean CEP thickness calculated from UTE images was 0.74 ± 0.04 mm. Statistical comparisons between histology and UTE-derived measurements of CEP thickness showed significant agreement, with the mean difference not significantly different from zero (P = 0.32). Within-disc variation of T1ρ (standard deviation) was significantly lower for Pfirrmann grade 4 than Pfirrmann grade 3 (P < 0.05). Within-disc variation of T1ρ and adjacent CEP thickness heterogeneity (coefficient of variation) had a significant negative correlation (r = -0.65, P = 0.04). The standard deviation of T1ρand the mean CEP thickness showed a moderate positive correlation (r = 0.40, P = 0.26). CONCLUSION This study demonstrates that quantitative measurements of CEP thickness measured from UTE magnetic resonance imaging are associated with disc degeneration. Our results suggest that variability in CEP thickness and T1ρ, rather than their mean values, may serve as valuable diagnostic markers for disc degeneration. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Britta Berg-Johansen
- Department of Orthopaedic Surgery, University of California, San Francisco, CA
- Department of Bioengineering, UC Berkeley/UCSF Joint Program in Bioengineering, Berkeley, CA
| | - Misung Han
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| | - Aaron J Fields
- Department of Orthopaedic Surgery, University of California, San Francisco, CA
| | - Ellen C Liebenberg
- Department of Orthopaedic Surgery, University of California, San Francisco, CA
| | - Brandon J Lim
- Department of Orthopaedic Surgery, University of California, San Francisco, CA
| | - Peder Ez Larson
- Department of Bioengineering, UC Berkeley/UCSF Joint Program in Bioengineering, Berkeley, CA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| | - Cigdem Gunduz-Demir
- Department of Computer Engineering, Bilkent University, Ankara, Turkey
- Neuroscience Graduate Program, Bilkent University, Ankara, Turkey
| | - Galateia J Kazakia
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| | - Roland Krug
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| | - Jeffrey C Lotz
- Department of Orthopaedic Surgery, University of California, San Francisco, CA
- Department of Bioengineering, UC Berkeley/UCSF Joint Program in Bioengineering, Berkeley, CA
| |
Collapse
|
104
|
Dudli S, Liebenberg E, Magnitsky S, Lu B, Lauricella M, Lotz JC. Modic type 1 change is an autoimmune response that requires a proinflammatory milieu provided by the 'Modic disc'. Spine J 2018; 18:831-844. [PMID: 29253635 DOI: 10.1016/j.spinee.2017.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/17/2017] [Accepted: 12/11/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Modic changes (MCs) are magnetic resonance imaging (MRI) evidence of inflammatory and fibrotic vertebral bone marrow lesions that associate with adjacent disc degeneration and end plate damage. Although MC etiology is uncertain, historical data suggest a linkage to an autoimmune response of bone marrow triggered by the nucleus pulposus (NP). PURPOSE The aim of this study was to test whether bone marrow has an autoimmune response to NP cells that is amplified by an inflammatory milieu and ultimately leads to MC development in vivo. We hypothesized that an inflammatory co-stimulus is required for bone marrow/NP crosstalk to stimulate MC. STUDY DESIGN This is an in-vitro cell co-culture study plus in-vivo experiments in rat caudal vertebrae. METHODS In in-vitro study, bone marrow mononuclear cells (BMNCs) and NP cells (NPCs) from rats were co-cultured with and without interleukin (IL)-1α stimulation. Cell viability (n=3) of BMNCs and NPCs and gene expression (n=7) were analyzed. In in-vivo study, proinflammatory lipopolysaccharide (LPS) and control disc nucleus surrogates (NP micromass pellets) were generated in vitro from rat NPCs and implanted into rat tail vertebrae, and the response was compared with sham surgery (n=12 each). Tissue changes were investigated with T1w and T2w MRI (7T), histology, and immunohistochemistry (tumor necrosis factor, CD3) 1 (n=6) and 2 weeks (n=6) after implantation. RESULTS BMNC/NPC co-culture significantly increased lymphocyte viability (42%-69%, p<.05) and reduced NPC viability (96%-88%, p<.001), indicating immunogenicity of NPC. However, IL-1α was required to cause significant transcriptional upregulation of IL-1, IL-6, IL-10, and tropomyosin receptor kinase A. Therefore, an inflammatory activation is required to amplify the immune response. Immunogenicity of the NP was corroborated in vivo by CD3 cell accumulation around LPS and control disc surrogates at Day 7. However, only the LPS disc surrogate group demonstrated infiltration of CD3 cells at Day 14. Furthermore, end plate defects (p<.05, LPS: n=4/6, Ctrl: n=0/6, sham: n=0/6) and MC1-like MRI changes (T2w hyperintensity, p<.05) were only seen with LPS disc surrogates. CONCLUSIONS NPCs are immunogenic but cannot trigger MC without an additional proinflammatory stimulus. Our data suggest that MC requires end plate defects that allow marrow/NPC co-mingling plus an adjacent inflammatory "MC disc" that can amplify the immune response.
Collapse
Affiliation(s)
- Stefan Dudli
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Ave, S-1164, San Francisco, CA 94143, USA; Center for Experimental Rheumatology, University Hospital Zurich, Lengghalde 5, 8008 Zurich, Switzerland.
| | - Ellen Liebenberg
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Ave, S-1164, San Francisco, CA 94143, USA
| | - Sergey Magnitsky
- Department of Radiology, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| | - Bochao Lu
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Ave, S-1164, San Francisco, CA 94143, USA
| | - Michael Lauricella
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Ave, S-1164, San Francisco, CA 94143, USA
| | - Jeffrey C Lotz
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Ave, S-1164, San Francisco, CA 94143, USA
| |
Collapse
|
105
|
Wang W, Deng G, Qiu Y, Huang X, Xi Y, Yu J, Yang X, Ye X. Transplantation of allogenic nucleus pulposus cells attenuates intervertebral disc degeneration by inhibiting apoptosis and increasing migration. Int J Mol Med 2018; 41:2553-2564. [PMID: 29436582 PMCID: PMC5846671 DOI: 10.3892/ijmm.2018.3454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/24/2018] [Indexed: 01/07/2023] Open
Abstract
Transplantation of nucleus pulposus cells (NPCs) into the intervertebral disc (IVD) has been demonstrated to be an effective treatment of degenerative disc disease (DDD). However, the underlying mechanisms have remained to be sufficiently elucidated. The aim of the present study was to explore the potential cell migration and anti‑apoptosis efficacy of NPCs in the treatment of DDD. NPCs cultured from rats expressing green fluorescent protein (GFP‑NPCs) were transplanted into the degenerated IVD, and the migration of GFP‑NPCs, as well as the degeneration and apoptosis of the IVD were detected to evaluate the therapeutic effect in vivo. In vitro, disc chondrocytes (DCs) and annulus fibrosus cells (AFCs) were co‑cultured to explore the underlying mechanism. The results demonstrated that injection of NPCs suppressed DDD by inhibiting apoptosis and increasing extracellular matrix in vivo and in vitro. NPCs migrated into the inner AF in vivo, and NPC migration was observed to be promoted by AFCs and DCs in vitro, particularly by damaged AFCs. These results demonstrated the anti‑apoptotic effects and migratory capacity of allogenic NPCs transplanted into the IVD, which evidences the contribution of NPCs to disc regeneration and provide a novel strategy for treating DDD.
Collapse
Affiliation(s)
- Weiheng Wang
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003
| | - Guoying Deng
- Trauma Center, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 201620
| | - Yuanyuan Qiu
- Department of Respiratory Medicine, The Electric Power Hospital, Shanghai 200050
| | - Xiaodong Huang
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003
| | - Yanhai Xi
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003
| | - Jiangming Yu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003
| | - Xiangqun Yang
- Department of Anatomy, Institute of Biomedical Engineering, Second Military Medical University, Shanghai 200433, P.R. China
| | - Xiaojian Ye
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003
| |
Collapse
|
106
|
Cai G, Laslett LL, Aitken D, Halliday A, Pan F, Otahal P, Speden D, Winzenberg TM, Jones G. Effect of Zoledronic Acid and Denosumab in Patients With Low Back Pain and Modic Change: A Proof-of-Principle Trial. J Bone Miner Res 2018; 33:773-782. [PMID: 29297602 DOI: 10.1002/jbmr.3376] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/07/2017] [Accepted: 12/23/2017] [Indexed: 01/08/2023]
Abstract
The aim of this study was to evaluate the effect of zoledronic acid (ZA) and denosumab on low back pain (LBP) and Modic change (MC) over 6 months. Adults aged ≥40 years with significant LBP for at least 6 months duration and MC (type 1, 2, or mixed) were randomized to receive ZA (5 mg/100 mL), denosumab (60 mg), or placebo. LBP was measured monthly by visual analogue scale (VAS) and the LBP Rating Scale (RS). MC was measured from MRIs of T12 -S1 vertebrae at screening and 6 months. A total of 103 participants with moderate/severe LBP (mean VAS = 57 mm; mean RS = 18) and median total MC area 538 mm2 were enrolled. Compared to placebo, LBP reduced significantly at 6 months in the ZA group for RS (-3.3; 95% CI, -5.9 to -0.7) but not VAS (-8.2; 95% CI, -18.8 to +2.4) with similar findings for denosumab (RS, -3.0; 95% CI, -5.7 to -0.3; VAS, -10.7; 95% CI, -21.7 to +0.2). There was little change in areal MC size overall and no difference between groups with the exception of denosumab in those with type 1 Modic change (-22.1 mm2 ; 95% CI, -41.5 to -2.7). In post hoc analyses, both medications significantly reduced VAS LBP in participants with milder disc degeneration and non-neuropathic pain, and denosumab reduced VAS LBP in those with type 1 MC over 6 months, compared to placebo. Adverse events were more frequent in the ZA group. These results suggests a potential therapeutic role for ZA and denosumab in MC-associated LBP. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Guoqi Cai
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Laura L Laslett
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Dawn Aitken
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Andrew Halliday
- Department of Radiology, Royal Hobart Hospital, Hobart, TAS, Australia
| | - Feng Pan
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Petr Otahal
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Deborah Speden
- Department of Rheumatology, Royal Hobart Hospital, Hobart, TAS, Australia
| | - Tania M Winzenberg
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Graeme Jones
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
107
|
Lama P, Le Maitre CL, Harding IJ, Dolan P, Adams MA. Nerves and blood vessels in degenerated intervertebral discs are confined to physically disrupted tissue. J Anat 2018; 233:86-97. [PMID: 29708266 DOI: 10.1111/joa.12817] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2018] [Indexed: 12/18/2022] Open
Abstract
Nerves and blood vessels are found in the peripheral annulus and endplates of healthy adult intervertebral discs. Degenerative changes can allow these vessels to grow inwards and become associated with discogenic pain, but it is not yet clear how far, and why, they grow in. Previously we have shown that physical disruption of the disc matrix, which is a defining feature of disc degeneration, creates free surfaces which lose proteoglycans and water, and so become physically and chemically conducive to cell migration. We now hypothesise that blood vessels and nerves in degenerated discs are confined to such disrupted tissue. Whole lumbar discs were obtained from 40 patients (aged 37-75 years) undergoing surgery for disc herniation, disc degeneration with spondylolisthesis or adolescent scoliosis ('non-degenerated' controls). Thin (5-μm) sections were stained with H&E and toluidine blue for semi-quantitative assessment of blood vessels, fissures and proteoglycan loss. Ten thick (30-μm) frozen sections from each disc were immunostained for CD31 (an endothelial cell marker), PGP 9.5 and Substance P (general and nociceptive nerve markers, respectively) and examined by confocal microscopy. Volocity image analysis software was used to calculate the cross-sectional area of each labelled structure, and its distance from the nearest free surface (disc periphery or internal fissure). Results showed that nerves and blood vessels were confined to proteoglycan-depleted regions of disrupted annulus. The maximum distance of any blood vessel or nerve from the nearest free surface was 888 and 247 μm, respectively. Blood vessels were greater in number, grew deeper, and occupied more area than nerves. The density of labelled blood vessels and nerves increased significantly with Pfirrmann grade of disc degeneration and with local proteoglycan loss. Analysing multiple thick sections with fluorescent markers on a confocal microscope allows reliable detection of thin filamentous structures, even within a dense matrix. We conclude that, in degenerated and herniated discs, blood vessels and nerves are confined to proteoglycan-depleted regions of disrupted tissue, especially within annulus fissures.
Collapse
Affiliation(s)
- Polly Lama
- Department of Orthopaedic Surgery, McGill University, Montreal, QC, Canada
| | | | | | - Patricia Dolan
- Centre for Applied Anatomy, University of Bristol, Bristol, UK
| | - Michael A Adams
- Centre for Applied Anatomy, University of Bristol, Bristol, UK
| |
Collapse
|
108
|
Miguélez-Rivera L, Pérez-Castrillo S, González-Fernández ML, Prieto-Fernández JG, López-González ME, García-Cosamalón J, Villar-Suárez V. Immunomodulation of mesenchymal stem cells in discogenic pain. Spine J 2018; 18:330-342. [PMID: 28939169 DOI: 10.1016/j.spinee.2017.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/09/2017] [Accepted: 09/11/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Back pain is a highly prevalent health problem in the world today and has a great economic impact on health-care budgets. Intervertebral disc (IVD) degeneration has been identified as a main cause of back pain. Inflammatory cytokines produced by macrophages or disc cells in an inflammatory environment play an important role in painful progressive degeneration of IVD. Mesenchymal stem cells (MSCs) have shown to have immunosuppressive and anti-inflammatory properties. Mesenchymal stem cells express a variety of chemokines and cytokines receptors having tropism to inflammation sites. PURPOSE This study aimed to develop an in vitro controlled and standardized model of inflammation and degeneration of IVD with rat cells and to evaluate the protective and immunomodulatory effect of conditioned medium (CM) from the culture of MSCs to improve the conditions presented in herniated disc and discogenic pain processes. STUDY DESIGN This is an experimental study. METHODS In this study, an in vitro model of inflammation and degeneration of IVD has been developed, as well as the effectiveness of CM from the culture of MSCs. RESULTS Conditioned medium from MSCs downregulated the expression of various proinflammatory cytokines produced in the pathogenesis of discogenic pain such as interleukin (IL)-1β, IL-6, IL-17, and tumor necrosis factor (TNF). CONCLUSION Mesenchymal stem cells represent a promising alternative strategy in the treatment of IVD degeneration inasmuch as there is currently no treatment which leads to a complete remission of long-term pain in the absence of drugs.
Collapse
Affiliation(s)
- Laura Miguélez-Rivera
- Department of Anatomy, Faculty of Veterinary Sciences, Campus de Vegazana s/n, University of León, 24071, Spain
| | - Saúl Pérez-Castrillo
- Department of Anatomy, Faculty of Veterinary Sciences, Campus de Vegazana s/n, University of León, 24071, Spain
| | | | - Julio Gabriel Prieto-Fernández
- Institute of Biomedicine (IBIOMED), Faculty of Veterinary Sciences, Campus de Vegazana s/n, Universidad de León, 24071, Spain
| | - María Elisa López-González
- Department of Anatomy, Faculty of Veterinary Sciences, Campus de Vegazana s/n, University of León, 24071, Spain
| | - José García-Cosamalón
- Institute of Biomedicine (IBIOMED), Faculty of Veterinary Sciences, Campus de Vegazana s/n, Universidad de León, 24071, Spain
| | - Vega Villar-Suárez
- Department of Anatomy, Faculty of Veterinary Sciences, Campus de Vegazana s/n, University of León, 24071, Spain; Institute of Biomedicine (IBIOMED), Faculty of Veterinary Sciences, Campus de Vegazana s/n, Universidad de León, 24071, Spain.
| |
Collapse
|
109
|
Berg‐Johansen B, Fields AJ, Liebenberg EC, Li A, Lotz JC. Structure-function relationships at the human spinal disc-vertebra interface. J Orthop Res 2018; 36:192-201. [PMID: 28590060 PMCID: PMC5720932 DOI: 10.1002/jor.23627] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 05/28/2017] [Indexed: 02/04/2023]
Abstract
Damage at the intervertebral disc-vertebra interface associates with back pain and disc herniation. However, the structural and biomechanical properties of the disc-vertebra interface remain underexplored. We sought to measure mechanical properties and failure mechanisms, quantify architectural features, and assess structure-function relationships at this vulnerable location. Vertebra-disc-vertebra specimens from human cadaver thoracic spines were scanned with micro-computed tomography (μCT), surface speckle-coated, and loaded to failure in uniaxial tension. Digital image correlation (DIC) was used to calculate local surface strains. Failure surfaces were scanned using scanning electron microscopy (SEM), and adjacent sagittal slices were analyzed with histology and SEM. Seventy-one percent of specimens failed initially at the cartilage endplate-bone interface of the inner annulus region. Histology and SEM both indicated a lack of structural integration between the cartilage endplate (CEP) and bone. The interface failure strength was increased in samples with higher trabecular bone volume fraction in the vertebral endplates. Furthermore, failure strength decreased with degeneration, and in discs with thicker CEPs. Our findings indicate that poor structural connectivity between the CEP and vertebra may explain the structural weakness at this region, and provide insight into structural features that may contribute to risk for disc-vertebra interface injury. The disc-vertebra interface is the site of failure in the majority of herniation injuries. Here we show new structure-function relationships at this interface that may motivate the development of diagnostics, prevention strategies, and treatments to improve the prognosis for many low back pain patients with disc-vertebra interface injuries. © 2017 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 36:192-201, 2018.
Collapse
Affiliation(s)
- Britta Berg‐Johansen
- University of California513 Parnassus Avenue, S‐1157San FranciscoCalifornia94143‐0514
| | - Aaron J. Fields
- University of California513 Parnassus Avenue, S‐1157San FranciscoCalifornia94143‐0514
| | - Ellen C. Liebenberg
- University of California513 Parnassus Avenue, S‐1157San FranciscoCalifornia94143‐0514
| | - Alfred Li
- University of California513 Parnassus Avenue, S‐1157San FranciscoCalifornia94143‐0514
| | - Jeffrey C. Lotz
- University of California513 Parnassus Avenue, S‐1157San FranciscoCalifornia94143‐0514
| |
Collapse
|
110
|
Propionibacterium acnes Incubation in the Discs Can Result in Time-Dependent Modic Changes: A Long-Term Rabbit Model. Spine (Phila Pa 1976) 2017; 42:1595-1603. [PMID: 28399545 DOI: 10.1097/brs.0000000000002192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A case-control study of animal model of Modic changes (MCs) on rabbits. OBJECTIVE To evaluate the feasibility of inducing of MCs by injection of Propionibacterium acne (P. acnes) into the lumbar intervertebral discs of rabbits. SUMMARY OF BACKGROUND DATA MCs have been widely observed, and assume to be closely associated with low back pain and P. acnes, but there are few animal models showing the progression of MCs. METHODS Ten rabbits were used for the study. The L3-4 and L4-5 discs of all rabbits were injected with 100 μL P. acnes (1.6 × 10 CFU/mL) as P. acnes group, L2-3 disc were injected with 100 μL normal saline as vehicle, and L5-6 disc was untreated (blank). MCs were investigated by magnetic resonance imaging before operation and at 2 weeks, 1, 3, 4.5, 6, and 9 months postoperatively. Following sacrifice, histological analysis, blood test and micro-computed tomography were performed. Cytokine expression in nucleus and endplate tissues was quantified using real-time polymerase chain reaction. RESULTS From 3 months postoperatively, the P. acnes group showed significantly decreased T1-weighted signal intensity, whereas the T2-weighted signal was significantly higher at 3 and 4.5 months, and then decreased remarkably at 6 and 9 months. Eleven of 20 inferior endplates were identified as type I MCs at 4.5 months, and 9 of 20 were identified as type II MCs at 9 months. Real-time polymerase chain reaction showed that expression of interleukin-1β, tumor necrosis factor α, interferon-γ, matrix metalloproteinase-9, and thrombospondin motifs-5 in the nucleus pulposus, and interleukin-1β, tumor necrosis factor α, and thrombospondin motifs-5 in the endplates, were significantly upregulated after injection of P. acnes. Histological slices of discs injected with P. acnes showed disc degeneration, endplate abnormalities, and inflammatory response, with micro-computed tomography confirming bone resorption. CONCLUSION P. acnes infection of the disc can induce degeneration of the disc and an inflammatory response in the endplate region, presenting as MCs type I and II time dependently. LEVEL OF EVIDENCE N/A.
Collapse
|
111
|
Zehra U, Bow C, Lotz JC, Williams FMK, Rajasekaran S, Karppinen J, Luk KDK, C Battiê M, Samartzis D. Structural vertebral endplate nomenclature and etiology: a study by the ISSLS Spinal Phenotype Focus Group. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2017; 27:2-12. [PMID: 28900744 DOI: 10.1007/s00586-017-5292-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/23/2017] [Accepted: 09/03/2017] [Indexed: 01/12/2023]
Abstract
PURPOSE Vertebral endplate abnormalities may be associated with disc degeneration and, perhaps, pain generation. However, consensus definitions for endplate findings on spine MRI do not exist, posing a challenge to compare findings between studies and ethnic groups. The following survey was created to characterize the variability among the global spine community regarding endplate structural findings with respect to nomenclature and etiology. METHODS A working group within the International Society for the Study of the Lumbar Spine (ISSLS) Spinal Phenotype Focus Group was established to assess the endplate phenotype. A survey which consisted of 13 T2-weighted sagittal MRIs of the human lumbar spine illustrating the superior and inferior endplates was constructed based on discussion and agreement by the working group. A list of nomenclature and etiological terms with historical precedence was generated. Participants were asked to describe the endplates of each image and select from 14 possible nomenclatures and 10 etiological terms along with the option of free text response. The survey was entered into RedCap and was circulated throughout the ISSLS membership for data capture. Participants' demographics were also noted. RESULTS The survey was completed by 55 participants (87% males; 85% above 45 years of age, 39 clinicians, and 16 researchers). Sixty-eight percent of researchers and seventy-four percent of clinicians reported more than 16 and 20 years of research and clinical experience. Considerable variation existed in selection of nomenclature, etiology, and degree of severity of the endplate structural findings (reliability coefficients for single measures in each case were 0.3, 0.08, and 0.2, respectively). Sixty-seven percent regarded Modic changes as being a structural endplate finding. Approximately 84 and 80% of clinicians and researchers, respectively, agreed that a standardized endplate nomenclature and understanding the etiology is clinically important and needed. CONCLUSIONS This study found that variations exist with respect to endplate nomenclature and etiology between clinicians and basic scientists, and paves the way for a consensus process to formalize the definitions.
Collapse
Affiliation(s)
- Uruj Zehra
- Department of Orthopedics and Traumatology, The University of Hong Kong, Professorial Block, 5th Floor, 102 Pokfulam Road, Pokfulam, Hong Kong, SAR, China
| | - Cora Bow
- Department of Orthopedics and Traumatology, The University of Hong Kong, Professorial Block, 5th Floor, 102 Pokfulam Road, Pokfulam, Hong Kong, SAR, China
| | - Jeffrey C Lotz
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, CA, USA
| | | | - S Rajasekaran
- Department of Orthopedics and Spine Surgery, Ganga Hospital, Coimbatore, India
| | - Jaro Karppinen
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Keith D K Luk
- Department of Orthopedics and Traumatology, The University of Hong Kong, Professorial Block, 5th Floor, 102 Pokfulam Road, Pokfulam, Hong Kong, SAR, China
| | - Michele C Battiê
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Dino Samartzis
- Department of Orthopedics and Traumatology, The University of Hong Kong, Professorial Block, 5th Floor, 102 Pokfulam Road, Pokfulam, Hong Kong, SAR, China.
| |
Collapse
|
112
|
Quantifying Baseline Fixed Charge Density in Healthy Human Cartilage Endplate: A Two-point Electrical Conductivity Method. Spine (Phila Pa 1976) 2017; 42:E1002-E1009. [PMID: 28699925 PMCID: PMC5509527 DOI: 10.1097/brs.0000000000002061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Regional measurements of fixed charge densities (FCDs) of healthy human cartilage endplate (CEP) using a two-point electrical conductivity approach. OBJECTIVE The aim of this study was to determine the FCDs at four different regions (central, lateral, anterior, and posterior) of human CEP, and correlate the FCDs with tissue biochemical composition. SUMMARY OF BACKGROUND DATA The CEP, a thin layer of hyaline cartilage on the cranial and caudal surfaces of the intervertebral disc, plays an irreplaceable role in maintaining the unique physiological mechano-electrochemical environment inside the disc. FCD, arising from the carboxyl and sulfate groups of the glycosaminoglycans (GAG) in the extracellular matrix of the disc, is a key regulator of the disc ionic and osmotic environment through physicochemical and electrokinetic effects. Although FCDs in the annulus fibrosus (AF) and nucleus pulposus (NP) have been reported, quantitative baseline FCD in healthy human CEP has not been reported. METHODS CEP specimens were regionally isolated from human lumbar spines. FCD and ion diffusivity were concurrently investigated using a two-point electrical conductivity method. Biochemical assays were used to quantify regional GAG and water content. RESULTS FCD in healthy human CEP was region-dependent, with FCD lowest in the lateral region (P = 0.044). Cross-region FCD was 30% to 60% smaller than FCD in NP, but similar to the AF and articular cartilage (AC). CEP FCD (average: 0.12 ± 0.03 mEq/g wet tissue) was correlated with GAG content (average: 31.24 ± 5.06 μg/mg wet tissue) (P = 0.005). In addition, the cross-region ion diffusivity in healthy CEP (2.97 ± 1.00 × 10 cm/s) was much smaller than the AF and NP. CONCLUSION Healthy human CEP acts as a biomechanical interface, distributing loads between the bony vertebral body and soft disc tissues and as a gateway impeding rapid solute diffusion through the disc. LEVEL OF EVIDENCE N/A.
Collapse
|
113
|
Abstract
Modic changes (MCh) are pathological changes in the bone marrow and the endplates of adjacent vertebrae characterized by bone marrow edema, fatty degeneration or osteosclerosis that are revealed by high-power field magnetic resonance imaging (MRI). The dominant disease pattern is a persistent back pain syndrome with varying intensity. It leads to difficulties in the interpretation of clinical data, evaluation of MRI data and treatment. The article presents a modern conception of the pathogenesis, classification, clinical implications and treatment of MCh based on national and foreign sources as well and the author's view on the osteogenic mechanism of the pathogenesis and treatment of MCh using intraosseous blockades.
Collapse
Affiliation(s)
- E L Sokov
- Peoples' Friendship University of Russia, Moscow, Russia
| | - L E Kornilova
- Peoples' Friendship University of Russia, Moscow, Russia
| | - A I Nesterov
- Peoples' Friendship University of Russia, Moscow, Russia
| |
Collapse
|
114
|
Zhi-Yong S, Huan Z, Feng L, Nan-Ning L, Xiao-Yu Z, Bin P, Jun L, Zhong-Lai Q, Zhi-Ming Z, Hui-Lin Y. A Retrospective Study of Percutaneous Balloon Kyphoplasty for the Treatment of Symptomatic Schmorl's Nodes: 5-Year Results. Med Sci Monit 2017; 23:2879-2889. [PMID: 28607331 PMCID: PMC5478245 DOI: 10.12659/msm.904802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Despite literature supporting the efficiency of percutaneous balloon kyphoplasty (PKP) in treating osteoporotic and malignant vertebral compression fractures, few reports exist that document its use for treatment of symptomatic Schmorl's nodes (SNs) refractory to conservative treatment. Patients with symptomatic SNs could have pain in the vertebrae similar to an acute vertebral compression fracture. MRI is very helpful in diagnosing symptomatic SNs when x-ray and CT scan are unremarkable. In painful cases, the vertebrae bone marrow around the SNs is hyperintense on T2-weighted subsequence. We evaluated the long-term safety and effectiveness of PKP for the treatment of symptomatic SNs not responding to conservative therapy. MATERIAL AND METHODS From January 2008 to December 2012, 32 patients suffering from symptomatic SNs underwent 43 PKP procedures. Outcome data, including mean height ratio of anterior and middle vertebral body, Visual Analog Scale (VAS score) for pain measurement, Oswestry Disability Indexes (ODI score) and SF-36 questionnaires for function measurement were recorded preoperatively, postoperatively, and at one month, six months, two years, and five years after treatment. RESULTS Thirty-two patients were treated successfully with PKP. Clinically asymptomatic cement leakage was observed in three (6.98%) of the treated vertebral bodies. The mean height ratio of anterior and middle vertebral bodies changed from 98.2±1.6% preoperatively to 98.5±1.4% postoperatively (p>0.05) and 98.3±1.5% preoperatively to 98.8±1.9% postoperatively (p>0.05). The mean VAS scores, ODI score, and SF-36 scores for physical function (PF), bodily pain (BF), social functioning (SF), and vitality (VT) all showed significant improvements (p<0.05). During the 5-year follow-up, the stabilization of the height of the vertebral body and functional improvements were all maintained. CONCLUSIONS PKP is a safe and effective procedure for the treatment of symptomatic SNs refractory to conservative therapy.
Collapse
Affiliation(s)
- Sun Zhi-Yong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Zhao Huan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Ling Feng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Lv Nan-Ning
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Zhu Xiao-Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Pi Bin
- Department of Orthopaedic Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Lin Jun
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Qian Zhong-Lai
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Zhang Zhi-Ming
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Yang Hui-Lin
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| |
Collapse
|
115
|
Xin L, Xu W, Yu L, Fan S, Wang W, Yu F, Wang Z. Effects of annulus defects and implantation of poly(lactic-co-glycolic acid) (PLGA)/fibrin gel scaffolds on nerves ingrowth in a rabbit model of annular injury disc degeneration. J Orthop Surg Res 2017; 12:73. [PMID: 28499451 PMCID: PMC5429511 DOI: 10.1186/s13018-017-0572-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 04/26/2017] [Indexed: 12/01/2022] Open
Abstract
Background Growth of nerve fibers has been shown to occur in a rabbit model of intravertebral disc degeneration (IVD) induced by needle puncture. As nerve growth may underlie the process of chronic pain in humans affected by disc degeneration, we sought to investigate the factors underlying nerve ingrowth in a minimally invasive annulotomy rabbit model of IVD by comparing the effects of empty disc defects with those of defects filled with poly(lactic-co-glycolic acid)/fibrin gel (PLGA) plugs. Methods New Zealand white rabbits (n = 24) received annular injuries at three lumbar levels (L3/4, L4/5, and L5/6). The discs were randomly assigned to four groups: (a) annular defect (1.8-mm diameter; 4-mm depth) by mini-trephine, (b) annular defect implanted with a PLGA scaffold containing a fibrin gel, (c) annular puncture by a 16G needle (5-mm depth), and (d) uninjured L2/3 disc (control). Disc degeneration was evaluated by radiography, MRI, histology, real-time PCR, and analysis of proteoglycan (PG) content. Nerve ingrowth into the discs was assessed by immunostaining with the nerve marker protein gene product 9.5. Results Injured discs showed a progressive disc space narrowing with significant disc degeneration and proteoglycan loss, as confirmed by imaging results, molecular and compositional analysis, and histological examinations. In 16G punctured discs, nerve ingrowth was observed on the surface of scar tissue. In annular defects, nerve fibers were found to be distributed along small fissures within the fibrocartilaginous-like tissue that filled the AF. In discs filled with PLGA/ fibrin gel, more nerve fibers were observed growing deeper into the inner AF along the open annular track. In addition, innervations scores showed significantly higher than those of punctured discs and empty defects. A limited vascular proliferation was found in the injured sites and regenerated tissues. Conclusions Nerve ingrowth was significantly higher in PLGA/fibrin-filled discs than in empty defects. Possible explanations include (i) annular fissures along the defect and early loss of proteoglycan may facilitate the ingrowth process and (ii) biodegradable PLGA/fibrin gel may promote adverse growth of nerves and blood vessels into deeper parts of injured disc. The rabbit annular defect model of disc degeneration appears suitable to investigate the effects of nerve ingrowth in relation to pain generation.
Collapse
Affiliation(s)
- Long Xin
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Weixing Xu
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Leijun Yu
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Shunwu Fan
- Department of Orthopedics, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, China
| | - Wei Wang
- Department of Polymer Materials Science and Engineering, School of Material Science and Engineering, Tianjin University, Tianjin, China
| | - Fang Yu
- Department of Mental Health, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zhenbin Wang
- Orthopedics Laboratory, Department of Spine Surgery, The Fourth Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, 830000, China.
| |
Collapse
|
116
|
Zehra U, Flower L, Robson-Brown K, Adams MA, Dolan P. Defects of the vertebral end plate: implications for disc degeneration depend on size. Spine J 2017; 17:727-737. [PMID: 28108405 DOI: 10.1016/j.spinee.2017.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 12/21/2016] [Accepted: 01/12/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Bony vertebral end plates must be porous to allow metabolite transport into the disc, and yet strong to resist high intradiscal pressure (IDP). End plate defects may therefore have nutritional and mechanical consequences for the disc, depending on their size and type. We hypothesize that broad, diffuse defects are more closely associated with disc decompression and degeneration than are focal Schmorl's node-type defects. PURPOSE This study aimed to determine how the size and type of end plate defects are related to decompression and degeneration in the adjacent intervertebral disc. STUDY DESIGN Mechanical, histologic, and micro-computed tomographic investigations were carried out in cadaver spines. METHODS The study involved 40 motion segments (T8-T9 to L4-L5) dissected from 23 cadavers aged 48-98 years. Intradiscal stresses were measured, under 1 kN compression, by pulling a pressure transducer along the disc's midsagittal diameter. The resulting "stress profiles" revealed nucleus pressure (IDP) and maximum stresses in the anterior and posterior annulus. Micro-computed tomography was then used to examine all 40 discs, with 5 mm of adjacent bone on either side, so that end plate defects could be characterized at a resolution of 35 µm. Cross-sectional area (in the transverse plane), volume, location, and morphologic type were determined for all bony defects in the 80 end plates. Finally, discs from each motion segment (with hyaline cartilage and bone attached) were sectioned (undecalcified) at 7 µm for histology to allow degeneration to be assessed. RESULTS Substantial defects were identified in 24 of 40 specimens (35 of 80 end plates). Of these, 83% was centrally located, and 17% was laterally located. Defects occurred more frequently in male than female specimens (p=.043), and were more common in thoracic than lumbar end plates (p=.002), although lumbar defects were greater in volume (p=.05). Defect area and volume increased with decreasing IDP, with decreasing peak stress in the annulus, and with increasing tissue degeneration. Stepwise multiple regression showed that average defect area depended most strongly on IDP, whereas maximum defect area and volume depended most strongly on peak stress in the anterior annulus. Multiple end plate defects were associated with lower values of IDP and higher degeneration scores when compared with erosions and Schmorl's nodes. CONCLUSIONS Disc degeneration has a stronger association with large or multiple end plate defects than with small or single defects (of any type). Large end plate defects probably allow greater volume changes within the disc, leading to greater nucleus decompression.
Collapse
Affiliation(s)
- Uruj Zehra
- Centre for Applied Anatomy, University of Bristol, Southwell St, Bristol, BS2 8EJ, UK
| | - Luke Flower
- Centre for Applied Anatomy, University of Bristol, Southwell St, Bristol, BS2 8EJ, UK
| | - Katharine Robson-Brown
- School of Archaeology and Anthropology, University of Bristol, Woodland Rd, Bristol, BS8 1UU, UK
| | - Michael A Adams
- Centre for Applied Anatomy, University of Bristol, Southwell St, Bristol, BS2 8EJ, UK
| | - Patricia Dolan
- Centre for Applied Anatomy, University of Bristol, Southwell St, Bristol, BS2 8EJ, UK.
| |
Collapse
|
117
|
Dudli S, Sing DC, Hu SS, Berven SH, Burch S, Deviren V, Cheng I, Tay BKB, Alamin TF, Ith MAM, Pietras EM, Lotz JC. ISSLS PRIZE IN BASIC SCIENCE 2017: Intervertebral disc/bone marrow cross-talk with Modic changes. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2017; 26:1362-1373. [PMID: 28138783 PMCID: PMC5409869 DOI: 10.1007/s00586-017-4955-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 01/15/2017] [Indexed: 12/18/2022]
Abstract
STUDY DESIGN Cross-sectional cohort analysis of patients with Modic Changes (MC). OBJECTIVE Our goal was to characterize the molecular and cellular features of MC bone marrow and adjacent discs. We hypothesized that MC associate with biologic cross-talk between discs and bone marrow, the presence of which may have both diagnostic and therapeutic implications. BACKGROUND DATA MC are vertebral bone marrow lesions that can be a diagnostic indicator for discogenic low back pain. Yet, the pathobiology of MC is largely unknown. METHODS Patients with Modic type 1 or 2 changes (MC1, MC2) undergoing at least 2-level lumbar interbody fusion with one surgical level having MC and one without MC (control level). Two discs (MC, control) and two bone marrow aspirates (MC, control) were collected per patient. Marrow cellularity was analyzed using flow cytometry. Myelopoietic differentiation potential of bone marrow cells was quantified to gauge marrow function, as was the relative gene expression profiles of the marrow and disc cells. Disc/bone marrow cross-talk was assessed by comparing MC disc/bone marrow features relative to unaffected levels. RESULTS Thirteen MC1 and eleven MC2 patients were included. We observed pro-osteoclastic changes in MC2 discs, an inflammatory dysmyelopoiesis with fibrogenic changes in MC1 and MC2 marrow, and up-regulation of neurotrophic receptors in MC1 and MC2 bone marrow and discs. CONCLUSION Our data reveal a fibrogenic and pro-inflammatory cross-talk between MC bone marrow and adjacent discs. This provides insight into the pain generator at MC levels and informs novel therapeutic targets for treatment of MC-associated LBP.
Collapse
Affiliation(s)
- Stefan Dudli
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Ave, S-1164, San Francisco, CA, 94143, USA.
| | - David C Sing
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Ave, S-1164, San Francisco, CA, 94143, USA
| | - Serena S Hu
- Stanford Spine Clinic, Stanford University Medical Center, Stanford, USA
| | - Sigurd H Berven
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Ave, S-1164, San Francisco, CA, 94143, USA
| | - Shane Burch
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Ave, S-1164, San Francisco, CA, 94143, USA
| | - Vedat Deviren
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Ave, S-1164, San Francisco, CA, 94143, USA
| | - Ivan Cheng
- Stanford Spine Clinic, Stanford University Medical Center, Stanford, USA
| | - Bobby K B Tay
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Ave, S-1164, San Francisco, CA, 94143, USA
| | - Todd F Alamin
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Ave, S-1164, San Francisco, CA, 94143, USA
| | | | - Eric M Pietras
- Division of Hematology, University of Colorado Denver, Denver, USA
| | - Jeffrey C Lotz
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Ave, S-1164, San Francisco, CA, 94143, USA
| |
Collapse
|
118
|
Shan Z, Zhang X, Li S, Yu T, Mamuti M, Zhao F. The Influence of Direct Inoculation of Propionibacterium acnes on Modic Changes in the Spine: Evidence from a Rabbit Model. J Bone Joint Surg Am 2017; 99:472-481. [PMID: 28291179 DOI: 10.2106/jbjs.16.00146] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Modic changes (inflammatory-like changes visible on magnetic resonance imaging [MRI] scans of a vertebral end plate) are common and are associated with low back pain, but their origin is unclear. To our knowledge, there have been no previous in vivo animal models of Modic changes. We hypothesized that Modic changes may be related to Propionibacterium acnes. METHODS Ten New Zealand White rabbits were injected percutaneously with 1 mL of P. acnes (1.6 × 10 colony forming units/mL) into the subchondral bone superior to the L4-L5 and L5-L6 discs; 10 other control rabbits received sham injections at L4-L5 and 1 mL of normal saline solution (vehicle) at L5-L6. The subchondral bone superior to L3-L4 discs was untreated (blank). Development of Modic changes was investigated with MRI studies before the operation and at 2 weeks and 1, 2, 3, and 6 months postoperatively. Following sacrifice of the rabbits, histological analysis and microcomputed tomography (micro-CT) were performed, and blood samples were analyzed. Cytokine expression in end-plate tissues was quantified using real-time polymerase chain reaction (PCR). RESULTS The group that received P. acnes showed significantly increased T1-weighted signal intensity at 6 months (mean and standard deviation, 3.43 ± 0.41 [range, 2.42 to 4.44] compared with 2.43 ± 0.66 [range, 1.98 to 2.87] before the injection) and higher T2-weighted signal intensity at 6 months. Positive culture results were obtained from 9 of 20 samples injected with P. acnes. Specimens with positive cultures had a higher prevalence of Modic changes (4 of 9 samples positive for P. acnes compared with 3 of 11 samples negative for P. acnes). Real-time PCR showed significantly increased expression of tumor necrosis factor-α, interleukin-1β, and interferon-γ following injection of P. acnes, but no changes were seen on histological analysis, micro-CT, or blood analysis. CONCLUSIONS P. acnes can survive within the end-plate region and can initiate mild inflammatory-like responses from host cells, leading to signal intensity changes in MRI scans, which potentially resemble Modic changes. CLINICAL RELEVANCE Disc degeneration and low back pain are associated with Modic changes. Our results indicate that Modic changes can be associated with P. acnes in the conjunction area of the disc and subchondral bone. These results may be useful for understanding the underlying mechanisms of Modic changes and related pain.
Collapse
Affiliation(s)
- Zhi Shan
- 1Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
119
|
Gullbrand SE, Malhotra NR, Schaer TP, Zawacki Z, Martin JT, Bendigo JR, Milby AH, Dodge GR, Vresilovic EJ, Elliott DM, Mauck RL, Smith LJ. A large animal model that recapitulates the spectrum of human intervertebral disc degeneration. Osteoarthritis Cartilage 2017; 25:146-156. [PMID: 27568573 PMCID: PMC5182186 DOI: 10.1016/j.joca.2016.08.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/01/2016] [Accepted: 08/17/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The objective of this study was to establish a large animal model that recapitulates the spectrum of intervertebral disc degeneration that occurs in humans and which is suitable for pre-clinical evaluation of a wide range of experimental therapeutics. DESIGN Degeneration was induced in the lumbar intervertebral discs of large frame goats by either intradiscal injection of chondroitinase ABC (ChABC) over a range of dosages (0.1U, 1U or 5U) or subtotal nucleotomy. Radiographs were used to assess disc height changes over 12 weeks. Degenerative changes to the discs and endplates were assessed via magnetic resonance imaging (MRI), semi-quantitative histological grading, microcomputed tomography (μCT), and measurement of disc biomechanical properties. RESULTS Degenerative changes were observed for all interventions that ranged from mild (0.1U ChABC) to moderate (1U ChABC and nucleotomy) to severe (5U ChABC). All groups showed progressive reductions in disc height over 12 weeks. Histological scores were significantly increased in the 1U and 5U ChABC groups. Reductions in T2 and T1ρ, and increased Pfirrmann grade were observed on MRI. Resorption and remodeling of the cortical boney endplate adjacent to ChABC-injected discs also occurred. Spine segment range of motion (ROM) was greater and compressive modulus was lower in 1U ChABC and nucleotomy discs compared to intact. CONCLUSIONS A large animal model of disc degeneration was established that recapitulates the spectrum of structural, compositional and biomechanical features of human disc degeneration. This model may serve as a robust platform for evaluating the efficacy of therapeutics targeted towards varying degrees of disc degeneration.
Collapse
Affiliation(s)
- S E Gullbrand
- Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, United States; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States; Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - N R Malhotra
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - T P Schaer
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| | - Z Zawacki
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| | - J T Martin
- Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, United States; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - J R Bendigo
- Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, United States; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States; Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - A H Milby
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - G R Dodge
- Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, United States; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - E J Vresilovic
- Penn State Hershey Bone and Joint Institute, Pennsylvania State University, Hershey, PA, United States
| | - D M Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - R L Mauck
- Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, United States; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - L J Smith
- Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, United States; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States; Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
120
|
Hwang D, Kim S, Abeydeera NA, Statum S, Masuda K, Chung CB, Siriwanarangsun P, Bae WC. Quantitative magnetic resonance imaging of the lumbar intervertebral discs. Quant Imaging Med Surg 2016; 6:744-755. [PMID: 28090450 DOI: 10.21037/qims.2016.12.09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human lumbar spine is composed of multiple tissue components that serve to provide structural stability and proper nutrition. Conventional magnetic resonance (MR) imaging techniques have been useful for evaluation of IVD, but inadequate at imaging the discovertebral junction and ligamentous tissues due primarily to their short T2 nature. Ultrashort time to echo (UTE) MR techniques acquire sufficient MR signal from these short T2 tissues, thereby allowing direct and quantitative evaluation. This article discusses the anatomy of the lumbar spine, MR techniques available for morphologic and quantitative MR evaluation of long and short T2 tissues of the lumbar spine, considerations for T2 relaxation modeling and fitting, and existing and new techniques for spine image post-processing, focusing on segmentation. This article will be of interest to radiologic and orthopaedic researchers performing lumbar spine imaging.
Collapse
Affiliation(s)
- Dosik Hwang
- Department of Radiology, VA San Diego Healthcare System, San Diego, CA, USA; ; School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea
| | - Sewon Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea
| | - Nirusha A Abeydeera
- Department of Radiology, University of California-San Diego, La Jolla, CA, USA
| | - Sheronda Statum
- Department of Radiology, VA San Diego Healthcare System, San Diego, CA, USA; ; Department of Radiology, University of California-San Diego, La Jolla, CA, USA
| | - Koichi Masuda
- Department of Orthopaedic Surgery, University of California-San Diego, La Jolla, CA, USA
| | - Christine B Chung
- Department of Radiology, VA San Diego Healthcare System, San Diego, CA, USA; ; Department of Radiology, University of California-San Diego, La Jolla, CA, USA
| | - Palanan Siriwanarangsun
- Department of Radiology, University of California-San Diego, La Jolla, CA, USA;; Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Won C Bae
- Department of Radiology, VA San Diego Healthcare System, San Diego, CA, USA; ; Department of Radiology, University of California-San Diego, La Jolla, CA, USA
| |
Collapse
|
121
|
Balkovec C, Vernengo AJ, Stevenson P, McGill SM. Evaluation of an injectable hydrogel and polymethyl methacrylate in restoring mechanics to compressively fractured spine motion segments. Spine J 2016; 16:1404-1412. [PMID: 27374112 DOI: 10.1016/j.spinee.2016.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/13/2016] [Accepted: 06/22/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Compressive fracture can produce profound changes to the mechanical profile of a spine segment. Minimally invasive repair has the potential to restore both function and structural integrity to an injured spine. Use of both hydrogels to address changes to the disc, combined with polymethyl methacrylate (PMMA) to address changes to the vertebral body, has the potential to facilitate repair. PURPOSE The purpose of this investigation was to determine if the combined use of hydrogel injection and PMMA could restore the mechanical profile of an axially injured spinal motion segment. STUDY DESIGN This is a basic science study evaluating a combination of hydrogel injection and vertebroplasty on restoring mechanics to compressively injured porcine spine motion segments. METHODS Fourteen porcine spine motion segments were subject to axial compression until fracture using a dynamic servohydraulic testing apparatus. Rotational and compressive stiffness was measured for each specimen under the following conditions: initial undamaged, fractured, fatigue loading under compression, hydrogel injection, PMMA injection, and fatigue loading under compression. Group 1 received hydrogel injection followed by PMMA injection, whereas Group 2 received PMMA injection followed by hydrogel injection. This study was funded under a Natural Sciences and Engineering Research Council of Canada discovery grant. RESULTS PMMA injection was found to alter the compressive stiffness properties of axially injured spine motion segments, restoring values from Groups 1 and 2 to 89.3%±29.3% and 81%±27.9% of initial values respectively. Hydrogel injection was found to alter the rotational stiffness properties, restoring specimens in Groups 1 and 2 to 151.5%±81% and 177.2%±54.9% of initial values respectively. Prolonged restoration of function was not possible, however, after further fatigue loading. CONCLUSIONS Using this repair technique, replication of the mechanism of injury appears to cause a rapid deterioration in function of the motion segments. Containment of the hydrogel appears to be an issue with large breaches in the end plate, as it is posited to migrate into the cancellous bone of the vertebral body. Future work should attempt to evaluate methods in fully sealing the disc space.
Collapse
Affiliation(s)
- Christian Balkovec
- Faculty of Applied Health Sciences, Department of Kinesiology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1.
| | | | - Peter Stevenson
- Grand River Hospital, 835 King St West, Kitchener, Ontario, Canada N2G 1G3
| | - Stuart M McGill
- Faculty of Applied Health Sciences, Department of Kinesiology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
122
|
Marras WS, Walter BA, Purmessur D, Mageswaran P, Wiet MG. The Contribution of Biomechanical-Biological Interactions of the Spine to Low Back Pain. HUMAN FACTORS 2016; 58:965-975. [PMID: 27431280 DOI: 10.1177/0018720816657235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/19/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE The objective of this mini-review is to examine a subset of literature that demonstrates multiple interactions between mechanics and biology within the spine and propose how incorporation of these mechano-biologic interactions can be applied to improve the conceptual understanding of tissue tolerances. BACKGROUND Low back pain represents a major musculoskeletal problem in the workplace. Traditional biomechanical assessments have employed tissue tolerances as an approach for reducing workplace injuries; however, development of more universal biologically sensitive tolerances requires incorporation of mechano-biologic interactions. METHODS A focused literature review addressing the interactions between mechanical loading and biology in the spine. RESULTS Mechanical loads applied to the body are distributed across all spatial scales from the body to the tissues to the cells. These mechanical loads regulate cellular metabolism and over time can lead to tissue strengthening or weakening. Mechanical loading also interacts with the biologic environment (e.g., tissue inflammation, nerve sensitization) to influence the perception of pain, thereby changing the risk of experiencing pain. Biologic tissues also exhibit time-dependent changes in mechanical behaviors that occur throughout the day and with disease, suggesting tissue tolerances are time dependent. CONCLUSION Incorporating mechano-biologic interactions into the traditional tissue tolerance paradigm through describing tissue tolerances as a function of multiple factors (e.g., preexisting risk factors, underlying pathology, and time) may lead to the development of tissue tolerances that are more representative of the in vivo situation. APPLICATION Efforts must work toward incorporating biological concepts into tissue tolerances in order to improve risk assessment tools.
Collapse
|
123
|
Dudli S, Fields AJ, Samartzis D, Karppinen J, Lotz JC. Pathobiology of Modic changes. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2016; 25:3723-3734. [PMID: 26914098 PMCID: PMC5477843 DOI: 10.1007/s00586-016-4459-7] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/06/2016] [Accepted: 02/07/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE Low back pain (LBP) is the most disabling condition worldwide. Although LBP relates to different spinal pathologies, vertebral bone marrow lesions visualized as Modic changes on MRI have a high specificity for discogenic LBP. This review summarizes the pathobiology of Modic changes and suggests a disease model. METHODS Non-systematic literature review. RESULTS Chemical and mechanical stimulation of nociceptors adjacent to damaged endplates are likely a source of pain. Modic changes are adjacent to a degenerated intervertebral disc and have three generally interconvertible types suggesting that the different Modic change types represent different stages of the same pathological process, which is characterized by inflammation, high bone turnover, and fibrosis. A disease model is suggested where disc/endplate damage and the persistence of an inflammatory stimulus (i.e., occult discitis or autoimmune response against disc material) create predisposing conditions. The risk to develop Modic changes likely depends on the inflammatory potential of the disc and the capacity of the bone marrow to respond to it. Bone marrow lesions in osteoarthritic knee joints share many characteristics with Modic changes adjacent to degenerated discs and suggest that damage-associated molecular patterns and marrow fat metabolism are important pathogenetic factors. There is no consensus on the ideal therapy. Non-surgical treatment approaches including intradiscal steroid injections, anti-TNF-α antibody, antibiotics, and bisphosphonates have some demonstrated efficacy in mostly non-replicated clinical studies in reducing Modic changes in the short term, but with unknown long-term benefits. New diagnostic tools and animal models are required to improve painful Modic change identification and classification, and to clarify the pathogenesis. CONCLUSION Modic changes are likely to be more than just a coincidental imaging finding in LBP patients and rather represent an underlying pathology that should be a target for therapy.
Collapse
Affiliation(s)
- Stefan Dudli
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Ave, S-1164, San Francisco, CA, 94143-0514, USA.
| | - Aaron J Fields
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Ave, S-1164, San Francisco, CA, 94143-0514, USA
| | - Dino Samartzis
- Department of Orthopaedics and Traumatology, University of Hong Kong, Hong Kong, China
| | - Jaro Karppinen
- Department of Physical and Rehabilitation Medicine, Medical Research Center Oulu, Finnish Institute of Occupational Health, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Jeffrey C Lotz
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Ave, S-1164, San Francisco, CA, 94143-0514, USA
| |
Collapse
|
124
|
Samartzis D, Mok FPS, Karppinen J, Fong DYT, Luk KDK, Cheung KMC. Classification of Schmorl's nodes of the lumbar spine and association with disc degeneration: a large-scale population-based MRI study. Osteoarthritis Cartilage 2016; 24:1753-1760. [PMID: 27143364 DOI: 10.1016/j.joca.2016.04.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Schmorl's nodes (SN) are highly associated with lumbar disc degeneration (DD). However, SN present with different morphologies/topographies that may be associated with varying degrees of DD. This study proposed a classification of SN to determine their morphological/topographical prevalence and association with the severity of DD. METHODS Sagittal T2-weighted MRIs were assessed to identify SN and additional imaging findings from L1-S1 in 2,449 individuals. SN characteristics were classified by six criteria: disc level; endplate involvement; shape; size; location of endplate zone; and the presence of marrow changes. Hierarchical clustering was performed to identify distinct SN characteristics with endplate patterns. RESULTS Good to excellent observer classification reliability was noted. SN most commonly presented at the L1 and L2 disc levels, and entailed one-third of the endplate, predominantly the middle zone. Round shape (39.2%) was the most common SN shape. Four specific SN and endplate linkage patterns were identified. 8.3% of identified SN (n = 960) were "Atypical SN". Multivariable regression showed that "Typical SN" and "Atypical SN", depending on levels, were associated with an adjusted 2- to 4-fold and a 5- to 13-fold higher risk of increased severity of DD, respectively (p < 0.05). CONCLUSIONS This is the first large-scale magnetic resonance imaging (MRI) study to propose a novel SN classification. Specific SN-types were identified, which were associated with more severe DD. This study further broadens our understanding of the role of SN and degrees of DD, further expanding on the SN phenotyping that can be internationally adopted for utility assessment.
Collapse
Affiliation(s)
- D Samartzis
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - F P S Mok
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - J Karppinen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Finnish Institute of Occupational Health, Health and Work Ability, and Disability Prevention Centre, Oulu, Finland
| | - D Y T Fong
- Department of Nursing Studies, The University of Hong Kong, Hong Kong, China
| | - K D K Luk
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - K M C Cheung
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
125
|
Luoma K, Vehmas T, Kerttula L, Grönblad M, Rinne E. Chronic low back pain in relation to Modic changes, bony endplate lesions, and disc degeneration in a prospective MRI study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2016; 25:2873-81. [DOI: 10.1007/s00586-016-4715-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/10/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
|
126
|
Gruber HE, Hoelscher GL, Bullock L, Ingram JA, Norton HJ, Hanley EN. Human annulus signaling cues for nerve outgrowth: In vitro studies. J Orthop Res 2016; 34:1456-65. [PMID: 27155444 DOI: 10.1002/jor.23286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/06/2016] [Indexed: 02/04/2023]
Abstract
The relationship between neurotrophins produced by human annulus cells, such as neurotrophin-4 (NT4) and brain-derived neurotrophic factor (BDNF) which function in neurite survival and outgrowth, and nerve ingrowth into the disc remains poorly understood. In this work, we tested F11 neurite growth during exposure to control media, media with added nerve growth factor (NGF), conditioned media (CM) harvested from previous human annulus culture, or co-culture with annulus cells. Co-culture of F11 cells with annulus cells significantly increased media levels of amphiregulin, BDNF, glial-derived neurotrophic factor, and vascular endothelial growth factor compared to levels from in culture of F11 cells alone (p ≤ 0.04). Cell-based assays of neurite growth revealed that BDNF levels present in CM bore a significant (p = 0.01) positive relationship to neurite length and accounted for 38.5% of the change in neurite length. NT4 levels produced during co-culture with annulus cells bore a significant (p = 0.04) positive relationship to neurite length and accounted for 40.9% of the change in length. Statement of clinical significance: In vitro findings point to a potential role of annulus cells related to nerve ingrowth in vivo, and may have relevance in the outer annulus (where cell numbers are high) or in regions where nerves penetrate into annular tears or fissures. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1456-1465, 2016.
Collapse
Affiliation(s)
- Helen E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, North Carolina, 28232
| | - Gretchen L Hoelscher
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, North Carolina, 28232
| | - Letitia Bullock
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, North Carolina, 28232
| | - Jane A Ingram
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, North Carolina, 28232
| | - H James Norton
- Dickson Advanced Analytics, Carolinas Medical Center, PO Box 32861, Charlotte, North Carolina
| | - Edward N Hanley
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, North Carolina, 28232
| |
Collapse
|
127
|
Abstract
STUDY DESIGN In vitro study using isolated human intervertebral disc (IVD) cells. OBJECTIVE To investigate the effects of prostaglandin (PG)E1 and its orally available derivative limaprost on the regulation of nerve growth factor (NGF) expression and to compare their actions with other prostanoids using interleukin (IL)-1-stimulated human IVD cells. SUMMARY OF BACKGROUND DATA We previously reported that a selective COX-2 inhibitor enhanced, whereas PGE2 suppressed the induction of NGF by IL-1 in human IVD cells, and proposed that PGE2 can suppress NGF expression by a negative feedback mechanism. METHODS Isolated human IVD cells were stimulated with IL-1 in the presence or absence of increasing concentrations of PGE2, PGE1, limaprost, PGI2, PGD2, or PGF2α (10-10,000 nM). For some experiments, an E-series prostanoid receptor (EP)4 antagonist (L-161,982) was added prior to the stimulation. NGF expression was determined by real-time polymerase chain reaction and its protein level was quantified by enzyme-linked immunosorbent assay. RESULTS PGE2, PGE1, and limaprost inhibited the IL-1-mediated induction of NGF in a concentration-dependent manner, with IC50 values of 9.9, 10.6, and 70.9 nM, respectively. PGI2 also suppressed NGF expression but to a much less extent. PGD2, on the other hand, significantly enhanced NGF expression, whereas PGF2α had no effect. Protein expression levels of NGF mirrored its mRNA levels. The suppression of NGF expression by PGE2 and PGE1 was partly reversed by L-161,982. CONCLUSION PGE1 and limaprost exhibited a novel pharmacological action that suppresses NGF expression in human IVD cells, and other prostanoids differentially regulated NGF expression. Limaprost has been used to treat patients with lumbar spinal stenosis in Japan and was proved to be effective in relieving symptoms. Our in vitro results may explain, in part, the mechanism of action of limaprost for low back pain. LEVEL OF EVIDENCE N/A.
Collapse
|
128
|
Binch ALA, Cole AA, Breakwell LM, Michael ALR, Chiverton N, Creemers LB, Cross AK, Le Maitre CL. Nerves are more abundant than blood vessels in the degenerate human intervertebral disc. Arthritis Res Ther 2015; 17:370. [PMID: 26695177 PMCID: PMC4704545 DOI: 10.1186/s13075-015-0889-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/08/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic low back pain (LBP) is the most common cause of disability worldwide. New ideas surrounding LBP are emerging that are based on interactions between mechanical, biological and chemical influences on the human IVD. The degenerate IVD is proposed to be innervated by sensory nerve fibres and vascularised by blood vessels, and it is speculated to contribute to pain sensation. However, the incidence of nerve and blood vessel ingrowth, as well as whether these features are always associated, is unknown. We investigated the presence of nerves and blood vessels in the nucleus pulposus (NP) of the IVD in a large population of human discs. METHODS Immunohistochemistry was performed with 61 human IVD samples, to identify and localise nerves (neurofilament 200 [NF200]/protein gene product 9.5) and blood vessels (CD31) within different regions of the IVD. RESULTS Immunopositivity for NF200 was identified within all regions of the IVD within post-mortem tissues. Nerves were seen to protrude across lamellar ridges and through matrix towards NP cells. Nerves were identified deep within the NP and were in many cases, but not always, seen in close proximity to fissures or in areas where decreased matrix was seen. Fifteen percent of samples were degenerate and negative for nerves and blood vessels, whilst 16 % of all samples were degenerate with nerves and blood vessels. We identified 52% of samples that were degenerate with nerves but no blood vessels. Interestingly, only 4% of all samples were degenerate with no nerves but positive for blood vessels. Of the 85 samples investigated, only 6 % of samples were non-degenerate without nerves and blood vessels and 7% had nerves but no blood vessels. CONCLUSIONS This study addresses the controversial topic of nerve and blood vessel ingrowth into the IVD in a large number of human samples. Our findings demonstrate that nerves are present within a large proportion of NP samples from degenerate IVDs. This study shows a possible link between nerve ingrowth and degeneration of the IVD and suggests that nerves can migrate in the absence of blood vessels.
Collapse
Affiliation(s)
- Abbie L A Binch
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK.
| | - Ashley A Cole
- Department of Spinal Surgery, Sheffield Teaching Hospitals, Sheffield, UK.
| | - Lee M Breakwell
- Department of Spinal Surgery, Sheffield Teaching Hospitals, Sheffield, UK.
| | - Antony L R Michael
- Department of Spinal Surgery, Sheffield Teaching Hospitals, Sheffield, UK.
| | - Neil Chiverton
- Department of Spinal Surgery, Sheffield Teaching Hospitals, Sheffield, UK.
| | - Laura B Creemers
- Department of Orthopaedics, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - Alison K Cross
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK.
| | - Christine L Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK.
| |
Collapse
|
129
|
Samartzis D, Borthakur A, Belfer I, Bow C, Lotz JC, Wang HQ, Cheung KMC, Carragee E, Karppinen J. Novel diagnostic and prognostic methods for disc degeneration and low back pain. Spine J 2015; 15:1919-32. [PMID: 26303178 PMCID: PMC5473425 DOI: 10.1016/j.spinee.2014.09.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Dino Samartzis
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Professorial Block, 5th Floor, 102 Pokfulam Road, Pokfulam, Hong Kong, SAR, China; The Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong, SAR, China.
| | - Ari Borthakur
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, 3535 Market Street, Mezzanine, Philadelphia, PA, 19104, USA
| | - Inna Belfer
- Department of Anesthesiology, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, USA
| | - Cora Bow
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Professorial Block, 5th Floor, 102 Pokfulam Road, Pokfulam, Hong Kong, SAR, China
| | - Jeffrey C Lotz
- Department of Orthopaedic Surgery, University of California at San Francisco, 500 Parnassus Ave, San Francisco, CA 94143, USA
| | - Hai-Qiang Wang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, No. 169, Changle West Road, Xi'an, Shaanxi, 710032, P.R. China
| | - Kenneth M C Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Professorial Block, 5th Floor, 102 Pokfulam Road, Pokfulam, Hong Kong, SAR, China
| | - Eugene Carragee
- Department of Orthopaedic Surgery, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
| | - Jaro Karppinen
- Medical Research Center Oulu, University of Oulu, Oulu University Hospital, Kajaanintie 50, 90220 Oulu, Finland
| |
Collapse
|
130
|
Changes in perfusion and diffusion in the endplate regions of degenerating intervertebral discs: a DCE-MRI study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2015; 24:2458-67. [PMID: 26238936 DOI: 10.1007/s00586-015-4172-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/29/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE Dynamic contrast-enhanced MRI (DCE-MRI) was used to investigate the associations between intervertebral disc degeneration and changes in perfusion and diffusion in the disc endplates. METHODS 56 participants underwent MRI scans. Changes in DCE-MRI signal enhancement in the endplate regions were analyzed. Also, a group template was generated for the endplates and enhancement maps were registered to this template for group analysis. RESULTS DCE-MRI enhancement changed significantly in cranial endplates with increased degeneration. A similar trend was observed for caudal endplates, but it was not significant. Group-averaged enhancement maps revealed major changes in spatial distribution of endplate perfusion and diffusion with increasing disc degeneration especially in peripheral endplate regions. CONCLUSIONS Increased enhancement in the endplate regions of degenerating discs might be an indication of ongoing damage in these tissues. Therefore, DCE-MRI could aid in understanding the pathophysiology of disc degeneration. Moreover, it could be used in the planning of novel treatments such as stem cell therapy.
Collapse
|
131
|
Abstract
STUDY DESIGN Mechanical and microcomputed tomography (micro-CT) study of cadaver spines. OBJECTIVE To compare porosity and thickness of vertebral endplates with (1) compressive stresses measured in adjacent intervertebral discs and (2) grade of disc degeneration. SUMMARY OF BACKGROUND DATA Endplate porosity is important for disc metabolite transport, and yet porosity increases with age and disc degeneration. We hypothesize that porosity is largely determined by mechanical loading from adjacent discs. METHODS Forty motion segments (T8-9 to L4-5) were dissected from 23 cadavers aged 48 to 98 years. Each was subjected to 1 kN compression during which time intradiscal stresses were measured by pulling a pressure transducer along the disc's midsagittal diameter. "Stress profiles" revealed the average pressure in the nucleus, and the maximum stress in the anterior and posterior annulus. Specimens were further dissected to obtain discs with endplates (and 5 mm of bone) on either side. Microcomputed tomography scans (resolution 35 μm) were analyzed to calculate thickness and porosity in the midsagittal regions of all 80 endplates. Average values for the anterior, central, and posterior regions of each endplate were obtained. Disc degeneration was assessed macroscopically and microscopically. RESULTS Endplate porosity was inversely related to its thickness, being greatest in the central region opposite the nucleus, and least near the periphery. Superior endplates (relative to the disc) were 14% thicker (P < 0.001) and 4% less porous (P = 0.008) than inferior. In each of the 3 endplate regions (anterior, central, and posterior), porosity was inversely and significantly related to mechanical loading (pressure or maximum stress) in the adjacent disc region (P < 0.01 in all cases). Disc degeneration was best predicted by (reduced) nucleus pressure (R = 0.46, P < 0.001) and (reduced) maximum stress in the anterior annulus (R = 0.31, P < 0.001). CONCLUSION Mechanical loading is a major determinant of endplate thickness and porosity. Disc degeneration is more closely related to reduced disc stresses than to endplate thickness or porosity. LEVEL OF EVIDENCE N/A.
Collapse
|
132
|
Wu Y, Cisewski SE, Sachs BL, Pellegrini VD, Kern MJ, Slate EH, Yao H. The region-dependent biomechanical and biochemical properties of bovine cartilaginous endplate. J Biomech 2015. [PMID: 26209084 DOI: 10.1016/j.jbiomech.2015.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Regional biomechanical and biochemical properties of bovine cartilaginous endplate (CEP) and its role in disc mechanics and nutrition were determined. The equilibrium aggregate modulus and hydraulic permeability between the central and lateral regions were examined by confined compression testing. Biochemical assays were conducted to quantify the amount of water, collagen, and glycosaminoglycan (GAG). The equilibrium aggregate modulus of the CEP in the central region (0.23 ± 0.15 MPa) was significantly lower than for the lateral region (0.83 ± 0. 26 MPa). No significant regional difference was found for the permeability of the CEP (central region: 0.13 ± 0.07×10(-15)m(4)/Ns and lateral region: 0.09 ± 0.03 × 10(-15)m(4)/Ns). CEPs were an average of 75.6% water by wet weight, 41.1% collagen, and 20.4% GAG by dry weight in the central region, as well as an average of 70.2% water by wet weight, 73.8% collagen, and 11.7% GAG by dry weight in the lateral region. Regional differences observed for the equilibrium aggregate modulus were likely due to the regional variation in biochemical composition. The lateral bovine endplate is much stiffer and may share a greater portion of the load. Compared with the nucleus pulposus (NP) and annulus fibrosus (AF), a smaller hydraulic permeability was found for the CEP in both the central and lateral regions, which could be due to its lower water content and higher collagen content. Our results suggest that the CEP may block rapid fluid exchange and solute convection, allow pressurization of the interstitial fluid, and play a significant role in nutrient supply in response to loading.
Collapse
Affiliation(s)
- Yongren Wu
- Department of Bioengineering, Clemson University, Clemson, SC, United States; Department of Orthopaedics, Medical University of South Carolina (MUSC), Charleston, SC, United States
| | - Sarah E Cisewski
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Barton L Sachs
- Department of Orthopaedics, Medical University of South Carolina (MUSC), Charleston, SC, United States
| | - Vincent D Pellegrini
- Department of Orthopaedics, Medical University of South Carolina (MUSC), Charleston, SC, United States
| | - Michael J Kern
- Department of Regenerative Medicine and Cell Biology, MUSC, Charleston, SC, United States
| | - Elizabeth H Slate
- Department of Statistics, Florida State University, Tallahassee, FL, United States
| | - Hai Yao
- Department of Bioengineering, Clemson University, Clemson, SC, United States; Department of Orthopaedics, Medical University of South Carolina (MUSC), Charleston, SC, United States.
| |
Collapse
|
133
|
Purmessur D, Cornejo MC, Cho SK, Roughley PJ, Linhardt RJ, Hecht AC, Iatridis JC. Intact glycosaminoglycans from intervertebral disc-derived notochordal cell-conditioned media inhibit neurite growth while maintaining neuronal cell viability. Spine J 2015; 15:1060-9. [PMID: 25661435 PMCID: PMC4416992 DOI: 10.1016/j.spinee.2015.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/08/2014] [Accepted: 02/01/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Painful human intervertebral discs (IVDs) exhibit nerve growth deep into the IVD. Current treatments for discogenic back pain do not address the underlying mechanisms propagating pain and are often highly invasive or only offer temporary symptom relief. The notochord produces factors during development that pattern the spine and inhibit the growth of dorsal root ganglion (DRG) axons into the IVD. We hypothesize that notochordal cell (NC)-conditioned medium (NCCM) includes soluble factors capable of inhibiting neurite growth and may represent a future therapeutic target. PURPOSE To test if NCCM can inhibit neurite growth and determine if NC-derived glycosaminoglycans (GAGs) are necessary candidates for this inhibition. STUDY DESIGN Human neuroblastoma (SH-SY5Y) cells and rat DRG cells were treated with NCCM in two-dimensional culture in vitro, and digestion and mechanistic studies determined if specific GAGs were responsible for inhibitory effects. METHODS Notochordal cell-conditioned medium was generated from porcine nucleus pulposus tissue that was cultured in Dulbecco's modified eagle's medium for 4 days. A dose study was performed using SH-SY5Y cells that were seeded in basal medium for 24 hours and neurite outgrowth and cell viability were assessed after treatment with basal media or NCCM (10% and 100%) for 48 hours. Glycosaminoglycans from NCCM were characterized using multiple digestions and liquid chromatography mass spectroscopy (LC-MS). Neurite growth was assessed on both SH-SY5Y and DRG cells after treatment with NCCM with and without GAG digestion. RESULTS Notochordal cell-conditioned medium significantly inhibited the neurite outgrowth from SH-SY5Y cells compared with basal controls without dose or cytotoxic effects; % of neurite expressing cells were 39.0±2.9%, 27.3±3.6%, and 30.2±2.7% and mean neurite length was 60.3±3.5, 50.8±2.4, 53.2±3.7 μm for basal, 10% NCCM, and 100% NCCM, respectively. Digestions and LC-MS determined that chondroitin-6-sulfate was the major GAG chain in NCCM. Neurite growth from SH-SY5Y and DRG cells was not inhibited when cells were treated with NCCM with digested chondroitin sulfate (CS). CONCLUSIONS Soluble factors derived from NCCM were capable of inhibiting neurite outgrowth in multiple neural cell types without any negative effects on cell viability. Cleavage of GAGs via digestion was necessary to reverse the neurite inhibition capacity of NCCM. We conclude that intact GAGs such as CS secreted from NCs are potential candidates that could be useful to reduce neurite growth in painful IVDs.
Collapse
Affiliation(s)
- Devina Purmessur
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Marisa C Cornejo
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Samuel K Cho
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Robert J Linhardt
- Biocatalysis & Metabolic Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180
| | - Andrew C Hecht
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - James C Iatridis
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, One Gustave L.levy place, box 1188 New York, NY 10029, USA.
| |
Collapse
|
134
|
Fields AJ, Han M, Krug R, Lotz JC. Cartilaginous end plates: Quantitative MR imaging with very short echo times-orientation dependence and correlation with biochemical composition. Radiology 2014; 274:482-9. [PMID: 25302832 DOI: 10.1148/radiol.14141082] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To measure the T2* of the human cartilaginous end plate by using magnetic resonance (MR) imaging with very short echo times and to determine the effect of the orientation of the end plate on T2* and on relationships between T2* and biochemical composition. MATERIALS AND METHODS This study was exempt from institutional review board approval, and informed consent was not required. Thirty-four samples of three cadaveric lumbar spines (from subjects who died at ages 51, 57, and 66 years) containing cartilaginous end plates and subchondral bone were prepared. Samples were imaged with a 3-T imager for T2* quantification by using a three-dimensional very short echo time sequence (repetition time msec/echo times msec, 30/0.075, 2, 5, 12, 18). Samples were imaged with the end plate at three orientations with respect to the constant magnetic induction field: 0°, 54.7°, and 90°. After imaging, the cartilage was assayed for its water, glycosaminoglycan, and collagen content. Pearson correlations were used to investigate the effect of orientation on the relationships between T2* and biochemical composition. RESULTS T2* was significantly longer when measured at an orientation of 54.7° (21.8 msec ± 2.8 [± standard error of the mean]) than at 0° (10.0 msec ± 0.7, P < .001) or 90° (9.9 msec ± 0.4, P < .001). At 54.7°, T2* was highly correlated with glycosaminoglycan content (r = 0.85, P < .001), the collagen-to-glycosaminoglycan ratio (r = -0.79, P < .001), and water content (r = 0.62, P = .02); at 0° and 90°, there were no significant differences in these relationships, with a minimum P value of .19. CONCLUSION T2* evaluation can allow noninvasive estimation of the degeneration of the cartilaginous end plate; however, the accuracy of T2*-based estimates of biochemical composition depends on the orientation of the end plate.
Collapse
Affiliation(s)
- Aaron J Fields
- From the Department of Orthopaedic Surgery (A.J.F., R.K., J.C.L.) and Department of Radiology and Biomedical Imaging (M.H., R.K.), University of California-San Francisco, 513 Parnassus Ave, Room S-1161, San Francisco, CA 94143-0514
| | | | | | | |
Collapse
|
135
|
Abstract
STUDY DESIGN In vivo study defining expression of the neurotrophins, brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), in cervical intervertebral discs after painful whole-body vibration (WBV). OBJECTIVE The goal of this study is to determine if BDNF and NGF are expressed in cervical discs after painful WBV in a rat model. SUMMARY OF BACKGROUND DATA WBV is a possible source of neck pain and has been implicated as increasing the risk for disc disorders. Typically, aneural regions of painful human lumbar discs exhibit hyperinnervation, suggesting nerve ingrowth as potentially contributing to disc degeneration and pain. BDNF and NGF are upregulated in painfully degenerate lumbar discs and hypothesized to contribute to this pathology. METHODS Male Holtzman rats underwent 7 days of repeated WBV (15 Hz, 30 min/d) or sham exposures, followed by 7 days of rest. Cervical discs were collected for analysis of BDNF and NGF expression through RT-qPCR and Western blot analysis. Immunohistochemistry also evaluated their regional expression in the disc. RESULTS Vibration significantly increases BDNF messenger ribonucleic acid (mRNA) levels (P=0.036), as well as total-NGF mRNA (P=0.035). Protein expression of both BDNF (P=0.006) and the 75-kDa NGF (P=0.045) increase by nearly 4- and 10-fold, respectively. Both BDNF mRNA (R=0.396; P=0.012) and protein (R=0.280; P=0.035) levels are significantly correlated with the degree of behavioral sensitivity (i.e., pain) at day 14. Total-NGF mRNA is also significantly correlated with the extent of behavioral sensitivity (R=0.276; P=0.044). Both neurotrophins are most increased in the inner annulus fibrosus and nucleus pulposus. CONCLUSION The increases in BDNF and NGF in the cervical discs after painful vibration are observed in typically aneural regions of the disc, consistent with reports of its hyperinnervation. Yet, the induction of nerve ingrowth into the disc was not explicitly investigated. Neurotrophin expression also correlates with behavioral sensitivity, suggesting a role for both neurotrophins in the development of disc pain. LEVEL OF EVIDENCE N/A.
Collapse
|
136
|
Significance of cartilage endplate within herniated disc tissue. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 23:1869-77. [DOI: 10.1007/s00586-014-3399-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
|
137
|
Adams MA, Lama P, Zehra U, Dolan P. Why do some intervertebral discs degenerate, when others (in the same spine) do not? Clin Anat 2014; 28:195-204. [PMID: 24753325 DOI: 10.1002/ca.22404] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/04/2014] [Accepted: 04/01/2014] [Indexed: 02/06/2023]
Abstract
This review suggests why some discs degenerate rather than age normally. Intervertebral discs are avascular pads of fibrocartilage that allow movement between vertebral bodies. Human discs have a low cell density and a limited ability to adapt to mechanical demands. With increasing age, the matrix becomes yellowed, fibrous, and brittle, but if disc structure remains intact, there is little impairment in function, and minimal ingrowth of blood vessels or nerves. Approximately half of old lumbar discs degenerate in the sense of becoming physically disrupted. The posterior annulus and lower lumbar discs are most affected, presumably because they are most heavily loaded. Age and genetic inheritance can weaken discs to such an extent that they are physically disrupted during everyday activities. Damage to the endplate or annulus typically decompresses the nucleus, concentrates stress within the annulus, and allows ingrowth of nerves and blood vessels. Matrix disruption progresses by mechanical and biological means. The site of initial damage leads to two disc degeneration "phenotypes": endplate-driven degeneration is common in the upper lumbar and thoracic spine, and annulus-driven degeneration is common at L4-S1. Discogenic back pain can be initiated by tissue disruption, and amplified by inflammation and infection. Healing is possible in the outer annulus only, where cell density is highest. We conclude that some discs degenerate because they are disrupted by excessive mechanical loading. This can occur without trauma if tissues are weakened by age and genetic inheritance. Moderate mechanical loading, in contrast, strengthens all spinal tissues, including discs.
Collapse
Affiliation(s)
- Michael A Adams
- Centre for Comparative and Clinical Anatomy, University of Bristol, United Kingdom
| | | | | | | |
Collapse
|
138
|
Disc cell therapies: critical issues. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 23 Suppl 3:S375-84. [PMID: 24509721 DOI: 10.1007/s00586-014-3177-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 12/02/2013] [Accepted: 01/08/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Disc cell therapies, in which cells are injected into the degenerate disc in order to regenerate the matrix and restore function, appear to be an attractive, minimally invasive method of treatment. Interest in this area has stimulated research into disc cell biology in particular. However, other important issues, some of which are discussed here, need to be considered if cell-based therapies are to be brought to the clinic. PURPOSE Firstly, a question which is barely addressed in the literature, is how to identify patients with 'degenerative disc disease' who would benefit from cell therapy. Pain not disc degeneration is the symptom which drives patients to the clinic. Even though there are associations between back pain and disc degeneration, many people with even severely degenerate discs, with herniated discs or with spinal stenosis, are pain-free. It is not possible using currently available techniques to identify whether disc repair or regeneration would remove symptoms or prevent symptoms from occurring in future. Moreover, the repair process in human discs is very slow (years) because of the low cell density which can be supported nutritionally even in healthy human discs. If repair is necessary for relief of symptoms, questions regarding quality of life and rehabilitation during this long process need consideration. Also, some serious technical issues remain. Finding appropriate cell sources and scaffolds have received most attention, but these are not the only issues determining the feasibility of the procedure. There are questions regarding the safety of implanting cells by injection through the annulus whether the nutrient supply to the disc is sufficient to support implanted cells and whether, if cells are able to survive, conditions in a degenerate human disc will allow them to repair the damaged tissue. CONCLUSIONS If cell therapy for treatment of disc-related disorders is to enter the clinic as a routine treatment, investigations must examine the questions related to patient selection and the feasibility of achieving the desired repair in an acceptable time frame. Few diagnostic tests that examine whether cell therapies are likely to succeed are available at present, but definite exclusion criteria would be evidence of major disc fissures, or disturbance of nutrient pathways as measured by post-contrast MRI.
Collapse
|
139
|
Fields AJ, Rodriguez D, Gary KN, Liebenberg EC, Lotz JC. Influence of biochemical composition on endplate cartilage tensile properties in the human lumbar spine. J Orthop Res 2014; 32:245-52. [PMID: 24273192 PMCID: PMC4039641 DOI: 10.1002/jor.22516] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 10/14/2013] [Indexed: 02/04/2023]
Abstract
Endplate cartilage integrity is critical to spine health and is presumably impaired by deterioration in biochemical composition. Yet, quantitative relationships between endplate biochemical composition and biomechanical properties are unavailable. Using endplate cartilage harvested from human lumbar spines (six donors, ages 51-67 years) we showed that endplate biochemical composition has a significant influence on its equilibrium tensile properties and that the presence of endplate damage associates with a diminished composition-function relationship. We found that the equilibrium tensile modulus (5.9 ± 5.7 MPa) correlated significantly with collagen content (559 ± 147 µg/mg dry weight, r(2) = 0.35) and with the collagen/GAG ratio (6.0 ± 2.1, r(2) = 0.58). Accounting for the damage status of the adjacent cartilage improved the latter correlation (r(2) = 0.77) and indicated that samples with adjacent damage such as fissures and avulsions had a diminished modulus-collagen/GAG relationship (p = 0.02). Quasi-linear viscoelastic relaxation properties (C, t1 , and t2 ) did not correlate with biochemical composition. We conclude that reduced matrix quantity decreases the equilibrium tensile modulus of human endplate cartilage and that characteristics of biochemical composition that are independent of matrix quantity, that is, characteristics related to matrix quality, may also be important.
Collapse
Affiliation(s)
- Aaron J. Fields
- Orthopaedic Bioengineering Laboratory; Department of Orthopaedic Surgery; University of California; 513 Parnassus Avenue S-1157 San Francisco California 94143-0514
| | - David Rodriguez
- Orthopaedic Bioengineering Laboratory; Department of Orthopaedic Surgery; University of California; 513 Parnassus Avenue S-1157 San Francisco California 94143-0514
| | - Kaitlyn N. Gary
- Orthopaedic Bioengineering Laboratory; Department of Orthopaedic Surgery; University of California; 513 Parnassus Avenue S-1157 San Francisco California 94143-0514
| | - Ellen C. Liebenberg
- Orthopaedic Bioengineering Laboratory; Department of Orthopaedic Surgery; University of California; 513 Parnassus Avenue S-1157 San Francisco California 94143-0514
| | - Jeffrey C. Lotz
- Orthopaedic Bioengineering Laboratory; Department of Orthopaedic Surgery; University of California; 513 Parnassus Avenue S-1157 San Francisco California 94143-0514
| |
Collapse
|