101
|
Torres R, Serrano E, Alonso JC. Bacillus subtilis RecA interacts with and loads RadA/Sms to unwind recombination intermediates during natural chromosomal transformation. Nucleic Acids Res 2019; 47:9198-9215. [PMID: 31350886 PMCID: PMC6755099 DOI: 10.1093/nar/gkz647] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/03/2019] [Accepted: 07/15/2019] [Indexed: 02/01/2023] Open
Abstract
During natural transformation Bacillus subtilis RecA, polymerized onto the incoming single-stranded (ss) DNA, catalyses DNA strand invasion resulting in a displacement loop (D-loop) intermediate. A null radA mutation impairs chromosomal transformation, and RadA/Sms unwinds forked DNA in the 5′→3′ direction. We show that in the absence of RadA/Sms competent cells require the RecG translocase for natural chromosomal transformation. RadA/Sms tetracysteine motif (C13A and C13R) variants, which fail to interact with RecA, are also deficient in plasmid transformation, but this defect is suppressed by inactivating recA. The RadA/Sms C13A and C13R variants bind ssDNA, and this interaction stimulates their ATPase activity. Wild-type (wt) RadA/Sms interacts with and inhibits the ATPase activity of RecA, but RadA/Sms C13A fails to do it. RadA/Sms and its variants, C13A and C13R, bound to the 5′-tail of a DNA substrate, unwind DNA in the 5′→3′ direction. RecA interacts with and loads wt RadA/Sms to promote unwinding of a non-cognate 3′-tailed or 5′-fork DNA substrate, but RadA/Sms C13A or C13R fail to do it. We propose that wt RadA/Sms interaction with RecA is crucial to recruit the former onto D-loop DNA, and both proteins in concert catalyse D-loop extension to favour integration of ssDNA during chromosomal transformation.
Collapse
Affiliation(s)
- Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
- To whom correspondence should be addressed. Tel: +34 91585 4546; Fax: +34 91585 4506;
| |
Collapse
|
102
|
Boyer B, Danilowicz C, Prentiss M, Prévost C. Weaving DNA strands: structural insight on ATP hydrolysis in RecA-induced homologous recombination. Nucleic Acids Res 2019; 47:7798-7808. [PMID: 31372639 PMCID: PMC6735932 DOI: 10.1093/nar/gkz667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/12/2019] [Accepted: 07/19/2019] [Indexed: 01/01/2023] Open
Abstract
Homologous recombination is a fundamental process in all living organisms that allows the faithful repair of DNA double strand breaks, through the exchange of DNA strands between homologous regions of the genome. Results of three decades of investigation and recent fruitful observations have unveiled key elements of the reaction mechanism, which proceeds along nucleofilaments of recombinase proteins of the RecA family. Yet, one essential aspect of homologous recombination has largely been overlooked when deciphering the mechanism: while ATP is hydrolyzed in large quantity during the process, how exactly hydrolysis influences the DNA strand exchange reaction at the structural level remains to be elucidated. In this study, we build on a previous geometrical approach that studied the RecA filament variability without bound DNA to examine the putative implication of ATP hydrolysis on the structure, position, and interactions of up to three DNA strands within the RecA nucleofilament. Simulation results on modeled intermediates in the ATP cycle bring important clues about how local distortions in the DNA strand geometries resulting from ATP hydrolysis can aid sequence recognition by promoting local melting of already formed DNA heteroduplex and transient reverse strand exchange in a weaving type of mechanism.
Collapse
Affiliation(s)
- Benjamin Boyer
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005 Paris, France.,Presently in Laboratoire Génomique Bioinformatique et Applications, EA4627, Conservatoire National des Arts et Métiers, 292 rue Saint Martin, 75003 Paris, France
| | | | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Chantal Prévost
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005 Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| |
Collapse
|
103
|
Reitz D, Grubb J, Bishop DK. A mutant form of Dmc1 that bypasses the requirement for accessory protein Mei5-Sae3 reveals independent activities of Mei5-Sae3 and Rad51 in Dmc1 filament stability. PLoS Genet 2019; 15:e1008217. [PMID: 31790385 PMCID: PMC6907854 DOI: 10.1371/journal.pgen.1008217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 12/12/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022] Open
Abstract
During meiosis, homologous recombination repairs programmed DNA double-stranded breaks. Meiotic recombination physically links the homologous chromosomes (“homologs”), creating the tension between them that is required for their segregation. The central recombinase in this process is Dmc1. Dmc1’s activity is regulated by its accessory factors including the heterodimeric protein Mei5-Sae3 and Rad51. We use a gain-of-function dmc1 mutant, dmc1-E157D, that bypasses Mei5-Sae3 to gain insight into the role of this accessory factor and its relationship to mitotic recombinase Rad51, which also functions as a Dmc1 accessory protein during meiosis. We find that Mei5-Sae3 has a role in filament formation and stability, but not in the bias of recombination partner choice that favors homolog over sister chromatids. Analysis of meiotic recombination intermediates suggests that Mei5-Sae3 and Rad51 function independently in promoting filament stability. In spite of its ability to load onto single-stranded DNA and carry out recombination in the absence of Mei5-Sae3, recombination promoted by the Dmc1 mutant is abnormal in that it forms foci in the absence of DNA breaks, displays unusually high levels of multi-chromatid and intersister joint molecule intermediates, as well as high levels of ectopic recombination products. We use super-resolution microscopy to show that the mutant protein forms longer foci than those formed by wild-type Dmc1. Our data support a model in which longer filaments are more prone to engage in aberrant recombination events, suggesting that filament lengths are normally limited by a regulatory mechanism that functions to prevent recombination-mediated genome rearrangements. During meiosis, two rounds of division follow a single round of DNA replication to create the gametes for biparental reproduction. The first round of division requires that the homologous chromosomes become physically linked to one another to create the tension that is necessary for their segregation. This linkage is achieved through DNA recombination between the two homologous chromosomes, followed by resolution of the recombination intermediate into a crossover. Central to this process is the meiosis-specific recombinase Dmc1, and its accessory factors, which provide important regulatory functions to ensure that recombination is accurate, efficient, and occurs predominantly between homologous chromosomes, and not sister chromatids. To gain insight into the regulation of Dmc1 by its accessory factors, we mutated Dmc1 such that it was no longer dependent on its accessory factor Mei5-Sae3. Our analysis reveals that Dmc1 accessory factors Mei5-Sae3 and Rad51 have independent roles in stabilizing Dmc1 filaments. Furthermore, we find that although Rad51 is required for promoting recombination between homologous chromosomes, Mei5-Sae3 is not. Lastly, we show that our Dmc1 mutant forms abnormally long filaments, and high levels of aberrant recombination intermediates and products. These findings suggest that filaments are actively maintained at short lengths to prevent deleterious genome rearrangements.
Collapse
Affiliation(s)
- Diedre Reitz
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Jennifer Grubb
- Department of Radiation and Cellular Oncology, Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Douglas K. Bishop
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Radiation and Cellular Oncology, Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
104
|
Brieba LG. Structure-Function Analysis Reveals the Singularity of Plant Mitochondrial DNA Replication Components: A Mosaic and Redundant System. PLANTS 2019; 8:plants8120533. [PMID: 31766564 PMCID: PMC6963530 DOI: 10.3390/plants8120533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
Plants are sessile organisms, and their DNA is particularly exposed to damaging agents. The integrity of plant mitochondrial and plastid genomes is necessary for cell survival. During evolution, plants have evolved mechanisms to replicate their mitochondrial genomes while minimizing the effects of DNA damaging agents. The recombinogenic character of plant mitochondrial DNA, absence of defined origins of replication, and its linear structure suggest that mitochondrial DNA replication is achieved by a recombination-dependent replication mechanism. Here, I review the mitochondrial proteins possibly involved in mitochondrial DNA replication from a structural point of view. A revision of these proteins supports the idea that mitochondrial DNA replication could be replicated by several processes. The analysis indicates that DNA replication in plant mitochondria could be achieved by a recombination-dependent replication mechanism, but also by a replisome in which primers are synthesized by three different enzymes: Mitochondrial RNA polymerase, Primase-Helicase, and Primase-Polymerase. The recombination-dependent replication model and primers synthesized by the Primase-Polymerase may be responsible for the presence of genomic rearrangements in plant mitochondria.
Collapse
Affiliation(s)
- Luis Gabriel Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato C.P. 36821, Mexico
| |
Collapse
|
105
|
Structures and single-molecule analysis of bacterial motor nuclease AdnAB illuminate the mechanism of DNA double-strand break resection. Proc Natl Acad Sci U S A 2019; 116:24507-24516. [PMID: 31740608 DOI: 10.1073/pnas.1913546116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mycobacterial AdnAB is a heterodimeric helicase-nuclease that initiates homologous recombination by resecting DNA double-strand breaks (DSBs). The AdnA and AdnB subunits are each composed of an N-terminal motor domain and a C-terminal nuclease domain. Here we report cryoelectron microscopy (cryo-EM) structures of AdnAB in three functional states: in the absence of DNA and in complex with forked duplex DNAs before and after cleavage of the 5' single-strand DNA (ssDNA) tail by the AdnA nuclease. The structures reveal the path of the 5' ssDNA through the AdnA nuclease domain and the mechanism of 5' strand cleavage; the path of the 3' tracking strand through the AdnB motor and the DNA contacts that couple ATP hydrolysis to mechanical work; the position of the AdnA iron-sulfur cluster subdomain at the Y junction and its likely role in maintaining the split trajectories of the unwound 5' and 3' strands. Single-molecule DNA curtain analysis of DSB resection reveals that AdnAB is highly processive but prone to spontaneous pausing at random sites on duplex DNA. A striking property of AdnAB is that the velocity of DSB resection slows after the enzyme experiences a spontaneous pause. Our results highlight shared as well as distinctive properties of AdnAB vis-à-vis the RecBCD and AddAB clades of bacterial DSB-resecting motor nucleases.
Collapse
|
106
|
Integration Host Factor IHF facilitates homologous recombination and mutagenic processes in Pseudomonas putida. DNA Repair (Amst) 2019; 85:102745. [PMID: 31715424 DOI: 10.1016/j.dnarep.2019.102745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022]
Abstract
Nucleoid-associated proteins (NAPs) such as IHF, HU, Fis, and H-NS alter the topology of bound DNA and may thereby affect accessibility of DNA to repair and recombination processes. To examine this possibility, we investigated the effect of IHF on the frequency of homologous recombination (HR) and point mutations in soil bacterium Pseudomonas putida by using plasmidial and chromosomal assays. We observed positive effect of IHF on the frequency of HR, whereas this effect varied depending both on the chromosomal location of the HR target and the type of plasmid used in the assay. The occurrence of point mutations in plasmid was also facilitated by IHF, whereas in the chromosome the positive effect of IHF appeared only at certain DNA sequences and/or chromosomal positions. We did not observe any significant effects of IHF on the spectrum of mutations. However, despite of the presence or absence of IHF, different mutational hot spots appeared both in plasmid and in chromosome. Additionally, the frequency of frameshift mutations in the chromosome was also strongly affected by the location of the mutational target sequence. Taking together, our results indicate that IHF facilitates the occurrence of genetic changes in P. putida, whereas the location of the target sequence affects both the IHF-dependent and IHF-independent mechanisms.
Collapse
|
107
|
Ojha D, Patil KN. Molecular and functional characterization of the Listeria monocytogenes RecA protein: Insights into the homologous recombination process. Int J Biochem Cell Biol 2019; 119:105642. [PMID: 31698090 DOI: 10.1016/j.biocel.2019.105642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 10/20/2019] [Accepted: 10/31/2019] [Indexed: 12/28/2022]
Abstract
The recombinases present in the all kingdoms in nature play a crucial role in DNA metabolism processes such as replication, repair, recombination and transcription. However, till date, the role of RecA in the deadly foodborne pathogen Listeria monocytogenes remains unknown. In this study, the authors show that L. monocytogenes expresses recA more than two-fold in vivo upon exposure to the DNA damaging agents, methyl methanesulfonate and ultraviolet radiation. The purified L. monocytogenes RecA protein show robust binding to single stranded DNA. The RecA is capable of forming displacement loop and hydrolyzes ATP, whereas the mutant LmRecAK70A fails to hydrolyze ATP, showing conserved walker A and B motifs. Interestingly, L. monocytogenes RecA and LmRecAK70A perform the DNA strand transfer activity, which is the hallmark feature of RecA protein with an oligonucleotide-based substrate. Notably, L. monocytogenes RecA readily cleaves L. monocytogenes LexA, the SOS regulon and protects the presynaptic filament from the exonuclease I activity. Altogether, this study provides the first detailed characterization of L. monocytogenes RecA and presents important insights into the process of homologous recombination in the gram-positive foodborne bacteria L. monocytogenes.
Collapse
Affiliation(s)
- Debika Ojha
- Department of Protein Chemistry and Technology, Council of Scientific & Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, 570 020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - K Neelakanteshwar Patil
- Department of Protein Chemistry and Technology, Council of Scientific & Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, 570 020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
108
|
Barton IS, Platt TG, Rusch DB, Fuqua C. Destabilization of the Tumor-Inducing Plasmid from an Octopine-Type Agrobacterium tumefaciens Lineage Drives a Large Deletion in the Co-resident At Megaplasmid. G3 (BETHESDA, MD.) 2019; 9:3489-3500. [PMID: 31451548 PMCID: PMC6778807 DOI: 10.1534/g3.119.400554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/22/2019] [Indexed: 11/28/2022]
Abstract
Bacteria with multi-replicon genome organizations, including members of the family Rhizobiaceae, often carry a variety of niche-associated functions on large plasmids. While evidence exists for cross-replicon interactions and co-evolution between replicons in many of these systems, remarkable strain-to-strain variation is also observed for extrachromosomal elements, suggesting increased genetic plasticity. Here, we show that curing of the tumor-inducing virulence plasmid (pTi) of an octopine-type Agrobacterium tumefaciens lineage leads to a large deletion in the co-resident At megaplasmid (pAt). The deletion event is mediated by a repetitive IS-element, IS66, and results in a variety of environment-dependent fitness consequences, including loss of independent conjugal transfer of the plasmid. Interestingly, a related and otherwise wild-type A. tumefaciens strain is missing exactly the same large pAt segment as the pAt deletion derivatives, suggesting a similar event over its natural history. Overall, the findings presented here uncover a novel genetic interaction between the two large plasmids of A. tumefaciens and provide evidence for cross-replicon integration and co-evolution of these plasmids.
Collapse
Affiliation(s)
- Ian S Barton
- Department of Biology, Indiana University, Bloomington, Indiana
| | - Thomas G Platt
- Division of Biology, Kansas State University, Manhattan, KS 66506, and
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana
| |
Collapse
|
109
|
Iasakov TR, Anisimova LG, Zharikova NV, Zhurenko EI, Korobov VV, Markusheva TV. Evolution and Comparative Genomics of the pSM22 Plasmid of the IncF/MOBF12 Group. Mol Biol 2019. [DOI: 10.1134/s0026893319040162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
110
|
Ojha D, Patil KN. p-Coumaric acid inhibits the Listeria monocytogenes RecA protein functions and SOS response: An antimicrobial target. Biochem Biophys Res Commun 2019; 517:655-661. [PMID: 31416617 DOI: 10.1016/j.bbrc.2019.07.093] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 11/17/2022]
Abstract
Bacterial RecA plays an important role in the evaluation of antibiotic resistance via stress-induced DNA repair mechanism; SOS response. Accordingly, RecA became an important therapeutic target against antimicrobial resistance. Small molecule inhibitors of RecA may prevent adaptation of antibiotic resistance mutations and the emergence of antimicrobial resistance. In our study, we observed that phenolic compound p-Coumaric acid as potent RecA inhibitor. It inhibited RecA driven biochemical activities in vitro such as ssDNA binding, strand exchange, ATP hydrolysis and RecA coprotease activity of E. coli and L. monocytogenes RecA proteins. The mechanism underlying such inhibitory action of p-Coumaric acid involves its ability to interfere with the DNA binding domain of RecA protein. p-Coumaric acid also potentiates the activity of ciprofloxacin by inhibiting drastic cell survival of L. monocytogenes as well as filamentation process; the bacteria defensive mechanism in response to DNA damage. Additionally, it also blocked the ciprofloxacin induced RecA expression leading to suppression of SOS response in L. monocytogenes. These findings revealed that p-Coumaric acid is a potent RecA inhibitor, and can be used as an adjuvant to the existing antibiotics which not only enhance the shelf-life but also slow down the emergence of antibiotic resistance in bacteria.
Collapse
Affiliation(s)
- Debika Ojha
- Department of Protein Chemistry and Technology, Council of Scientific & Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, 570 020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - K Neelakanteshwar Patil
- Department of Protein Chemistry and Technology, Council of Scientific & Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, 570 020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
111
|
Lennon CW, Stanger MJ, Belfort M. Mechanism of Single-Stranded DNA Activation of Recombinase Intein Splicing. Biochemistry 2019; 58:3335-3339. [PMID: 31318538 DOI: 10.1021/acs.biochem.9b00506] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inteins, or intervening proteins, are mobile genetic elements translated within host polypeptides and removed through protein splicing. This self-catalyzed process breaks two peptide bonds and rejoins the flanking sequences, called N- and C-exteins, with the intein scarlessly escaping the host protein. As these elements have traditionally been viewed as purely selfish genetic elements, recent work has demonstrated that the conditional protein splicing (CPS) of several naturally occurring inteins can be regulated by a variety of environmental cues relevant to the survival of the host organism or crucial to the invading protein function. The RadA recombinase from the archaeon Pyrococcus horikoshii represents an intriguing example of CPS, whereby protein splicing is inhibited by interactions between the intein and host protein C-extein. Single-stranded DNA (ssDNA), a natural substrate of RadA as well as signal that recombinase activity is needed by the cell, dramatically improves the splicing rate and accuracy. Here, we investigate the mechanism by which ssDNA exhibits this influence and find that ssDNA strongly promotes a specific step of the splicing reaction, cyclization of the terminal asparagine of the intein. Interestingly, inhibitory interactions between the host protein and intein that block splicing localize to this asparagine, suggesting that ssDNA binding alleviates this inhibition to promote splicing. We also find that ssDNA directly influences the position of catalytic nucleophiles required for protein splicing, implying that ssDNA promotes assembly of the intein active site. This work advances our understanding of how ssDNA accelerates RadA splicing, providing important insights into this intriguing example of CPS.
Collapse
Affiliation(s)
- Christopher W Lennon
- Department of Biological Sciences and RNA Institute and Department of Biomedical Sciences, School of Public Health , University at Albany , Albany , New York 12222 , United States
| | - Matthew J Stanger
- Department of Biological Sciences and RNA Institute and Department of Biomedical Sciences, School of Public Health , University at Albany , Albany , New York 12222 , United States
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute and Department of Biomedical Sciences, School of Public Health , University at Albany , Albany , New York 12222 , United States
| |
Collapse
|
112
|
Kim R, Kanamaru S, Mikawa T, Prévost C, Ishii K, Ito K, Uchiyama S, Oda M, Iwasaki H, Kim SK, Takahashi M. RecA requires two molecules of Mg2+ ions for its optimal strand exchange activity in vitro. Nucleic Acids Res 2019; 46:2548-2559. [PMID: 29390145 PMCID: PMC5861410 DOI: 10.1093/nar/gky048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/23/2018] [Indexed: 11/15/2022] Open
Abstract
Mg2+ ion stimulates the DNA strand exchange reaction catalyzed by RecA, a key step in homologous recombination. To elucidate the molecular mechanisms underlying the role of Mg2+ and the strand exchange reaction itself, we investigated the interaction of RecA with Mg2+ and sought to determine which step of the reaction is affected. Thermal stability, intrinsic fluorescence, and native mass spectrometric analyses of RecA revealed that RecA binds at least two Mg2+ ions with KD ≈ 2 mM and 5 mM. Deletion of the C-terminal acidic tail of RecA made its thermal stability and fluorescence characteristics insensitive to Mg2+ and similar to those of full-length RecA in the presence of saturating Mg2+. These observations, together with the results of a molecular dynamics simulation, support the idea that the acidic tail hampers the strand exchange reaction by interacting with other parts of RecA, and that binding of Mg2+ to the tail prevents these interactions and releases RecA from inhibition. We observed that binding of the first Mg2+ stimulated joint molecule formation, whereas binding of the second stimulated progression of the reaction. Thus, RecA is actively involved in the strand exchange step as well as bringing the two DNAs close to each other.
Collapse
Affiliation(s)
- Raeyeong Kim
- Department of Chemistry, Yeungnam University, Gyeonsan-city 38541, Republic of Korea
| | - Shuji Kanamaru
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tsutomu Mikawa
- RIKEN Quantitative Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Chantal Prévost
- Laboratoire de Biochimie Théorique, UPR9080 CNRS Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Kentaro Ishii
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Kentaro Ito
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Susumu Uchiyama
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.,Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Hiroshi Iwasaki
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Seog K Kim
- Department of Chemistry, Yeungnam University, Gyeonsan-city 38541, Republic of Korea
| | - Masayuki Takahashi
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
113
|
Olson HC, Davis L, Kiianitsa K, Khoo KJ, Liu Y, Knijnenburg TA, Maizels N. Increased levels of RECQ5 shift DNA repair from canonical to alternative pathways. Nucleic Acids Res 2019; 46:9496-9509. [PMID: 30107528 PMCID: PMC6182128 DOI: 10.1093/nar/gky727] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022] Open
Abstract
RECQ5 (RECQL5) is one of several human helicases that dissociates RAD51-DNA filaments. The gene that encodes RECQ5 is frequently amplified in human tumors, but it is not known whether amplification correlates with increased gene expression, or how increased RECQ5 levels affect DNA repair at nicks and double-strand breaks. Here, we address these questions. We show that RECQ5 gene amplification correlates with increased gene expression in human tumors, by in silico analysis of over 9000 individual tumors representing 32 tumor types in the TCGA dataset. We demonstrate that, at double-strand breaks, increased RECQ5 levels inhibited canonical homology-directed repair (HDR) by double-stranded DNA donors, phenocopying the effect of BRCA deficiency. Conversely, at nicks, increased RECQ5 levels stimulated 'alternative' HDR by single-stranded DNA donors, which is normally suppressed by RAD51; this was accompanied by stimulation of mutagenic end-joining. Even modest changes (2-fold) in RECQ5 levels caused significant dysregulation of repair, especially HDR. These results suggest that in some tumors, RECQ5 gene amplification may have profound consequences for genomic instability.
Collapse
Affiliation(s)
- Henry C Olson
- Department of Biochemistry, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Luther Davis
- Department of Immunology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Kostantin Kiianitsa
- Department of Immunology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Kevin J Khoo
- Department of Biochemistry, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA.,Department of Immunology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Yilun Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Theo A Knijnenburg
- Institute for Systems Biology, 401 Terry Ave. N., Seattle, WA 98109, USA
| | - Nancy Maizels
- Department of Biochemistry, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA.,Department of Immunology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| |
Collapse
|
114
|
Moving forward one step back at a time: reversibility during homologous recombination. Curr Genet 2019; 65:1333-1340. [PMID: 31123771 DOI: 10.1007/s00294-019-00995-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
Abstract
DNA double-strand breaks are genotoxic lesions whose repair can be templated off an intact DNA duplex through the conserved homologous recombination (HR) pathway. Because it mainly consists of a succession of non-covalent associations of molecules, HR is intrinsically reversible. Reversibility serves as an integral property of HR, exploited and tuned at various stages throughout the pathway with anti- and pro-recombinogenic consequences. Here, we focus on the reversibility of displacement loops (D-loops), a central DNA joint molecule intermediate whose dynamics and regulation have recently been physically probed in somatic S. cerevisiae cells. From homology search to repair completion, we discuss putative roles of D-loop reversibility in repair fidelity and outcome.
Collapse
|
115
|
Maslowska KH, Makiela‐Dzbenska K, Fijalkowska IJ. The SOS system: A complex and tightly regulated response to DNA damage. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:368-384. [PMID: 30447030 PMCID: PMC6590174 DOI: 10.1002/em.22267] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/29/2018] [Accepted: 11/13/2018] [Indexed: 05/10/2023]
Abstract
Genomes of all living organisms are constantly threatened by endogenous and exogenous agents that challenge the chemical integrity of DNA. Most bacteria have evolved a coordinated response to DNA damage. In Escherichia coli, this inducible system is termed the SOS response. The SOS global regulatory network consists of multiple factors promoting the integrity of DNA as well as error-prone factors allowing for survival and continuous replication upon extensive DNA damage at the cost of elevated mutagenesis. Due to its mutagenic potential, the SOS response is subject to elaborate regulatory control involving not only transcriptional derepression, but also post-translational activation, and inhibition. This review summarizes current knowledge about the molecular mechanism of the SOS response induction and progression and its consequences for genome stability. Environ. Mol. Mutagen. 60:368-384, 2019. © 2018 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Katarzyna H. Maslowska
- Cancer Research Center of Marseille, CNRS, UMR7258Inserm, U1068; Institut Paoli‐Calmettes, Aix‐Marseille UniversityMarseilleFrance
- Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsawPoland
| | | | - Iwona J. Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsawPoland
| |
Collapse
|
116
|
Silva JK, Marques LM, Timenetsky J, de Farias ST. Ureaplasma diversum protein interaction networks: evidence of horizontal gene transfer and evolution of reduced genomes among Mollicutes. Can J Microbiol 2019; 65:596-612. [PMID: 31018106 DOI: 10.1139/cjm-2018-0688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ureaplasma diversum is a member of the Mollicutes class responsible for urogenital tract infection in cattle and small ruminants. Studies indicate that the process of horizontal gene transfer, the exchange of genetic material among different species, has a crucial role in mollicute evolution, affecting the group's characteristic genomic reduction process and simplification of metabolic pathways. Using bioinformatics tools and the STRING database of known and predicted protein interactions, we constructed the protein-protein interaction network of U. diversum and compared it with the networks of other members of the Mollicutes class. We also investigated horizontal gene transfer events in subnetworks of interest involved in purine and pyrimidine metabolism and urease function, chosen because of their intrinsic importance for host colonization and virulence. We identified horizontal gene transfer events among Mollicutes and from Ureaplasma to Staphylococcus aureus and Corynebacterium, bacterial groups that colonize the urogenital niche. The overall tendency of genome reduction and simplification in the Mollicutes is echoed in their protein interaction networks, which tend to be more generalized and less selective. Our data suggest that the process was permitted (or enabled) by an increase in host dependence and the available gene repertoire in the urogenital tract shared via horizontal gene transfer.
Collapse
Affiliation(s)
- Joana Kästle Silva
- a Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Brazil
| | - Lucas Miranda Marques
- b Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil.,c Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Jorge Timenetsky
- c Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
117
|
Li L, Liu X, Wei K, Lu Y, Jiang W. Synthetic biology approaches for chromosomal integration of genes and pathways in industrial microbial systems. Biotechnol Adv 2019; 37:730-745. [PMID: 30951810 DOI: 10.1016/j.biotechadv.2019.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022]
Abstract
Industrial biotechnology is reliant on native pathway engineering or foreign pathway introduction for efficient biosynthesis of target products. Chromosomal integration, with intrinsic genetic stability, is an indispensable step for reliable expression of homologous or heterologous genes and pathways in large-scale and long-term fermentation. With advances in synthetic biology and CRISPR-based genome editing approaches, a wide variety of novel enabling technologies have been developed for single-step, markerless, multi-locus genomic integration of large biochemical pathways, which significantly facilitate microbial overproduction of chemicals, pharmaceuticals and other value-added biomolecules. Notably, the newly discovered homology-mediated end joining strategy could be widely applicable for high-efficiency genomic integration in a number of homologous recombination-deficient microbes. In this review, we explore the fundamental principles and characteristics of genomic integration, and highlight the development and applications of targeted integration approaches in the three representative industrial microbial systems, including Escherichia coli, actinomycetes and yeasts.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaocao Liu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Keke Wei
- Department of Biochemistry, Shanghai Institute of Pharmaceutical Industry, Shanghai 201210, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, 200232, China.
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
118
|
Krewing M, Jarzina F, Dirks T, Schubert B, Benedikt J, Lackmann JW, Bandow JE. Plasma-sensitive Escherichia coli mutants reveal plasma resistance mechanisms. J R Soc Interface 2019; 16:20180846. [PMID: 30913981 PMCID: PMC6451402 DOI: 10.1098/rsif.2018.0846] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/28/2019] [Indexed: 12/31/2022] Open
Abstract
Non-thermal atmospheric pressure plasmas are investigated as augmenting therapy to combat bacterial infections. The strong antibacterial effects of plasmas are attributed to the complex mixture of reactive species, (V)UV radiation and electric fields. The experience with antibiotics is that upon their introduction as medicines, resistance occurs in pathogens and spreads. To assess the possibility of bacterial resistance developing against plasma, we investigated intrinsic protective mechanisms that allow Escherichia coli to survive plasma stress. We performed a genome-wide screening of single-gene knockout mutants of E. coli and identified 87 mutants that are hypersensitive to the effluent of a microscale atmospheric pressure plasma jet. For selected genes ( cysB, mntH, rep and iscS) we showed in complementation studies that plasma resistance can be restored and increased above wild-type levels upon over-expression. To identify plasma-derived components that the 87 genes confer resistance against, mutants were tested for hypersensitivity against individual stressors (hydrogen peroxide, superoxide, hydroxyl radicals, ozone, HOCl, peroxynitrite, NO•, nitrite, nitrate, HNO3, acid stress, diamide, heat stress and detergents). k-means++ clustering revealed that most genes protect from hydrogen peroxide, superoxide and/or nitric oxide. In conclusion, individual bacterial genes confer resistance against plasma providing insights into the antibacterial mechanisms of plasma.
Collapse
Affiliation(s)
- Marco Krewing
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Fabian Jarzina
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Tim Dirks
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Britta Schubert
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Jan Benedikt
- Experimental Plasma Physics, Christian-Albrechts-Universität zu Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Jan-Wilm Lackmann
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Julia E. Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| |
Collapse
|
119
|
Abstract
Homologous Recombination (HR) is a high-fidelity process with a range of biologic functions from generation of genetic diversity to repair of DNA double-strand breaks (DSBs). In mammalian cells, BRCA2 facilitates the polymerization of RAD51 onto ssDNA to form a presynaptic nucleoprotein filament. This filament can then strand invade a homologous dsDNA to form the displacement loop (D-loop) structure leading to the eventual DSB repair. Here, we have found that RAD51 in stoichiometric excess over ssDNA can cause D-loop disassembly in vitro; furthermore, we show that this RAD51 activity is countered by BRCA2. These results demonstrate that BRCA2 may have a previously unexpected activity: regulation of HR at a post-synaptic stage by modulating RAD51-mediated D-loop dissociation. Our in vitro results suggest a mechanistic underpinning of homeostasis between RAD51 and BRCA2, which is an important factor of HR in mammalian cells.
Collapse
|
120
|
Waterman DP, Zhou F, Li K, Lee CS, Tsabar M, Eapen VV, Mazzella A, Haber JE. Live cell monitoring of double strand breaks in S. cerevisiae. PLoS Genet 2019; 15:e1008001. [PMID: 30822309 PMCID: PMC6415866 DOI: 10.1371/journal.pgen.1008001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/13/2019] [Accepted: 02/01/2019] [Indexed: 11/19/2022] Open
Abstract
We have used two different live-cell fluorescent protein markers to monitor the formation and localization of double-strand breaks (DSBs) in budding yeast. Using GFP derivatives of the Rad51 recombination protein or the Ddc2 checkpoint protein, we find that cells with three site-specific DSBs, on different chromosomes, usually display 2 or 3 foci that may coalesce and dissociate. This motion is independent of Rad52 and microtubules. Rad51-GFP, by itself, is unable to repair DSBs by homologous recombination in mitotic cells, but is able to form foci and allow repair when heterozygous with a wild type Rad51 protein. The kinetics of formation and disappearance of a Rad51-GFP focus parallels the completion of site-specific DSB repair. However, Rad51-GFP is proficient during meiosis when homozygous, similar to rad51 “site II” mutants that can bind single-stranded DNA but not complete strand exchange. Rad52-RFP and Rad51-GFP co-localize to the same DSB, but a significant minority of foci have Rad51-GFP without visible Rad52-RFP. We conclude that co-localization of foci in cells with 3 DSBs does not represent formation of a homologous recombination “repair center,” as the same distribution of Ddc2-GFP foci was found in the absence of the Rad52 protein. Double strand breaks (DSBs) pose the greatest threat to the fidelity of an organism’s genome. While much work has been done on the mechanisms of DSB repair, the arrangement and interaction of multiple DSBs within a single cell remain unclear. Using two live-cell fluorescent DSB markers, we show that cells with 3 site-specific DSBs usually form 2 or 3 foci that can may coalesce into fewer foci but also dissociate. The aggregation and mobility of DSBs into a single focus does not depend on the Rad52 recombination protein that is required for various mechanisms of homologous recombination, suggesting that merging of DSBs does not reflect formation of a homologous recombination repair center.
Collapse
Affiliation(s)
- David P. Waterman
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Felix Zhou
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Kevin Li
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Cheng-Sheng Lee
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Michael Tsabar
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Vinay V. Eapen
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Allison Mazzella
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - James E. Haber
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
121
|
Carrasco B, Serrano E, Martín-González A, Moreno-Herrero F, Alonso JC. Bacillus subtilis MutS Modulates RecA-Mediated DNA Strand Exchange Between Divergent DNA Sequences. Front Microbiol 2019; 10:237. [PMID: 30814990 PMCID: PMC6382021 DOI: 10.3389/fmicb.2019.00237] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/28/2019] [Indexed: 12/16/2022] Open
Abstract
The efficiency of horizontal gene transfer, which contributes to acquisition and spread of antibiotic resistance and pathogenicity traits, depends on nucleotide sequence and different mismatch-repair (MMR) proteins participate in this process. To study how MutL and MutS MMR proteins regulate recombination across species boundaries, we have studied natural chromosomal transformation with DNA up to ∼23% sequence divergence. We show that Bacillus subtilis natural chromosomal transformation decreased logarithmically with increased sequence divergence up to 15% in wild type (wt) cells or in cells lacking MutS2 or mismatch repair proteins (MutL, MutS or both). Beyond 15% sequence divergence, the chromosomal transformation efficiency is ∼100-fold higher in ΔmutS and ΔmutSL than in ΔmutS2 or wt cells. In the first phase of the biphasic curve (up to 15% sequence divergence), RecA-catalyzed DNA strand exchange contributes to the delineation of species, and in the second phase, homology-facilitated illegitimate recombination might aid in the restoration of inactivated genes. To understand how MutS modulates the integration process, we monitored DNA strand exchange reactions using a circular single-stranded DNA and a linear double-stranded DNA substrate with an internal 77-bp region with ∼16% or ∼54% sequence divergence in an otherwise homologous substrate. The former substrate delayed, whereas the latter halted RecA-mediated strand exchange. Interestingly, MutS addition overcame the heterologous barrier. We propose that MutS assists DNA strand exchange by facilitating RecA disassembly, and indirectly re-engagement with the homologous 5′-end of the linear duplex. Our data supports the idea that MutS modulates bidirectional RecA-mediated integration of divergent sequences and this is important for speciation.
Collapse
Affiliation(s)
- Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Alejandro Martín-González
- Department of Macromolecular Structures, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
122
|
Romero H, Rösch TC, Hernández-Tamayo R, Lucena D, Ayora S, Alonso JC, Graumann PL. Single molecule tracking reveals functions for RarA at replication forks but also independently from replication during DNA repair in Bacillus subtilis. Sci Rep 2019; 9:1997. [PMID: 30760776 PMCID: PMC6374455 DOI: 10.1038/s41598-018-38289-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022] Open
Abstract
RarA is a widely conserved protein proposed to be involved in recombination-dependent replication. We present a cell biological approach to identify functional connections between RarA and other proteins using single molecule tracking. We found that 50% of RarA molecules were static, mostly close to replication forks and likely DNA-bound, while the remaining fraction was highly dynamic throughout the cells. RarA alternated between static and dynamic states. Exposure to H2O2 increased the fraction of dynamic molecules, but not treatment with mitomycin C or with methyl methanesulfonate, which was exacerbated by the absence of RecJ, RecD2, RecS and RecU proteins. The ratio between static and dynamic RarA also changed in replication temperature-sensitive mutants, but in opposite manners, dependent upon inhibition of DnaB or of DnaC (pre)primosomal proteins, revealing an intricate function related to DNA replication restart. RarA likely acts in the context of collapsed replication forks, as well as in conjunction with a network of proteins that affect the activity of the RecA recombinase. Our novel approach reveals intricate interactions of RarA, and is widely applicable for in vivo protein studies, to underpin genetic or biochemical connections, and is especially helpful for investigating proteins whose absence does not lead to any detectable phenotype.
Collapse
Affiliation(s)
- Hector Romero
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Hans-Meerwein-Straße, Mehrzweckgebäude, 35043, Marburg, Germany
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
- Department Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin St., 28049, Cantoblanco, Madrid, Spain
| | - Thomas C Rösch
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Hans-Meerwein-Straße, Mehrzweckgebäude, 35043, Marburg, Germany
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Rogelio Hernández-Tamayo
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Hans-Meerwein-Straße, Mehrzweckgebäude, 35043, Marburg, Germany
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Daniella Lucena
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Hans-Meerwein-Straße, Mehrzweckgebäude, 35043, Marburg, Germany
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Silvia Ayora
- Department Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin St., 28049, Cantoblanco, Madrid, Spain
| | - Juan C Alonso
- Department Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin St., 28049, Cantoblanco, Madrid, Spain.
| | - Peter L Graumann
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Hans-Meerwein-Straße, Mehrzweckgebäude, 35043, Marburg, Germany.
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany.
| |
Collapse
|
123
|
Muenter MM, Aiken A, Akanji JO, Baig S, Bellou S, Carlson A, Conway C, Cowell CM, DeLateur NA, Hester A, Joshi C, Kramer C, Leifer BS, Nash E, Qi MH, Travers M, Wong KC, Hu M, Gou N, Giese RW, Gu AZ, Beuning PJ. The response of Escherichia coli to the alkylating agents chloroacetaldehyde and styrene oxide. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 840:1-10. [PMID: 30857727 DOI: 10.1016/j.mrgentox.2019.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
Abstract
DNA damage is ubiquitous and can arise from endogenous or exogenous sources. DNA-damaging alkylating agents are present in environmental toxicants as well as in cancer chemotherapy drugs and are a constant threat, which can lead to mutations or cell death. All organisms have multiple DNA repair and DNA damage tolerance pathways to resist the potentially negative effects of exposure to alkylating agents. In bacteria, many of the genes in these pathways are regulated as part of the SOS reponse or the adaptive response. In this work, we probed the cellular responses to the alkylating agents chloroacetaldehyde (CAA), which is a metabolite of 1,2-dichloroethane used to produce polyvinyl chloride, and styrene oxide (SO), a major metabolite of styrene used in the production of polystyrene and other polymers. Vinyl chloride and styrene are produced on an industrial scale of billions of kilograms annually and thus have a high potential for environmental exposure. To identify stress response genes in E. coli that are responsible for tolerance to the reactive metabolites CAA and SO, we used libraries of transcriptional reporters and gene deletion strains. In response to both alkylating agents, genes associated with several different stress pathways were upregulated, including protein, membrane, and oxidative stress, as well as DNA damage. E. coli strains lacking genes involved in base excision repair and nucleotide excision repair were sensitive to SO, whereas strains lacking recA and the SOS gene ybfE were sensitive to both alkylating agents tested. This work indicates the varied systems involved in cellular responses to alkylating agents, and highlights the specific DNA repair genes involved in the responses.
Collapse
Affiliation(s)
- Mark M Muenter
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Ariel Aiken
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Jadesola O Akanji
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Samir Baig
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Sirine Bellou
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Alyssa Carlson
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Charles Conway
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Courtney M Cowell
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Nicholas A DeLateur
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Alexis Hester
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Christopher Joshi
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Caitlin Kramer
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Becky S Leifer
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Emma Nash
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Macee H Qi
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Meghan Travers
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Kelly C Wong
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA
| | - Man Hu
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115 USA
| | - Na Gou
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115 USA; School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Roger W Giese
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115 USA
| | - April Z Gu
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115 USA; School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Penny J Beuning
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 USA.
| |
Collapse
|
124
|
Dynamic Processing of Displacement Loops during Recombinational DNA Repair. Mol Cell 2019; 73:1255-1266.e4. [PMID: 30737186 DOI: 10.1016/j.molcel.2019.01.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/08/2018] [Accepted: 01/03/2019] [Indexed: 12/22/2022]
Abstract
Displacement loops (D-loops) are pivotal intermediates of homologous recombination (HR), a universal DNA double strand break (DSB) repair pathway. We developed a versatile assay for the physical detection of D-loops in vivo, which enabled studying the kinetics of their formation and defining the activities controlling their metabolism. Nascent D-loops are detected within 2 h of DSB formation and extended in a delayed fashion in a genetic system designed to preclude downstream repair steps. The majority of nascent D-loops are disrupted by two pathways: one supported by the Srs2 helicase and the other by the Mph1 helicase and the Sgs1-Top3-Rmi1 helicase-topoisomerase complex. Both pathways operate without significant overlap and are delineated by the Rad54 paralog Rdh54 in an ATPase-independent fashion. This study uncovers a layer of quality control of HR relying on nascent D-loop dynamics.
Collapse
|
125
|
Marin-Gonzalez A, Vilhena JG, Moreno-Herrero F, Perez R. DNA Crookedness Regulates DNA Mechanical Properties at Short Length Scales. PHYSICAL REVIEW LETTERS 2019; 122:048102. [PMID: 30768347 DOI: 10.1103/physrevlett.122.048102] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Indexed: 05/13/2023]
Abstract
Sequence-dependent DNA conformation and flexibility play a fundamental role in the specificity of DNA-protein interactions. Here we quantify the DNA crookedness: a sequence-dependent deformation of DNA that consists of periodic bends of the base pair centers chain. Using extensive 100 μs-long, all-atom molecular dynamics simulations, we found that DNA crookedness and its associated flexibility are bijective, which unveils a one-to-one relation between DNA structure and dynamics. This allowed us to build a predictive model to compute the stretch moduli of different DNA sequences from solely their structure. Sequences with very little crookedness show extremely high stretching stiffness and have been previously shown to form unstable nucleosomes and promote gene expression. Interestingly, the crookedness can be tailored by epigenetic modifications, known to affect gene expression. Our results rationalize the idea that the DNA sequence is not only a chemical code, but also a physical one that allows finely regulating its mechanical properties and, possibly, its 3D arrangement inside the cell.
Collapse
Affiliation(s)
- Alberto Marin-Gonzalez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - J G Vilhena
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH 4056 Basel, Switzerland
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Cantoblanco, Madrid, Spain
| | - Ruben Perez
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
126
|
Piazza A, Heyer WD. Homologous Recombination and the Formation of Complex Genomic Rearrangements. Trends Cell Biol 2019; 29:135-149. [PMID: 30497856 PMCID: PMC6402879 DOI: 10.1016/j.tcb.2018.10.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022]
Abstract
The maintenance of genome integrity involves multiple independent DNA damage avoidance and repair mechanisms. However, the origin and pathways of the focal chromosomal reshuffling phenomena collectively referred to as chromothripsis remain mechanistically obscure. We discuss here the role, mechanisms, and regulation of homologous recombination (HR) in the formation of simple and complex chromosomal rearrangements. We emphasize features of the recently characterized multi-invasion (MI)-induced rearrangement (MIR) pathway which uniquely amplifies the initial DNA damage. HR intermediates and cellular contexts that endanger genomic stability are discussed as well as the emerging roles of various classes of nucleases in the formation of genome rearrangements. Long-read sequencing and improved mapping of repeats should enable better appreciation of the significance of recombination in generating genomic rearrangements.
Collapse
Affiliation(s)
- Aurèle Piazza
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; Spatial Regulation of Genomes, Department of Genomes and Genetics, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 3525, Institut Pasteur, 75015 Paris, France
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
127
|
Lee B, Hwang JS, Lee DG. Induction of apoptosis-like death by periplanetasin-2 in Escherichia coli and contribution of SOS genes. Appl Microbiol Biotechnol 2018; 103:1417-1427. [DOI: 10.1007/s00253-018-9561-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 02/06/2023]
|
128
|
Binet R, Pettengill EA, Hoffmann M, Hammack TS, Monday SR. Construction of stable fluorescent laboratory control strains for several food safety relevant Enterobacteriaceae. Food Microbiol 2018; 76:553-563. [DOI: 10.1016/j.fm.2017.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 02/06/2023]
|
129
|
Fukui K, Harada A, Wakamatsu T, Minobe A, Ohshita K, Ashiuchi M, Yano T. The GIY-YIG endonuclease domain of Arabidopsis MutS homolog 1 specifically binds to branched DNA structures. FEBS Lett 2018; 592:4066-4077. [PMID: 30372520 DOI: 10.1002/1873-3468.13279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 01/18/2023]
Abstract
In plant organelle genomes, homeologous recombination between heteroallelic positions of repetitive sequences is increased by dysfunction of the gene encoding MutS homolog 1 (MSH1), a plant organelle-specific homolog of bacterial mismatch-binding protein MutS1. The C-terminal region of plant MSH1 contains the GIY-YIG endonuclease motif. The biochemical characteristics of plant MSH1 have not been investigated; accordingly, the molecular mechanism by which plant MSH1 suppresses homeologous recombination is unknown. Here, we characterized the recombinant GIY-YIG domain of Arabidopsis thaliana MSH1, showing that the domain possesses branched DNA-specific DNA-binding activity. Interestingly, the domain exhibited no endonuclease activity, suggesting that the mismatch-binding domain is required for DNA incision. Based on these results, we propose a possible mechanism for MSH1-dependent suppression of homeologous recombination.
Collapse
Affiliation(s)
- Kenji Fukui
- Department of Biochemistry, Osaka Medical College, Takatsuki, Japan
| | - Akiko Harada
- Department of Biology, Osaka Medical College, Takatsuki, Japan
| | - Taisuke Wakamatsu
- Agricultural Science, Graduate School of Integrated Arts and Sciences, Kochi University, Nankoku, Japan
| | - Ai Minobe
- Agricultural Science, Graduate School of Integrated Arts and Sciences, Kochi University, Nankoku, Japan
| | - Koki Ohshita
- Agricultural Science, Graduate School of Integrated Arts and Sciences, Kochi University, Nankoku, Japan
| | - Makoto Ashiuchi
- Agricultural Science, Graduate School of Integrated Arts and Sciences, Kochi University, Nankoku, Japan
| | - Takato Yano
- Department of Biochemistry, Osaka Medical College, Takatsuki, Japan
| |
Collapse
|
130
|
Single molecule tracking reveals spatio-temporal dynamics of bacterial DNA repair centres. Sci Rep 2018; 8:16450. [PMID: 30401797 PMCID: PMC6219548 DOI: 10.1038/s41598-018-34572-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 10/22/2018] [Indexed: 11/16/2022] Open
Abstract
Single-particle (molecule) tracking (SPT/SMT) is a powerful method to study dynamic processes in living bacterial cells at high spatial and temporal resolution. We have performed single-molecule imaging of early DNA double-strand break (DSB) repair events during homologous recombination in the model bacterium Bacillus subtilis. Our findings reveal that DNA repair centres arise at all sites on the chromosome and that RecN, RecO and RecJ perform fast, enzyme-like functions during detection and procession of DNA double strand breaks, respectively. Interestingly, RecN changes its diffusion behavior upon induction of DNA damage, from a largely diffusive to a DNA-scanning mode, which increases efficiency of finding all sites of DNA breaks within a frame of few seconds. RecJ continues being bound to replication forks, but also assembles at many sites on the nucleoid upon DNA damage induction. RecO shows a similar change in its mobility as RecN, and also remains bound to sites of damage for few hundred milliseconds. Like RecN, it enters the nucleoid in damaged cells. Our data show that presynaptic preparation of DSBs including loading of RecA onto ssDNA is highly rapid and dynamic, and occurs throughout the chromosome, and not only at replication forks or only at distinct sites where many breaks are processes in analogy to eukaryotic DNA repair centres.
Collapse
|
131
|
Hasan AMM, Azeroglu B, Leach DRF. Genomic Analysis of DNA Double-Strand Break Repair in Escherichia coli. Methods Enzymol 2018; 612:523-554. [PMID: 30502957 DOI: 10.1016/bs.mie.2018.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Counting DNA whole genome sequencing reads is providing new insight into DNA double-strand break repair (DSBR) in the model organism Escherichia coli. We describe the application of RecA chromatin immunoprecipitation coupled to genomic DNA sequencing (RecA-ChIP-seq) and marker frequency analysis (MFA) to analyze the genomic consequences of DSBR. We provide detailed procedures for the preparation of DNA and the analysis of data. We compare different ways of visualizing ChIP data and show that alternative protocols for the preparation of DNA for MFA differentially affect the recovery of branched DNA molecules containing Holliday junctions.
Collapse
Affiliation(s)
- A M Mahedi Hasan
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, United Kingdom
| | - Benura Azeroglu
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, United Kingdom
| | - David R F Leach
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, United Kingdom.
| |
Collapse
|
132
|
Manikandan K, Prasad D, Srivastava A, Singh N, Dabeer S, Krishnan A, Muniyappa K, Sinha KM. The second messenger cyclic di-AMP negatively regulates the expression of Mycobacterium smegmatis recA and attenuates DNA strand exchange through binding to the C-terminal motif of mycobacterial RecA proteins. Mol Microbiol 2018; 109:600-614. [PMID: 29873124 DOI: 10.1111/mmi.13991] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2018] [Indexed: 12/26/2022]
Abstract
Cyclic di-GMP and cyclic di-AMP are second messengers produced by a wide variety of bacteria. They influence bacterial cell survival, biofilm formation, virulence and bacteria-host interactions. However, many of their cellular targets and biological effects are yet to be determined. A chemical proteomics approach revealed that Mycobacterium smegmatis RecA (MsRecA) possesses a high-affinity cyclic di-AMP binding activity. We further demonstrate that both cyclic di-AMP and cyclic di-GMP bind specifically to the C-terminal motif of MsRecA and Mycobacterium tuberculosis RecA (MtRecA). Escherichia coli RecA (EcRecA) was devoid of cyclic di-AMP binding but have cyclic di-GMP binding activity. Notably, cyclic di-AMP attenuates the DNA strand exchange promoted by MsRecA as well as MtRecA through the disassembly of RecA nucleoprotein filaments. However, the structure and DNA strand exchange activity of EcRecA nucleoprotein filaments remain largely unaffected. Furthermore, M. smegmatis ΔdisA cells were found to have undetectable RecA levels due to the translational repression of recA mRNA. Consequently, the ΔdisA mutant exhibited enhanced sensitivity to DNA-damaging agents. Altogether, this study points out the importance of sequence diversity among recA genes, the role(s) of cyclic di-AMP and reveals a new mode of negative regulation of recA gene expression, DNA repair and homologous recombination in mycobacteria.
Collapse
Affiliation(s)
- Kasi Manikandan
- Institute of Molecular Medicine, 254 Okhla Industrial Estate, Phase 3, New Delh, India
| | - Deepika Prasad
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Ankita Srivastava
- Institute of Molecular Medicine, 254 Okhla Industrial Estate, Phase 3, New Delh, India
| | - Nirpendra Singh
- Central Instrument Facility, University of Delhi South Campus, New Delhi, India
| | - Sadaf Dabeer
- Institute of Molecular Medicine, 254 Okhla Industrial Estate, Phase 3, New Delh, India
| | - Anuja Krishnan
- Institute of Molecular Medicine, 254 Okhla Industrial Estate, Phase 3, New Delh, India
| | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Krishna Murari Sinha
- Institute of Molecular Medicine, 254 Okhla Industrial Estate, Phase 3, New Delh, India
| |
Collapse
|
133
|
Wipperman MF, Heaton BE, Nautiyal A, Adefisayo O, Evans H, Gupta R, van Ditmarsch D, Soni R, Hendrickson R, Johnson J, Krogan N, Glickman MS. Mycobacterial Mutagenesis and Drug Resistance Are Controlled by Phosphorylation- and Cardiolipin-Mediated Inhibition of the RecA Coprotease. Mol Cell 2018; 72:152-161.e7. [PMID: 30174294 DOI: 10.1016/j.molcel.2018.07.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/30/2018] [Accepted: 07/25/2018] [Indexed: 11/19/2022]
Abstract
Infection with Mycobacterium tuberculosis continues to cause substantial human mortality, in part because of the emergence of antimicrobial resistance. Antimicrobial resistance in tuberculosis is solely the result of chromosomal mutations that modify drug activators or targets, yet the mechanisms controlling the mycobacterial DNA-damage response (DDR) remain incompletely defined. Here, we identify RecA serine 207 as a multifunctional signaling hub that controls the DDR in mycobacteria. RecA S207 is phosphorylated after DNA damage, which suppresses the emergence of antibiotic resistance by selectively inhibiting the LexA coprotease function of RecA without affecting its ATPase or strand exchange functions. Additionally, RecA associates with the cytoplasmic membrane during the mycobacterial DDR, where cardiolipin can specifically inhibit the LexA coprotease function of unmodified, but not S207 phosphorylated, RecA. These findings reveal that RecA S207 controls mutagenesis and antibiotic resistance in mycobacteria through phosphorylation and cardiolipin-mediated inhibition of RecA coprotease function.
Collapse
Affiliation(s)
- Matthew F Wipperman
- Immunology Program, Sloan Kettering Institute, New York, NY, USA; Clinical & Translational Science Center, Weill Cornell Medicine, New York, NY, USA
| | - Brook E Heaton
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Astha Nautiyal
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Oyindamola Adefisayo
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, New York, NY, USA
| | - Henry Evans
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Richa Gupta
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | | | - Rajesh Soni
- Microchemistry and Proteomics Core, MSKCC, New York, NY, USA
| | - Ron Hendrickson
- Microchemistry and Proteomics Core, MSKCC, New York, NY, USA
| | - Jeff Johnson
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
| | - Nevan Krogan
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
| | - Michael S Glickman
- Immunology Program, Sloan Kettering Institute, New York, NY, USA; Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA; Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, New York, NY, USA.
| |
Collapse
|
134
|
Resistance to UV Irradiation Caused by Inactivation of nurA and herA Genes in Thermus thermophilus. J Bacteriol 2018; 200:JB.00201-18. [PMID: 29844033 DOI: 10.1128/jb.00201-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/23/2018] [Indexed: 11/20/2022] Open
Abstract
NurA and HerA are thought to be essential proteins for DNA end resection in archaeal homologous recombination systems. Thermus thermophilus, an extremely thermophilic eubacterium, has proteins that exhibit significant sequence similarity to archaeal NurA and HerA. To unveil the cellular function of NurA and HerA in T. thermophilus, we performed phenotypic analysis of disruptant mutants of nurA and herA with or without DNA-damaging agents. The nurA and herA genes were not essential for survival, and their deletion had no effect on cell growth and genome integrity. Unexpectedly, these disruptants of T. thermophilus showed increased resistance to UV irradiation and mitomycin C treatment. Further, these disruptants and the wild type displayed no difference in sensitivity to oxidative stress and a DNA replication inhibitor. T. thermophilus NurA had nuclease activity, and HerA had ATPase. The overexpression of loss-of-function mutants of nurA and herA in the respective disruptants showed no complementation, suggesting their enzymatic activities were involved in the UV sensitivity. In addition, T. thermophilus NurA and HerA interacted with each other in vitro and in vivo, forming a complex with 2:6 stoichiometry. These results suggest that the NurA-HerA complex has an architecture similar to that of archaeal counterparts but that it impairs, rather than promotes, the repair of photoproducts and DNA cross-links in T. thermophilus cells. This cellular function is distinctly different from that of archaeal NurA and HerA.IMPORTANCE Many nucleases and helicases are engaged in homologous recombination-mediated DNA repair. Previous in vitro analyses in archaea indicated that NurA and HerA are the recombination-related nuclease and helicase. However, their cellular function had not been fully understood, especially in bacterial cells. In this study, we performed in vivo analyses to address the cellular function of nurA and herA in an extremely thermophilic bacterium, Thermus thermophilus As a result, T. thermophilus NurA and HerA exhibited an interfering effect on the repair of several instances of DNA damage in the cell, which is in contrast to the results in archaea. This finding will facilitate our understanding of the diverse cellular functions of the recombination-related nucleases and helicases.
Collapse
|
135
|
Serrano E, Carrasco B, Gilmore JL, Takeyasu K, Alonso JC. RecA Regulation by RecU and DprA During Bacillus subtilis Natural Plasmid Transformation. Front Microbiol 2018; 9:1514. [PMID: 30050509 PMCID: PMC6050356 DOI: 10.3389/fmicb.2018.01514] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/18/2018] [Indexed: 01/19/2023] Open
Abstract
Natural plasmid transformation plays an important role in the dissemination of antibiotic resistance genes in bacteria. During this process, Bacillus subtilis RecA physically interacts with RecU, RecX, and DprA. These three proteins are required for plasmid transformation, but RecA is not. In vitro, DprA recruits RecA onto SsbA-coated single-stranded (ss) DNA, whereas RecX inhibits RecA filament formation, leading to net filament disassembly. We show that a null recA (ΔrecA) mutation suppresses the plasmid transformation defect of competent ΔrecU cells, and that RecU is essential for both chromosomal and plasmid transformation in the ΔrecX context. RecU inhibits RecA filament growth and facilitates RecA disassembly from preformed filaments. Increasing SsbA concentrations additively contributes to RecU-mediated inhibition of RecA filament extension. DprA is necessary and sufficient to counteract the negative effect of both RecU and SsbA on RecA filament growth onto ssDNA. DprA-SsbA activates RecA to catalyze DNA strand exchange in the presence of RecU, but this effect was not observed if RecU was added prior to RecA. We propose that DprA contributes to RecA filament growth onto any internalized SsbA-coated ssDNA. When the ssDNA is homologous to the recipient, DprA antagonizes the inhibitory effect of RecU on RecA filament growth and helps RecA to catalyze chromosomal transformation. On the contrary, RecU promotes RecA filament disassembly from a heterologous (plasmid) ssDNA, overcoming an unsuccessful homology search and favoring plasmid transformation. The DprA–DprA interaction may promote strand annealing upon binding to the complementary plasmid strands and facilitating thereby plasmid transformation rather than through a mediation of RecA filament growth.
Collapse
Affiliation(s)
- Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jamie L Gilmore
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kunio Takeyasu
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
136
|
Ohmine Y, Kiyokawa K, Yunoki K, Yamamoto S, Moriguchi K, Suzuki K. Successful Transfer of a Model T-DNA Plasmid to E. coli Revealed Its Dependence on Recipient RecA and the Preference of VirD2 Relaxase for Eukaryotes Rather Than Bacteria as Recipients. Front Microbiol 2018; 9:895. [PMID: 29892270 PMCID: PMC5985610 DOI: 10.3389/fmicb.2018.00895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/18/2018] [Indexed: 11/13/2022] Open
Abstract
In Agrobacterium-mediated transformation (AMT) of plants, a single-strand (ss) T-DNA covalently linked with a VirD2 protein moves through a bacterial type IV secretion channel called VirB/D4. This transport system originates from conjugal plasmid transfer systems of bacteria. The relaxase VirD2 and its equivalent protein Mob play essential roles in T-DNA transfer and mobilizable plasmid transfer, respectively. In this study, we attempted to transfer a model T-DNA plasmid, which contained no left border but had a right border sequence as an origin of transfer, and a mobilizable plasmid through the VirB/D4 apparatus to Escherichia coli, Agrobacterium and yeast to compare VirD2-driven transfer with Mob-driven one. AMT was successfully achieved by both types of transfer to the three recipient organisms. VirD2-driven AMT of the two bacteria was less efficient than Mob-driven AMT. In contrast, AMT of yeast guided by VirD2 was more efficient than that by Mob. Plasmid DNAs recovered from the VirD2-driven AMT colonies showed the original plasmid structure. These data indicate that VirD2 retains most of its important functions in recipient bacterial cells, but has largely adapted to eukaryotes rather than bacteria. The high AMT efficiency of yeast suggests that VirD2 can also efficiently bring ssDNA to recipient bacterial cells but is inferior to Mob in some process leading to the formation of double-stranded circular DNA in bacteria. This study also revealed that the recipient recA gene was significantly involved in VirD2-dependent AMT, but only partially involved in Mob-dependent AMT. The apparent difference in the recA gene requirement between the two types of AMT suggests that VirD2 is worse at re-circularization to complete complementary DNA synthesis than Mob in bacteria.
Collapse
Affiliation(s)
- Yuta Ohmine
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Kazuya Kiyokawa
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Kazuya Yunoki
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Shinji Yamamoto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Kazuki Moriguchi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Katsunori Suzuki
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
137
|
Abstract
Most everyday processes in life involve a necessity for an entity to locate its target. On a cellular level, many proteins have to find their target to perform their function. From gene-expression regulation to DNA repair to host defense, numerous nucleic acid-interacting proteins use distinct target search mechanisms. Several proteins achieve that with the help of short RNA strands known as guides. This review focuses on single-molecule advances studying the target search and recognition mechanism of Argonaute and CRISPR (clustered regularly interspaced short palindromic repeats) systems. We discuss different steps involved in search and recognition, from the initial complex prearrangement into the target-search competent state to the final proofreading steps. We focus on target search mechanisms that range from weak interactions, to one- and three-dimensional diffusion, to conformational proofreading. We compare the mechanisms of Argonaute and CRISPR with a well-studied target search system, RecA.
Collapse
Affiliation(s)
- Viktorija Globyte
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands; , ,
| | - Sung Hyun Kim
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands; , ,
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chirlmin Joo
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands; , ,
| |
Collapse
|
138
|
Braslavsky I, Stavans J. Application of Algebraic Topology to Homologous Recombination of DNA. iScience 2018; 4:64-67. [PMID: 30240753 PMCID: PMC6146625 DOI: 10.1016/j.isci.2018.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/30/2018] [Accepted: 05/11/2018] [Indexed: 11/23/2022] Open
Abstract
Brouwer's fixed point theorem, a fundamental theorem in algebraic topology proved more than a hundred years ago, states that given any continuous map from a closed, simply connected set into itself, there is a point that is mapped unto itself. Here we point out the connection between a one-dimensional application of Brouwer's fixed point theorem and a mechanism proposed to explain how extension of single-stranded DNA substrates by recombinases of the RecA superfamily facilitates significantly the search for homologous sequences on long chromosomes. RecA family recombinases stretch their DNA substrates by 1.5 Stretching facilitates the search for homologous genomic targets during recombination This facilitating mechanism derives from a foundational theorem of Algebraic Topology
Collapse
Affiliation(s)
- Ido Braslavsky
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel.
| | - Joel Stavans
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
139
|
Abstract
The repair of chromosomal double-strand breaks (DSBs) by homologous recombination is essential to maintain genome integrity. The key step in DSB repair is the RecA/Rad51-mediated process to match sequences at the broken end to homologous donor sequences that can be used as a template to repair the lesion. Here, in reviewing research about DSB repair, I consider the many factors that appear to play important roles in the successful search for homology by several homologous recombination mechanisms. See also the video abstract here: https://youtu.be/vm7-X5uIzS8.
Collapse
Affiliation(s)
- James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| |
Collapse
|
140
|
Hutinet G, Besle A, Son O, McGovern S, Guerois R, Petit MA, Ochsenbein F, Lecointe F. Sak4 of Phage HK620 Is a RecA Remote Homolog With Single-Strand Annealing Activity Stimulated by Its Cognate SSB Protein. Front Microbiol 2018; 9:743. [PMID: 29740405 PMCID: PMC5928155 DOI: 10.3389/fmicb.2018.00743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/29/2018] [Indexed: 12/19/2022] Open
Abstract
Bacteriophages are remarkable for the wide diversity of proteins they encode to perform DNA replication and homologous recombination. Looking back at these ancestral forms of life may help understanding how similar proteins work in more sophisticated organisms. For instance, the Sak4 family is composed of proteins similar to the archaeal RadB protein, a Rad51 paralog. We have previously shown that Sak4 allowed single-strand annealing in vivo, but only weakly compared to the phage λ Redβ protein, highlighting putatively that Sak4 requires partners to be efficient. Here, we report that the purified Sak4 of phage HK620 infecting Escherichia coli is a poorly efficient annealase on its own. A distant homolog of SSB, which gene is usually next to the sak4 gene in various species of phages, highly stimulates its recombineering activity in vivo. In vitro, Sak4 binds single-stranded DNA and performs single-strand annealing in an ATP-dependent way. Remarkably, the single-strand annealing activity of Sak4 is stimulated by its cognate SSB. The last six C-terminal amino acids of this SSB are essential for the binding of Sak4 to SSB-covered single-stranded DNA, as well as for the stimulation of its annealase activity. Finally, expression of sak4 and ssb from HK620 can promote low-level of recombination in vivo, though Sak4 and its SSB are unable to promote strand exchange in vitro. Regarding its homology with RecA, Sak4 could represent a link between two previously distinct types of recombinases, i.e., annealases that help strand exchange proteins and strand exchange proteins themselves.
Collapse
Affiliation(s)
- Geoffrey Hutinet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Arthur Besle
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Olivier Son
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Stephen McGovern
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Raphaël Guerois
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marie-Agnès Petit
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Françoise Ochsenbein
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - François Lecointe
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
141
|
Hernandez AJ, Richardson CC. Gp2.5, the multifunctional bacteriophage T7 single-stranded DNA binding protein. Semin Cell Dev Biol 2018; 86:92-101. [PMID: 29588157 DOI: 10.1016/j.semcdb.2018.03.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/29/2018] [Accepted: 03/23/2018] [Indexed: 12/11/2022]
Abstract
The essential bacteriophage T7-encoded single-stranded DNA binding protein is the nexus of T7 DNA metabolism. Multiple layers of macromolecular interactions mediate its function in replication, recombination, repair, and the maturation of viral genomes. In addition to binding ssDNA, the protein binds to DNA polymerase and DNA helicase, regulating their activities. The protein displays potent homologous DNA annealing activity, underscoring its role in recombination.
Collapse
Affiliation(s)
- Alfredo J Hernandez
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Charles C Richardson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
142
|
Ledbetter MP, Karadeema RJ, Romesberg FE. Reprograming the Replisome of a Semisynthetic Organism for the Expansion of the Genetic Alphabet. J Am Chem Soc 2018; 140:758-765. [PMID: 29309130 DOI: 10.1021/jacs.7b11488] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Semisynthetic organisms (SSOs) created from Escherichia coli can replicate a plasmid containing an unnatural base pair (UBP) formed between the synthetic nucleosides dNaM and dTPT3 (dNaM-dTPT3) when the corresponding unnatural triphosphates are imported via expression of a nucleoside triphosphate transporter. The UBP can also be transcribed and used to translate proteins containing unnatural amino acids. However, UBPs are not well retained in all sequences, limiting the information that can be encoded, and are invariably lost upon extended growth. Here we explore the contributions of the E. coli DNA replication and repair machinery to the propagation of DNA containing dNaM-dTPT3 and show that replication by DNA polymerase III, supplemented with the activity of polymerase II and methyl-directed mismatch repair contribute to retention of the UBP and that recombinational repair of stalled forks is responsible for the majority of its loss. This work elucidates fundamental aspects of how bacteria replicate DNA and we use this information to reprogram the replisome of the SSO for increased UBP retention, which then allowed for the first time the construction of SSOs harboring a UBP in their chromosome.
Collapse
Affiliation(s)
- Michael P Ledbetter
- Department of Chemistry, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Rebekah J Karadeema
- Department of Chemistry, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute , La Jolla, California 92037, United States
| |
Collapse
|
143
|
Abstract
Genetic recombination occurs in all organisms and is vital for genome stability. Indeed, in humans, aberrant recombination can lead to diseases such as cancer. Our understanding of homologous recombination is built upon more than a century of scientific inquiry, but achieving a more complete picture using ensemble biochemical and genetic approaches is hampered by population heterogeneity and transient recombination intermediates. Recent advances in single-molecule and super-resolution microscopy methods help to overcome these limitations and have led to new and refined insights into recombination mechanisms, including a detailed understanding of DNA helicase function and synaptonemal complex structure. The ability to view cellular processes at single-molecule resolution promises to transform our understanding of recombination and related processes.
Collapse
|
144
|
For the greater good: Programmed cell death in bacterial communities. Microbiol Res 2017; 207:161-169. [PMID: 29458850 DOI: 10.1016/j.micres.2017.11.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022]
Abstract
For a long a time programmed cell death was thought to be a unique characteristic of higher eukaryotes, but evidence has accumulated showing that programmed cell death is a universal phenomenon in all life forms. Many different types of bacterial programmed cell death systems have been identified, rivalling the eukaryotic systems in diversity. Bacteria are singular, seemingly independently living organisms, however they are part of complex communities. Being part of a community seems indispensable for survival in different environments. This review is focussed on the mechanism of and reasons for bacterial programmed cell death in the context of bacterial communities.
Collapse
|
145
|
Le S, Serrano E, Kawamura R, Carrasco B, Yan J, Alonso JC. Bacillus subtilis RecA with DprA-SsbA antagonizes RecX function during natural transformation. Nucleic Acids Res 2017; 45:8873-8885. [PMID: 28911099 PMCID: PMC5587729 DOI: 10.1093/nar/gkx583] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/29/2017] [Indexed: 01/07/2023] Open
Abstract
Bacillus subtilis DprA and RecX proteins, which interact with RecA, are crucial for efficient chromosomal and plasmid transformation. We showed that RecA, in the rATP·Mg2+ bound form (RecA·ATP), could not compete with RecX, SsbA or SsbB for assembly onto single-stranded (ss)DNA, but RecA·dATP partially displaced these proteins from ssDNA. RecX promoted reversible depolymerization of preformed RecA·ATP filaments. The two-component DprA–SsbA mediator reversed the RecX negative effect on RecA filament extension, but not DprA or DprA and SsbB. In the presence of DprA–SsbA, RecX added prior to RecA·ATP inhibited DNA strand exchange, but this inhibition was reversed when RecX was added after RecA. We propose that RecA nucleation is more sensitive to RecX action than is RecA filament growth. DprA–SsbA facilitates formation of an active RecA filament that directly antagonizes the inhibitory effects of RecX. RecX and DprA enable chromosomal transformation by altering RecA filament dynamics. DprA–SsbA and RecX proteins constitute a new regulatory network of RecA function. DprA–SsbA contributes to the formation of an active RecA filament and directly antagonizes the inhibitory effects of RecX during natural transformation.
Collapse
Affiliation(s)
- Shimin Le
- Department of Physics, National University of Singapore, 117551, Singapore.,Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Ryo Kawamura
- Department of Physics, National University of Singapore, 117551, Singapore.,Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Jie Yan
- Department of Physics, National University of Singapore, 117551, Singapore.,Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
146
|
Piazza A, Wright WD, Heyer WD. Multi-invasions Are Recombination Byproducts that Induce Chromosomal Rearrangements. Cell 2017; 170:760-773.e15. [PMID: 28781165 PMCID: PMC5554464 DOI: 10.1016/j.cell.2017.06.052] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/02/2017] [Accepted: 06/30/2017] [Indexed: 11/18/2022]
Abstract
Inaccurate repair of broken chromosomes generates structural variants that can fuel evolution and inflict pathology. We describe a novel rearrangement mechanism in which translocation between intact chromosomes is induced by a lesion on a third chromosome. This multi-invasion-induced rearrangement (MIR) stems from a homologous recombination byproduct, where a broken DNA end simultaneously invades two intact donors. No homology is required between the donors, and the intervening sequence from the invading molecule is inserted at the translocation site. MIR is stimulated by increasing homology length and spatial proximity of the donors and depends on the overlapping activities of the structure-selective endonucleases Mus81-Mms4, Slx1-Slx4, and Yen1. Conversely, the 3'-flap nuclease Rad1-Rad10 and enzymes known to disrupt recombination intermediates (Sgs1-Top3-Rmi1, Srs2, and Mph1) inhibit MIR. Resolution of MIR intermediates propagates secondary chromosome breaks that frequently cause additional rearrangements. MIR features have implications for the formation of simple and complex rearrangements underlying human pathologies.
Collapse
Affiliation(s)
- Aurèle Piazza
- Department of Microbiology and Molecular Genetics, One Shields Avenue, University of California, Davis, Davis, CA 95616, USA
| | - William Douglass Wright
- Department of Microbiology and Molecular Genetics, One Shields Avenue, University of California, Davis, Davis, CA 95616, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, One Shields Avenue, University of California, Davis, Davis, CA 95616, USA; Department of Molecular and Cellular Biology, One Shields Avenue, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
147
|
Bellio P, Di Pietro L, Mancini A, Piovano M, Nicoletti M, Brisdelli F, Tondi D, Cendron L, Franceschini N, Amicosante G, Perilli M, Celenza G. SOS response in bacteria: Inhibitory activity of lichen secondary metabolites against Escherichia coli RecA protein. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 29:11-18. [PMID: 28515022 DOI: 10.1016/j.phymed.2017.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/08/2017] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND RecA is a bacterial multifunctional protein essential to genetic recombination, error-prone replicative bypass of DNA damages and regulation of SOS response. The activation of bacterial SOS response is directly related to the development of intrinsic and/or acquired resistance to antimicrobials. Although recent studies directed towards RecA inactivation via ATP binding inhibition described a variety of micromolar affinity ligands, inhibitors of the DNA binding site are still unknown. PURPOSE Twenty-seven secondary metabolites classified as anthraquinones, depsides, depsidones, dibenzofurans, diphenyl-butenolides, paraconic acids, pseudo-depsidones, triterpenes and xanthones, were investigated for their ability to inhibit RecA from Escherichia coli. They were isolated in various Chilean regions from 14 families and 19 genera of lichens. METHODS The ATP hydrolytic activity of RecA was quantified detecting the generation of free phosphate in solution. The percentage of inhibition was calculated fixing at 100µM the concentration of the compounds. Deeper investigations were reserved to those compounds showing an inhibition higher than 80%. To clarify the mechanism of inhibition, the semi-log plot of the percentage of inhibition vs. ATP and vs. ssDNA, was evaluated. RESULTS Only nine compounds showed a percentage of RecA inhibition higher than 80% (divaricatic, perlatolic, alpha-collatolic, lobaric, lichesterinic, protolichesterinic, epiphorellic acids, sphaerophorin and tumidulin). The half-inhibitory concentrations (IC50) calculated for these compounds were ranging from 14.2µM for protolichesterinic acid to 42.6µM for sphaerophorin. Investigations on the mechanism of inhibition showed that all compounds behaved as uncompetitive inhibitors for ATP binding site, with the exception of epiphorellic acid which clearly acted as non-competitive inhibitor of the ATP site. Further investigations demonstrated that epiphorellic acid competitively binds the ssDNA binding site. Kinetic data were confirmed by molecular modelling binding predictions which shows that epiphorellic acid is expected to bind the ssDNA site into the L2 loop of RecA protein. CONCLUSION In this paper the first RecA ssDNA binding site ligand is described. Our study sets epiphorellic acid as a promising hit for the development of more effective RecA inhibitors. In our drug discovery approach, natural products in general and lichen in particular, represent a successful source of active ligands and structural diversity.
Collapse
Affiliation(s)
- Pierangelo Bellio
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Letizia Di Pietro
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Alisia Mancini
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Marisa Piovano
- Department of Chemistry, Universidad Técnica Federico Santa María, Casilla 110 V, Valparaíso, 6, Chile
| | - Marcello Nicoletti
- Department of Environmental Biology, University Sapienza, P.le A. Moro, 00185, Rome, Italy
| | - Fabrizia Brisdelli
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Donatella Tondi
- Department of Life Sciences, University of Modena e Reggio Emilia, Via Campi 103, 41100, Modena, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131, Padova, Italy
| | - Nicola Franceschini
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Gianfranco Amicosante
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Mariagrazia Perilli
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy
| | - Giuseppe Celenza
- Department of Biotechnological and Applied Clinical Sciences, University of l'Aquila, Via Vetoio, 1, 67100 l'Aquila, Italy.
| |
Collapse
|
148
|
Korolev S. Advances in structural studies of recombination mediator proteins. Biophys Chem 2017; 225:27-37. [PMID: 27974172 DOI: 10.1016/j.bpc.2016.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 12/25/2022]
Abstract
Recombination mediator proteins (RMPs) are critical for genome integrity in all organisms. They include phage UvsY, prokaryotic RecF, -O, -R (RecFOR) and eukaryotic Rad52, Breast Cancer susceptibility 2 (BRCA2) and Partner and localizer of BRCA2 (PALB2) proteins. BRCA2 and PALB2 are tumor suppressors implicated in cancer. RMPs regulate binding of RecA-like recombinases to sites of DNA damage to initiate the most efficient non-mutagenic repair of broken chromosome and other deleterious DNA lesions. Mechanistically, RMPs stimulate a single-stranded DNA (ssDNA) hand-off from ssDNA binding proteins (ssbs) such as gp32, SSB and RPA, to recombinases, activating DNA repair only at the time and site of the damage event. This review summarizes structural studies of RMPs and their implications for understanding mechanism and function. Comparative analysis of RMPs is complicated due to their convergent evolution. In contrast to the evolutionary conserved ssbs and recombinases, RMPs are extremely diverse in sequence and structure. Structural studies are particularly important in such cases to reveal common features of the entire family and specific features of regulatory mechanisms for each member. All RMPs are characterized by specific DNA-binding domains and include variable protein interaction motifs. The complexity of such RMPs corresponds to the ever-growing number of DNA metabolism events they participate in under normal and pathological conditions and requires additional comprehensive structure-functional studies.
Collapse
Affiliation(s)
- S Korolev
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd., St. Louis, MO 63104, USA.
| |
Collapse
|
149
|
Bacterial RadA is a DnaB-type helicase interacting with RecA to promote bidirectional D-loop extension. Nat Commun 2017; 8:15638. [PMID: 28561029 PMCID: PMC5512693 DOI: 10.1038/ncomms15638] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/11/2017] [Indexed: 12/19/2022] Open
Abstract
Homologous recombination (HR) is a central process of genome biology driven by a conserved recombinase, which catalyses the pairing of single-stranded DNA (ssDNA) with double-stranded DNA to generate a D-loop intermediate. Bacterial RadA is a conserved HR effector acting with RecA recombinase to promote ssDNA integration. The mechanism of this RadA-mediated assistance to RecA is unknown. Here, we report functional and structural analyses of RadA from the human pathogen Streptococcus pneumoniae. RadA is found to facilitate RecA-driven ssDNA recombination over long genomic distances during natural transformation. RadA is revealed as a hexameric DnaB-type helicase, which interacts with RecA to promote orientated unwinding of branched DNA molecules mimicking D-loop boundaries. These findings support a model of DNA branch migration in HR, relying on RecA-mediated loading of RadA hexamers on each strand of the recipient dsDNA in the D-loop, from which they migrate divergently to facilitate incorporation of invading ssDNA. Bacterial homologous recombination involves the actions of RadA and RecA to promote single-stranded DNA integration. Here the authors report the structure of RadA from Streptococcus pneumoniae and demonstrate that it acts as a hexameric DnaB-type helicase.
Collapse
|
150
|
Inoue M, Fukui K, Fujii Y, Nakagawa N, Yano T, Kuramitsu S, Masui R. The Lon protease-like domain in the bacterial RecA paralog RadA is required for DNA binding and repair. J Biol Chem 2017; 292:9801-9814. [PMID: 28432121 DOI: 10.1074/jbc.m116.770180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/16/2017] [Indexed: 11/06/2022] Open
Abstract
Homologous recombination (HR) plays an essential role in the maintenance of genome integrity. RecA/Rad51 paralogs have been recognized as an important factor of HR. Among them, only one bacterial RecA/Rad51 paralog, RadA, is involved in HR as an accessory factor of RecA recombinase. RadA has a unique Lon protease-like domain (LonC) at its C terminus, in addition to a RecA-like ATPase domain. Unlike Lon protease, RadA's LonC domain does not show protease activity but is still essential for RadA-mediated DNA repair. Reconciling these two facts has been difficult because RadA's tertiary structure and molecular function are unknown. Here, we describe the hexameric ring structure of RadA's LonC domain, as determined by X-ray crystallography. The structure revealed the two positively charged regions unique to the LonC domain of RadA are located at the intersubunit cleft and the central hole of a hexameric ring. Surprisingly, a functional domain analysis demonstrated the LonC domain of RadA binds DNA, with site-directed mutagenesis showing that the two positively charged regions are critical for this DNA-binding activity. Interestingly, only the intersubunit cleft was required for the DNA-dependent stimulation of ATPase activity of RadA, and at least the central hole was essential for DNA repair function. Our data provide the structural and functional features of the LonC domain and their function in RadA-mediated DNA repair.
Collapse
Affiliation(s)
- Masao Inoue
- From the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043
| | - Kenji Fukui
- the Department of Biochemistry, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686
| | - Yuki Fujii
- the Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, and
| | - Noriko Nakagawa
- From the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043
| | - Takato Yano
- the Department of Biochemistry, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686
| | - Seiki Kuramitsu
- From the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043
| | - Ryoji Masui
- the Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|