101
|
Kawamoto M, Horibe T, Kohno M, Kawakami K. HER2-targeted hybrid peptide that blocks HER2 tyrosine kinase disintegrates cancer cell membrane and inhibits tumor growth in vivo. Mol Cancer Ther 2013; 12:384-93. [PMID: 23358664 DOI: 10.1158/1535-7163.mct-12-0357] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
HER2 is a transmembrane oncoprotein encoded by the HER2/neu gene and is overexpressed in approximately 20% to 30% of breast cancers. We have recently designed a novel class of drug, the hybrid peptide, which is chemically synthesized and is composed of a target-binding peptide and a lytic peptide containing cationic-rich amino acid components that disintegrate the cell membrane, leading to cancer cell death via membrane lysis. In this study, we designed a HER2-binding peptide linked to this novel lytic peptide, which we termed the HER2-lytic hybrid peptide and assessed the cytotoxic activity of this hybrid peptide in vitro and in vivo. The HER2-lytic hybrid peptide showed high cytotoxic activity against all ovarian and breast cancer cell lines, even trastuzumab- and/or lapatinib-resistant cells, but not against normal cells. Competition assays using anti-HER2 antibody and knockdown of this receptor by siRNA confirmed the specificity of the HER2-lytic hybrid peptide. In addition, it was shown that the HER2-lytic hybrid peptide can disintegrate the cancer cell membrane of HER2-overexpressing SK-BR-3 cancer cells in only 5 minutes, but not normal cells, and block HER2 signaling. Intravenous administration of the HER2-lytic peptide in the athymic mouse implanted with BT-474 and MDA-MB-453 cells significantly inhibited tumor progression. The HER2-lytic hybrid peptide was effective even in breast cancer cell lines that are resistant to trastuzumab and/or lapatinib in vitro and in vivo. Therefore, this hybrid peptide may provide a potent treatment option for patients with cancer.
Collapse
Affiliation(s)
- Megumi Kawamoto
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
102
|
Kawamoto M, Kohno M, Horibe T, Kawakami K. Immunogenicity and toxicity of transferrin receptor-targeted hybrid peptide as a potent anticancer agent. Cancer Chemother Pharmacol 2013; 71:799-807. [PMID: 23328867 DOI: 10.1007/s00280-013-2074-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 01/01/2013] [Indexed: 10/27/2022]
Abstract
PURPOSE Transferrin receptor (TfR) is a cell membrane-associated glycoprotein involved in the cellular uptake of iron and the regulation of cell growth. Recent studies have shown elevated expression levels of TfR on cancer cells compared with normal cells. We previously designed a TfR-lytic hybrid peptide, which combines the TfR-binding peptide and a lytic peptide, and reported that it bound specifically to TfR and selectively killed cancer cells. Furthermore, the intravenous administration of TfR-lytic peptide in an athymic mouse model significantly inhibited tumor progression. To evaluate the immunogenicity of this peptide as a novel and potent anticancer agent, we investigated whether TfR-lytic hybrid peptide elicits cellular and humoral immune responses to produce antibodies. We also examined the toxicity of this peptide in syngeneic mice. METHODS We performed hematologic and blood chemistry test and histological analysis and assessed hemolytic activity to check toxicity. To evaluate the immunogenicity, measurement of murine interferon-gamma and detection of TfR-lytic-specific antibody by ELISA were demonstrated. RESULTS No T cell immune response or antibodies were detected in the group treated with TfR-lytic hybrid peptide. No hematologic toxicity, except for a decrease in leukocytes, was observed, and no remarkable influence on metabolic parameters and organs (liver, kidney, and spleen) was noted. CONCLUSIONS Therefore, TfR-lytic hybrid peptide might provide an alternative therapeutic option for patients with cancer.
Collapse
Affiliation(s)
- Megumi Kawamoto
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
103
|
Modi V, Lama D, Sankararamakrishnan R. Relationship between helix stability and binding affinities: molecular dynamics simulations of Bfl-1/A1-binding pro-apoptotic BH3 peptide helices in explicit solvent. J Biomol Struct Dyn 2013; 31:65-77. [DOI: 10.1080/07391102.2012.691363] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
104
|
Nyakatura EK, Reimann O, Vagt T, Salwiczek M, Koksch B. Accommodating fluorinated amino acids in a helical peptide environment. RSC Adv 2013. [DOI: 10.1039/c3ra41110a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
105
|
Zheng Y, Gu Q, Xu X. Inhibition of ocular neovascularization by a novel peptide derived from human placenta growth factor-1. Acta Ophthalmol 2012; 90:e512-23. [PMID: 22994140 DOI: 10.1111/j.1755-3768.2012.02476.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To evaluate the effect of ZY1, a novel 21-amino acid peptide from human placenta growth factor-1 (PlGF-1), against ocular neovascularization, and to study its possible toxicity to the retina and the underlying mechanism of antiangiogenic effect. METHODS MTS assays, a modified Boyden chamber and Matrigel(™) were used to evaluate the effect of ZY1 on the proliferation, migration and tube formation of RF/6A rhesus macaque choroid-retina endothelial cells induced by vascular endothelial growth factor (VEGF) in vitro. The antiangiogenic effect of ZY1 was also studied with corneal micropocket angiogenesis assays and oxygen-induced retinopathy (OIR) assays in mice. Electrophysiological tests and histological examinations were used to study the possible toxicity of ZY1 against mouse neuroretina. Competitive ELISA and Western blotting were performed to elucidate the underlying mechanism of ZY1. RESULTS ZY1 inhibited VEGF-induced RF/6A proliferation, migration and tube formation. It also inhibited ocular neovascularization when applied to the corneal micropocket angiogenesis assays and OIR assays in mice. Electrophysiological tests and histological examinations revealed no evident functional or morphologic abnormalities in mouse neuroretina after ZY1 injection. ZY1 competed for binding to VEGFR-1 against PlGF and VEGF and inhibited VEGFR-1/ERK/AKT activation. CONCLUSION It is concluded that the novel peptide ZY1 is an effective inhibitor of ocular pathologic angiogenesis and may provide a promising alternative for ocular antiangiogenic therapy.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Ophthalmology, The First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | | | | |
Collapse
|
106
|
Thakur D, Saxena R, Singh V, Haq W, Katti SB, Singh BN, Tripathi RK. Human beta casein fragment (54-59) modulates M. bovis BCG survival and basic transcription factor 3 (BTF3) expression in THP-1 cell line. PLoS One 2012; 7:e45905. [PMID: 23029305 PMCID: PMC3461027 DOI: 10.1371/journal.pone.0045905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 08/27/2012] [Indexed: 12/15/2022] Open
Abstract
Immunostimulatory peptides potentiate the immune system of the host and are being used as a viable adjunct to established therapeutic modalities in treatment of cancer and microbial infections. Several peptides derived from milk protein have been reported to induce immunostimulatory activity. Human β -casein fragment (54–59), natural sequence peptide (NS) carrying the Val-Glu-Pro-Ile-Pro-Tyr amino acid residues, was reported to activate the macrophages and impart potent immunostimulatory activity. In present study, we found that this peptide increases the clearance of M. bovis BCG from THP-1 cell line in vitro. The key biomolecules, involved in the clearance of BCG from macrophage like, nitric oxide, pro-inflammatory cytokines and chemokines, were not found to be significantly altered after peptide treatment in comparison to the untreated control. Using proteomic approach we found that BTF3a, an isoform of the Basic Transcription Factor, BTF3, was down regulated in THP-1 cell line after peptide treatment. This was reconfirmed by real time RT-PCR and western blotting. We report the BTF3a as a novel target of this hexapeptide. Based on the earlier findings and the results from the present studies, we suggest that the down regulation of BTF3a following the peptide treatment may augment the M. bovis BCG mediated apoptosis resulting in enhanced clearance of M. bovis BCG from THP-1 cell line.
Collapse
Affiliation(s)
| | - Reshu Saxena
- Division of Toxicology, Central Drug Research Institute, Lucknow, India
| | - Vandana Singh
- Division of Microbiology, Central Drug Research Institute, Lucknow, India
| | - Wahajul Haq
- Division of Medicinal and Process Chemistry, Central Drug Research Institute, Lucknow, India
| | - S. B. Katti
- Division of Medicinal and Process Chemistry, Central Drug Research Institute, Lucknow, India
| | - Bhupendra Narain Singh
- Division of Microbiology, Central Drug Research Institute, Lucknow, India
- * E-mail: (BNS); (RKT)
| | - Raj Kamal Tripathi
- Division of Toxicology, Central Drug Research Institute, Lucknow, India
- * E-mail: (BNS); (RKT)
| |
Collapse
|
107
|
Akhtar J, Mallaredy V, Dandapat J, Maiti P, Sahoo SK, Singh S. PEGylation of an osteoclast inhibitory peptide: Suitable candidate for the treatment of osteoporosis. Int J Pharm 2012; 434:429-36. [DOI: 10.1016/j.ijpharm.2012.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/01/2012] [Accepted: 06/03/2012] [Indexed: 12/11/2022]
|
108
|
Dahan I, Pick E. Strategies for identifying synthetic peptides to act as inhibitors of NADPH oxidases, or "all that you did and did not want to know about Nox inhibitory peptides". Cell Mol Life Sci 2012; 69:2283-305. [PMID: 22562603 PMCID: PMC11114551 DOI: 10.1007/s00018-012-1007-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 11/29/2022]
Abstract
Phagocytes utilize reactive oxygen species (ROS) to kill pathogenic microorganisms. The source of ROS is an enzymatic complex (the NADPH oxidase), comprising a membrane-associated heterodimer (flavocytochrome b (558)), consisting of subunits Nox2 and p22(phox), and four cytosolic components (p47(phox), p67(phox), p40(phox), and Rac). The primordial ROS (superoxide) is generated by the reduction of molecular oxygen by NADPH via redox centers located on Nox2. This process is activated by the translocation of the cytosolic components to the membrane and their assembly with Nox2. Membrane translocation is preceded by interactions among cytosolic components. A number of proteins structurally and functionally related to Nox2 have been discovered in many cells (the Nox family) and these have pleiotropic functions related to the production of ROS. An intense search is underway to design therapeutic means to modulate Nox-dependent overproduction of ROS, associated with diseases. Among drug candidates, a central position is held by synthetic peptides reflecting domains in oxidase components involved in NADPH oxidase assembly. Peptides, corresponding to domains in Nox2, p22(phox), p47(phox), and Rac, found to be oxidase activation inhibitory in vitro, are reviewed. Usually, peptides are inhibitory only when added preceding assembly of the complex. Although competition with intact components seems most likely, less obvious mechanisms are, sometimes, at work. The use of peptides as inhibitory drugs in vivo requires the development of methods to assure cell penetration, resistance to degradation, and avoidance of toxicity, and modest successes have been achieved. The greatest challenge remains the discovery of peptide inhibitors acting specifically on individual Nox isoforms.
Collapse
Affiliation(s)
- Iris Dahan
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Edgar Pick
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
109
|
Lico C, Santi L, Twyman RM, Pezzotti M, Avesani L. The use of plants for the production of therapeutic human peptides. PLANT CELL REPORTS 2012; 31:439-51. [PMID: 22218674 DOI: 10.1007/s00299-011-1215-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/13/2011] [Accepted: 12/13/2011] [Indexed: 05/17/2023]
Abstract
Peptides have unique properties that make them useful drug candidates for diverse indications, including allergy, infectious disease and cancer. Some peptides are intrinsically bioactive, while others can be used to induce precise immune responses by defining a minimal immunogenic region. The limitations of peptides, such as metabolic instability, short half-life and low immunogenicity, can be addressed by strategies such as multimerization or fusion to carriers, to improve their pharmacological properties. The remaining major drawback is the cost of production using conventional chemical synthesis, which is also difficult to scale-up. Over the last 15 years, plants have been shown to produce bioactive and immunogenic peptides economically and with the potential for large-scale synthesis. The production of peptides in plants is usually achieved by the genetic fusion of the corresponding nucleotide sequence to that of a carrier protein, followed by stable nuclear or plastid transformation or transient expression using bacterial or viral vectors. Chimeric plant viruses or virus-like particles can also be used to display peptide antigens, allowing the production of polyvalent vaccine candidates. Here we review progress in the field of plant-derived peptides over the last 5 years, addressing new challenges for diverse pathologies.
Collapse
Affiliation(s)
- Chiara Lico
- Laboratorio di Biotecnologie, Unità Tecnica BIORAD, ENEA CR Casaccia, 00123 Rome, Italy
| | | | | | | | | |
Collapse
|
110
|
Hamzeh-Mivehroud M, Mahmoudpour A, Dastmalchi S. Identification of new peptide ligands for epidermal growth factor receptor using phage display and computationally modeling their mode of binding. Chem Biol Drug Des 2012; 79:246-59. [PMID: 22136656 DOI: 10.1111/j.1747-0285.2011.01282.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Peptide phage display, a powerful method for ligand identification, was used to identify new peptide ligands for epidermal growth factor receptor. A-431 cells expressing epidermal growth factor receptor were used as the matrix in a cell-based subtractive biopanning approach using a 7-mer peptide displaying phage library. Two novel peptide ligands were identified and tested for their affinities and functional effects on epidermal growth factor receptor. The identified peptides were able to inhibit the epidermal growth factor-induced phosphorylation of epidermal growth factor receptor in a concentration-dependent manner. The results of affinity binding experiments showed that the natural ligand, that is epidermal growth factor, was able to inhibit competitively the binding of peptide-bearing phage to epidermal growth factor receptor expressing A-431 cells. Molecular modeling studies were used to calculate the free energies for the binding of peptides to the receptor-binding site as well as proposing the interaction modes for this binding. The calculated values for the binding energies were found to be similar to our experimental data and those of previously reported studies.
Collapse
|
111
|
Fonte P, Andrade JC, Seabra V, Sarmento B. Chitosan-based nanoparticles as delivery systems of therapeutic proteins. Methods Mol Biol 2012; 899:471-487. [PMID: 22735970 DOI: 10.1007/978-1-61779-921-1_28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Therapeutic proteins represent a significant part of the new pharmaceuticals coming on the market every year and are now widely spread in therapy to treat or relief symptoms related to many metabolic and oncologic diseases. The parenteral route remains as a primary strategy for protein administration essentially due to its specific physicochemical properties. However, the research on alternative nonparenteral delivery routes continues. The high molecular weight (MW), hydrophilicity, and charged nature of therapeutically valued proteins render transport through membranes very difficult. In this regard, chitosan arises as a promising candidate for the development of protein-containing drug formulations, due to its exceptional biological properties. Chitosan-based delivery systems have been proposed as valid approaches to provide protective conditions to proteins from denaturation and loss of activity, during preparation and delivery, as well as during long-term storage of the prepared formulation. In this chapter, one production method of a chitosan-based nanoparticle formulation is presented, as well as several characterization techniques to assess both nanoparticles and proteins characteristics and stability.
Collapse
Affiliation(s)
- Pedro Fonte
- Department of Pharmaceutical Sciences, CICS, Health Sciences Research Center, Instituto Superior de Ciências da Saúde, Gandra, Portugal
| | | | | | | |
Collapse
|
112
|
Funke SA, Willbold D. Peptides for therapy and diagnosis of Alzheimer's disease. Curr Pharm Des 2012; 18:755-67. [PMID: 22236121 PMCID: PMC3426787 DOI: 10.2174/138161212799277752] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 12/09/2011] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with devastating effects. The greatest risk factor to develop AD is age. Today, only symptomatic therapies are available. Additionally, AD can be diagnosed with certainty only post mortem, whereas the diagnosis "probable AD" can be established earliest when severe clinical symptoms appear. Specific neuropathological changes like neurofibrillary tangles and amyloid plaques define AD. Amyloid plaques are mainly composed of the amyloid-βpeptide (Aβ). Several lines of evidence suggest that the progressive concentration and subsequent aggregation and accumulation of Aβ play a fundamental role in the disease progress. Therefore, substances which bind to Aβ and influence aggregation thereof are of great interest. An enormous number of organic substances for therapeutic purposes are described. This review focuses on peptides developed for diagnosis and therapy of AD and discusses the pre- and disadvantages of peptide drugs.
Collapse
Affiliation(s)
| | - Dieter Willbold
- Forschungszentrum Jülich, ICS-6, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| |
Collapse
|
113
|
Zetterberg MM, Reijmar K, Pränting M, Engström Å, Andersson DI, Edwards K. PEG-stabilized lipid disks as carriers for amphiphilic antimicrobial peptides. J Control Release 2011; 156:323-8. [DOI: 10.1016/j.jconrel.2011.08.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/05/2011] [Accepted: 08/23/2011] [Indexed: 11/28/2022]
|
114
|
Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol 2011; 32:143-71. [PMID: 22074402 DOI: 10.3109/07388551.2011.594423] [Citation(s) in RCA: 564] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Life-threatening infectious diseases are on their way to cause a worldwide crisis, as treating them effectively is becoming increasingly difficult due to the emergence of antibiotic resistant strains. Antimicrobial peptides (AMPs) form an ancient type of innate immunity found universally in all living organisms, providing a principal first-line of defense against the invading pathogens. The unique diverse function and architecture of AMPs has attracted considerable attention by scientists, both in terms of understanding the basic biology of the innate immune system, and as a tool in the design of molecular templates for new anti-infective drugs. AMPs are gene-encoded short (<100 amino acids), amphipathic molecules with hydrophobic and cationic amino acids arranged spatially, which exhibit broad spectrum antimicrobial activity. AMPs have been the subject of natural evolution, as have the microbes, for hundreds of millions of years. Despite this long history of co-evolution, AMPs have not lost their ability to kill or inhibit the microbes totally, nor have the microbes learnt to avoid the lethal punch of AMPs. AMPs therefore have potential to provide an important breakthrough and form the basis for a new class of antibiotics. In this review, we would like to give an overview of cationic antimicrobial peptides, origin, structure, functions, and mode of action of AMPs, which are highly expressed and found in humans, as well as a brief discussion about widely abundant, well characterized AMPs in mammals, in addition to pharmaceutical aspects and the additional functions of AMPs.
Collapse
Affiliation(s)
- Mukesh Pasupuleti
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada.
| | | | | |
Collapse
|
115
|
Li H, Rose MJ, Holder JR, Wright M, Miranda LP, James CA. Direct quantitative analysis of a 20 kDa PEGylated human calcitonin gene peptide antagonist in cynomolgus monkey serum using in-source CID and UPLC-MS/MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1660-1667. [PMID: 21953269 DOI: 10.1007/s13361-011-0180-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/25/2011] [Accepted: 05/23/2011] [Indexed: 05/31/2023]
Abstract
PEGylation is a successful strategy to improve the pharmacokinetic and pharmaceutical properties of therapeutic peptides. However, quantitative analysis of PEGylated peptides in biomatrix by LC-MS/MS poses significant analytical challenge due to the polydispersity of the polyethylene glycol (PEG), and the multiple charge states observed for both the peptide and PEG moieties. In this report, a novel LC-MS/MS method for direct quantitative analysis of 20 kDa PEGylated CGRP[Cit, Cit] in cynomolgus monkey serum is presented. CGRP[Cit, Cit] is an investigational human calcitonin gene peptide receptor antagonist with amino acid sequence Ac -WVTH[Cit]LAGLLS[Cit]SGGVVRKNFVPT DVGPFAF-NH(2). In-source collision-induced dissociation (in-source CID) of 20 kDa PEGylated peptide was used to generate CGRP[Cit, Cit] fragment ions, among which the most abundant b(8)(+) ion was selected and measured as a surrogate for the 20 kDa PEGylated peptide. A solid phase extraction (SPE) method was used to extract the PEGylated peptides from the biomatrix prior to the UPLC-MS/MS analysis. This method achieved a lower limit of quantitation (LLOQ) of 5.00 ng/mL with a serum sample volume of 100 μL, and was linear over the calibration range of 5.00 to 500 ng/mL in cynomolgus monkey serum. Intraday and interday accuracy and precision from QC samples were within ±15%. This method was successfully applied to a pharmacokinetic study of the 20 kDa PEGylated CGRP[Cit, Cit] in cynomolgus monkeys.
Collapse
Affiliation(s)
- Hongyan Li
- Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | | | | | | | | | | |
Collapse
|
116
|
Peng HT, Blostein MD, Shek PN. Characterization of In Vitro Hemostatic Peptide Effects by Thromboelastography. Clin Appl Thromb Hemost 2011; 18:27-34. [DOI: 10.1177/1076029611412371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In this study, we validated a thromboelastography (TEG) method to evaluate the hemostatic effects of 3 peptides. The first peptide is an ideal amphipathic peptide composed of 22 leucine and lysine in a ratio of 2:1. At a very low concentration, the peptide had a procoagulant effect shown by decreases in reaction time (R) and coagulation time (K) but was impaired by a decrease in maximum amplitude (MA). At higher concentrations, the peptide had an anticoagulant effect. The α angle was minimally affected by the peptide. The second peptide is melittin derived from bee venom. Melittin showed procoagulant effects reflected by a decrease in clotting time but led to lower MA. The third peptide derived from fibrinogen γ chain promoted hemostasis only at an optimal concentration and became anticoagulant at a higher concentration. The hemostatic mechanisms of each peptide were discussed. Our study would facilitate further development of peptides for either hemorrhage control or thrombosis treatment.
Collapse
Affiliation(s)
- Henry T. Peng
- Defence Research and Development Canada, Toronto, Ontario, Canada
| | - Mark D. Blostein
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Pang N. Shek
- Defence Research and Development Canada, Toronto, Ontario, Canada
| |
Collapse
|
117
|
A novel transferrin receptor-targeted hybrid peptide disintegrates cancer cell membrane to induce rapid killing of cancer cells. BMC Cancer 2011; 11:359. [PMID: 21849092 PMCID: PMC3167775 DOI: 10.1186/1471-2407-11-359] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 08/18/2011] [Indexed: 01/11/2023] Open
Abstract
Background Transferrin receptor (TfR) is a cell membrane-associated glycoprotein involved in the cellular uptake of iron and the regulation of cell growth. Recent studies have shown the elevated expression levels of TfR on cancer cells compared with normal cells. The elevated expression levels of this receptor in malignancies, which is the accessible extracellular protein, can be a fascinating target for the treatment of cancer. We have recently designed novel type of immunotoxin, termed "hybrid peptide", which is chemically synthesized and is composed of target-binding peptide and lytic peptide containing cationic-rich amino acids components that disintegrates the cell membrane for the cancer cell killing. The lytic peptide is newly designed to induce rapid killing of cancer cells due to conformational change. In this study, we designed TfR binding peptide connected with this novel lytic peptide and assessed the cytotoxic activity in vitro and in vivo. Methods In vitro: We assessed the cytotoxicity of TfR-lytic hybrid peptide for 12 cancer and 2 normal cell lines. The specificity for TfR is demonstrated by competitive assay using TfR antibody and siRNA. In addition, we performed analysis of confocal fluorescence microscopy and apoptosis assay by Annexin-V binding, caspase activity, and JC-1 staining to assess the change in mitochondria membrane potential. In vivo: TfR-lytic was administered intravenously in an athymic mice model with MDA-MB-231 cells. After three weeks tumor sections were histologically analyzed. Results The TfR-lytic hybrid peptide showed cytotoxic activity in 12 cancer cell lines, with IC50 values as low as 4.0-9.3 μM. Normal cells were less sensitive to this molecule, with IC50 values > 50 μM. Competition assay using TfR antibody and knockdown of this receptor by siRNA confirmed the specificity of the TfR-lytic hybrid peptide. In addition, it was revealed that this molecule can disintegrate the cell membrane of T47D cancer cells just in 10 min, to effectively kill these cells and induce approximately 80% apoptotic cell death but not in normal cells. The intravenous administration of TfR-lytic peptide in the athymic mice model significantly inhibited tumor progression. Conclusions TfR-lytic peptide might provide a potent and selective anticancer therapy for patients.
Collapse
|
118
|
Staub A, Zurlino D, Rudaz S, Veuthey JL, Guillarme D. Analysis of peptides and proteins using sub-2 μm fully porous and sub 3-μm shell particles. J Chromatogr A 2011; 1218:8903-14. [PMID: 21831381 DOI: 10.1016/j.chroma.2011.07.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 11/26/2022]
Abstract
The objective of this study was to evaluate the potential of sub-2 μm totally porous particles and sub-3 μm shell particles for peptide and protein analysis. Specific analytical strategies must be developed for these biomolecules as their importance in the pharmaceutical industry increases and as their structural complexity involves some issues when classical LC conditions are employed. Attention was paid on comparing these different columns in various LC conditions (different temperatures, gradient times, and mobile phase flow rates). The comparison of the different supports was assessed considering columns characteristics (quality of packing, silanol activity, pore size, totally porous or shell particles). In this article, peptides were first analyzed with both column technologies. Similar results to those achieved with low molecular weight compounds were obtained (peak capacity >100 for t(grad) around 3 min and columns dimensions of 2.1 mm id × 50 mm), but specific conditions were required (elevated temperature and the use of a volatile ion-pairing reagent, namely TFA). For peptide analysis following tryptic digestion, the goal was to improve peak capacity and resolution because of the large number of generated peptides. For this purpose, longer columns packed with porous sub-2 μm or shell sub-3 μm particles (i.e., 150 mm) and gradient times (i.e., up to 30 min) were tested. On the other hand, proteins in their intact forms have higher molecular weights (MW>5000 Da) and a tertiary structure, thus requiring different conditions in terms of stationary phase hydrophobicity (C(4)vs. C(18)) and pore size (300 vs. 120 Å). In addition, there were issues with adsorption onto the LC system and/or the column itself. This study showed that proteins with MWs lower than 40,000 Da required chromatographic conditions close to those employed for peptide analysis. For larger proteins, a C(4) 300 Å stationary phase gave the best results, confirming theoretical predictions.
Collapse
Affiliation(s)
- Aline Staub
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Bd d'Yvoy 20, 1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
119
|
Pérez Y, Mann E, Herradón B. Preparation and characterization of gold nanoparticles capped by peptide–biphenyl hybrids. J Colloid Interface Sci 2011; 359:443-53. [DOI: 10.1016/j.jcis.2011.04.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/30/2011] [Accepted: 04/09/2011] [Indexed: 01/15/2023]
|
120
|
Roy A, D'Annessa I, Nielsen CJF, Tordrup D, Laursen RR, Knudsen BR, Desideri A, Andersen FF. Peptide Inhibition of Topoisomerase IB from Plasmodium falciparum. Mol Biol Int 2011; 2011:854626. [PMID: 22091414 PMCID: PMC3200115 DOI: 10.4061/2011/854626] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/03/2011] [Indexed: 11/21/2022] Open
Abstract
Control of diseases inflicted by protozoan parasites such as Leishmania, Trypanosoma, and Plasmodium, which pose a serious threat to human health worldwide, depends on a rather small number of antiparasite drugs, of which many are toxic and/or inefficient. Moreover, the increasing occurrence of drug-resistant parasites emphasizes the need for new and effective antiprotozoan drugs. In the current study, we describe a synthetic peptide, WRWYCRCK, with inhibitory effect on the essential enzyme topoisomerase I from the malaria-causing parasite Plasmodium falciparum. The peptide inhibits specifically the transition from noncovalent to covalent DNA binding of P. falciparum topoisomerase I, while it does not affect the ligation step of catalysis. A mechanistic explanation for this inhibition is provided by molecular docking analyses. Taken together the presented results suggest that synthetic peptides may represent a new class of potential antiprotozoan drugs.
Collapse
Affiliation(s)
- Amit Roy
- Department of Molecular Biology and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, C.F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Tada N, Horibe T, Haramoto M, Ohara K, Kohno M, Kawakami K. A single replacement of histidine to arginine in EGFR-lytic hybrid peptide demonstrates the improved anticancer activity. Biochem Biophys Res Commun 2011; 407:383-8. [PMID: 21396910 DOI: 10.1016/j.bbrc.2011.03.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 03/05/2011] [Indexed: 11/25/2022]
Abstract
We previously reported that novel targeted "hybrid peptide" in which epidermal growth factor receptor (EGFR) binding peptide was conjugated with lytic-type peptide had selective cytotoxic activity to EGFR expressing cancer cell lines, and in vivo analysis revealed that this EGFR-lytic peptide displayed significant antitumor activity in a xenograft model of human breast cancer which was resistant to tyrosine kinase inhibitor drugs. As an attempt to improve the selective anticancer activity of EGFR-lytic peptide, we modified the EGFR-binding peptide through introducing the mutation of amino acid according to biophysical analysis by biomolecular interaction and circular dichroism (CD) spectra. When cytotoxic activity of EGFR-lytic or EGFR(2R)-lytic hybrid peptides was investigated in various human cancer and normal cell lines, it was demonstrated that EGFR(2R)-lytic, in which second histidine (H) of EGFR-binding peptide was replaced to arginine (R) had 1.2-1.9-fold higher cytotoxic activity than that of original EGFR-lytic peptide. In vivo analysis also revealed that this modified peptide displayed significant antitumor activity at as low as 1 mg/kg dosage. These results suggest that mutated arginine on EGFR-lytic peptide produces higher binding ability to EGFR on cancer cells, and thereby the improved anticancer activity.
Collapse
Affiliation(s)
- Noriko Tada
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
122
|
Kohno M, Horibe T, Haramoto M, Yano Y, Ohara K, Nakajima O, Matsuzaki K, Kawakami K. A novel hybrid peptide targeting EGFR-expressing cancers. Eur J Cancer 2011; 47:773-83. [DOI: 10.1016/j.ejca.2010.10.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/22/2010] [Accepted: 10/27/2010] [Indexed: 11/26/2022]
|
123
|
Ohara K, Horibe T, Kohno M, Kawakami K. Characterization of antilytic peptide antibody: application for the detection of lytic-based hybrid peptide in serum samples. J Pept Sci 2011; 17:493-8. [PMID: 21351323 DOI: 10.1002/psc.1349] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/02/2010] [Accepted: 12/11/2010] [Indexed: 01/18/2023]
Abstract
We previously reported that a novel targeted drug termed hybrid epidermal growth factor receptor (EGFR)-lytic peptide, made by chemical conjugation of targeted binding peptide and cell-killing, lytic-peptide components, has selective cytotoxic activity that allows it to discriminate between normal and cancer cells. In addition, in vivo analysis revealed that this hybrid peptide displays significant antitumor activity in a xenograft model of human breast and pancreatic cancer in mice. Here, we characterized antilytic peptide antibody, which was raised from rabbit serum using the antigen of lytic peptide conjugated with keyhole limpet hemocyanin. It was found that antilytic peptide antibody is specific to the lytic peptide as assessed by both ELISA and surface plasmon resonance analysis and can also bind to EGFR-lytic peptide. Epitope mapping analysis using Biacore showed that two successive lysine regions in the lytic-peptide sequence are significant for recognition by this antibody. In addition, it was shown that this antibody can detect lytic-based hybrid peptide in serum samples from mouse blood and also in cultured breast cancer MDA-MB-231 cell samples by immunocytochemical staining experiments. It was found that the maximum concentrations of this peptide in serum were reached within 15-30 min of i.v. administration of EGFR-lytic peptide to mice. These results indicate that this antibody will be a useful tool for the detection of lytic-based peptides to investigate their in vivo stability and pharmacokinetics.
Collapse
Affiliation(s)
- Koji Ohara
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Yoshida Konoecho, Sakyoku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
124
|
Park M, Jardetzky TS, Barron AE. NMEGylation: A novel modification to enhance the bioavailability of therapeutic peptides. Biopolymers 2011; 96:688-93. [DOI: 10.1002/bip.21607] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
125
|
Van Dorpe S, Adriaens A, Vermeire S, Polis I, Peremans K, Spiegeleer BD. Desirability function combining metabolic stability and functionality of peptides. J Pept Sci 2011; 17:398-404. [DOI: 10.1002/psc.1323] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/05/2010] [Accepted: 10/06/2010] [Indexed: 11/07/2022]
|
126
|
Peptide phage display as a tool for drug discovery: targeting membrane receptors. Molecules 2011; 16:857-87. [PMID: 21258295 PMCID: PMC6259427 DOI: 10.3390/molecules16010857] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/14/2011] [Accepted: 01/19/2011] [Indexed: 12/14/2022] Open
Abstract
Ligands selected from phage-displayed random peptide libraries tend to be directed to biologically relevant sites on the surface of the target protein. Consequently, peptides derived from library screenings often modulate the target protein’s activity in vitro and in vivo and can be used as lead compounds in drug design and as alternatives to antibodies for target validation in both genomics and drug discovery. This review discusses the use of phage display to identify membrane receptor modulators with agonistic or antagonistic activities. Because isolating or producing recombinant membrane proteins for use as target molecules in library screening is often impossible, innovative selection strategies such as panning against whole cells or tissues, recombinant receptor ectodomains, or neutralizing antibodies to endogenous binding partners were devised. Prominent examples from a two-decade history of peptide phage display will be presented, focusing on the design of affinity selection experiments, methods for improving the initial hits, and applications of the identified peptides.
Collapse
|
127
|
Ito A, Kamihira M. Tissue Engineering Using Magnetite Nanoparticles. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 104:355-95. [DOI: 10.1016/b978-0-12-416020-0.00009-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
128
|
Armishaw CJ, Jensen AA, Balle LD, Scott KCM, Sørensen L, Strømgaard K. Improving the stability of α-conotoxin AuIB through N-to-C cyclization: the effect of linker length on stability and activity at nicotinic acetylcholine receptors. Antioxid Redox Signal 2011; 14:65-76. [PMID: 20649464 DOI: 10.1089/ars.2010.3458] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Modification of α-conotoxin frameworks through cyclization via an oligopeptide linker has previously been shown as an effective strategy for improving in vivo stability. We have extended this strategy by investigating cyclic analogs of α-conotoxin AuIB, a selective α(3)β(4) nicotinic acetylcholine receptor (nAChR) antagonist, to examine a range of oligopeptide linker lengths on the oxidative formation of disulfide bonds, activity at nAChRs, and stability to degradation by chymotrypsin. Upon nondirected random oxidation, the ribbon isomer formed preferentially with the globular isomer occurring as a minor by-product. Therefore, a regioselective disulfide bond forming strategy was used to prepare the cAuIB-2 globular isomer in high yield and purity. The cAuIB-2 globular isomer exhibited a threefold decrease in activity for the α(3)β(4) nAChR compared to wild-type-AuIB, although it was selective for α(3)β(4) over α(7) and α(4)β(2) subtypes. On the other hand, the cAuIB-2 ribbon isomer was shown to be inactive at all three nAChR subtypes. Nonetheless, all of the cyclic analogs were found to be significantly more stable to degradation by chymotrypsin than wild-type AuIB. As such, the cAuIB-2 globular isomer could constitute a useful probe for studying the role of the α(3)β(4) nAChR in a range of in vivo experimental paradigms.
Collapse
|
129
|
Anti-inflammatory defense mechanisms of Entamoeba histolytica. Inflamm Res 2010; 60:111-7. [PMID: 20938711 DOI: 10.1007/s00011-010-0261-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/02/2010] [Accepted: 09/22/2010] [Indexed: 01/23/2023] Open
Abstract
The monocyte locomotion inhibitory factor (MLIF), a heat-stable oligopeptide found in the supernatant fluid of Entamoeba histolytica axenic cultures, may contribute to the delayed inflammation observed in amoebic hepatic abscess. This factor was isolated by ultra-filtration and high powered liquid chromatography, obtaining a primary Met-Gln-Cys-Asn-Ser structure, identified afterwards as the carboxyl-terminal (…Cys-Asn-Ser) active site. The selective anti-inflammatory effects of the pentapeptide have been observed in both in vitro and in vivo models, using a synthetic pentapeptide to maintain the same anti-inflammatory conditions during the experimental assays. Anti-inflammatory effects observed include inhibition of human monocyte locomotion and the respiratory burst in monocytes and neutrophils, increasing expression of anti-inflammatory cytokines and inhibiting expression of the adhesion molecules VLA-4 and VCAM, among others. In this review, we will describe the effects of MLIF detected so far and how it might be used as a therapeutical agent against inflammatory diseases.
Collapse
|
130
|
Li H, Ma Y, Chen Y, Sang Y, Zhou T, Qiu M, Huang X, Zhou C, Su Z. A protease-based strategy for the controlled release of therapeutic peptides. Angew Chem Int Ed Engl 2010; 49:4930-3. [PMID: 20540123 DOI: 10.1002/anie.201000287] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hongjian Li
- Department of Biotechnology, Jinan University, Guangzhou, Guangdong 510632, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Li H, Ma Y, Chen Y, Sang Y, Zhou T, Qiu M, Huang X, Zhou C, Su Z. A Protease-Based Strategy for the Controlled Release of Therapeutic Peptides. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201000287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
132
|
Bartnik D, Funke SA, Andrei-Selmer LC, Bacher M, Dodel R, Willbold D. Differently Selected d-Enantiomeric Peptides Act on Different Aβ Species. Rejuvenation Res 2010; 13:202-5. [DOI: 10.1089/rej.2009.0924] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Dirk Bartnik
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
- These authors contributed equally to the paper
| | - Susanne Aileen Funke
- Forschungszentrum Jülich, ISB-3, 52425 Jülich, Germany
- These authors contributed equally to the paper
| | - Luminita-Cornelia Andrei-Selmer
- Biomedizinisches Forschungszentrum, Department of Neurology, Philipps University Marburg, 35037 Marburg, Germany
- These authors contributed equally to the paper
| | - Michael Bacher
- Biomedizinisches Forschungszentrum, Department of Neurology, Philipps University Marburg, 35037 Marburg, Germany
| | - Richard Dodel
- Biomedizinisches Forschungszentrum, Department of Neurology, Philipps University Marburg, 35037 Marburg, Germany
| | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
- Forschungszentrum Jülich, ISB-3, 52425 Jülich, Germany
| |
Collapse
|
133
|
Kenrick SA, Daugherty PS. Bacterial display enables efficient and quantitative peptide affinity maturation. Protein Eng Des Sel 2010; 23:9-17. [PMID: 19903738 DOI: 10.1093/protein/gzp065] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A quantitative screening method was developed to enable isolation and affinity maturation of peptide ligands specific for a given target from peptide libraries displayed on the outer surface of Escherichia coli using multi-parameter flow cytometry. From a large, random 15-mer peptide library, screening identified a core motif of W-E/D-W-E/D that conferred binding to vascular endothelial growth factor (VEGF). One cycle of affinity maturation resulted in the identification of several families of VEGF-binding peptides having distinct consensus sequences, from which a preferred disulfide constraint emerged. In the second affinity maturation cycle, high affinity peptides were favored by the addition of a decoy protein that bound an adjacent epitope on the display scaffold. The decoy apparently reduced rebinding or avidity effects, and the resulting peptides exhibited consensus at 12 of 19 amino acid positions. Peptides identified and affinity matured using bacterial display were remarkably similar to the best affinity matured using phage display and exhibited comparable dissociation constants (within 2-fold; K(D) = 4.7 x 10(-7) M). Screening of bacterial-displayed peptide libraries using cytometry enabled optimization of screening conditions to favor affinity and specificity and rapid clonal characterization. Bacterial display thus provides a new quantitative tool for the discovery and evolutionary optimization of protein-specific peptide ligands.
Collapse
Affiliation(s)
- Sophia A Kenrick
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
134
|
Ruiz-Rodríguez J, Spengler J, Albericio F. Siamese depsipeptides: constrained bicyclic architectures. Angew Chem Int Ed Engl 2010; 48:8564-7. [PMID: 19810072 DOI: 10.1002/anie.200904135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Javier Ruiz-Rodríguez
- Institute for Research in Biomedicine, Barcelona Science Park (PCB), Baldiri Reixac 10, 08028-Barcelona, Spain
| | | | | |
Collapse
|
135
|
Ihara M, Yoshikawa A, Wu Y, Takahashi H, Mawatari K, Shimura K, Sato K, Kitamori T, Ueda H. Micro OS-ELISA: Rapid noncompetitive detection of a small biomarker peptide by open-sandwich enzyme-linked immunosorbent assay (OS-ELISA) integrated into microfluidic device. LAB ON A CHIP 2010; 10:92-100. [PMID: 20024056 DOI: 10.1039/b915516c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A novel detection system that combines the merits of open-sandwich (OS) enzyme-linked immunoadsorbent assay (ELISA) and a microfluidic sensor chip system, and which enables rapid and noncompetitive immunodetection of small antigens of less than 1000 in molecular weight, has been proposed. Equipped with a sensitive thermal lens microscope, a minute amount of the carboxyl-terminal peptide of human osteocalcin (BGP), a biomarker for bone metabolism, was quantified utilizing antigen-dependent stabilization of an antibody variable region (OS principle). In a short analysis time (approximately 12 min), we could attain a detection limit comparable to that of the microplate-based OS ELISA (1 microg L(-1)). In addition, the effects of several pretreatments for serum-derived samples were investigated: an albumin absorption resin, addition of a protease inhibitor cocktail and heat treatment. Each pretreatment was found to be effective. Consequently, intrinsic BGP and its fragments could be detected in healthy human serum with a superior detection limit and working range compared to those of the conventional competitive ELISA method.
Collapse
Affiliation(s)
- Masaki Ihara
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo, Tokyo, 113-8656, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
|
137
|
Grillo-Bosch D, Carulla N, Cruz M, Sánchez L, Pujol-Pina R, Madurga S, Rabanal F, Giralt E. Retro-enantio N-methylated peptides as beta-amyloid aggregation inhibitors. ChemMedChem 2009; 4:1488-94. [PMID: 19591190 DOI: 10.1002/cmdc.200900191] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An emerging and attractive target for the treatment of Alzheimer's disease is to inhibit the aggregation of beta-amyloid protein (Abeta). We applied the retro-enantio concept to design an N-methylated peptidic inhibitor of the Abeta42 aggregation process. This inhibitor, inrD, as well as the corresponding all-L (inL) and all-D (inD) analogues were assayed for inhibition of Abeta42 aggregation. They were also screened in neuroblastoma cell cultures to assess their capacity to inhibit Abeta42 cytotoxicity and evaluated for proteolytic stability. The results reveal that inrD and inD inhibit Abeta42 aggregation more effectively than inL, that inrD decreases Abeta42 cytotoxicity to a greater extent than inL and inD, and that as expected, both inD and inrD are stable to proteases. Based on these results, we propose that the retro-enantio approach should be considered in future designs of peptide inhibitors of protein aggregation.
Collapse
Affiliation(s)
- Dolors Grillo-Bosch
- Institute for Research in Biomedicine, Barcelona Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Pakkala M, Weisell J, Hekim C, Vepsäläinen J, Wallen EAA, Stenman UH, Koistinen H, Närvänen A. Mimetics of the disulfide bridge between the N- and C-terminal cysteines of the KLK3-stimulating peptide B-2. Amino Acids 2009; 39:233-42. [DOI: 10.1007/s00726-009-0433-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 11/18/2009] [Indexed: 02/07/2023]
|
139
|
Ruiz-Rodríguez J, Spengler J, Albericio F. Siamese Depsipeptides: Constrained Bicyclic Architectures. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200904135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
140
|
Synthesis of chemically modified bioactive peptides: recent advances, challenges and developments for medicinal chemistry. Future Med Chem 2009; 1:1289-310. [DOI: 10.4155/fmc.09.97] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although not complying with Lipinski’s rule, peptides are to an increasing extent being developed into new active pharmaceutical ingredients. This is mainly due to novel application routes, formulations and chemical modifications, which confer on the peptides improved uptake and increased metabolic stability. A brief survey of currently approved peptide drugs and the present scope of the application of peptides as drugs is provided. Cyclic peptides are emerging as an interesting class of peptides with conformational rigidity and homogeneity, high receptor affinity and selectivity, increased metabolic stability and – in special cases – even oral availability. Challenges and new methodology for the synthesis of cyclic peptides are outlined and an overview of approaches toward the design of peptide conformation and peptide modification by nonproteinogenic building blocks is given.
Collapse
|
141
|
|
142
|
Funke SA, Willbold D. Mirror image phage display--a method to generate D-peptide ligands for use in diagnostic or therapeutical applications. MOLECULAR BIOSYSTEMS 2009; 5:783-6. [PMID: 19603110 DOI: 10.1039/b904138a] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mirror image phage display is a straightforward approach to identify new potentially therapeutically active D-enantiomeric peptides. Such D-peptides are more resistant to proteolytic degradation compared to L-peptides. In this review, several examples of mirror image phage display derived D-peptides with therapeutical potential are introduced and discussed.
Collapse
|
143
|
Development of a bacteriophage-based system for the selection of structured peptides. Anal Biochem 2009; 388:122-7. [DOI: 10.1016/j.ab.2009.01.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 01/28/2009] [Accepted: 01/29/2009] [Indexed: 02/05/2023]
|
144
|
Yoshikawa T, Sugita T, Mukai Y, Abe Y, Nakagawa S, Kamada H, Tsunoda SI, Tsutsumi Y. The augmentation of intracellular delivery of peptide therapeutics by artificial protein transduction domains. Biomaterials 2009; 30:3318-23. [PMID: 19304319 DOI: 10.1016/j.biomaterials.2009.02.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
Abstract
Protein transduction domains (PTDs), such as HIV-derived Tat, have been successfully used as functional biomaterials for intracellular delivery of anti-cancer macromolecular drugs (protein, peptides, and oligonucleotides). Although there were therefore great expectations regarding the therapeutic potential of PTDs for the development of anti-cancer therapeutics, their clinical application so far has been extremely limited because of the relatively high concentrations required to mediate any effects on cancer cells in vitro or in vivo. In this context, improving the transduction efficiency of PTDs using phage display-based molecular evolution techniques may be useful for creating artificial PTDs with high efficiency and safety. Here, we report an evaluation of transduction efficiency and toxicity of such artificial PTDs (designated mT02 and mT03) compared with Tat. The internalization of mT02 was the most rapid and efficient by a mechanism different from the usual macropinocytosis. Furthermore, we found that artificial PTDs fused with survivin antagonistic peptide potentiate tumor cell-cytostatic activity. Thus, the results of this work provide new insights for designing new-generation peptide therapeutics for a wide variety of cancers as well as those expressing survivin.
Collapse
Affiliation(s)
- Tomoaki Yoshikawa
- Laboratory of Pharmaceutical Proteomics, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Zhang G, Han B, Lin X, Wu X, Yan H. Modification of antimicrobial peptide with low molar mass poly(ethylene glycol). J Biochem 2008; 144:781-8. [PMID: 18845567 DOI: 10.1093/jb/mvn134] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PEGylation of peptide drugs prolongs their circulating lifetimes in plasma. However, PEGylation can produce a decrease in the in vitro bioactivity. Longer poly(ethylene glycol) (PEG) chains are favourable for circulating lifetimes but unfavourable for in vitro bioactivities. In order to circumvent the conflicting effects of PEG length, a hydrophobic peptide, using an antimicrobial peptide as a model, was PEGylated with short PEG chains. The PEGylated peptides self-assembled in aqueous solution into micelles with PEG shell and peptide core. In these micelles, the core peptides were protected by the shell, thus reducing proteolytic degradation. Meanwhile, most of the in vitro antimicrobial activities still remained due to the short PEG chain attached. The stabilities of the PEGylated peptides were much higher than that of the unPEGylated peptides in the presence of chymotrypsin and serum. The antimicrobial activities of the PEGylated peptides in the presence of serum, an ex vivo assay, were much higher than that of the unPEGylated peptide.
Collapse
Affiliation(s)
- Genghui Zhang
- Key Laboratory of Functional Polymer Materials, Nankai University, Tianjin 300071, People's Republic of China
| | | | | | | | | |
Collapse
|
146
|
Abstract
Global demand for recombinant proteins has steadily accelerated for the last 20 years. These recombinant proteins have a wide range of important applications, including vaccines and therapeutics for human and animal health, industrial enzymes, new materials and components of novel nano-particles for various applications. The majority of recombinant proteins are produced by traditional biological "factories," that is, predominantly mammalian and microbial cell cultures along with yeast and insect cells. However, these traditional technologies cannot satisfy the increasing market demand due to prohibitive capital investment requirements. During the last two decades, plants have been under intensive investigation to provide an alternative system for cost-effective, highly scalable, and safe production of recombinant proteins. Although the genetic engineering of plant viral vectors for heterologous gene expression can be dated back to the early 1980s, recent understanding of plant virology and technical progress in molecular biology have allowed for significant improvements and fine tuning of these vectors. These breakthroughs enable the flourishing of a variety of new viral-based expression systems and their wide application by academic and industry groups. In this review, we describe the principal plant viral-based production strategies and the latest plant viral expression systems, with a particular focus on the variety of proteins produced and their applications. We will summarize the recent progress in the downstream processing of plant materials for efficient extraction and purification of recombinant proteins.
Collapse
Affiliation(s)
- Chiara Lico
- UTS BIOTEC, Section of Genetics and Plant Genomics, ENEA CR Casaccia, Rome, Italy
| | | | | |
Collapse
|
147
|
Lentze N, Auerbach D. The yeast two-hybrid system and its role in drug discovery. Expert Opin Ther Targets 2008; 12:505-15. [PMID: 18348685 DOI: 10.1517/14728222.12.4.505] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND The yeast two-hybrid system is the most widely used genetic assay to identify and characterize novel protein interactions. Over the past decade, the system has been adapted to cover an increasingly wide range of applications, including various tasks within the drug discovery and development process. OBJECTIVE We highlight the role of different two-hybrid systems within the drug discovery process, including target identification and validation and the selection of affinity reagents for protein targets, such as peptides and small molecules. METHODS We have focused on applications where the two-hybrid system has been used to great advantage and have sought to put a special emphasis on less conventional but promising approaches, such as the identification of agents which block therapeutically relevant protein interactions. CONCLUSIONS The yeast two-hybrid system has evolved from a method mainly used in basic research to a collection of versatile screening systems with the potential to affect many different aspects of drug discovery today.
Collapse
Affiliation(s)
- Nicolas Lentze
- Dualsystems Biotech AG, Grabenstrasse 11a, 8952 Schlieren, Switzerland
| | | |
Collapse
|
148
|
Rege K, Patel SJ, Megeed Z, Yarmush ML. Amphipathic Peptide-Based Fusion Peptides and Immunoconjugates for the Targeted Ablation of Prostate Cancer Cells. Cancer Res 2007; 67:6368-75. [PMID: 17616696 DOI: 10.1158/0008-5472.can-06-3658] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We describe the design, generation, and in vitro evaluation of targeted amphipathic fusion peptides and immunoconjugates for the ablation of prostate cancer cells. The overexpression of the prostate-specific membrane antigen (PSMA) was exploited as means to specifically deliver cytotoxic peptides to prostate cancer cells. Cationic amphipathic lytic peptides were chosen as cytotoxic agents due to their ability to depolarize mitochondrial membranes and induce apoptosis. Specific delivery of the lytic peptide was facilitated by PSMA-targeting peptides and antibodies. Our results indicate that although the use of PSMA-targeted peptides only modestly enhanced the cytotoxic activity of the lytic peptide, peptide-antibody conjugates were two orders of magnitude more potent than untargeted peptide. In addition to quantifying the cytotoxic activities of the individual constructs, we also investigated the mechanisms of cell death induced by the fusion peptides and immunoconjugates. Although fusion peptides induced oncotic/necrotic death in cells, treatment with immunoconjugates resulted in apoptotic death. In summary, immunoconjugates based on lytic peptides are a promising class of therapeutics for prostate cancer therapy and warrant further investigation.
Collapse
Affiliation(s)
- Kaushal Rege
- The Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospital for Children, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
149
|
Montero A, Albericio F, Royo M, Herradón B. Synthesis of a 24-Membered Cyclic Peptide-Biphenyl Hybrid. European J Org Chem 2007. [DOI: 10.1002/ejoc.200600833] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
150
|
Horvat S, Mlinarić-Majerski K, Glavas-Obrovac L, Jakas A, Veljković J, Marczi S, Kragol G, Roscić M, Matković M, Milostić-Srb A. Tumor-Cell-Targeted Methionine-enkephalin Analogues Containing Unnatural Amino Acids: Design, Synthesis, and in Vitro Antitumor Activity. J Med Chem 2006; 49:3136-42. [PMID: 16722632 DOI: 10.1021/jm051026+] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of new peptides (8-25) containing different unnatural amino acids of the adamantane type (1-6), was synthesized. Possible cytotoxic activity on human cervical adenocarcinoma (HeLa), larynx carcinoma (HEp-2), colon carcinomas (HT-29, Caco-2), poorly differentiated cells from lymph node metastasis of colon carcinoma (SW-620), mammary gland adenocarcinoma (MCF-7), and melanoma (HBL) cells were tested by the MTT assay. The results were compared with the effect of methionine-enkephalin (Tyr-Gly-Gly-Phe-Met, or opioid growth factor, OGF), and its shorter N-terminal fragments. Peptide analogues containing C(alpha alpha)-dialkylated glycine (Aaa1, 1) or C(alpha)-alkylated glycine (Aaa2, 2) amino acid residues showed antitumor activity against melanoma, larynx carcinoma, colon carcinomas, and colon metastasis cell lines in vitro. The pentapeptide Tyr-(R,S)-Aaa2-Gly-Phe-Met (18) was the most effective analogue especially against the most antitumor drug-resistant cell lines HEp-2 and SW-620. Apoptosis as a mode of cell death was confirmed in these tumor cells after exposure to pentapeptide 18.
Collapse
Affiliation(s)
- Stefica Horvat
- Division of Organic Chemistry and Biochemistry, Ruder Bosković Institute, POB 180, 10002 Zagreb, Croatia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|