101
|
Sancho A, Vandersmissen I, Craps S, Luttun A, Groll J. A new strategy to measure intercellular adhesion forces in mature cell-cell contacts. Sci Rep 2017; 7:46152. [PMID: 28393890 PMCID: PMC5385528 DOI: 10.1038/srep46152] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/10/2017] [Indexed: 01/11/2023] Open
Abstract
Intercellular adhesion plays a major role in tissue development and homeostasis. Yet, technologies to measure mature cell-cell contacts are not available. We introduce a methodology based on fluidic probe force microscopy to assess cell-cell adhesion forces after formation of mature intercellular contacts in cell monolayers. With this method we quantify that L929 fibroblasts exhibit negligible cell-cell adhesion in monolayers whereas human endothelial cells from the umbilical artery (HUAECs) exert strong intercellular adhesion forces per cell. We use a new in vitro model based on the overexpression of Muscle Segment Homeobox 1 (MSX1) to induce Endothelial-to-Mesenchymal Transition (EndMT), a process involved in cardiovascular development and disease. We reveal how intercellular adhesion forces in monolayer decrease significantly at an early stage of EndMT and we show that cells undergo stiffening and flattening at this stage. This new biomechanical insight complements and expands the established standard biomolecular analyses. Our study thus introduces a novel tool for the assessment of mature intercellular adhesion forces in a physiological setting that will be of relevance to biological processes in developmental biology, tissue regeneration and diseases like cancer and fibrosis.
Collapse
Affiliation(s)
- Ana Sancho
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University of Würzburg, 97070 Würzburg, Germany
| | - Ine Vandersmissen
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Sander Craps
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Aernout Luttun
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
102
|
Cohesive Properties of the Caulobacter crescentus Holdfast Adhesin Are Regulated by a Novel c-di-GMP Effector Protein. mBio 2017; 8:mBio.00294-17. [PMID: 28325767 PMCID: PMC5362036 DOI: 10.1128/mbio.00294-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When encountering surfaces, many bacteria produce adhesins to facilitate their initial attachment and to irreversibly glue themselves to the solid substrate. A central molecule regulating the processes of this motile-sessile transition is the second messenger c-di-GMP, which stimulates the production of a variety of exopolysaccharide adhesins in different bacterial model organisms. In Caulobacter crescentus, c-di-GMP regulates the synthesis of the polar holdfast adhesin during the cell cycle, yet the molecular and cellular details of this control are currently unknown. Here we identify HfsK, a member of a versatile N-acetyltransferase family, as a novel c-di-GMP effector involved in holdfast biogenesis. Cells lacking HfsK form highly malleable holdfast structures with reduced adhesive strength that cannot support surface colonization. We present indirect evidence that HfsK modifies the polysaccharide component of holdfast to buttress its cohesive properties. HfsK is a soluble protein but associates with the cell membrane during most of the cell cycle. Coincident with peak c-di-GMP levels during the C. crescentus cell cycle, HfsK relocalizes to the cytosol in a c-di-GMP-dependent manner. Our results indicate that this c-di-GMP-mediated dynamic positioning controls HfsK activity, leading to its inactivation at high c-di-GMP levels. A short C-terminal extension is essential for the membrane association, c-di-GMP binding, and activity of HfsK. We propose a model in which c-di-GMP binding leads to the dispersal and inactivation of HfsK as part of holdfast biogenesis progression. Exopolysaccharide (EPS) adhesins are important determinants of bacterial surface colonization and biofilm formation. Biofilms are a major cause of chronic infections and are responsible for biofouling on water-exposed surfaces. To tackle these problems, it is essential to dissect the processes leading to surface colonization at the molecular and cellular levels. Here we describe a novel c-di-GMP effector, HfsK, that contributes to the cohesive properties and stability of the holdfast adhesin in C. crescentus. We demonstrate for the first time that c-di-GMP, in addition to its role in the regulation of the rate of EPS production, also modulates the physicochemical properties of bacterial adhesins. By demonstrating how c-di-GMP coordinates the activity and subcellular localization of HfsK, we provide a novel understanding of the cellular processes involved in adhesin biogenesis control. Homologs of HfsK are found in representatives of different bacterial phyla, suggesting that they play important roles in various EPS synthesis systems.
Collapse
|
103
|
Norregaard K, Metzler R, Ritter CM, Berg-Sørensen K, Oddershede LB. Manipulation and Motion of Organelles and Single Molecules in Living Cells. Chem Rev 2017; 117:4342-4375. [PMID: 28156096 DOI: 10.1021/acs.chemrev.6b00638] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biomolecule is among the most important building blocks of biological systems, and a full understanding of its function forms the scaffold for describing the mechanisms of higher order structures as organelles and cells. Force is a fundamental regulatory mechanism of biomolecular interactions driving many cellular processes. The forces on a molecular scale are exactly in the range that can be manipulated and probed with single molecule force spectroscopy. The natural environment of a biomolecule is inside a living cell, hence, this is the most relevant environment for probing their function. In vivo studies are, however, challenged by the complexity of the cell. In this review, we start with presenting relevant theoretical tools for analyzing single molecule data obtained in intracellular environments followed by a description of state-of-the art visualization techniques. The most commonly used force spectroscopy techniques, namely optical tweezers, magnetic tweezers, and atomic force microscopy, are described in detail, and their strength and limitations related to in vivo experiments are discussed. Finally, recent exciting discoveries within the field of in vivo manipulation and dynamics of single molecule and organelles are reviewed.
Collapse
Affiliation(s)
- Kamilla Norregaard
- Cluster for Molecular Imaging, Department of Biomedical Science and Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen , 2200 Copenhagen, Denmark
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam , 14476 Potsdam-Golm, Germany
| | - Christine M Ritter
- Niels Bohr Institute, University of Copenhagen , 2100 Copenhagen, Denmark
| | | | - Lene B Oddershede
- Niels Bohr Institute, University of Copenhagen , 2100 Copenhagen, Denmark
| |
Collapse
|
104
|
|
105
|
Ossola D, Dörig P, Vörös J, Zambelli T, Vassalli M. Serial weighting of micro-objects with resonant microchanneled cantilevers. NANOTECHNOLOGY 2016; 27:415502. [PMID: 27608651 DOI: 10.1088/0957-4484/27/41/415502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Atomic force microscopy (AFM) cantilevers have proven to be very effective mass sensors. The attachment of a small mass to a vibrating cantilever produces a resonance frequency shift that can be monitored, providing the ability to measure mass changes down to a few molecules resolution. Nevertheless, the lack of a practical method to handle the catch and release process required for dynamic weighting of microobjects strongly hindered the application of the technology beyond proof of concept measurements. Here, a method is proposed in which FluidFM hollow cantilevers are exploited to overcome the standard limitations of AFM-based mass sensors, providing high throughput single object weighting with picogram accuracy. The extension of the dynamic models of AFM cantilevers to hollow cantilevers was discussed and the effectiveness of mass weighting in air was validated on test samples.
Collapse
Affiliation(s)
- Dario Ossola
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich 8092, Switzerland
| | | | | | | | | |
Collapse
|
106
|
Li M, Xiao X, Liu L, Xi N, Wang Y. Nanoscale Quantifying the Effects of Targeted Drug on Chemotherapy in Lymphoma Treatment Using Atomic Force Microscopy. IEEE Trans Biomed Eng 2016; 63:2187-99. [DOI: 10.1109/tbme.2015.2512924] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
107
|
Sahoo PK, Janissen R, Monteiro MP, Cavalli A, Murillo DM, Merfa MV, Cesar CL, Carvalho HF, de Souza AA, Bakkers EPAM, Cotta MA. Nanowire Arrays as Cell Force Sensors To Investigate Adhesin-Enhanced Holdfast of Single Cell Bacteria and Biofilm Stability. NANO LETTERS 2016; 16:4656-64. [PMID: 27336224 DOI: 10.1021/acs.nanolett.6b01998] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Surface attachment of a planktonic bacteria, mediated by adhesins and extracellular polymeric substances (EPS), is a crucial step for biofilm formation. Some pathogens can modulate cell adhesiveness, impacting host colonization and virulence. A framework able to quantify cell-surface interaction forces and their dependence on chemical surface composition may unveil adhesiveness control mechanisms as new targets for intervention and disease control. Here we employed InP nanowire arrays to dissect factors involved in the early stage biofilm formation of the phytopathogen Xylella fastidiosa. Ex vivo experiments demonstrate single-cell adhesion forces up to 45 nN, depending on the cell orientation with respect to the surface. Larger adhesion forces occur at the cell poles; secreted EPS layers and filaments provide additional mechanical support. Significant adhesion force enhancements were observed for single cells anchoring a biofilm and particularly on XadA1 adhesin-coated surfaces, evidencing molecular mechanisms developed by bacterial pathogens to create a stronger holdfast to specific host tissues.
Collapse
Affiliation(s)
- Prasana K Sahoo
- Applied Physics Department, Institute of Physics "Gleb Wataghin", State University of Campinas , 13083-859, Campinas, São Paulo, Brazil
| | - Richard Janissen
- Applied Physics Department, Institute of Physics "Gleb Wataghin", State University of Campinas , 13083-859, Campinas, São Paulo, Brazil
- Kavli Institute of Nanoscience, Delft University of Technology , 2629 HZ Delft, The Netherlands
| | - Moniellen P Monteiro
- Applied Physics Department, Institute of Physics "Gleb Wataghin", State University of Campinas , 13083-859, Campinas, São Paulo, Brazil
| | - Alessandro Cavalli
- Applied Physics Department, Eindhoven University of Technology , 5600 MB Eindhoven, The Netherlands
| | - Duber M Murillo
- Applied Physics Department, Institute of Physics "Gleb Wataghin", State University of Campinas , 13083-859, Campinas, São Paulo, Brazil
| | - Marcus V Merfa
- Citrus Center APTA "Sylvio Moreira", Agronomic Institute of Campinas , 13490-970, Cordeirópolis, São Paulo, Brazil
| | - Carlos L Cesar
- Quantum Electronics Department, Institute of Physics "Gleb Wataghin", State University of Campinas , 13083-859, Campinas, São Paulo, Brazil
| | - Hernandes F Carvalho
- Structural and Functional Biology Department, Institute of Biology, State University of Campinas , 13083-865, Campinas, São Paulo, Brazil
| | - Alessandra A de Souza
- Citrus Center APTA "Sylvio Moreira", Agronomic Institute of Campinas , 13490-970, Cordeirópolis, São Paulo, Brazil
| | - Erik P A M Bakkers
- Applied Physics Department, Eindhoven University of Technology , 5600 MB Eindhoven, The Netherlands
| | - Monica A Cotta
- Applied Physics Department, Institute of Physics "Gleb Wataghin", State University of Campinas , 13083-859, Campinas, São Paulo, Brazil
| |
Collapse
|
108
|
Guillaume-Gentil O, Grindberg RV, Kooger R, Dorwling-Carter L, Martinez V, Ossola D, Pilhofer M, Zambelli T, Vorholt JA. Tunable Single-Cell Extraction for Molecular Analyses. Cell 2016; 166:506-516. [DOI: 10.1016/j.cell.2016.06.025] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 04/05/2016] [Accepted: 06/01/2016] [Indexed: 11/17/2022]
|
109
|
Micro- and Nanoscale Technologies for Delivery into Adherent Cells. Trends Biotechnol 2016; 34:665-678. [PMID: 27287927 DOI: 10.1016/j.tibtech.2016.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 12/28/2022]
Abstract
Several recent micro- and nanotechnologies have provided novel methods for biological studies of adherent cells because the small features of these new biotools provide unique capabilities for accessing cells without the need for suspension or lysis. These novel approaches have enabled gentle but effective delivery of molecules into specific adhered target cells, with unprecedented spatial resolution. We review here recent progress in the development of these technologies with an emphasis on in vitro delivery into adherent cells utilizing mechanical penetration or electroporation. We discuss the major advantages and limitations of these approaches and propose possible strategies for improvements. Finally, we discuss the impact of these technologies on biological research concerning cell-specific temporal studies, for example non-destructive sampling and analysis of intracellular molecules.
Collapse
|
110
|
McGrath JS, Quist J, Seddon JRT, Lai SCS, Lemay SG, Bridle HL. Deformability Assessment of Waterborne Protozoa Using a Microfluidic-Enabled Force Microscopy Probe. PLoS One 2016; 11:e0150438. [PMID: 26938220 PMCID: PMC4777494 DOI: 10.1371/journal.pone.0150438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/15/2016] [Indexed: 11/26/2022] Open
Abstract
Many modern filtration technologies are incapable of the complete removal of Cryptosporidium oocysts from drinking-water. Consequently, Cryptosporidium-contaminated drinking-water supplies can severely implicate both water utilities and consumers. Existing methods for the detection of Cryptosporidium in drinking-water do not discern between non-pathogenic and pathogenic species, nor between viable and non-viable oocysts. Using FluidFM, a novel force spectroscopy method employing microchannelled cantilevers for single-cell level manipulation, we assessed the size and deformability properties of two species of Cryptosporidium that pose varying levels of risk to human health. A comparison of such characteristics demonstrated the ability of FluidFM to discern between Cryptosporidium muris and Cryptosporidium parvum with 86% efficiency, whilst using a measurement throughput which exceeded 50 discrete oocysts per hour. In addition, we measured the deformability properties for untreated and temperature-inactivated oocysts of the highly infective, human pathogenic C. parvum to assess whether deformability may be a marker of viability. Our results indicate that untreated and temperature-inactivated C. parvum oocysts had overlapping but significantly different deformability distributions.
Collapse
Affiliation(s)
- John S. McGrath
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Jos Quist
- Nanoionics group, MESA+ Institute for Nanotechnology, University of Twente, PO BOX 217, 7500 AE Enschede, The Netherlands
| | - James R. T. Seddon
- Nanoionics group, MESA+ Institute for Nanotechnology, University of Twente, PO BOX 217, 7500 AE Enschede, The Netherlands
| | - Stanley C. S. Lai
- Nanoionics group, MESA+ Institute for Nanotechnology, University of Twente, PO BOX 217, 7500 AE Enschede, The Netherlands
| | - Serge G. Lemay
- Nanoionics group, MESA+ Institute for Nanotechnology, University of Twente, PO BOX 217, 7500 AE Enschede, The Netherlands
| | - Helen L. Bridle
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
- * E-mail:
| |
Collapse
|
111
|
Chang L, Hu J, Chen F, Chen Z, Shi J, Yang Z, Li Y, Lee LJ. Nanoscale bio-platforms for living cell interrogation: current status and future perspectives. NANOSCALE 2016; 8:3181-3206. [PMID: 26745513 DOI: 10.1039/c5nr06694h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The living cell is a complex entity that dynamically responds to both intracellular and extracellular environments. Extensive efforts have been devoted to the understanding intracellular functions orchestrated with mRNAs and proteins in investigation of the fate of a single-cell, including proliferation, apoptosis, motility, differentiation and mutations. The rapid development of modern cellular analysis techniques (e.g. PCR, western blotting, immunochemistry, etc.) offers new opportunities in quantitative analysis of RNA/protein expression up to a single cell level. The recent entries of nanoscale platforms that include kinds of methodologies with high spatial and temporal resolution have been widely employed to probe the living cells. In this tutorial review paper, we give insight into background introduction and technical innovation of currently reported nanoscale platforms for living cell interrogation. These highlighted technologies are documented in details within four categories, including nano-biosensors for label-free detection of living cells, nanodevices for living cell probing by intracellular marker delivery, high-throughput platforms towards clinical current, and the progress of microscopic imaging platforms for cell/tissue tracking in vitro and in vivo. Perspectives for system improvement were also discussed to solve the limitations remains in current techniques, for the purpose of clinical use in future.
Collapse
Affiliation(s)
- Lingqian Chang
- NSF Nanoscale Science and Engineering Center (NSEC), The Ohio State University, Columbus, OH 43212, USA.
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Beaussart A, Abellán-Flos M, El-Kirat-Chatel S, Vincent SP, Dufrêne YF. Force Nanoscopy as a Versatile Platform for Quantifying the Activity of Antiadhesion Compounds Targeting Bacterial Pathogens. NANO LETTERS 2016; 16:1299-1307. [PMID: 26812480 DOI: 10.1021/acs.nanolett.5b04689] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The development of bacterial strains that are resistant to multiple antibiotics has urged the need for new antibacterial therapies. An exciting approach to fight bacterial diseases is the use of antiadhesive agents capable to block the adhesion of the pathogens to host tissues, the first step of infection. We report the use of a novel atomic force microscopy (AFM) platform for quantifying the activity of antiadhesion compounds directly on living bacteria, thus without labeling or purification. Novel fullerene-based mannoconjugates bearing 10 carbohydrate ligands and a thiol bond were efficiently prepared. The thiol functionality could be exploited as a convenient handle to graft the multimeric species onto AFM tips. Using a combination of single-molecule and single-cell AFM assays, we demonstrate that, unlike mannosidic monomers, multivalent glycofullerenes strongly block the adhesion of uropathogenic Escherichia coli bacteria to their carbohydrate receptors. We expect that the nanoscopy technique developed here will help designing new antiadhesion drugs to treat microbial infections, including those caused by multidrug resistant organisms.
Collapse
Affiliation(s)
- Audrey Beaussart
- Université catholique de Louvain , Institute of Life Sciences, Croix du Sud, 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
| | - Marta Abellán-Flos
- University of Namur , Department of Chemistry, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Sofiane El-Kirat-Chatel
- Université catholique de Louvain , Institute of Life Sciences, Croix du Sud, 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
| | - Stéphane P Vincent
- University of Namur , Department of Chemistry, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Yves F Dufrêne
- Université catholique de Louvain , Institute of Life Sciences, Croix du Sud, 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
- Walloon Excellence in Life sciences and Biotechnology (WELBIO) 1300 Wavre, Belgium
| |
Collapse
|
113
|
|
114
|
Zambelli T. Force-controlled electrophysiology. BIO WEB OF CONFERENCES 2016. [DOI: 10.1051/bioconf/20160601002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
115
|
King JE, Roberts IS. Bacterial Surfaces: Front Lines in Host-Pathogen Interaction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:129-56. [PMID: 27193542 DOI: 10.1007/978-3-319-32189-9_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
All bacteria are bound by at least one membrane that acts as a barrier between the cell's interior and the outside environment. Surface components within and attached to the cell membrane are essential for ensuring that the overall homeostasis of the cell is maintained. However, many surface components of the bacterial cell also have an indispensable role mediating interactions of the bacteria with their immediate environment and as such are essential to the pathogenesis of infectious disease. During the course of an infection, bacterial pathogens will encounter many different ecological niches where environmental conditions such as salinity, temperature, pH, and the availability of nutrients fluctuate. It is the bacterial cell surface that is at the front-line of these host-pathogen interactions often protecting the bacterium from hostile surroundings but at the same time playing a critical role in the adherence to host tissues promoting colonization and subsequent infection. To deal effectively with the changing environments that pathogens may encounter in different ecological niches within the host many of the surface components of the bacterial cell are subject to phenotypic variation resulting in heterogeneous subpopulations of bacteria within the clonal population. This dynamic phenotypic heterogeneity ensures that at least a small fraction of the population will be adapted for a particular circumstance should it arise. Diversity within the clonal population has often been masked by studies on entire bacterial populations where it was often assumed genes were expressed in a uniform manner. This chapter, therefore, aims to highlight the non-uniformity in certain cell surface structures and will discuss the implication of this heterogeneity in bacterial-host interaction. Some of the recent advances in studying bacterial surface structures at the single cell level will also be reviewed.
Collapse
Affiliation(s)
- Jane E King
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Ian S Roberts
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
116
|
Aekbote BL, Fekete T, Jacak J, Vizsnyiczai G, Ormos P, Kelemen L. Surface-modified complex SU-8 microstructures for indirect optical manipulation of single cells. BIOMEDICAL OPTICS EXPRESS 2016; 7:45-56. [PMID: 26819816 PMCID: PMC4722909 DOI: 10.1364/boe.7.000045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 05/24/2023]
Abstract
We introduce a method that combines two-photon polymerization (TPP) and surface functionalization to enable the indirect optical manipulation of live cells. TPP-made 3D microstructures were coated specifically with a multilayer of the protein streptavidin and non-specifically with IgG antibody using polyethylene glycol diamine as a linker molecule. Protein density on their surfaces was quantified for various coating methods. The streptavidin-coated structures were shown to attach to biotinated cells reproducibly. We performed basic indirect optical micromanipulation tasks with attached structure-cell couples using complex structures and a multi-focus optical trap. The use of such extended manipulators for indirect optical trapping ensures to keep a safe distance between the trapping beams and the sensitive cell and enables their 6 degrees of freedom actuation.
Collapse
Affiliation(s)
- Badri L. Aekbote
- Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Tamás Fekete
- Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Jaroslaw Jacak
- University of Applied Sciences Upper Austria, Garnisonstraße 21, 4020 Linz, Austria
| | - Gaszton Vizsnyiczai
- Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Pál Ormos
- Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Lóránd Kelemen
- Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| |
Collapse
|
117
|
Herman-Bausier P, Formosa-Dague C, Feuillie C, Valotteau C, Dufrêne YF. Forces guiding staphylococcal adhesion. J Struct Biol 2015; 197:65-69. [PMID: 26707623 DOI: 10.1016/j.jsb.2015.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
Abstract
Staphylococcus epidermidis and Staphylococcus aureus are two important nosocomial pathogens that form biofilms on indwelling medical devices. Biofilm infections are difficult to fight as cells within the biofilm show increased resistance to antibiotics. Our understanding of the molecular interactions driving bacterial adhesion, the first stage of biofilm formation, has long been hampered by the paucity of appropriate force-measuring techniques. In this minireview, we discuss how atomic force microscopy techniques have enabled to shed light on the molecular forces at play during staphylococcal adhesion. Specific highlights include the study of the binding mechanisms of adhesion molecules by means of single-molecule force spectroscopy, the measurement of the forces involved in whole cell interactions using single-cell force spectroscopy, and the probing of the nanobiophysical properties of living bacteria via multiparametric imaging. Collectively, these findings emphasize the notion that force and function are tightly connected in staphylococcal adhesion.
Collapse
Affiliation(s)
- Philippe Herman-Bausier
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Cécile Formosa-Dague
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Cécile Feuillie
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Claire Valotteau
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Yves F Dufrêne
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Belgium.
| |
Collapse
|
118
|
A Multifunctional Frontloading Approach for Repeated Recycling of a Pressure-Controlled AFM Micropipette. PLoS One 2015; 10:e0144157. [PMID: 26636981 PMCID: PMC4670200 DOI: 10.1371/journal.pone.0144157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/14/2015] [Indexed: 11/19/2022] Open
Abstract
Fluid force microscopy combines the positional accuracy and force sensitivity of an atomic force microscope (AFM) with nanofluidics via a microchanneled cantilever. However, adequate loading and cleaning procedures for such AFM micropipettes are required for various application situations. Here, a new frontloading procedure is described for an AFM micropipette functioning as a force- and pressure-controlled microscale liquid dispenser. This frontloading procedure seems especially attractive when using target substances featuring high costs or low available amounts. Here, the AFM micropipette could be filled from the tip side with liquid from a previously applied droplet with a volume of only a few μL using a short low-pressure pulse. The liquid-loaded AFM micropipettes could be then applied for experiments in air or liquid environments. AFM micropipette frontloading was evaluated with the well-known organic fluorescent dye rhodamine 6G and the AlexaFluor647-labeled antibody goat anti-rat IgG as an example of a larger biological compound. After micropipette usage, specific cleaning procedures were tested. Furthermore, a storage method is described, at which the AFM micropipettes could be stored for a few hours up to several days without drying out or clogging of the microchannel. In summary, the rapid, versatile and cost-efficient frontloading and cleaning procedure for the repeated usage of a single AFM micropipette is beneficial for various application situations from specific surface modifications through to local manipulation of living cells, and provides a simplified and faster handling for already known experiments with fluid force microscopy.
Collapse
|
119
|
Studying RNAP–promoter interactions using atomic force microscopy. Methods 2015; 86:4-9. [DOI: 10.1016/j.ymeth.2015.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 01/02/2023] Open
|
120
|
Nanoscale monitoring of drug actions on cell membrane using atomic force microscopy. Acta Pharmacol Sin 2015; 36:769-82. [PMID: 26027658 DOI: 10.1038/aps.2015.28] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/13/2015] [Indexed: 02/06/2023]
Abstract
Knowledge of the nanoscale changes that take place in individual cells in response to a drug is useful for understanding the drug action. However, due to the lack of adequate techniques, such knowledge was scarce until the advent of atomic force microscopy (AFM), which is a multifunctional tool for investigating cellular behavior with nanometer resolution under near-physiological conditions. In the past decade, researchers have applied AFM to monitor the morphological and mechanical dynamics of individual cells following drug stimulation, yielding considerable novel insight into how the drug molecules affect an individual cell at the nanoscale. In this article we summarize the representative applications of AFM in characterization of drug actions on cell membrane, including topographic imaging, elasticity measurements, molecular interaction quantification, native membrane protein imaging and manipulation, etc. The challenges that are hampering the further development of AFM for studies of cellular activities are aslo discussed.
Collapse
|
121
|
Dufrêne YF. Sticky microbes: forces in microbial cell adhesion. Trends Microbiol 2015; 23:376-82. [DOI: 10.1016/j.tim.2015.01.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 11/30/2022]
|
122
|
Ossola D, Amarouch MY, Behr P, Vörös J, Abriel H, Zambelli T. Force-controlled patch clamp of beating cardiac cells. NANO LETTERS 2015; 15:1743-50. [PMID: 25639960 DOI: 10.1021/nl504438z] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
From its invention in the 1970s, the patch clamp technique is the gold standard in electrophysiology research and drug screening because it is the only tool enabling accurate investigation of voltage-gated ion channels, which are responsible for action potentials. Because of its key role in drug screening, innovation efforts are being made to reduce its complexity toward more automated systems. While some of these new approaches are being adopted in pharmaceutical companies, conventional patch-clamp remains unmatched in fundamental research due to its versatility. Here, we merged the patch clamp and atomic force microscope (AFM) techniques, thus equipping the patch-clamp with the sensitive AFM force control. This was possible using the FluidFM, a force-controlled nanopipette based on microchanneled AFM cantilevers. First, the compatibility of the system with patch-clamp electronics and its ability to record the activity of voltage-gated ion channels in whole-cell configuration was demonstrated with sodium (NaV1.5) channels. Second, we showed the feasibility of simultaneous recording of membrane current and force development during contraction of isolated cardiomyocytes. Force feedback allowed for a gentle and stable contact between AFM tip and cell membrane enabling serial patch clamping and injection without apparent cell damage.
Collapse
Affiliation(s)
- Dario Ossola
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich , Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
123
|
Potthoff E, Ossola D, Zambelli T, Vorholt JA. Bacterial adhesion force quantification by fluidic force microscopy. NANOSCALE 2015; 7:4070-9. [PMID: 25660231 DOI: 10.1039/c4nr06495j] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Quantification of detachment forces between bacteria and substrates facilitates the understanding of the bacterial adhesion process that affects cell physiology and survival. Here, we present a method that allows for serial, single bacterial cell force spectroscopy by combining the force control of atomic force microscopy with microfluidics. Reversible bacterial cell immobilization under physiological conditions on the pyramidal tip of a microchanneled cantilever is achieved by underpressure. Using the fluidic force microscopy technology (FluidFM), we achieve immobilization forces greater than those of state-of-the-art cell-cantilever binding as demonstrated by the detachment of Escherichia coli from polydopamine with recorded forces between 4 and 8 nN for many cells. The contact time and setpoint dependence of the adhesion forces of E. coli and Streptococcus pyogenes, as well as the sequential detachment of bacteria out of a chain, are shown, revealing distinct force patterns in the detachment curves. This study demonstrates the potential of the FluidFM technology for quantitative bacterial adhesion measurements of cell-substrate and cell-cell interactions that are relevant in biofilms and infection biology.
Collapse
Affiliation(s)
- Eva Potthoff
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | | | | | | |
Collapse
|
124
|
Sullan RMA, Li JK, Crowley PJ, Brady LJ, Dufrêne YF. Binding forces of Streptococcus mutans P1 adhesin. ACS NANO 2015; 9:1448-60. [PMID: 25671413 PMCID: PMC4369792 DOI: 10.1021/nn5058886] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Streptococcus mutans is a Gram-positive oral bacterium that is a primary etiological agent associated with human dental caries. In the oral cavity, S. mutans adheres to immobilized salivary agglutinin (SAG) contained within the salivary pellicle on the tooth surface. Binding to SAG is mediated by cell surface P1, a multifunctional adhesin that is also capable of interacting with extracellular matrix proteins. This may be of particular importance outside of the oral cavity as S. mutans has been associated with infective endocarditis and detected in atherosclerotic plaque. Despite the biomedical importance of P1, its binding mechanisms are not completely understood. In this work, we use atomic force microscopy-based single-molecule and single-cell force spectroscopy to quantify the nanoscale forces driving P1-mediated adhesion. Single-molecule experiments show that full-length P1, as well as fragments containing only the P1 globular head or C-terminal region, binds to SAG with relatively weak forces (∼50 pN). In contrast, single-cell analyses reveal that adhesion of a single S. mutans cell to SAG is mediated by strong (∼500 pN) and long-range (up to 6000 nm) forces. This is likely due to the binding of multiple P1 adhesins to self-associated gp340 glycoproteins. Such a cooperative, long-range character of the S. mutans-SAG interaction would therefore dramatically increase the strength and duration of cell adhesion. We also demonstrate, at single-molecule and single-cell levels, the interaction of P1 with fibronectin and collagen, as well as with hydrophobic, but not hydrophilic, substrates. The binding mechanism (strong forces, cooperativity, broad specificity) of P1 provides a molecular basis for its multifunctional adhesion properties. Our methodology represents a valuable approach to probe the binding forces of bacterial adhesins and offers a tractable methodology to assess anti-adhesion therapy.
Collapse
Affiliation(s)
- Ruby May A. Sullan
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium B-1348
| | - James K. Li
- Institute for Optical Sciences, University of Toronto, Toronto, Ontario M5S 3H8, Canada
| | - Paula J. Crowley
- Department of Oral Biology, University of Florida, Gainesville, Florida 32603, United States
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, Florida 32603, United States
| | - Yves F. Dufrêne
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium B-1348
| |
Collapse
|
125
|
Rodriguez-Emmenegger C, Janel S, de los Santos Pereira A, Bruns M, Lafont F. Quantifying bacterial adhesion on antifouling polymer brushes via single-cell force spectroscopy. Polym Chem 2015. [DOI: 10.1039/c5py00197h] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The adhesion forces between a single bacterial cell and different polymer brushes were measured directly with an atomic force microscope and correlated with their resistance to fouling.
Collapse
Affiliation(s)
- Cesar Rodriguez-Emmenegger
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague
- Czech Republic
| | - Sébastien Janel
- Cellular Microbiology and Physics of Infection Group
- CNRS UMR 8204
- INSERM U1019
- Institut Pasteur de Lille
- Lille University
| | | | - Michael Bruns
- Institute for Applied Materials (IAM)
- Karlsruhe Nano Micro Facility (KNMF)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Frank Lafont
- Cellular Microbiology and Physics of Infection Group
- CNRS UMR 8204
- INSERM U1019
- Institut Pasteur de Lille
- Lille University
| |
Collapse
|
126
|
Hirt L, Grüter RR, Berthelot T, Cornut R, Vörös J, Zambelli T. Local surface modification via confined electrochemical deposition with FluidFM. RSC Adv 2015. [DOI: 10.1039/c5ra07239e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hollow AFM cantilevers enable local electroplating and grafting followed by the in situ imaging of the created surface patterns.
Collapse
Affiliation(s)
- Luca Hirt
- ETH and University of Zurich
- Institute for Biomedical Engineering
- Laboratory of Biosensors and Bioelectronics
- CH-8092 Zurich
- Switzerland
| | - Raphael R. Grüter
- ETH and University of Zurich
- Institute for Biomedical Engineering
- Laboratory of Biosensors and Bioelectronics
- CH-8092 Zurich
- Switzerland
| | | | | | - János Vörös
- ETH and University of Zurich
- Institute for Biomedical Engineering
- Laboratory of Biosensors and Bioelectronics
- CH-8092 Zurich
- Switzerland
| | - Tomaso Zambelli
- ETH and University of Zurich
- Institute for Biomedical Engineering
- Laboratory of Biosensors and Bioelectronics
- CH-8092 Zurich
- Switzerland
| |
Collapse
|
127
|
|
128
|
Drake B, Randall C, Bridges D, Hansma PK. A new ion sensing deep atomic force microscope. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:083706. [PMID: 25173275 PMCID: PMC4149697 DOI: 10.1063/1.4893640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/10/2014] [Indexed: 05/24/2023]
Abstract
Here we describe a new deep atomic force microscope (AFM) capable of ion sensing. A novel probe assembly incorporates a micropipette that can be used both for sensing ion currents and as the tip for AFM imaging. The key advance of this instrument over previous ion sensing AFMs is that it uses conventional micropipettes in a novel suspension system. This paper focuses on sensing the ion current passively while using force feedback for the operation of the AFM in contact mode. Two images are obtained simultaneously: (1) an AFM topography image and (2) an ion current image. As an example, two images of a MEMS device with a microchannel show peaks in the ion current as the pipette tip goes over the edges of the channel. This ion sensing AFM can also be used in other modes including tapping mode with force feedback as well as in non-contact mode by utilizing the ion current for feedback, as in scanning ion conductance microscopy. The instrument is gentle enough to be used on some biological samples such as plant leaves.
Collapse
Affiliation(s)
- Barney Drake
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Connor Randall
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Daniel Bridges
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Paul K Hansma
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|