101
|
Agarwal S, Agarwal S, Bhatnagar R. Identification and characterization of a novel toxin-antitoxin module from Bacillus anthracis. FEBS Lett 2007; 581:1727-34. [PMID: 17416361 DOI: 10.1016/j.febslet.2007.03.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 03/03/2007] [Accepted: 03/20/2007] [Indexed: 11/19/2022]
Abstract
Comparative genome analysis of Bacillus anthracis revealed a pair of linked genes encoding pemK (K, killer protein) and pemI (I, inhibitory protein) homologous to pem loci of other organisms. Expression of PemK in Escherichia coli and Bacillus anthracis was bacteriostatic whereas the concomitant expression of PemI reversed the growth arrest. PemK expression effectively inhibited protein synthesis with no significant effect on DNA replication. Coexpression and interaction of these proteins confirmed it to be a Type II addiction module. Thermal denaturation analysis reflected poor conformational stability of PemI as compared to PemK. Circular dichroism analysis indicated that PemI contains twice the amount of beta-sheets as PemK. Gel retardation assays demonstrated that PemI binds to its upstream DNA sequence. This study reports the first evidence of an active chromosome encoded toxin-antitoxin locus in B. anthracis.
Collapse
Affiliation(s)
- Shivangi Agarwal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | | | | |
Collapse
|
102
|
Bhowruth V, Dover LG, Besra GS. Tuberculosis chemotherapy: recent developments and future perspectives. PROGRESS IN MEDICINAL CHEMISTRY 2007; 45:169-203. [PMID: 17280904 DOI: 10.1016/s0079-6468(06)45504-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Veemal Bhowruth
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
103
|
Moritz EM, Hergenrother PJ. Toxin-antitoxin systems are ubiquitous and plasmid-encoded in vancomycin-resistant enterococci. Proc Natl Acad Sci U S A 2006; 104:311-6. [PMID: 17190821 PMCID: PMC1765457 DOI: 10.1073/pnas.0601168104] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Vancomycin-resistant enterococci (VRE) are common hospital pathogens that are resistant to most major classes of antibiotics. The incidence of VRE is increasing rapidly, to the point where over one-quarter of enterococcal infections in intensive care units are now resistant to vancomycin. The exact mechanism by which VRE maintains its plasmid-encoded resistance genes is ill-defined, and novel targets for the treatment of VRE are lacking. In an effort to identify novel protein targets for the treatment of VRE infections, we probed the plasmids obtained from 75 VRE isolates for the presence of toxin-antitoxin (TA) gene systems. Remarkably, genes for one particular TA pair, the mazEF system (originally identified on the Escherichia coli chromosome), were present on plasmids from 75/75 (100%) of the isolates. Furthermore, mazEF was on the same plasmid as vanA in the vast majority of cases (>90%). Plasmid stability tests and RT-PCR raise the possibility that this plasmid-encoded mazEF is indeed functional in enterococci. Given this ubiquity of mazEF in VRE and the deleterious activity of the MazF toxin, disruption of mazEF with pharmacological agents is an attractive strategy for tailored antimicrobial therapy.
Collapse
Affiliation(s)
| | - Paul J. Hergenrother
- Chemistry, and
- Biochemistry, Roger Adams Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
104
|
Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, Hazan R. Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet 2006; 2:e135. [PMID: 17069462 PMCID: PMC1626106 DOI: 10.1371/journal.pgen.0020135] [Citation(s) in RCA: 318] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Traditionally, programmed cell death (PCD) is associated with eukaryotic multicellular organisms. However, recently, PCD systems have also been observed in bacteria. Here we review recent research on two kinds of genetic programs that promote bacterial cell death. The first is mediated by mazEF, a toxin–antitoxin module found in the chromosomes of many kinds of bacteria, and mainly studied in Escherichia coli. The second program is found in Bacillus subtilis, in which the skf and sdp operons mediate the death of a subpopulation of sporulating bacterial cells. We relate these two bacterial PCD systems to the ways in which bacterial populations resemble multicellular organisms.
Collapse
Affiliation(s)
- Hanna Engelberg-Kulka
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | | | | | | |
Collapse
|
105
|
Kędzierska B, Lian LY, Hayes F. Toxin-antitoxin regulation: bimodal interaction of YefM-YoeB with paired DNA palindromes exerts transcriptional autorepression. Nucleic Acids Res 2006; 35:325-39. [PMID: 17170003 PMCID: PMC1802561 DOI: 10.1093/nar/gkl1028] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Toxin–antitoxin (TA) complexes function in programmed cell death or stress response mechanisms in bacteria. The YefM–YoeB TA complex of Escherichia coli consists of YoeB toxin that is counteracted by YefM antitoxin. When liberated from the complex, YoeB acts as an endoribonuclease, preferentially cleaving 3′ of purine nucleotides. Here we demonstrate that yefM-yoeB is transcriptionally autoregulated. YefM, a dimeric protein with extensive secondary structure revealed by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy, is the primary repressor, whereas YoeB is a repression enhancer. The operator site 5′ of yefM-yoeB comprises adjacent long and short palindromes with core 5′-TGTACA-3′ motifs. YefM binds the long palindrome, followed sequentially by short palindrome recognition. In contrast, the repressor–corepressor complex recognizes both motifs more avidly, impyling that YefM within the complex has an enhanced DNA-binding affinity compared to free YefM. Operator interaction by YefM and YefM–YoeB is accompanied by structural transitions in the proteins. Paired 5′-TGTACA-3′ motifs are common in yefM-yoeB regulatory regions in diverse genomes suggesting that interaction of YefM–YoeB with these motifs is a conserved mechanism of operon autoregulation. Artificial perturbation of transcriptional autorepression could elicit inappropriate YoeB toxin production and induction of bacterial cell suicide, a potentially novel antibacterial strategy.
Collapse
Affiliation(s)
| | - Lu-Yun Lian
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Finbarr Hayes
- To whom correspondence should be addressed. Tel: +44 161 3068934; Fax: +44 161 3065201;
| |
Collapse
|
106
|
Dziewit L, Jazurek M, Drewniak L, Baj J, Bartosik D. The SXT conjugative element and linear prophage N15 encode toxin-antitoxin-stabilizing systems homologous to the tad-ata module of the Paracoccus aminophilus plasmid pAMI2. J Bacteriol 2006; 189:1983-97. [PMID: 17158670 PMCID: PMC1855756 DOI: 10.1128/jb.01610-06] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A group of proteic toxin-antitoxin (TA) cassettes whose representatives are widely distributed among bacterial genomes has been identified. These cassettes occur in chromosomes, plasmids, bacteriophages, and noncomposite transposons, as well as in the SXT conjugative element of Vibrio cholerae. The following four homologous loci were subjected to detailed comparative studies: (i) tad-ata from plasmid pAMI2 of Paracoccus aminophilus (the prototype of this group), (ii) gp49-gp48 from the linear bacteriophage N15 of Escherichia coli, (iii) s045-s044 from SXT, and (iv) Z3230-Z3231 from the genomic island of enterohemorrhagic Escherichia coli O157:H7 strain EDL933. Functional analysis revealed that all but one of these loci (Z3230-Z3231) are able to stabilize heterologous replicons, although the host ranges varied. The TA cassettes analyzed have the following common features: (i) the toxins are encoded by the first gene of each operon; (ii) the antitoxins contain a predicted helix-turn-helix motif of the XRE family; and (iii) the cassettes have two promoters that are different strengths, one which is located upstream of the toxin gene and one which is located upstream of the antitoxin gene. All four toxins tested are functional in E. coli; overexpression of the toxins (in the absence of antitoxin) results in a bacteriostatic effect manifested by elongation of bacterial cells and growth arrest. The toxins have various effects on cell viability, which suggests that they may recognize different intracellular targets. Preliminary data suggest that different cellular proteases are involved in degradation of antitoxins encoded by the loci analyzed.
Collapse
Affiliation(s)
- Lukasz Dziewit
- Warsaw University, Institute of Microbiology, Department of Bacterial Genetics, Miecznikowa 1, 02-096 Warsaw, Poland
| | | | | | | | | |
Collapse
|
107
|
Vicente M, Hodgson J, Massidda O, Tonjum T, Henriques-Normark B, Ron EZ. The fallacies of hope: will we discover new antibiotics to combat pathogenic bacteria in time? FEMS Microbiol Rev 2006; 30:841-52. [PMID: 17064283 DOI: 10.1111/j.1574-6976.2006.00038.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
While newly developed technologies have revolutionized the classical approaches to combating infectious diseases, the difficulties associated with developing novel antimicrobials mean that these technologies have not yet been used to introduce new compounds into the market. The new technologies, including genomics and structural biology, open up exciting possibilities for the discovery of antibiotics. However, a substantial effort to pursue research, and moreover to incorporate the results into the production chain, is required in order to bring new antimicrobials to the final user. In the current scenario of emerging diseases and the rapid spread of antibiotic resistance, an active policy to support these requirements is vital. Otherwise, many valuable programmes may never be fully developed for lack of "interest" and funds (private and public). Will we react in time to avoid potential disaster?
Collapse
Affiliation(s)
- Miguel Vicente
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
108
|
Nieto C, Cherny I, Khoo SK, de Lacoba MG, Chan WT, Yeo CC, Gazit E, Espinosa M. The yefM-yoeB toxin-antitoxin systems of Escherichia coli and Streptococcus pneumoniae: functional and structural correlation. J Bacteriol 2006; 189:1266-78. [PMID: 17071753 PMCID: PMC1797350 DOI: 10.1128/jb.01130-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxin-antitoxin loci belonging to the yefM-yoeB family are located in the chromosome or in some plasmids of several bacteria. We cloned the yefM-yoeB locus of Streptococcus pneumoniae, and these genes encode bona fide antitoxin (YefM(Spn)) and toxin (YoeB(Spn)) products. We showed that overproduction of YoeB(Spn) is toxic to Escherichia coli cells, leading to severe inhibition of cell growth and to a reduction in cell viability; this toxicity was more pronounced in an E. coli B strain than in two E. coli K-12 strains. The YoeB(Spn)-mediated toxicity could be reversed by the cognate antitoxin, YefM(Spn), but not by overproduction of the E. coli YefM antitoxin. The pneumococcal proteins were purified and were shown to interact with each other both in vitro and in vivo. Far-UV circular dichroism analyses indicated that the pneumococcal antitoxin was partially, but not totally, unfolded and was different than its E. coli counterpart. Molecular modeling showed that the toxins belonging to the family were homologous, whereas the antitoxins appeared to be specifically designed for each bacterial locus; thus, the toxin-antitoxin interactions were adapted to the different bacterial environmental conditions. Both structural features, folding and the molecular modeled structure, could explain the lack of cross-complementation between the pneumococcal and E. coli antitoxins.
Collapse
Affiliation(s)
- Concha Nieto
- Department of Protein Structure and Function, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, E-28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Badger JH, Hoover TR, Brun YV, Weiner RM, Laub MT, Alexandre G, Mrázek J, Ren Q, Paulsen IT, Nelson KE, Khouri HM, Radune D, Sosa J, Dodson RJ, Sullivan SA, Rosovitz MJ, Madupu R, Brinkac LM, Durkin AS, Daugherty SC, Kothari SP, Giglio MG, Zhou L, Haft DH, Selengut JD, Davidsen TM, Yang Q, Zafar N, Ward NL. Comparative genomic evidence for a close relationship between the dimorphic prosthecate bacteria Hyphomonas neptunium and Caulobacter crescentus. J Bacteriol 2006; 188:6841-50. [PMID: 16980487 PMCID: PMC1595504 DOI: 10.1128/jb.00111-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dimorphic prosthecate bacteria (DPB) are alpha-proteobacteria that reproduce in an asymmetric manner rather than by binary fission and are of interest as simple models of development. Prior to this work, the only member of this group for which genome sequence was available was the model freshwater organism Caulobacter crescentus. Here we describe the genome sequence of Hyphomonas neptunium, a marine member of the DPB that differs from C. crescentus in that H. neptunium uses its stalk as a reproductive structure. Genome analysis indicates that this organism shares more genes with C. crescentus than it does with Silicibacter pomeroyi (a closer relative according to 16S rRNA phylogeny), that it relies upon a heterotrophic strategy utilizing a wide range of substrates, that its cell cycle is likely to be regulated in a similar manner to that of C. crescentus, and that the outer membrane complements of H. neptunium and C. crescentus are remarkably similar. H. neptunium swarmer cells are highly motile via a single polar flagellum. With the exception of cheY and cheR, genes required for chemotaxis were absent in the H. neptunium genome. Consistent with this observation, H. neptunium swarmer cells did not respond to any chemotactic stimuli that were tested, which suggests that H. neptunium motility is a random dispersal mechanism for swarmer cells rather than a stimulus-controlled navigation system for locating specific environments. In addition to providing insights into bacterial development, the H. neptunium genome will provide an important resource for the study of other interesting biological processes including chromosome segregation, polar growth, and cell aging.
Collapse
Affiliation(s)
- Jonathan H Badger
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Fico S, Mahillon J. TasA-tasB, a new putative toxin-antitoxin (TA) system from Bacillus thuringiensis pGI1 plasmid is a widely distributed composite mazE-doc TA system. BMC Genomics 2006; 7:259. [PMID: 17038198 PMCID: PMC1626090 DOI: 10.1186/1471-2164-7-259] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 10/13/2006] [Indexed: 12/03/2022] Open
Abstract
Background Post-segregational killing systems are present in a large variety of microorganisms. When found on plasmids, they are described as addiction systems that act to maintain the plasmid during the partitioning of the cell. The plasmid to be maintained through the generations harbours a group of two genes, one coding for a stable toxin and the other coding for an unstable antitoxin that inhibits the effects of the toxin. If, during cell division, the plasmid is lost, the toxin and antitoxin proteins present in the cytosol cease to be newly expressed. The level of unstable antitoxin protein then rapidly decreases, leaving the toxin free to act on the cellular target, leading to cell death. Consequently, only cells harbouring the plasmid can survive. Results The pGI1 plasmid of Bacillus thuringiensis H1.1 harbours a group of two genes, one showing similarities with the Doc toxin of the phd-doc toxin-antitoxin system, potentially coding for a toxin-antitoxin system. Attempts were made to clone this putative system in the Gram-negative host Escherichia coli. The putative antitoxin tasA was easily cloned in E. coli. However, although several combinations of DNA fragment were used in the cloning strategy, only clones containing a mutation in the toxin gene could be recovered, suggesting a toxic activity of TasB. An exhaustive search was carried out in order to index genes homologous to those of the putative tasA-tasB system among microorganisms. This study revealed the presence of this system in great number and in a large variety of microorganisms, either as tasA-tasB homologues or in association with toxins (or antitoxins) from other TA systems. Conclusion In this work, we showed that the pGI1 plasmid of B. thuringiensis H1.1 harbours genes resembling a toxin-antitoxin system, named tasA-tasB for thuringiensis addiction system. This system appeared to be functional but unregulated in E. coli. Bioinformatics studies showed that the tasAB system is present on plasmids or chromosomes of a large variety of microorganisms. Moreover, the association between TasA antitoxin with toxins other than TasB (and vice versa) revealed the composite and modular nature of bacterial TA systems.
Collapse
Affiliation(s)
- Sarah Fico
- Laboratoire de Microbiologie Alimentaire et Environnementale, Université catholique de Louvain, Croix du Sud, 2/12, B-1348 Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratoire de Microbiologie Alimentaire et Environnementale, Université catholique de Louvain, Croix du Sud, 2/12, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
111
|
Cheng WC, Berman SB, Ivanovska I, Jonas EA, Lee SJ, Chen Y, Kaczmarek LK, Pineda F, Hardwick JM. Mitochondrial factors with dual roles in death and survival. Oncogene 2006; 25:4697-705. [PMID: 16892083 DOI: 10.1038/sj.onc.1209596] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
At least in mammals, we have some understanding of how caspases facilitate mitochondria-mediated cell death, but the biochemical mechanisms by which other factors promote or inhibit programmed cell death are not understood. Moreover, most of these factors are only studied after treating cells with a death stimulus. A growing body of new evidence suggests that cell death regulators also have 'day jobs' in healthy cells. Even caspases, mitochondrial fission proteins and pro-death Bcl-2 family proteins appear to have normal cellular functions that promote cell survival. Here, we review some of the supporting evidence and stretch beyond the evidence to seek an understanding of the remaining questions.
Collapse
Affiliation(s)
- W-C Cheng
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Lioy VS, Martín MT, Camacho AG, Lurz R, Antelmann H, Hecker M, Hitchin E, Ridge Y, Wells JM, Alonso JC. pSM19035-encoded zeta toxin induces stasis followed by death in a subpopulation of cells. MICROBIOLOGY-SGM 2006; 152:2365-2379. [PMID: 16849801 DOI: 10.1099/mic.0.28950-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The toxin-antitoxin operon of pSM19035 encodes three proteins: the omega global regulator, the epsilon labile antitoxin and the stable zeta toxin. Accumulation of zeta toxin free of epsilon antitoxin induced loss of cell proliferation in both Bacillus subtilis and Escherichia coli cells. Induction of a zeta variant (zetaY83C) triggered stasis, in which B. subtilis cells were viable but unable to proliferate, without selectively affecting protein translation. In E. coli cells, accumulation of free zeta toxin induced stasis, but this was fully reversed by expression of the epsilon antitoxin within a defined time window. The time window for reversion of zeta toxicity by expression of epsilon antitoxin was dependent on the initial cellular level of zeta. After 240 min of constitutive expression, or inducible expression of high levels of zeta toxin for 30 min, expression of epsilon failed to reverse the toxic effect exerted by zeta in cells growing in minimal medium. Under the latter conditions, zeta inhibited replication, transcription and translation and finally induced death in a fraction (approximately 50 %) of the cell population. These results support the view that zeta interacts with its specific target and reversibly inhibits cell proliferation, but accumulation of zeta might lead to cell death due to pleiotropic effects.
Collapse
Affiliation(s)
- Virginia S Lioy
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - M Teresa Martín
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Ana G Camacho
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Rudi Lurz
- Max-Planck-Institut für molekulare Genetik, D-14195 Berlin, Germany
| | - Haike Antelmann
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, D-17487 Greifswald, Greifswald, Germany
| | - Michael Hecker
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, D-17487 Greifswald, Greifswald, Germany
| | - Ed Hitchin
- Department of Food Safety Science, BBSRC Institute of Food Research, Norwich Laboratory, Colney Lane, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Yvonne Ridge
- Department of Food Safety Science, BBSRC Institute of Food Research, Norwich Laboratory, Colney Lane, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Jerry M Wells
- University of Amsterdam, Swammerdam Institute of Life Sciences, 1018 WV Amsterdam, The Netherlands
- Department of Food Safety Science, BBSRC Institute of Food Research, Norwich Laboratory, Colney Lane, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| |
Collapse
|
113
|
Kolodkin-Gal I, Engelberg-Kulka H. Induction of Escherichia coli chromosomal mazEF by stressful conditions causes an irreversible loss of viability. J Bacteriol 2006; 188:3420-3. [PMID: 16621839 PMCID: PMC1447462 DOI: 10.1128/jb.188.9.3420-3423.2006] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 02/22/2006] [Indexed: 11/20/2022] Open
Abstract
mazEF is a stress-induced toxin-antitoxin module located on the chromosomes of many bacteria. Here we induced Escherichia coli chromosomal mazEF by various stressful conditions. We found an irreversible loss of viability, which is the basic characteristic of cell death. These results further support our previous conclusion that E. coli mazEF mediation of cell death is not a passive process, but an active and genetically "programmed" death response.
Collapse
Affiliation(s)
- Ilana Kolodkin-Gal
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | | |
Collapse
|
114
|
Nieto C, Pellicer T, Balsa D, Christensen SK, Gerdes K, Espinosa M. The chromosomal relBE2 toxin-antitoxin locus of Streptococcus pneumoniae: characterization and use of a bioluminescence resonance energy transfer assay to detect toxin-antitoxin interaction. Mol Microbiol 2006; 59:1280-96. [PMID: 16430700 DOI: 10.1111/j.1365-2958.2006.05027.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteic toxin-antitoxin (TA) loci were first identified in bacterial plasmids, and they were regarded as involved in stable plasmid maintenance by a so-called 'addiction' mechanism. Later, chromosomally encoded TA loci were identified and their function ascribed to survival mechanisms when bacteria were subjected to stress. In the search for chromosomally encoded TA loci in Gram-positive bacteria, we identified various in the pathogen Streptococcus pneumoniae. Two of these cassettes, sharing homology with the Escherichia coli relBE locus were cloned and tested for their activity. The relBE2Spn locus resulted to be a bona fide TA locus. The toxin exhibited high toxicity towards E. coli and S. pneumoniae, although in the latter, the chromosomal copy of the antitoxin relB2Spn gene had to be inactivated to detect full toxicity. Cell growth arrest caused by expression of the relE2Spn toxin gene could be reverted by expression of the cognate antitoxin, relB2Spn, although prolonged exposition to the toxin led to cell death. The pneumococcal relBE2Spn locus is the first instance of a chromosomally encoded TA system from Gram-positive bacteria characterized in its own host. We have developed a bioluminescence resonance energy transfer (BRET) assay to detect the interactions between the RelB2Spn antitoxin and the RelE2Spn toxin in vivo. This technique has shown to be amenable to a high-throughput screening (HTS), opening new avenues in the search of molecules with potential antibacterial activity able to inhibit TA interactions.
Collapse
Affiliation(s)
- Concha Nieto
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, E-28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
115
|
Li GY, Zhang Y, Chan MCY, Mal TK, Hoeflich KP, Inouye M, Ikura M. Characterization of Dual Substrate Binding Sites in the Homodimeric Structure of Escherichia coli mRNA Interferase MazF. J Mol Biol 2006; 357:139-50. [PMID: 16413577 DOI: 10.1016/j.jmb.2005.12.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 12/08/2005] [Accepted: 12/09/2005] [Indexed: 10/25/2022]
Abstract
MazF and MazE constitute a so-called addiction module that is critical for bacterial growth arrest and eventual cell death in response to stress. The MazF toxin was recently shown to possess mRNA interferase (MIase) activity, and acts as a protein synthesis inhibitor by cleaving cellular mRNA. As a cognate regulator, the short-lived antitoxin, MazE, inhibits MazF MIase activity and hence maintains the delicate homeostasis between these two components. In the present study, we have shown that the MazF homodimer contains two symmetric binding sites, each of which is capable of interacting with a MazE C-terminal peptide, MazEp(54-77). The slow exchange phenomenon between free and peptide-bound MazF on the NMR timescale indicates relatively high affinities for MazEp(54-77) at both sites (Kd,K'd < 10(-7) M). However, the observed sequential binding behavior suggests a negative cooperativity between the two sites (Kd < K'd). A 13 base single-stranded DNA, employed as an uncleavable RNA substrate analog, can also bind to both sites on the MazF homodimer with moderate affinity (Kd approximately 10(-5) -10(-6) M). Chemical shift perturbation data deduced from NMR experiments indicates that the two binding sites for the MazEp peptide coincided with those for the single-stranded DNA competitive inhibitor. These dual substrate-binding sites are located on the concave interface of the MazF homodimer, consisting of a highly basic region underneath the S1-S2 loop and two hydrophobic regions containing the H1 helix of one subunit and the S3-S4 loop of the opposing subunit. We show that the MazF homodimer is a bidentate endoribonuclease equipped with two identical binding sites for mRNA processing and that a single MazE molecule occupying one of the binding sites can affect the conformation of both sites, hence efficiently hindering the activity of MazF.
Collapse
Affiliation(s)
- Guang-Yao Li
- Division of Signaling Biology, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ont., Canada M5G 2M9
| | | | | | | | | | | | | |
Collapse
|
116
|
Zhang Y, Post-Martens K, Denkin S. New drug candidates and therapeutic targets for tuberculosis therapy. Drug Discov Today 2006; 11:21-7. [PMID: 16478687 DOI: 10.1016/s1359-6446(05)03626-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Despite advances in chemotherapy and the BCG (Bacillus Calmette-Guérin) vaccine, tuberculosis remains a significant infectious disease. Although it can be cured, the therapy takes at least 6-9 months, and the laborious and lengthy treatment brings with it dangers of noncompliance, significant toxicity and drug resistance. The increasing emergence of drug resistance and the problem of mycobacterial persistence highlight the need to develop novel TB drugs that are active against drug resistant bacteria but, more importantly, kill persistent bacteria and shorten the length of treatment. Recent new and exciting developments in tuberculosis drug discovery show good promise of a possible revolution in the chemotherapy of tuberculosis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Molecular Microbiology & Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
117
|
Inouye M. The discovery of mRNA interferases: Implication in bacterial physiology and application to biotechnology. J Cell Physiol 2006; 209:670-6. [PMID: 17001682 DOI: 10.1002/jcp.20801] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Escherichia coli contains a large number of suicide or toxin genes, whose expression leads to cell growth arrest and eventual cell death. This raises intriguing questions as to why E. coli contains so many toxin genes and what are their roles in bacterial physiology. Among these, MazF has been shown to be a sequence-specific endoribonuclease, which cleaves mRNAs at ACA sequences to completely inhibit protein synthesis. MazF is therefore called mRNA interferase. A number of other mRNA interferases with different cleavage specificities have been discovered not only in E. coli, but also in other bacteria including Mycobacterium tuberculosis. Induction of MazF in the cell leads to cellular dormancy termed quasi-dormancy. In spite of complete cell growth inhibition, cells in the quasi-dormant state are fully capable of energy metabolism, amino acids and nucleic acids biosynthesis and RNA and protein synthesis. The quasi-dormancy may be implicated in cell survival under stress conditions and may play a major role in pathogenicity of M. tuberculosis. The quasi-dormant cells provide an intriguing novel biotechnological system producing only a protein of interest in a high yield. MazF causing Bak-dependent programmed cell death in mammalian cells may be used as a tool for gene therapy against cancer and AIDS. The discovery of a novel way to interfere with mRNA function by mRNA interferases opens a wide variety of avenues in basic as well as applied and clinical sciences.
Collapse
Affiliation(s)
- Masayori Inouye
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
118
|
Tsuda A, Witola WH, Ohashi K, Onuma M. Expression of alternative oxidase inhibits programmed cell death-like phenomenon in bloodstream form of Trypanosoma brucei rhodesiense. Parasitol Int 2005; 54:243-51. [PMID: 16115792 DOI: 10.1016/j.parint.2005.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 06/27/2005] [Indexed: 01/07/2023]
Abstract
Trypanosoma brucei rhodesiense is one of the causative agents of African Trypanosomiasis. Programmed cell death (PCD) is fundamental in the development, homeostasis and immune mechanisms of multicellular organisms. It has been shown that, other than occurring in multicellular organisms, the PCD phenomenon also takes place in unicellular organisms. In the present study, we have found that under high-density axenic culture conditions, bloodstream form of T. b. rhodesiense depicts a PCD-like phenomenon. We investigated the association of the PCD-like phenomenon with expression of trypanosome alternative oxidase (TAO) under low-temperature stress conditions. We observed that bloodstream form of T. b. rhodesiense did not show any PCD but had up-regulated expression of TAO. Inhibition of TAO by the addition of ascofranone caused the development of PCD in bloodstream T. b. rhodesiense under low-temperature stress, implying that expression of TAO may contribute to the inhibition of PCD.
Collapse
Affiliation(s)
- Akiko Tsuda
- Laboratory of Infectious Disease, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | |
Collapse
|
119
|
Buts L, Lah J, Dao-Thi MH, Wyns L, Loris R. Toxin-antitoxin modules as bacterial metabolic stress managers. Trends Biochem Sci 2005; 30:672-9. [PMID: 16257530 DOI: 10.1016/j.tibs.2005.10.004] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 09/27/2005] [Accepted: 10/13/2005] [Indexed: 11/25/2022]
Abstract
Bacterial genomes frequently contain operons that encode a toxin and its antidote. These 'toxin-antitoxin (TA) modules' have an important role in bacterial stress physiology and might form the basis of multidrug resistance. The toxins in TA modules act as gyrase poisons or stall the ribosome by mediating the cleavage of mRNA. The antidotes contain an N-terminal DNA-binding region of variable fold and a C-terminal toxin-inhibiting domain. When bound to toxin, the C-terminal domain adopts an extended conformation. In the absence of toxin, by contrast, this domain (and sometimes the whole antidote protein) remains unstructured, allowing its fast degradation by proteolysis. Under silent conditions the antidote inhibits the toxin and the toxin-antidote complex acts as a repressor for the TA operon, whereas under conditions of activation proteolytic degradation of the antidote outpaces its synthesis.
Collapse
Affiliation(s)
- Lieven Buts
- Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel, and Department of Molecular and Cellular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| | | | | | | | | |
Collapse
|
120
|
Lemos JAC, Brown TA, Abranches J, Burne RA. Characteristics of Streptococcus mutans strains lacking the MazEF and RelBE toxin-antitoxin modules. FEMS Microbiol Lett 2005; 253:251-7. [PMID: 16243456 DOI: 10.1016/j.femsle.2005.09.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 09/26/2005] [Accepted: 09/27/2005] [Indexed: 11/23/2022] Open
Abstract
Two pairs of genes were identified in Streptococcus mutans with similarity to relBE and mazEF toxin-antitoxin (TA) modules of Escherichia coli. Transcription of mazEF and relBE was repressed by amino acid starvation, and relBE expression was repressed by low pH. Mutants lacking MazF, RelE, or both toxins (MRT1) grew in broth media and formed biofilms as well as the parent. Biofilm populations of MRT1 were more resistant to acid killing than the parent or single mutants. MRT1 also exhibited a longer diauxie during growth on glucose and inulin and displayed decreased phosphoenolpyruvate:sugar phosphotransferase activity. This is the first report that demonstrates a physiological role for TA modules in Gram-positive bacteria.
Collapse
Affiliation(s)
- José A C Lemos
- Department of Oral Biology, University of Florida College of Dentistry, 1600 SW Archer Road, Gainesville, FL 32610-0424, USA
| | | | | | | |
Collapse
|
121
|
Buts L, De Jonge N, Loris R, Wyns L, Dao-Thi MH. Crystallization of the C-terminal domain of the addiction antidote CcdA in complex with its toxin CcdB. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:949-52. [PMID: 16511204 PMCID: PMC1991321 DOI: 10.1107/s1744309105029258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 09/15/2005] [Indexed: 11/10/2022]
Abstract
CcdA and CcdB are the antidote and toxin of the ccd addiction module of Escherichia coli plasmid F. The CcdA C-terminal domain (CcdAC36; 36 amino acids) was crystallized in complex with CcdB (dimer of 2 x 101 amino acids) in three different crystal forms, two of which diffract to high resolution. Form II belongs to space group P2(1)2(1)2(1), with unit-cell parameters a = 37.6, b = 60.5, c = 83.8 A and diffracts to 1.8 A resolution. Form III belongs to space group P2(1), with unit-cell parameters a = 41.0, b = 37.9, c = 69.6 A, beta = 96.9 degrees, and diffracts to 1.9 A resolution.
Collapse
Affiliation(s)
- Lieven Buts
- Department of Molecular and Cellular Interactions, Vlaams Interinuversitair Instituut voor Biotechnologie and Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Natalie De Jonge
- Department of Molecular and Cellular Interactions, Vlaams Interinuversitair Instituut voor Biotechnologie and Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Remy Loris
- Department of Molecular and Cellular Interactions, Vlaams Interinuversitair Instituut voor Biotechnologie and Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Lode Wyns
- Department of Molecular and Cellular Interactions, Vlaams Interinuversitair Instituut voor Biotechnologie and Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Minh-Hoa Dao-Thi
- Department of Molecular and Cellular Interactions, Vlaams Interinuversitair Instituut voor Biotechnologie and Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| |
Collapse
|
122
|
Engelberg-Kulka H, Hazan R, Amitai S. mazEF: a chromosomal toxin-antitoxin module that triggers programmed cell death in bacteria. J Cell Sci 2005; 118:4327-32. [PMID: 16179604 DOI: 10.1242/jcs.02619] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
mazEF is a toxin-antitoxin module located on the Escherichia coli chromosome and that of some other bacteria, including pathogens. mazF specifies for a stable toxin, MazF, and mazE specifies for a labile antitoxin, MazE, that antagonizes MazF. MazF is a sequence-specific mRNA endoribonuclease that initiates a programmed cell death pathway in response to various stresses. The mazEF-mediated death pathway can act as a defense mechanism that prevents the spread of bacterial phage infection, allowing bacterial populations to behave like multicellular organisms.
Collapse
Affiliation(s)
- Hanna Engelberg-Kulka
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | | | | |
Collapse
|
123
|
Kamada K, Hanaoka F. Conformational Change in the Catalytic Site of the Ribonuclease YoeB Toxin by YefM Antitoxin. Mol Cell 2005; 19:497-509. [PMID: 16109374 DOI: 10.1016/j.molcel.2005.07.004] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 06/29/2005] [Accepted: 07/07/2005] [Indexed: 10/25/2022]
Abstract
The eubacterial chromosome encodes various addiction modules that control global levels of translation through RNA degradation. Crystal structures of the Escherichia coli YefM2 (antitoxin)-YoeB (toxin) complex and the free YoeB toxin have been determined. The structure of the heterotrimeric complex reveals an asymmetric disorder-to-order recognition strategy, in which one C terminus of the YefM homodimer exclusively interacts with an atypical microbial ribonuclease (RNase) fold of YoeB. Comparison with the YefM-free YoeB structure indicates a conformational rearrangement of the RNase catalytic site of YoeB, induced by interaction with YefM. Complementary biochemical experiments demonstrate that the YoeB toxin has an in vitro RNase activity that preferentially cleaves at the 3' end of purine ribonucleotides.
Collapse
Affiliation(s)
- Katsuhiko Kamada
- Cellular Physiology Laboratory, RIKEN Discovery Research Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | |
Collapse
|
124
|
Cherny I, Rockah L, Gazit E. The YoeB Toxin Is a Folded Protein That Forms a Physical Complex with the Unfolded YefM Antitoxin. J Biol Chem 2005; 280:30063-72. [PMID: 15980067 DOI: 10.1074/jbc.m506220200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chromosomal YoeB-YefM toxin-antitoxin module common to numerous strains of bacteria is presumed to have a significant role in survival under stringent conditions. Recently we showed that the purified YefM antitoxin is a natively unfolded protein, as we previously reported for the Phd antitoxin in the P1 phage Doc-Phd toxin-antitoxin system. Here we report the purification and structural properties of the YoeB toxin and present physical evidence for the existence of a tight YoeB. YefM polypeptide complex in solution. YoeB and YefM proteins co-eluted as single peaks in sequential Ni-affinity FPLC and Q-Sepharose ion-exchange chromatography implying the formation of a YoeB. YefM complex. The unstable antitoxin was removed from the mixture by natural proteolysis, and the residual YoeB protein was purified using ion exchange chromatography. Fluorescence anisotropy studies of the purified YoeB and YefM proteins showed a 2:1 stoichiometry of the complex, providing direct evidence for a physical complex between the proteins. Near- and far-UV circular dichroism spectroscopy of the purified toxin revealed that, similar to the Doc toxin, YoeB is a well-folded protein. Thermal denaturation experiments confirmed the conformational stability of the YoeB toxin, which underwent reversible thermal unfolding at temperatures up to 56 degrees C. The thermodynamic features of the toxin-antitoxin complex were similar. Taken together, our results support the notion of a correlation between differential physiological and structural stability in toxin-antitoxin modules.
Collapse
Affiliation(s)
- Izhack Cherny
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
125
|
Zhang Y, Zhu L, Zhang J, Inouye M. Characterization of ChpBK, an mRNA interferase from Escherichia coli. J Biol Chem 2005; 280:26080-8. [PMID: 15901733 DOI: 10.1074/jbc.m502050200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli contains a number of antitoxin-toxin modules on its chromosome, which are responsible for cell growth arrest and possible cell death. ChpBK is a toxin encoded by the ChpBIK antitoxin-toxin module. This module consists of a pair of genes, chpBI and chpBK encoding antitoxin ChpBI and toxin ChpBK, respectively. ChpBK consists of 116 amino acid residues, and its sequence shows 35% identity and 52% similarity to MazF, another E. coli toxin. MazF has been shown to be a sequence-specific (ACA) endoribonuclease that cleaves cellular mRNAs and effectively blocks protein synthesis and is thus termed as an mRNA interferase. Here we demonstrate that ChpBK is another mRNA interferase in E. coli whose induction effectively blocks cell growth in a manner similar to that of MazF. The protein synthesis as judged by incorporation of [35S]methionine was, however, reduced by only 60% upon ChpBK induction. We demonstrate that ChpBK is a new sequence-specific endoribonuclease that cleaves mRNAs both in vivo and in vitro at the 5'-or3'-side of the A residue in ACY sequences (Y is U, A, or G). The ChpBK cleavage of a synthetic RNA substrate generated a 2',3'-cyclic phosphate group at the 3'-end of the 5'-end product and a 5'-OH group at the 5'-end of the 3'-end product in a manner identical to that of MazF.
Collapse
Affiliation(s)
- Yonglong Zhang
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
126
|
Pozniakovsky AI, Knorre DA, Markova OV, Hyman AA, Skulachev VP, Severin FF. Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast. ACTA ACUST UNITED AC 2005; 168:257-69. [PMID: 15657396 PMCID: PMC2171581 DOI: 10.1083/jcb.200408145] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although programmed cell death (PCD) is extensively studied in multicellular organisms, in recent years it has been shown that a unicellular organism, yeast Saccharomyces cerevisiae, also possesses death program(s). In particular, we have found that a high doses of yeast pheromone is a natural stimulus inducing PCD. Here, we show that the death cascades triggered by pheromone and by a drug amiodarone are very similar. We focused on the role of mitochondria during the pheromone/amiodarone-induced PCD. For the first time, a functional chain of the mitochondria-related events required for a particular case of yeast PCD has been revealed: an enhancement of mitochondrial respiration and of its energy coupling, a strong increase of mitochondrial membrane potential, both events triggered by the rise of cytoplasmic [Ca2+], a burst in generation of reactive oxygen species in center o of the respiratory chain complex III, mitochondrial thread-grain transition, and cytochrome c release from mitochondria. A novel mitochondrial protein required for thread-grain transition is identified.
Collapse
|
127
|
Muñoz-Gómez AJ, Lemonnier M, Santos-Sierra S, Berzal-Herranz A, Díaz-Orejas R. RNase/anti-RNase activities of the bacterial parD toxin-antitoxin system. J Bacteriol 2005; 187:3151-3157. [PMID: 15838042 PMCID: PMC1082843 DOI: 10.1128/jb.187.9.3151-3157.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 01/25/2005] [Indexed: 02/08/2023] Open
Abstract
The bacterial parD toxin-antitoxin system of plasmid R1 encodes two proteins, the Kid toxin and its cognate antitoxin, Kis. Kid cleaves RNA and inhibits protein synthesis and cell growth in Escherichia coli. Here, we show that Kid promotes RNA degradation and inhibition of protein synthesis in rabbit reticulocyte lysates. These new activities of the Kid toxin were counteracted by the Kis antitoxin and were not displayed by the KidR85W variant, which is nontoxic in E. coli. Moreover, while Kid cleaved single- and double-stranded RNA with a preference for UAA or UAC triplets, KidR85W maintained this sequence preference but hardly cleaved double-stranded RNA. Kid was formerly shown to inhibit DNA replication of the ColE1 plasmid. Here we provide in vitro evidence that Kid cleaves the ColE1 RNA II primer, which is required for the initiation of ColE1 replication. In contrast, KidR85W did not affect the stability of RNA II, nor did it inhibit the in vitro replication of ColE1. Thus, the endoribonuclease and the cytotoxic and DNA replication-inhibitory activities of Kid seem tightly correlated. We propose that the spectrum of action of this toxin extends beyond the sole inhibition of protein synthesis to control a broad range of RNA-regulated cellular processes.
Collapse
Affiliation(s)
- Ana J Muñoz-Gómez
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
128
|
Gerdes K, Christensen SK, Løbner-Olesen A. Prokaryotic toxin–antitoxin stress response loci. Nat Rev Microbiol 2005; 3:371-82. [PMID: 15864262 DOI: 10.1038/nrmicro1147] [Citation(s) in RCA: 847] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although toxin-antitoxin gene cassettes were first found in plasmids, recent database mining has shown that these loci are abundant in free-living prokaryotes, including many pathogenic bacteria. For example, Mycobacterium tuberculosis has 38 chromosomal toxin-antitoxin loci, including 3 relBE and 9 mazEF loci. RelE and MazF are toxins that cleave mRNA in response to nutritional stress. RelE cleaves mRNAs that are positioned at the ribosomal A-site, between the second and third nucleotides of the A-site codon. It has been proposed that toxin-antitoxin loci function in bacterial programmed cell death, but evidence now indicates that these loci provide a control mechanism that helps free-living prokaryotes cope with nutritional stress.
Collapse
Affiliation(s)
- Kenn Gerdes
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | | | | |
Collapse
|
129
|
Lah J, Simic M, Vesnaver G, Marianovsky I, Glaser G, Engelberg-Kulka H, Loris R. Energetics of Structural Transitions of the Addiction Antitoxin MazE. J Biol Chem 2005; 280:17397-407. [PMID: 15735309 DOI: 10.1074/jbc.m501128200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli mazEF addiction module plays a crucial role in the cell death program that is triggered under various stress conditions. It codes for the toxin MazF and the antitoxin MazE, which interferes with the lethal action of the toxin. To better understand the role of various conformations of MazE in bacterial life, its order-disorder transitions were monitored by differential scanning calorimetry, spectropolarimetry, and fluorimetry. The changes in spectral and thermodynamic properties accompanying MazE dimer denaturation can be described in terms of a compensating reversible process of the partial folding of the unstructured C-terminal half (high mean net charge, low mean hydrophobicity) and monomerization coupled with the partial unfolding of the structured N-terminal half (low mean net charge, high mean hydrophobicity). At pH<or=4.5 and T<50 degrees C, the unstructured polypeptide chains of the MazE dimer fold into (pre)molten globule-like conformations that thermally stabilize the dimeric form of the protein. The simulation based on the thermodynamic and structural information on various addiction modules suggests that both the conformational adaptability of the dimeric antitoxin form (binding to the toxins and DNA) and the reversible transformation to the more flexible monomeric form are essential for the regulation of bacterial cell life and death.
Collapse
Affiliation(s)
- Jurij Lah
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Askerceva 5, 1000 Ljubljana, Slovenia.
| | | | | | | | | | | | | |
Collapse
|
130
|
Suzuki M, Zhang J, Liu M, Woychik NA, Inouye M. Single Protein Production in Living Cells Facilitated by an mRNA Interferase. Mol Cell 2005; 18:253-61. [PMID: 15837428 DOI: 10.1016/j.molcel.2005.03.011] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 02/14/2005] [Accepted: 03/14/2005] [Indexed: 10/25/2022]
Abstract
We designed a single-protein production (SPP) system in living E. coli cells that exploits the unique properties of MazF, a bacterial toxin that is an ssRNA- and ACA-specific endoribonuclease. In effect, MazF functions as an "mRNA interferase," because it efficiently and selectively degrades all cellular mRNAs in vivo, resulting in a precipitous drop in total protein synthesis. Concomitant expression of MazF and a target gene engineered to encode an ACA-less mRNA results in sustained and high-level (up to 90%) target expression in the virtual absence of background cellular protein synthesis. Remarkably, target synthesis continues for at least 4 days, indicating that cells retain transcriptional and translational competence despite their growth arrest. SPP technology works well for E. coli (soluble and membrane), yeast, and human proteins. This expression system enables unparalleled signal to noise ratios that should dramatically simplify structural and functional studies of previously intractable but biologically important proteins.
Collapse
Affiliation(s)
- Motoo Suzuki
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
131
|
Zhang Y, Zhang J, Hara H, Kato I, Inouye M. Insights into the mRNA Cleavage Mechanism by MazF, an mRNA Interferase. J Biol Chem 2005; 280:3143-50. [PMID: 15537630 DOI: 10.1074/jbc.m411811200] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MazF is an Escherichia coli toxin that is highly conserved among the prokaryotes and plays an important role in growth regulation. When MazF is induced, protein synthesis is effectively inhibited. However, the mechanism of MazF action has been controversial. Here we unequivocally demonstrate that MazF is an endoribonuclease that specifically cleaves mRNAs at ACA sequences. We then demonstrate its enzymatic specificity using short RNA substrates. MazF cleaves RNA at the 5'-end of ACA sequences, yielding a 2',3'-cyclic phosphate at one side and a free 5'-OH group at the other. Using DNA-RNA chimeric substrates containing XACA, the 2'-OH group of residue X was found absolutely essential for MazF cleavage, whereas all the other residues may be deoxyriboses. Therefore, MazF exhibits exquisite site specificity and has utility as an RNA-restriction enzyme for RNA structural studies or as an mRNA interferase to regulate cell growth in prokaryotic and eukaryotic cells.
Collapse
Affiliation(s)
- Yonglong Zhang
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854 and Takara Bio Inc., Seta 3-4-1, Otsu, Shiga, 520-2193, Japan
| | | | | | | | | |
Collapse
|
132
|
Amitai S, Yassin Y, Engelberg-Kulka H. MazF-mediated cell death in Escherichia coli: a point of no return. J Bacteriol 2005; 186:8295-300. [PMID: 15576778 PMCID: PMC532418 DOI: 10.1128/jb.186.24.8295-8300.2004] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
mazEF is a stress-induced toxin-antitoxin module, located on the chromosome of Escherichia coli, that we have previously described to be responsible for programmed cell death in E. coli. mazF specifies a stable toxin, and mazE specifies a labile antitoxin. Recently, it was reported that inhibition of translation and cell growth by ectopic overexpression of the toxin MazF can be reversed by the action of the antitoxin MazE ectopically overexpressed at a later time. Based on these results, it was suggested that rather than inducing cell death, mazF induces a state of reversible bacteriostasis (K. Pederson, S. K. Christensen, and K. Gerdes, Mol. Microbiol. 45:501-510, 2002). Using a similar ectopic overexpression system, we show here that overexpression of MazE could reverse MazF lethality only over a short window of time. The size of that window depended on the nature of the medium in which MazF was overexpressed. Thus, we found "a point of no return," which occurred sooner in minimal M9 medium than it did in the rich Luria-Bertani medium. We also describe a state in which the effect of MazF on translation could be separated from its effect on cell death: MazE overproduction could completely reverse the inhibitory effect of MazF on translation, while not affecting the bacteriocidic effect of MazF at all. Our results reported here support our view that the mazEF module mediates cell death and is part of a programmed cell death network.
Collapse
Affiliation(s)
- Shahar Amitai
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | | | | |
Collapse
|
133
|
Barry CE, Duncan K. Tuberculosis – strategies towards anti-infectives for a chronic disease. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.ddstr.2004.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
134
|
Brehm-Stecher BF, Johnson EA. Single-cell microbiology: tools, technologies, and applications. Microbiol Mol Biol Rev 2004; 68:538-59, table of contents. [PMID: 15353569 PMCID: PMC515252 DOI: 10.1128/mmbr.68.3.538-559.2004] [Citation(s) in RCA: 304] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The field of microbiology has traditionally been concerned with and focused on studies at the population level. Information on how cells respond to their environment, interact with each other, or undergo complex processes such as cellular differentiation or gene expression has been obtained mostly by inference from population-level data. Individual microorganisms, even those in supposedly "clonal" populations, may differ widely from each other in terms of their genetic composition, physiology, biochemistry, or behavior. This genetic and phenotypic heterogeneity has important practical consequences for a number of human interests, including antibiotic or biocide resistance, the productivity and stability of industrial fermentations, the efficacy of food preservatives, and the potential of pathogens to cause disease. New appreciation of the importance of cellular heterogeneity, coupled with recent advances in technology, has driven the development of new tools and techniques for the study of individual microbial cells. Because observations made at the single-cell level are not subject to the "averaging" effects characteristic of bulk-phase, population-level methods, they offer the unique capacity to observe discrete microbiological phenomena unavailable using traditional approaches. As a result, scientists have been able to characterize microorganisms, their activities, and their interactions at unprecedented levels of detail.
Collapse
Affiliation(s)
- Byron F Brehm-Stecher
- Department of Food Microbiology and Toxicology, University of Wisconsin-Madison Food Research Institute, 1925 Willow Drive, Madison, WI 53706, USA
| | | |
Collapse
|
135
|
Hazan R, Engelberg-Kulka H. Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1. Mol Genet Genomics 2004; 272:227-34. [PMID: 15316771 DOI: 10.1007/s00438-004-1048-y] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Accepted: 07/20/2004] [Indexed: 01/02/2023]
Abstract
The Escherichia coli gene pair mazEF is a regulatable chromosomal toxin-antitoxin module: mazF encodes a stable toxin and mazE encodes for a labile antitoxin that overcomes the lethal effect of MazF. Because MazE is labile, inhibition of mazE expression results in cell death. We studied the effect of mazEF on the development of bacteriophage P1 upon thermoinduction of the prophage P1CM c1ts and upon infection with virulent phage particles (P1vir). In several E. coli strains, we showed that the Delta mazEF derivative strains produced significantly more phages than did the parent strain. In addition, upon induction of K38(P1CM c1ts), nearly all of the Delta mazEF mutant cells lysed; in contrast, very few of the parental mazEF + K38 cells underwent lysis. However, most of these cells did not remain viable. Thus, while the Delta mazEF cells die as a result of the lytic action of the phage, most of the mazEF+ cells are killed by a different mechanism, apparently through the action of the chromosomal mazEF system itself. Furthermore, the introduction of lysogens into a growing non-lysogenic culture is lethal to Delta mazEF but not for mazEF+ cultures. Thus, although mazEF action causes individual cells to die, upon phage growth this is generally beneficial to the bacterial culture because it causes P1 phage exclusion from the bacterial population. These results provide additional support for the view that bacterial cultures may share some of the characteristics of multicellular organisms.
Collapse
Affiliation(s)
- R Hazan
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | | |
Collapse
|
136
|
Hazan R, Sat B, Engelberg-Kulka H. Escherichia coli mazEF-mediated cell death is triggered by various stressful conditions. J Bacteriol 2004; 186:3663-9. [PMID: 15150257 PMCID: PMC415763 DOI: 10.1128/jb.186.11.3663-3669.2004] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
mazEF is an Escherichia coli suicide module specific for a stable toxin and a labile antitoxin. Inhibiting mazEF expression appeared to activate the module to cause cell death. Here we show that several stressful conditions, including high temperatures, DNA damage, and oxidative stress, also induce mazEF-mediated cell death. We also show that this process takes place only during logarithmic growth and requires an intact relA gene.
Collapse
Affiliation(s)
- Ronen Hazan
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|