101
|
Tuan LH, Tsao CY, Lee LJH, Lee LJ. Voluntary exercise ameliorates synaptic pruning deficits in sleep-deprived adolescent mice. Brain Behav Immun 2021; 93:96-110. [PMID: 33358980 DOI: 10.1016/j.bbi.2020.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/17/2020] [Accepted: 12/16/2020] [Indexed: 11/26/2022] Open
Abstract
Adolescence is a critical period for brain development and adequate sleep during this period is essential for physical function and mental health. Emerging evidence has detailed the neurological impacts of sleep insufficiency on adolescents, as was unveiled by our previous study, microglia, one of the crucial contributors to synaptic pruning, is functionally disrupted by lack of sleep. Here, we provided evidence featuring the protective effect and the underlying mechanisms of voluntary exercise (VE) on microglial functions in an adolescent 72 h sleep deprivation (SD) model. We identified that the aberrant hippocampal neuronal activity and impaired short-term memory performance in sleep-deprived mice were prevented by 11 days of VE. VE significantly normalized the SD-induced dendritic spine increment and maintained the microglial phagocytic ability in sleep-deprived mice. Moreover, we found that the amendment of the noradrenergic signal in the central nervous system may explain the preventative effects of VE on the abnormalities of microglial and neuronal functions caused by SD. These data suggested that VE may confer protection to the microglia-mediated synaptic pruning in the sleep-deprived adolescent brains. Therefore, physical exercise could be a beneficial health practice for the adolescents that copes the adverse influence of inevitable sleep insufficiency.
Collapse
Affiliation(s)
- Li-Heng Tuan
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan, ROC
| | - Chih-Yu Tsao
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan, ROC
| | - Lukas Jyuhn-Hsiarn Lee
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Miaoli, Taiwan, ROC
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan, ROC; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan, ROC; Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
102
|
Haspel J, Kim M, Zee P, Schwarzmeier T, Montagnese S, Panda S, Albani A, Merrow M. A Timely Call to Arms: COVID-19, the Circadian Clock, and Critical Care. J Biol Rhythms 2021; 36:55-70. [PMID: 33573430 PMCID: PMC7882674 DOI: 10.1177/0748730421992587] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We currently find ourselves in the midst of a global coronavirus disease 2019 (COVID-19) pandemic, caused by the highly infectious novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we discuss aspects of SARS-CoV-2 biology and pathology and how these might interact with the circadian clock of the host. We further focus on the severe manifestation of the illness, leading to hospitalization in an intensive care unit. The most common severe complications of COVID-19 relate to clock-regulated human physiology. We speculate on how the pandemic might be used to gain insights on the circadian clock but, more importantly, on how knowledge of the circadian clock might be used to mitigate the disease expression and the clinical course of COVID-19.
Collapse
Affiliation(s)
- Jeffrey Haspel
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Minjee Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Phyllis Zee
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tanja Schwarzmeier
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| | | | | | - Adriana Albani
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
- Department of Medicine IV, LMU Munich, Munich, Germany
| | - Martha Merrow
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
103
|
Ogawa K, Kato N, Kawakami S. Recent Strategies for Targeted Brain Drug Delivery. Chem Pharm Bull (Tokyo) 2021; 68:567-582. [PMID: 32611994 DOI: 10.1248/cpb.c20-00041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because the brain is the most important human organ, many brain disorders can cause severe symptoms. For example, glioma, one type of brain tumor, is progressive and lethal, while neurodegenerative diseases cause severe disability. Nevertheless, medical treatment for brain diseases remains unsatisfactory, and therefore innovative therapies are desired. However, the development of therapies to treat some cerebral diseases is difficult because the blood-brain barrier (BBB) or blood-brain tumor barrier prevents drugs from entering the brain. Hence, drug delivery system (DDS) strategies are required to deliver therapeutic agents to the brain. Recently, brain-targeted DDS have been developed, which increases the quality of therapy for cerebral disorders. This review gives an overview of recent brain-targeting DDS strategies. First, it describes strategies to cross the BBB. This includes BBB-crossing ligand modification or temporal BBB permeabilization. Strategies to avoid the BBB using local administration are also summarized. Intrabrain drug distribution is a crucial factor that directly determines the therapeutic effect, and thus it is important to evaluate drug distribution using optimal methods. We introduce some methods for evaluating drug distribution in the brain. Finally, applications of brain-targeted DDS for the treatment of brain tumors, Alzheimer's disease, Parkinson's disease, and stroke are explained.
Collapse
Affiliation(s)
- Koki Ogawa
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Naoya Kato
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
104
|
Segura-Collar B, Mata-Martínez P, Hernández-Laín A, Sánchez-Gómez P, Gargini R. Blood-Brain Barrier Disruption: A Common Driver of Central Nervous System Diseases. Neuroscientist 2021; 28:222-237. [PMID: 33446074 DOI: 10.1177/1073858420985838] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The brain is endowed with a unique cellular composition and organization, embedded within a vascular network and isolated from the circulating blood by a specialized frontier, the so-called blood-brain barrier (BBB), which is necessary for its proper function. Recent reports have shown that increments in the permeability of the blood vessels facilitates the entry of toxic components and immune cells to the brain parenchyma and alters the phenotype of the supporting astrocytes. All of these might contribute to the progression of different pathologies such as brain cancers or neurodegenerative diseases. Although it is well known that BBB breakdown occurs due to pericyte malfunctioning or to the lack of stability of the blood vessels, its participation in the diverse neural diseases needs further elucidation. This review summarizes what it is known about BBB structure and function and how its instability might trigger or promote neuronal degeneration and glioma progression, with a special focus on the role of pericytes as key modulators of the vasculature. Moreover, we will discuss some recent reports that highlights the participation of the BBB alterations in glioma growth. This pan-disease analysis might shed some light into these otherwise untreatable diseases and help to design better therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | - Ricardo Gargini
- Neurooncology Unit, Instituto de Salud Carlos III-UFIEC, Madrid, Spain
| |
Collapse
|
105
|
Segarra M, Aburto MR, Acker-Palmer A. Blood-Brain Barrier Dynamics to Maintain Brain Homeostasis. Trends Neurosci 2021; 44:393-405. [PMID: 33423792 DOI: 10.1016/j.tins.2020.12.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 10/03/2020] [Accepted: 12/07/2020] [Indexed: 01/18/2023]
Abstract
The blood-brain barrier (BBB) is a dynamic platform for exchange of substances between the blood and the brain parenchyma, and it is an essential functional gatekeeper for the central nervous system (CNS). While it is widely recognized that BBB disruption is a hallmark of several neurovascular pathologies, an aspect of the BBB that has received somewhat less attention is the dynamic modulation of BBB tightness to maintain brain homeostasis in response to extrinsic environmental factors and physiological changes. In this review, we summarize how BBB integrity adjusts in critical stages along the life span, as well as how BBB permeability can be altered by common stressors derived from nutritional habits, environmental factors and psychological stress.
Collapse
Affiliation(s)
- Marta Segarra
- Neuro and Vascular Guidance, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Max-von-Laue-Strasse 15, D-60438, Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Max-von-Laue-Strasse 15, D-60438, Frankfurt am Main, Germany.
| | - Maria R Aburto
- Neuro and Vascular Guidance, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Max-von-Laue-Strasse 15, D-60438, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Neuro and Vascular Guidance, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Max-von-Laue-Strasse 15, D-60438, Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Max-von-Laue-Strasse 15, D-60438, Frankfurt am Main, Germany; Max Planck Institute for Brain Research, Max-von-Laue-Strasse 4, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
106
|
Garbarino S, Lanteri P, Sannita WG, Bragazzi NL, Scoditti E. Circadian Rhythms, Sleep, Immunity, and Fragility in the Elderly: The Model of the Susceptibility to Infections. Front Neurol 2021; 11:558417. [PMID: 33391142 PMCID: PMC7775525 DOI: 10.3389/fneur.2020.558417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sergio Garbarino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, Polyclinic Hospital San Martino Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), University of Genova, Genova, Italy
| | - Paola Lanteri
- Department of Diagnostics and Applied Technology, Neurophysiopathology Center, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Neurologico Carlo Besta, Milan, Italy
| | - Walter G Sannita
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, Polyclinic Hospital San Martino Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), University of Genova, Genova, Italy
| | - Nicola L Bragazzi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, Polyclinic Hospital San Martino Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), University of Genova, Genova, Italy.,Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, Toronto, ON, Canada
| | - Egeria Scoditti
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| |
Collapse
|
107
|
Harris SS, Schwerd-Kleine T, Lee BI, Busche MA. The Reciprocal Interaction Between Sleep and Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1344:169-188. [PMID: 34773232 DOI: 10.1007/978-3-030-81147-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
It is becoming increasingly recognized that patients with a variety of neurodegenerative diseases exhibit disordered sleep/wake patterns. While sleep impairments have typically been thought of as sequelae of underlying neurodegenerative processes in sleep-wake cycle regulating brain regions, including the brainstem, hypothalamus, and basal forebrain, emerging evidence now indicates that sleep deficits may also act as pathophysiological drivers of brain-wide disease progression. Specifically, recent work has indicated that impaired sleep can impact on neuronal activity, brain clearance mechanisms, pathological build-up of proteins, and inflammation. Altered sleep patterns may therefore be novel (potentially reversible) dynamic functional markers of proteinopathies and modifiable targets for early therapeutic intervention using non-invasive stimulation and behavioral techniques. Here we highlight research describing a potentially reciprocal interaction between impaired sleep and circadian patterns and the accumulation of pathological signs and features in Alzheimer's disease, the most prevalent neurodegenerative disease in the elderly.
Collapse
Affiliation(s)
| | | | - Byung Il Lee
- UK Dementia Research Institute at UCL, London, UK
| | | |
Collapse
|
108
|
Liu JA, Walton JC, DeVries AC, Nelson RJ. Disruptions of Circadian Rhythms and Thrombolytic Therapy During Ischemic Stroke Intervention. Front Neurosci 2021; 15:675732. [PMID: 34177452 PMCID: PMC8222607 DOI: 10.3389/fnins.2021.675732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/11/2021] [Indexed: 11/24/2022] Open
Abstract
Several endogenous and exogenous factors interact to influence stroke occurrence, in turn contributing to discernable daily distribution patterns in the frequency and severity of cerebrovascular events. Specifically, strokes that occur during the morning tend to be more severe and are associated with elevated diastolic blood pressure, increased hospital stay, and worse outcomes, including mortality, compared to strokes that occur later in the day. Furthermore, disrupted circadian rhythms are linked to higher risk for stroke and play a role in stroke outcome. In this review, we discuss the interrelation among core clock genes and several factors contributing to ischemic outcomes, sources of disrupted circadian rhythms, the implications of disrupted circadian rhythms in foundational stroke scientific literature, followed by a review of clinical implications. In addition to highlighting the distinct daily pattern of onset, several aspects of physiology including immune response, endothelial/vascular and blood brain barrier function, and fibrinolysis are under circadian clock regulation; disrupted core clock gene expression patterns can adversely affect these physiological processes, leading to a prothrombotic state. Lastly, we discuss how the timing of ischemic onset increases morning resistance to thrombolytic therapy and the risk of hemorrhagic transformation.
Collapse
Affiliation(s)
- Jennifer A Liu
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - James C Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - A Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States.,Department of Medicine, Division of Oncology/Hematology, West Virginia University, Morgantown, WV, United States.,West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, United States
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
109
|
Sun J, Wu J, Hua F, Chen Y, Zhan F, Xu G. Sleep Deprivation Induces Cognitive Impairment by Increasing Blood-Brain Barrier Permeability via CD44. Front Neurol 2020; 11:563916. [PMID: 33329306 PMCID: PMC7728917 DOI: 10.3389/fneur.2020.563916] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Sleep deprivation occurs frequently in older adults, which can result in delirium and cognitive impairment. CD44 is a key molecular in blood-brain barrier (BBB) regulation. However, whether CD44 participates in the role of sleep deprivation in cognitive impairment remains unclear. In this study, the effect of sleep deprivation on cognitive ability, tissue inflammation, BBB permeability, and astrocyte activity were evaluated in vivo. The differentially expressed genes (DEGs) were identified by RNA sequencing. A CD44 overexpression in the BBB model was performed in vitro to assess the effect and mechanisms of CD44. Sleep deprivation impaired the learning and memory ability and increased the levels of inflammatory cytokines, along with increased BBB permeability and activated astrocytes in hippocampus tissue. RNA sequencing of the hippocampus tissue revealed that 329 genes were upregulated in sleep deprivation-induced mice compared to control mice, and 147 genes were downregulated. GO and pathways showed that DEGs were mainly involved in BBB permeability and astrocyte activation, including nervous system development, neuron development, and brain development, and neuroactive ligand-receptor interaction. Moreover, the PCR analysis revealed that CD44 was dramatically increased in mice with sleep deprivation induction. The overexpression of CD44 in astrocytes promoted BBB permeability in vitro and induced the expression of the downstream gene NANOG. Our results indicate that sleep deprivation upregulated CD44 expression in hippocampus tissue, and increased BBB permeability, resulting in cognitive impairment.
Collapse
Affiliation(s)
- Jing Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jusheng Wu
- Department of Anesthesiology, Zhuji People's Hospital of Zhejiang Province, Shaoxing, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fenfang Zhan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
110
|
Time is of the essence: Coupling sleep-wake and circadian neurobiology to the antidepressant effects of ketamine. Pharmacol Ther 2020; 221:107741. [PMID: 33189715 DOI: 10.1016/j.pharmthera.2020.107741] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/03/2020] [Indexed: 12/28/2022]
Abstract
Several studies have demonstrated the effectiveness of ketamine in rapidly alleviating depression and suicidal ideation. Intense research efforts have been undertaken to expose the precise mechanism underlying the antidepressant action of ketamine; however, the translation of findings into new clinical treatments has been slow. This translational gap is partially explained by a lack of understanding of the function of time and circadian timing in the complex neurobiology around ketamine. Indeed, the acute pharmacological effects of a single ketamine treatment last for only a few hours, whereas the antidepressant effects peak at around 24 hours and are sustained for the following few days. Numerous studies have investigated the acute and long-lasting neurobiological changes induced by ketamine; however, the most dramatic and fundamental change that the brain undergoes each day is rarely taken into consideration. Here, we explore the link between sleep and circadian regulation and rapid-acting antidepressant effects and summarize how diverse phenomena associated with ketamine's antidepressant actions - such as cortical excitation, synaptogenesis, and involved molecular determinants - are intimately connected with the neurobiology of wake, sleep, and circadian rhythms. We review several recently proposed hypotheses about rapid antidepressant actions, which focus on sleep or circadian regulation, and discuss their implications for ongoing research. Considering these aspects may be the last piece of the puzzle necessary to gain a more comprehensive understanding of the effects of rapid-acting antidepressants on the brain.
Collapse
|
111
|
Bell BJ, Wang AA, Kim DW, Xiong J, Blackshaw S, Wu MN. Characterization of mWake expression in the murine brain. J Comp Neurol 2020; 529:1954-1987. [PMID: 33140455 DOI: 10.1002/cne.25066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 01/24/2023]
Abstract
Structure-function analyses of the mammalian brain have historically relied on anatomically-based approaches. In these investigations, physical, chemical, or electrolytic lesions of anatomical structures are applied, and the resulting behavioral or physiological responses assayed. An alternative approach is to focus on the expression pattern of a molecule whose function has been characterized and then use genetic intersectional methods to optogenetically or chemogenetically manipulate distinct circuits. We previously identified WIDE AWAKE (WAKE) in Drosophila, a clock output molecule that mediates the temporal regulation of sleep onset and sleep maintenance. More recently, we have studied the mouse homolog, mWAKE/ANKFN1, and our data suggest that its basic role in the circadian regulation of arousal is conserved. Here, we perform a systematic analysis of the expression pattern of mWake mRNA, protein, and cells throughout the adult mouse brain. We find that mWAKE labels neurons in a restricted, but distributed manner, in multiple regions of the hypothalamus (including the suprachiasmatic nucleus, dorsomedial hypothalamus, and tuberomammillary nucleus region), the limbic system, sensory processing nuclei, and additional specific brainstem, subcortical, and cortical areas. Interestingly, mWAKE is also observed in non-neuronal ependymal cells. In addition, to describe the molecular identities and clustering of mWake+ cells, we provide detailed analyses of single cell RNA sequencing data from the hypothalamus, a region with particularly significant mWAKE expression. These findings lay the groundwork for future studies into the potential role of mWAKE+ cells in the rhythmic control of diverse behaviors and physiological processes.
Collapse
Affiliation(s)
- Benjamin J Bell
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Annette A Wang
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dong Won Kim
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiali Xiong
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University, Baltimore, Maryland, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mark N Wu
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
112
|
Profaci CP, Munji RN, Pulido RS, Daneman R. The blood-brain barrier in health and disease: Important unanswered questions. J Exp Med 2020; 217:151582. [PMID: 32211826 PMCID: PMC7144528 DOI: 10.1084/jem.20190062] [Citation(s) in RCA: 419] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/21/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
The blood vessels vascularizing the central nervous system exhibit a series of distinct properties that tightly control the movement of ions, molecules, and cells between the blood and the parenchyma. This "blood-brain barrier" is initiated during angiogenesis via signals from the surrounding neural environment, and its integrity remains vital for homeostasis and neural protection throughout life. Blood-brain barrier dysfunction contributes to pathology in a range of neurological conditions including multiple sclerosis, stroke, and epilepsy, and has also been implicated in neurodegenerative diseases such as Alzheimer's disease. This review will discuss current knowledge and key unanswered questions regarding the blood-brain barrier in health and disease.
Collapse
Affiliation(s)
- Caterina P Profaci
- Department of Neurosciences, University of California, San Diego, San Diego, CA.,Department of Pharmacology, University of California, San Diego, San Diego, CA
| | - Roeben N Munji
- Department of Neurosciences, University of California, San Diego, San Diego, CA.,Department of Pharmacology, University of California, San Diego, San Diego, CA
| | - Robert S Pulido
- Department of Neurosciences, University of California, San Diego, San Diego, CA.,Department of Pharmacology, University of California, San Diego, San Diego, CA
| | - Richard Daneman
- Department of Neurosciences, University of California, San Diego, San Diego, CA.,Department of Pharmacology, University of California, San Diego, San Diego, CA
| |
Collapse
|
113
|
Bhattacharjee S, Brayden DJ. Addressing the challenges to increase the efficiency of translating nanomedicine formulations to patients. Expert Opin Drug Discov 2020; 16:235-254. [PMID: 33108229 DOI: 10.1080/17460441.2021.1826434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Nanotechnology is in a growth phase for drug delivery and medical imaging. Nanomaterials with unique properties present opportunities for encapsulation of therapeutics and imaging agents, along with conjugation to ligands for targeting. Favorable chemistry of nanomaterials can create formulations that address critical challenges for therapeutics, such as insolubility and a low capacity to cross the blood-brain-barrier (BBB) and intestinal wall. AREAS COVERED The authors investigate challenges faced during translation of nanomedicines while suggesting reasons as to why some nanoformulations have under-performed in clinical trials. They assess physiological barriers such as the BBB and gut mucus that nanomedicines must overcome to deliver cargos. They also provide an overview with examples of how nanomedicines can be designed to improve localization and site-specific delivery (e.g., encapsulation, bioconjugation, and triggered-release). EXPERT OPINION There are examples where nanomedicines have demonstrated improved efficacy of payload in humans; however, most of the advantages conferred were in improved pharmacokinetics and reduced toxicity. Problematic data show susceptibility of nanoformulations against natural protective mechanisms present in the body, including distribution impediment by physiological barriers and activation of the reticuloendothelial system. Further initiatives should address current challenges while expanding the scope of nanomedicine into advanced biomedical imaging and antibiotic delivery.
Collapse
Affiliation(s)
- Sourav Bhattacharjee
- School of Veterinary Medicine, University College Dublin (UCD), Belfield, Dublin, Ireland
| | - David J Brayden
- School of Veterinary Medicine, University College Dublin (UCD), Belfield, Dublin, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Belfield, Dublin, Ireland
| |
Collapse
|
114
|
Bicker J, Alves G, Fonseca C, Falcão A, Fortuna A. Repairing blood-CNS barriers: Future therapeutic approaches for neuropsychiatric disorders. Pharmacol Res 2020; 162:105226. [PMID: 33007420 DOI: 10.1016/j.phrs.2020.105226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022]
Abstract
Central nervous system (CNS) drug development faces significant difficulties that translate into high rates of failure and lack of innovation. The pathophysiology of neurological and psychiatric disorders often results in the breakdown of blood-CNS barriers, disturbing the CNS microenvironment and worsening disease progression. Therefore, restoring the integrity of blood-CNS barriers may have a beneficial influence in several CNS disorders and improve treatment outcomes. In this review, pathways that may be modulated to protect blood-CNS barriers from neuroinflammatory and oxidative insults are featured. First, the participation of the brain endothelium and glial cells in disruption processes is discussed. Then, the relevance of regulatory systems is analysed, specifically the hypothalamic-pituitary axis, the renin-angiotensin system, sleep and circadian rhythms, and glutamate neurotransmission. Lastly, compounds of endogenous and exogenous origin that are known to mediate the repair of blood-CNS barriers are presented. We believe that enhancing the protection of blood-CNS barriers is a promising therapeutic strategy to pursue in the future.
Collapse
Affiliation(s)
- Joana Bicker
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal.
| | - Gilberto Alves
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Carla Fonseca
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| | - Amílcar Falcão
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Ana Fortuna
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| |
Collapse
|
115
|
Rasmussen R, O'Donnell J, Ding F, Nedergaard M. Interstitial ions: A key regulator of state-dependent neural activity? Prog Neurobiol 2020; 193:101802. [PMID: 32413398 PMCID: PMC7331944 DOI: 10.1016/j.pneurobio.2020.101802] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 02/08/2023]
Abstract
Throughout the nervous system, ion gradients drive fundamental processes. Yet, the roles of interstitial ions in brain functioning is largely forgotten. Emerging literature is now revitalizing this area of neuroscience by showing that interstitial cations (K+, Ca2+ and Mg2+) are not static quantities but change dynamically across states such as sleep and locomotion. In turn, these state-dependent changes are capable of sculpting neuronal activity; for example, changing the local interstitial ion composition in the cortex is sufficient for modulating the prevalence of slow-frequency neuronal oscillations, or potentiating the gain of visually evoked responses. Disturbances in interstitial ionic homeostasis may also play a central role in the pathogenesis of central nervous system diseases. For example, impairments in K+ buffering occur in a number of neurodegenerative diseases, and abnormalities in neuronal activity in disease models disappear when interstitial K+ is normalized. Here we provide an overview of the roles of interstitial ions in physiology and pathology. We propose the brain uses interstitial ion signaling as a global mechanism to coordinate its complex activity patterns, and ion homeostasis failure contributes to central nervous system diseases affecting cognitive functions and behavior.
Collapse
Affiliation(s)
- Rune Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - John O'Donnell
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, United States
| | - Fengfei Ding
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, United States
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, United States.
| |
Collapse
|
116
|
Hablitz LM, Plá V, Giannetto M, Vinitsky HS, Stæger FF, Metcalfe T, Nguyen R, Benrais A, Nedergaard M. Circadian control of brain glymphatic and lymphatic fluid flow. Nat Commun 2020; 11:4411. [PMID: 32879313 PMCID: PMC7468152 DOI: 10.1038/s41467-020-18115-2] [Citation(s) in RCA: 348] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
The glymphatic system is a network of perivascular spaces that promotes movement of cerebrospinal fluid (CSF) into the brain and clearance of metabolic waste. This fluid transport system is supported by the water channel aquaporin-4 (AQP4) localized to vascular endfeet of astrocytes. The glymphatic system is more effective during sleep, but whether sleep timing promotes glymphatic function remains unknown. We here show glymphatic influx and clearance exhibit endogenous, circadian rhythms peaking during the mid-rest phase of mice. Drainage of CSF from the cisterna magna to the lymph nodes exhibits daily variation opposite to glymphatic influx, suggesting distribution of CSF throughout the animal depends on time-of-day. The perivascular polarization of AQP4 is highest during the rest phase and loss of AQP4 eliminates the day-night difference in both glymphatic influx and drainage to the lymph nodes. We conclude that CSF distribution is under circadian control and that AQP4 supports this rhythm.
Collapse
Affiliation(s)
- Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| | - Virginia Plá
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Michael Giannetto
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Hanna S Vinitsky
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Frederik Filip Stæger
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Tanner Metcalfe
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Rebecca Nguyen
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Abdellatif Benrais
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
117
|
Travica N, Ried K, Hudson I, Sali A, Scholey A, Pipingas A. The Contribution of Plasma and Brain Vitamin C on Age and Gender-Related Cognitive Differences: A Mini-Review of the Literature. Front Integr Neurosci 2020; 14:47. [PMID: 32973470 PMCID: PMC7471743 DOI: 10.3389/fnint.2020.00047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
There is increasing evidence that sex differences in the brain may contribute to gender-related behavioral differences, including cognitive function. Literature has revealed gender dimorphisms in cognitive function between males and females. Additionally, several risk factors associated with cognitive decline depend on chronological age. It is well recognized that the process of aging is associated with a decline in cognitive ability and brain function. Various explanations may account for these gender-related cognitive differences and age-associated cognitive changes. Recent investigations have highlighted the importance of vitamin C in maintaining brain health and its association with cognitive function in both cognitively intact and impaired cohorts. The present review explores previous literature that has evaluated differences in plasma/brain vitamin C between genders and during aging. It then assesses whether these age and gender-related differences may affect the relationship between plasma/brain vitamin C and cognition. The purpose of this review was to examine the evidence for a link between plasma/brain vitamin C and cognition and the impact of gender and age on this relationship. Epidemiological studies have frequently shown higher vitamin C plasma concentrations in women. Similarly, aging has been systematically associated with reductions in plasma vitamin C levels. A range of animal studies has demonstrated potential gender and age-related differences in vitamin C brain distribution and utilization. The reviewed literature suggests that gender differences in plasma and brain vitamin C may potentially contribute to differences in gender-associated cognitive ability, particularly while females are pre-menopausal. Additionally, we can propose that age-associated differences in plasma and brain vitamin C may be potentially linked to age-associated cognitive differences, with older cohorts appearing more vulnerable to experience declines in plasma vitamin C concentrations alongside compromised vitamin C brain regulation. This review encourages future investigations to take into account both gender and age when assessing the link between plasma vitamin C concentrations and cognitive function. Further large scale investigations are required to assess whether differences in cognitive function between genders and age groups may be causally attributed to plasma vitamin C status and brain distribution and utilization.
Collapse
Affiliation(s)
- Nikolaj Travica
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
- The National Institute of Integrative Medicine, Melbourne, VIC, Australia
| | - Karin Ried
- The National Institute of Integrative Medicine, Melbourne, VIC, Australia
- Discipline of General Practice, University of Adelaide, Adelaide, SA, Australia
- Torrens University, Melbourne, VIC, Australia
| | - Irene Hudson
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
- School of Science, College of Science, Engineering and Health, Mathematical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
- School of Mathematical and Physical Science, University of Newcastle, Callaghan, NSW, Australia
| | - Avni Sali
- The National Institute of Integrative Medicine, Melbourne, VIC, Australia
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
118
|
Abstract
While neurons and circuits are almost unequivocally considered to be the computational units and actuators of behavior, a complete understanding of the nervous system must incorporate glial cells. Far beyond a copious but passive substrate, glial influence is inextricable from neuronal physiology, whether during developmental guidance and synaptic shaping or through the trophic support, neurotransmitter and ion homeostasis, cytokine signaling and immune function, and debris engulfment contributions that this class provides throughout an organism's life. With such essential functions, among a growing literature of nuanced roles, it follows that glia are consequential to behavior in adult animals, with novel genetic tools allowing for the investigation of these phenomena in living organisms. We discuss here the relevance of glia for maintaining circadian rhythms and also for serving functions of sleep.
Collapse
Affiliation(s)
- Gregory Artiushin
- Chronobiology and Sleep Institute, Perelman School of Medicine, and Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Amita Sehgal
- Chronobiology and Sleep Institute, Perelman School of Medicine, and Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
119
|
Gizowski C, Bourque CW. Sodium regulates clock time and output via an excitatory GABAergic pathway. Nature 2020; 583:421-424. [PMID: 32641825 DOI: 10.1038/s41586-020-2471-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/02/2020] [Indexed: 11/10/2022]
Abstract
The suprachiasmatic nucleus (SCN) serves as the body's master circadian clock that adaptively coordinates changes in physiology and behaviour in anticipation of changing requirements throughout the 24-h day-night cycle1-4. For example, the SCN opposes overnight adipsia by driving water intake before sleep5,6, and by driving the secretion of anti-diuretic hormone7,8 and lowering body temperature9,10 to reduce water loss during sleep11. These responses can also be driven by central osmo-sodium sensors to oppose an unscheduled rise in osmolality during the active phase12-16. However, it is unknown whether osmo-sodium sensors require clock-output networks to drive homeostatic responses. Here we show that a systemic salt injection (hypertonic saline) given at Zeitgeber time 19-a time at which SCNVP (vasopressin) neurons are inactive-excited SCNVP neurons and decreased non-shivering thermogenesis (NST) and body temperature. The effects of hypertonic saline on NST and body temperature were prevented by chemogenetic inhibition of SCNVP neurons and mimicked by optogenetic stimulation of SCNVP neurons in vivo. Combined anatomical and electrophysiological experiments revealed that osmo-sodium-sensing organum vasculosum lamina terminalis (OVLT) neurons expressing glutamic acid decarboxylase (OVLTGAD) relay this information to SCNVP neurons via an excitatory effect of γ-aminobutyric acid (GABA). Optogenetic activation of OVLTGAD neuron axon terminals excited SCNVP neurons in vitro and mimicked the effects of hypertonic saline on NST and body temperature in vivo. Furthermore, chemogenetic inhibition of OVLTGAD neurons blunted the effects of systemic hypertonic saline on NST and body temperature. Finally, we show that hypertonic saline significantly phase-advanced the circadian locomotor activity onset of mice. This effect was mimicked by optogenetic activation of the OVLTGAD→ SCNVP pathway and was prevented by chemogenetic inhibition of OVLTGAD neurons. Collectively, our findings provide demonstration that clock time can be regulated by non-photic physiologically relevant cues, and that such cues can drive unscheduled homeostatic responses via clock-output networks.
Collapse
Affiliation(s)
- Claire Gizowski
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| | - Charles W Bourque
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
120
|
Kananen J, Helakari H, Korhonen V, Huotari N, Järvelä M, Raitamaa L, Raatikainen V, Rajna Z, Tuovinen T, Nedergaard M, Jacobs J, LeVan P, Ansakorpi H, Kiviniemi V. Respiratory-related brain pulsations are increased in epilepsy-a two-centre functional MRI study. Brain Commun 2020; 2:fcaa076. [PMID: 32954328 PMCID: PMC7472909 DOI: 10.1093/braincomms/fcaa076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 01/03/2023] Open
Abstract
Resting-state functional MRI has shown potential for detecting changes in cerebral blood oxygen level-dependent signal in patients with epilepsy, even in the absence of epileptiform activity. Furthermore, it has been suggested that coefficient of variation mapping of fast functional MRI signal may provide a powerful tool for the identification of intrinsic brain pulsations in neurological diseases such as dementia, stroke and epilepsy. In this study, we used fast functional MRI sequence (magnetic resonance encephalography) to acquire ten whole-brain images per second. We used the functional MRI data to compare physiological brain pulsations between healthy controls (n = 102) and patients with epilepsy (n = 33) and furthermore to drug-naive seizure patients (n = 9). Analyses were performed by calculating coefficient of variation and spectral power in full band and filtered sub-bands. Brain pulsations in the respiratory-related frequency sub-band (0.11-0.51 Hz) were significantly (P < 0.05) increased in patients with epilepsy, with an increase in both signal variance and power. At the individual level, over 80% of medicated and drug-naive seizure patients exhibited areas of abnormal brain signal power that correlated well with the known clinical diagnosis, while none of the controls showed signs of abnormality with the same threshold. The differences were most apparent in the basal brain structures, respiratory centres of brain stem, midbrain and temporal lobes. Notably, full-band, very low frequency (0.01-0.1 Hz) and cardiovascular (0.8-1.76 Hz) brain pulses showed no differences between groups. This study extends and confirms our previous results of abnormal fast functional MRI signal variance in epilepsy patients. Only respiratory-related brain pulsations were clearly increased with no changes in either physiological cardiorespiratory rates or head motion between the subjects. The regional alterations in brain pulsations suggest that mechanisms driving the cerebrospinal fluid homeostasis may be altered in epilepsy. Magnetic resonance encephalography has both increased sensitivity and high specificity for detecting the increased brain pulsations, particularly in times when other tools for locating epileptogenic areas remain inconclusive.
Collapse
Affiliation(s)
- Janne Kananen
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu 90220, Finland
- Medical Research Center (MRC), Oulu 90220, Finland
| | - Heta Helakari
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu 90220, Finland
- Medical Research Center (MRC), Oulu 90220, Finland
| | - Vesa Korhonen
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu 90220, Finland
- Medical Research Center (MRC), Oulu 90220, Finland
| | - Niko Huotari
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu 90220, Finland
- Medical Research Center (MRC), Oulu 90220, Finland
| | - Matti Järvelä
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu 90220, Finland
- Medical Research Center (MRC), Oulu 90220, Finland
| | - Lauri Raitamaa
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu 90220, Finland
- Medical Research Center (MRC), Oulu 90220, Finland
| | - Ville Raatikainen
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu 90220, Finland
- Medical Research Center (MRC), Oulu 90220, Finland
| | - Zalan Rajna
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Center for Machine Vision and Signal Analysis (CMVS), University of Oulu, Oulu 90014, Finland
| | - Timo Tuovinen
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu 90220, Finland
- Medical Research Center (MRC), Oulu 90220, Finland
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Julia Jacobs
- Department of Pediatric Neurology and Muscular Disease, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Pierre LeVan
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Hanna Ansakorpi
- Medical Research Center (MRC), Oulu 90220, Finland
- Research Unit of Neuroscience, Neurology, University of Oulu, Oulu 90220, Finland
- Department of Neurology, Oulu University Hospital, Oulu 90029, Finland
| | - Vesa Kiviniemi
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu 90220, Finland
- Medical Research Center (MRC), Oulu 90220, Finland
| |
Collapse
|
121
|
Lananna BV, Musiek ES. The wrinkling of time: Aging, inflammation, oxidative stress, and the circadian clock in neurodegeneration. Neurobiol Dis 2020; 139:104832. [PMID: 32179175 PMCID: PMC7727873 DOI: 10.1016/j.nbd.2020.104832] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Accepted: 03/11/2020] [Indexed: 01/17/2023] Open
Abstract
A substantial body of research now implicates the circadian clock in the regulation of an array of diverse biological processes including glial function, metabolism, peripheral immune responses, and redox homeostasis. Sleep abnormalities and other forms of circadian disruption are common symptoms of aging and neurodegeneration. Circadian clock disruption may also influence the aging processes and the pathogenesis of neurodegenerative diseases. The specific mechanisms governing the interaction between circadian systems, aging, and the immune system are still being uncovered. Here, we review the evidence supporting a bidirectional relationship between aging and the circadian system. Further, we explore the hypothesis that age-related circadian deterioration may exacerbate multiple pathogenic processes, priming the brain for neurodegeneration.
Collapse
Affiliation(s)
- Brian V Lananna
- Dept. of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Erik S Musiek
- Dept. of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
122
|
Copeland C, Stabenfeldt SE. Leveraging the Dynamic Blood-Brain Barrier for Central Nervous System Nanoparticle-based Drug Delivery Applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 14:1-8. [PMID: 32432210 PMCID: PMC7236638 DOI: 10.1016/j.cobme.2020.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neurological diseases and injuries have profound impact on a patient's lifespan and functional capabilities, but often lack effective intervention strategies to address the underlying neuropathology. The blood-brain barrier (BBB) is a major hurdle in the effective delivery of therapeutics to the brain. Recent discoveries in BBB maintenance reveal a dynamic system where time of day, disease progression, and even biological variables all strongly influence its permeability and flux of molecules. Nanoparticles can be used to improve the efficacy of therapeutics by increasing circulation time, bioavailability, selectivity, and controlling the rate of payload release. Considering these recent findings, the next generation of pharmacological paradigms are evolving to leverage nanotechnology to turn therapeutic intervention to meet the needs of a specific patient (i.e. personalized medicine).
Collapse
Affiliation(s)
- Connor Copeland
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ
| |
Collapse
|
123
|
MCH Neurons Regulate Permeability of the Median Eminence Barrier. Neuron 2020; 107:306-319.e9. [PMID: 32407670 PMCID: PMC7383232 DOI: 10.1016/j.neuron.2020.04.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 03/06/2020] [Accepted: 04/20/2020] [Indexed: 01/17/2023]
Abstract
Melanin-concentrating hormone (MCH)-expressing neurons are key regulators of energy and glucose homeostasis. Here, we demonstrate that they provide dense projections to the median eminence (ME) in close proximity to tanycytes and fenestrated vessels. Chemogenetic activation of MCH neurons as well as optogenetic stimulation of their projections in the ME enhance permeability of the ME by increasing fenestrated vascular loops and enhance leptin action in the arcuate nucleus of the hypothalamus (ARC). Unbiased phosphoRiboTrap-based assessment of cell activation upon chemogenetic MCH neuron activation reveals MCH-neuron-dependent regulation of endothelial cells. MCH neurons express the vascular endothelial growth factor A (VEGFA), and blocking VEGF-R signaling attenuates the leptin-sensitizing effect of MCH neuron activation. Our experiments reveal that MCH neurons directly regulate permeability of the ME barrier, linking the activity of energy state and sleep regulatory neurons to the regulation of hormone accessibility to the ARC. MCH neurons provide dense projections to the median eminence MCH neuron activation promotes permeability of the median eminence barrier MCH neuron activation enhances microvessel fenestration in the ME MCH neuron activation enhances leptin action in the arcuate nucleus
Collapse
|
124
|
Hashimoto Y, Campbell M. Tight junction modulation at the blood-brain barrier: Current and future perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183298. [PMID: 32353377 DOI: 10.1016/j.bbamem.2020.183298] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/09/2020] [Accepted: 03/28/2020] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) is the one of the most robust physical barriers in the body, comprised of tight junction (TJ) proteins in brain microvascular endothelial cells. The need for drugs to treat central nervous systems diseases is ever increasing, however the presence of the BBB significantly hampers the uptake of drugs into the brain. To overcome or circumvent the barrier, many kinds of techniques are being developed. Modulating the paracellular route by disruption of the TJ complex has been proposed as a potential drug delivery system to treat brain diseases, however, it has several limitations and is still in a developmental stage. However, recent significant advance in medical equipment /tools such as targeted ultra-sound technologies may resolve these limitations. In this review, we introduce recent advances in site- or molecular size-selective BBB disruption/modulation technologies and we include details on pharmacological inhibitory molecules against intercellular TJ proteins to modulate the BBB.
Collapse
Affiliation(s)
- Yosuke Hashimoto
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin 2, Ireland.
| | - Matthew Campbell
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin 2, Ireland.
| |
Collapse
|
125
|
Martínez-Tapia RJ, Chavarría A, Navarro L. Differences in Diurnal Variation of Immune Responses in Microglia and Macrophages: Review and Perspectives. Cell Mol Neurobiol 2020; 40:301-309. [PMID: 31549296 PMCID: PMC11448797 DOI: 10.1007/s10571-019-00736-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/07/2019] [Indexed: 12/18/2022]
Abstract
Biological rhythms, especially those that last close to 24 h, better known as circadian rhythms, are highly regulated phenomena, maintained throughout evolution in various organisms which allow organisms to predict, prepare for, and adapt to environmental changes. One of these phenomena that exhibit biological rhythms is the immune response to external agents. Immune cells (neutrophils, lymphocytes, macrophages, among others), as well as their mediators such as cytokines and chemokines, undergo variations in tissue and blood concentrations during the day. These rhythms are still being elucidated in microglia, the resident macrophages of the central nervous system, but since these cells share a common origin with peripheral macrophages, they are expected to behave similarly. In this review, we will discuss the possible differences in the responses between peripheral macrophages and microglia, their relationship with the circadian clock, and whether these rhythms can influence therapeutic choices.
Collapse
Affiliation(s)
- Ricardo J Martínez-Tapia
- Neuroendocrinology Laboratory, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, Coyacán, Mexico
- Programa de Doctorado en Ciencias Biomédicas, División de Estudios de Posgrado, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luz Navarro
- Neuroendocrinology Laboratory, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, Coyacán, Mexico.
| |
Collapse
|
126
|
Keep RF, Jones HC, Drewes LR. This was the year that was: brain barriers and brain fluid research in 2019. Fluids Barriers CNS 2020; 17:20. [PMID: 32138786 PMCID: PMC7059280 DOI: 10.1186/s12987-020-00181-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This editorial highlights advances in brain barrier and brain fluid research published in 2019, as well as addressing current controversies and pressing needs. Topics include recent advances related to: the cerebral endothelium and the neurovascular unit; the choroid plexus, arachnoid membrane; cerebrospinal fluid and the glymphatic hypothesis; the impact of disease states on brain barriers and brain fluids; drug delivery to the brain; and translation of preclinical data to the clinic. This editorial also mourns the loss of two important figures in the field, Malcolm B. Segal and Edward G. Stopa.
Collapse
Affiliation(s)
- Richard F. Keep
- Department of Neurosurgery, University of Michigan, R5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200 USA
| | | | - Lester R. Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN 55812 USA
| |
Collapse
|
127
|
Shetty AK, Zanirati G. The Interstitial System of the Brain in Health and Disease. Aging Dis 2020; 11:200-211. [PMID: 32010493 PMCID: PMC6961771 DOI: 10.14336/ad.2020.0103] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
The brain interstitial fluid (ISF) and the cerebrospinal fluid (CSF) cushion and support the brain cells. The ISF occupies the brain interstitial system (ISS), whereas the CSF fills the brain ventricles and the subarachnoid space. The brain ISS is an asymmetrical, tortuous, and exceptionally confined space between neural cells and the brain microvasculature. Recently, with a newly developed in vivo measuring technique, a series of discoveries have been made in the brain ISS and the drainage of ISF. The goal of this review is to confer recent advances in our understanding of the brain ISS, including its structure, function, and the various processes mediating or disrupting ISF drainage in physiological and pathological conditions. The brain ISF in the deep brain regions has recently been demonstrated to drain in a compartmentalized ISS instead of a highly connected system, together with the drainage of ISF into the cerebrospinal fluid (CSF) at the surface of the cerebral cortex and the transportation from CSF into cervical lymph nodes. Besides, accumulation of tau in the brain ISS in conditions such as Alzheimer’s disease and its link to the sleep-wake cycle and sleep deprivation, clearance of ISF in a deep sleep via increased CSF flow, novel approaches to remove beta-amyloid from the brain ISS, and obstruction to the ISF drainage in neurological conditions are deliberated. Moreover, the role of ISS in the passage of extracellular vesicles (EVs) released from neural cells and the rapid targeting of therapeutic EVs into neural cells in the entire brain following an intranasal administration, and the promise and limitations of ISS based drug delivery approaches are discussed
Collapse
Affiliation(s)
- Ashok K Shetty
- 1Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX 77843, USA
| | - Gabriele Zanirati
- 2Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| |
Collapse
|