101
|
Bhasin H, Hülskamp M. ANGUSTIFOLIA, a Plant Homolog of CtBP/BARS Localizes to Stress Granules and Regulates Their Formation. FRONTIERS IN PLANT SCIENCE 2017; 8:1004. [PMID: 28659951 PMCID: PMC5469197 DOI: 10.3389/fpls.2017.01004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/26/2017] [Indexed: 05/12/2023]
Abstract
The ANGUSTIFOLIA (AN) gene in Arabidopsis is important for a plethora of morphological phenotypes. Recently, AN was also reported to be involved in responses to biotic and abiotic stresses. It encodes a homolog of the animal C-terminal binding proteins (CtBPs). In contrast to animal CtBPs, AN does not appear to function as a transcriptional co-repressor and instead functions outside nucleus where it might be involved in Golgi-associated membrane trafficking. In this study, we report a novel and unexplored role of AN as a component of stress granules (SGs). Interaction studies identified several RNA binding proteins that are associated with AN. AN co-localizes with several messenger ribonucleoprotein granule markers to SGs in a stress dependent manner. an mutants exhibit an altered SG formation. We provide evidence that the NAD(H) binding domain of AN is relevant in this context as proteins carrying mutations in this domain localize to a much higher degree to SGs and strongly reduce AN dimerization and its interaction with one interactor but not the others. Finally, we show that AN is a negative regulator of salt and osmotic stress responses in Arabidopsis suggesting a functional relevance in SGs.
Collapse
|
102
|
Gill RA, Ali B, Cui P, Shen E, Farooq MA, Islam F, Ali S, Mao B, Zhou W. Comparative transcriptome profiling of two Brassica napus cultivars under chromium toxicity and its alleviation by reduced glutathione. BMC Genomics 2016; 17:885. [PMID: 27821044 PMCID: PMC5100228 DOI: 10.1186/s12864-016-3200-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Chromium (Cr) being multifarious industrial used element, is considered a potential environmental threat. Cr found to be a prospective water and soil pollutant, and thus it is a current area of concern. Oilseed rape (Brassica napus L.) is well known as a major source of edible oil around the globe. Due to its higher growth, larger biomass and capability to uptake toxic materials B. napus is considered a potential candidate plant against unfavorable conditions. To date, no study has been done that described the Cr and GSH mechanism at RNA-Seq level. RESULTS Both digital gene expression (DGE) and transcriptome profile analysis (TPA) approaches had opened new insights to uncover the several number of genes related to Cr stress and GSH alleviating mechanism in two leading cultivars (ZS 758 and Zheda 622) of B. napus plants. Data showed that Cr inhibited KEGG pathways i.e. stilbenoid, diarlyheptanoid and gingerol biosynthesis; limonene and pentose degradation and glutathione metabolism in ZS 758; and ribosome and glucosinolate biosynthesis in Zheda-622. On the other hand, vitamin B6, tryptophan, sulfur, nitrogen and fructose and manose metabolisms were induced in ZS 758, and zeatin biosynthesis, linoleic acid metabolism, arginine and proline metabolism, and alanine, asparate and glutamate metabolism pathways in Zheda 622. Cr increased the TFs that were related to hydralase activity, antioxidant activity, catalytic activity phosphatase and pyrophosphatase activity in ZS 758, and vitamin binding and oxidoreductase activity in Zheda 622. Cr also up-regulated the promising proteins related to intracellular membrane bounded organelles, nitrile hyrdatase activity, cytoskeleton protein binding and stress response. It also uncovered, a novel Cr-responsive protein (CL2535.Contig1_All) that was statistically increased as compared to control and GSH treated plants. Exogenously applied GSH successfully not only recovered the changes in metabolic pathways but also induced cysteine and methionine metabolism in ZS 758 and ubiquinone and other terpenoid-quinone biosynthesis pathways in Zheda 622. Furthermore, GSH increased the level of TFs i.e. the gene expression of antioxidant and catalytic activities, iron ion binding and hydrolase activity as compared with Cr. Moreover, results pointed out a novel GSH responsive protein (CL827.Contig3_All) whose expression was found to be significantly increased when compared than Cr stress. Results further delineated that GSH induced TFs such as glutathione disulphide oxidoreducatse and aminoacyl-tRNA ligase activity, and beta glucosidase activity in ZS 758. Similarly in Zheda 622, GSH induced the TFs for instance DNA binding and protein dimerization activity. GSH also highlighted the proteins that were involved in transportation, photosynthesis process, RNA polymerase activity, and against the metal toxicity. These results indicated that cultivar ZS 758 had better metabolism and showed higher tolerance against Cr toxicity. CONCLUSION The responses of ZS 758 and Zheda 622 differed considerably at both physiological and transcriptional level. Moreover, RNA-Seq method explored the hazardous behavior of Cr as well as GSH up-regulating mechanism by activating plant metabolism, stress responsive genes, TFs and protein encyclopedia.
Collapse
Affiliation(s)
- Rafaqat A Gill
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Basharat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53115, Germany
| | - Peng Cui
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Enhui Shen
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad A Farooq
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Bizeng Mao
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
103
|
Li G, Jia H, Wang H, Yan Y, Guo X, Sun Q, Xu B. A typical RNA-binding protein gene (AccRBM11) in Apis cerana cerana: characterization of AccRBM11 and its possible involvement in development and stress responses. Cell Stress Chaperones 2016; 21:1005-1019. [PMID: 27590229 PMCID: PMC5083670 DOI: 10.1007/s12192-016-0725-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/18/2016] [Accepted: 07/19/2016] [Indexed: 12/13/2022] Open
Abstract
RNA-binding motif proteins (RBMs) belong to RNA-binding proteins that display extraordinary posttranscriptional gene regulation roles in various cellular processes, including development, growth, and stress responses. Nevertheless, only a few examples of the roles of RBMs are known in insects, particularly in Apis cerana cerana. In the present study, we characterized the novel RNA-binding motif protein 11 from Apis cerana cerana, which was named AccRBM11 and whose promoter sequence included abundant potential transcription factor binding sites that are connected to responses to adverse stress and early development. Quantitative PCR results suggested that AccRBM11 was expressed at highest levels in 1-day postemergence worker bees. AccRBM11 mRNA and protein levels were higher in the poison gland and the epidermis than in other tissues. Moreover, levels of AccRBM11 transcription were upregulated upon all the simulation of abiotic stresses. Furthermore, Western blot analysis indicated that AccRBM11 protein expression levels could be induced under some abiotic stressors, a result that did not completely in agree with the qRT-PCR results. It is also noteworthy that the expression of some genes that connected with development or stress responses were remarkably suppressed when AccRBM11 was silenced, which suggested that AccRBM11 might play a similar role in development or stress reactions with the above genes. Taken together, the data presented here provide evidence that AccRBM11 is potentially involved in the regulation of development and some abiotic stress responses. We expect that this study will promote future research on the function of RNA-binding proteins.
Collapse
Affiliation(s)
- Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Haihong Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Yan Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Qinghua Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China.
| |
Collapse
|
104
|
iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways responding to chilling stress in maize seedlings. J Proteomics 2016; 146:14-24. [DOI: 10.1016/j.jprot.2016.06.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/30/2016] [Accepted: 06/10/2016] [Indexed: 12/23/2022]
|
105
|
Subramanian S, Souleimanov A, Smith DL. Proteomic Studies on the Effects of Lipo-Chitooligosaccharide and Thuricin 17 under Unstressed and Salt Stressed Conditions in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:1314. [PMID: 27625672 PMCID: PMC5003918 DOI: 10.3389/fpls.2016.01314] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/16/2016] [Indexed: 05/18/2023]
Abstract
Plants, being sessile organisms, are exposed to widely varying environmental conditions throughout their life cycle. Compatible plant-microbe interactions favor plant growth and development, and help plants deal with these environmental challenges. Microorganisms produce a diverse range of elicitor molecules to establish symbiotic relationships with the plants they associate with, in a given ecological niche. Lipo-chitooligosaccharide (LCO) and Thuricin 17 (Th17) are two such compounds shown to positively influence plant growth of both legumes and non-legumes. Arabidopsis thaliana responded positively to treatment with the bacterial signal compounds LCO and Th17 in the presence of salt stress (up to 250 mM NaCl). Shotgun proteomics of unstressed and 250 mM NaCl stressed A. thaliana rosettes (7 days post stress) in combination with the LCO and Th17 revealed many known, putative, hypothetical, and unknown proteins. Overall, carbon and energy metabolic pathways were affected under both unstressed and salt stressed conditions when treated with these signals. PEP carboxylase, Rubisco-oxygenase large subunit, pyruvate kinase, and proteins of photosystems I and II were some of the noteworthy proteins enhanced by the signals, along with other stress related proteins. These findings suggest that the proteome of A. thaliana rosettes is altered by the bacterial signals tested, and more so under salt stress, thereby imparting a positive effect on plant growth under high salt stress. The roles of the identified proteins are discussed here in relation to salt stress adaptation, which, when translated to field grown crops can be a crucial component and of significant importance in agriculture and global food production. The mass spectrometry proteomics data have been deposited to the ProteomeXchange with identifier PXD004742.
Collapse
Affiliation(s)
| | | | - Donald L. Smith
- Department of Plant Science, McGill UniversityMontréal, QC, Canada
| |
Collapse
|
106
|
The RNA-binding protein repertoire of Arabidopsis thaliana. Sci Rep 2016; 6:29766. [PMID: 27405932 PMCID: PMC4942612 DOI: 10.1038/srep29766] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/08/2016] [Indexed: 12/28/2022] Open
Abstract
RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently, high-throughput methods enabled the capture of mammalian RNA-binding proteomes. To gain insight into the role of Arabidopsis thaliana RBPs at the systems level, we have employed interactome capture techniques using cells from different ecotypes grown in cultures and leaves. In vivo UV-crosslinking of RNA to RBPs, oligo(dT) capture and mass spectrometry yielded 1,145 different proteins including 550 RBPs that either belong to the functional category 'RNA-binding', have known RNA-binding domains or have orthologs identified in mammals, C. elegans, or S. cerevisiae in addition to 595 novel candidate RBPs. We noted specific subsets of RBPs in cultured cells and leaves and a comparison of Arabidopsis, mammalian, C. elegans, and S. cerevisiae RBPs reveals a common set of proteins with a role in intermediate metabolism, as well as distinct differences suggesting that RBPs are also species and tissue specific. This study provides a foundation for studies that will advance our understanding of the biological significance of RBPs in plant developmental and stimulus specific responses.
Collapse
|
107
|
EL-Manzalawy Y, Abbas M, Malluhi Q, Honavar V. FastRNABindR: Fast and Accurate Prediction of Protein-RNA Interface Residues. PLoS One 2016; 11:e0158445. [PMID: 27383535 PMCID: PMC4934694 DOI: 10.1371/journal.pone.0158445] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/16/2016] [Indexed: 11/24/2022] Open
Abstract
A wide range of biological processes, including regulation of gene expression, protein synthesis, and replication and assembly of many viruses are mediated by RNA-protein interactions. However, experimental determination of the structures of protein-RNA complexes is expensive and technically challenging. Hence, a number of computational tools have been developed for predicting protein-RNA interfaces. Some of the state-of-the-art protein-RNA interface predictors rely on position-specific scoring matrix (PSSM)-based encoding of the protein sequences. The computational efforts needed for generating PSSMs severely limits the practical utility of protein-RNA interface prediction servers. In this work, we experiment with two approaches, random sampling and sequence similarity reduction, for extracting a representative reference database of protein sequences from more than 50 million protein sequences in UniRef100. Our results suggest that random sampled databases produce better PSSM profiles (in terms of the number of hits used to generate the profile and the distance of the generated profile to the corresponding profile generated using the entire UniRef100 data as well as the accuracy of the machine learning classifier trained using these profiles). Based on our results, we developed FastRNABindR, an improved version of RNABindR for predicting protein-RNA interface residues using PSSM profiles generated using 1% of the UniRef100 sequences sampled uniformly at random. To the best of our knowledge, FastRNABindR is the only protein-RNA interface residue prediction online server that requires generation of PSSM profiles for query sequences and accepts hundreds of protein sequences per submission. Our approach for determining the optimal BLAST database for a protein-RNA interface residue classification task has the potential of substantially speeding up, and hence increasing the practical utility of, other amino acid sequence based predictors of protein-protein and protein-DNA interfaces.
Collapse
Affiliation(s)
- Yasser EL-Manzalawy
- College of Information Sciences and Technology, Pennsylvania State University, University Park, PA, United States of America
- Systems and Computer Engineering, Al-Azhar University, Cairo, Egypt
- * E-mail:
| | - Mostafa Abbas
- KINDI Center for Computing Research, College of Engineering, Qatar University, Duha, Qatar
| | - Qutaibah Malluhi
- KINDI Center for Computing Research, College of Engineering, Qatar University, Duha, Qatar
| | - Vasant Honavar
- College of Information Sciences and Technology, Pennsylvania State University, University Park, PA, United States of America
| |
Collapse
|
108
|
Sah SK, Reddy KR, Li J. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:571. [PMID: 27200044 DOI: 10.3389/fpls.2016.00571/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/13/2016] [Indexed: 05/27/2023]
Abstract
Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression.
Collapse
Affiliation(s)
- Saroj K Sah
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Mississippi State, Mississippi, MS, USA
| | - Kambham R Reddy
- Department of Plant and Soil Sciences, Mississippi State University Mississippi State, Mississippi, MS, USA
| | - Jiaxu Li
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Mississippi State, Mississippi, MS, USA
| |
Collapse
|
109
|
Sah SK, Reddy KR, Li J. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:571. [PMID: 27200044 PMCID: PMC4855980 DOI: 10.3389/fpls.2016.00571] [Citation(s) in RCA: 622] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/13/2016] [Indexed: 05/17/2023]
Abstract
Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression.
Collapse
Affiliation(s)
- Saroj K. Sah
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State UniversityMississippi State, Mississippi, MS, USA
| | - Kambham R. Reddy
- Department of Plant and Soil Sciences, Mississippi State UniversityMississippi State, Mississippi, MS, USA
| | - Jiaxu Li
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State UniversityMississippi State, Mississippi, MS, USA
| |
Collapse
|
110
|
Anderson SJ, Willmann MR, Gregory BD. Protein Interaction Profile Sequencing (PIP-seq) in Plants. ACTA ACUST UNITED AC 2016; 1:163-183. [PMID: 31725981 DOI: 10.1002/cppb.20001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
RNA secondary structure and RNA-protein interactions are necessary for maintaining biological functionality and regulatory mechanisms within eukaryotic transcriptomes. Determining the structural characteristics and protein-bound sites of RNA molecules has therefore become a major research objective and requires the development of global methods for probing intra- and intermolecular RNA interaction sites. Sequencing RNAs treated with single-strand- and double-strand-specific ribonucleases in the absence of proteins allows the inference of RNA secondary structure. These samples can be compared to samples treated with nucleases in the presence of interacting proteins to identify protein-bound sequences. Thus, these four libraries reveal a comprehensive, transcriptome-wide view of RNA secondary structure and RNA protein interaction sites in a single experiment for any plant species of interest. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Stephen J Anderson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew R Willmann
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
111
|
Lee K, Kang H. Emerging Roles of RNA-Binding Proteins in Plant Growth, Development, and Stress Responses. Mol Cells 2016; 39:179-85. [PMID: 26831454 PMCID: PMC4794599 DOI: 10.14348/molcells.2016.2359] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 11/27/2022] Open
Abstract
Posttranscriptional regulation of RNA metabolism, including RNA processing, intron splicing, editing, RNA export, and decay, is increasingly regarded as an essential step for fine-tuning the regulation of gene expression in eukaryotes. RNA-binding proteins (RBPs) are central regulatory factors controlling posttranscriptional RNA metabolism during plant growth, development, and stress responses. Although functional roles of diverse RBPs in living organisms have been determined during the last decades, our understanding of the functional roles of RBPs in plants is lagging far behind our understanding of those in other organisms, including animals, bacteria, and viruses. However, recent functional analysis of multiple RBP family members involved in plant RNA metabolism and elucidation of the mechanistic roles of RBPs shed light on the cellular roles of diverse RBPs in growth, development, and stress responses of plants. In this review, we will discuss recent studies demonstrating the emerging roles of multiple RBP family members that play essential roles in RNA metabolism during plant growth, development, and stress responses.
Collapse
Affiliation(s)
- Kwanuk Lee
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757,
Korea
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757,
Korea
| |
Collapse
|
112
|
Choi MJ, Park YR, Park SJ, Kang H. Stress-responsive expression patterns and functional characterization of cold shock domain proteins in cabbage (Brassica rapa) under abiotic stress conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 96:132-40. [PMID: 26263516 DOI: 10.1016/j.plaphy.2015.07.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/24/2015] [Accepted: 07/27/2015] [Indexed: 05/24/2023]
Abstract
Although the functional roles of cold shock domain proteins (CSDPs) have been demonstrated during the growth, development, and stress adaptation of Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and wheat (Triticum aestivum), the functions of CSDPs in other plants species, including cabbage (Brassica rapa), are largely unknown. To gain insight into the roles of CSDPs in cabbage under stress conditions, the genes encoding CSDPs in cabbage were isolated, and the functional roles of CSDPs in response to environmental stresses were analyzed. Real-time RT-PCR analysis revealed that the levels of BrCSDP transcripts increased during cold, salt, or drought stress, as well as upon ABA treatment. Among the five BrCSDP genes found in the cabbage genome, one CSDP (BRU12051), named BrCSDP3, was unique in that it is localized to the chloroplast as well as to the nucleus. Ectopic expression of BrCSDP3 in Arabidopsis resulted in accelerated seed germination and better seedling growth compared to the wild-type plants under high salt or dehydration stress conditions, and in response to ABA treatment. BrCSDP3 did not affect the splicing of intron-containing genes and processing of rRNAs in the chloroplast. BrCSDP3 had the ability to complement RNA chaperone-deficient Escherichia coli mutant cells under low temperatures as well as DNA- and RNA-melting abilities, suggesting that it possesses RNA chaperone activity. Taken together, these results suggest that BrCSDP3, harboring RNA chaperone activity, plays a role as a positive regulator in seed germination and seedling growth under stress conditions.
Collapse
Affiliation(s)
- Min Ji Choi
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, South Korea
| | - Ye Rin Park
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, South Korea
| | - Su Jung Park
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, South Korea
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, South Korea.
| |
Collapse
|
113
|
Shida T, Fukuda A, Saito T, Ito H, Kato A. AtRBP1, which encodes an RNA-binding protein containing RNA-recognition motifs, regulates root growth in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 92:62-70. [PMID: 25913162 DOI: 10.1016/j.plaphy.2015.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/04/2015] [Accepted: 04/09/2015] [Indexed: 06/04/2023]
Abstract
AtRBP1 is an RNA-binding protein containing RNA-recognition motifs in Arabidopsis thaliana, homologues of which are not observed in metazoa. Transgenic plants expressing artificial microRNAs for repressing AtRBP1 expression displayed a stunted primary root phenotype during germination. Transgenic plants overexpressing AtRBP1 also displayed the same phenotype. Tight regulation of the AtRBP1 transcript may be required for normal root growth. An in vitro binding assay showed that AtRBP1 preferentially binds to sequences containing UUAGG, GUAGG and/or UUAGU. In vivo selection of RNAs bound to AtRBP1 suggests that transcripts of At3g06780, At4g15910, At5g11760 and At5g07350 are target RNAs of AtRBP1.
Collapse
Affiliation(s)
- Takuhiro Shida
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Ai Fukuda
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0814, Japan
| | - Tamao Saito
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda-ku, Tokyo 120-8554, Japan
| | - Hidetaka Ito
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0814, Japan; Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Atsushi Kato
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0814, Japan.
| |
Collapse
|
114
|
Na JK, Kim JK, Kim DY, Assmann SM. Expression of potato RNA-binding proteins StUBA2a/b and StUBA2c induces hypersensitive-like cell death and early leaf senescence in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4023-33. [PMID: 25944928 PMCID: PMC4473998 DOI: 10.1093/jxb/erv207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The Arabidopsis thaliana genome encodes three RNA-binding proteins (RBPs), UBP1-associated protein 2a (UBA2a), UBA2b, and UBA2c, that contain two RNA-recognition motif (RRM) domains. They play important roles in wounding response and leaf senescence, and are homologs of Vicia faba abscisic-acid-activated protein kinase-interacting protein 1 (VfAKIP1). The potato (Solanum tuberosum) genome encodes at least seven AKIP1-like RBPs. Here, two potato RBPs have been characterized, StUBA2a/b and StUBA2c, that are homologous to VfAKIP1 and Arabidopsis UBA2s. Transient expression of StUBA2s induced a hypersensitive-like cell death phenotype in tobacco leaves, and an RRM-domain deletion assay of StUBA2s revealed that the first RRM domain is crucial for the phenotype. Unlike overexpression of Arabidopsis UBA2s, constitutive expression of StUBA2a/b in Arabidopsis did not cause growth arrest and lethality at the young seedling stage, but induced early leaf senescence. This phenotype was associated with increased expression of defence- and senescence-associated genes, including pathogen-related genes (PR) and a senescence-associated gene (SAG13), and it was aggravated upon flowering and ultimately resulted in a shortened life cycle. Leaf senescence of StUBA2a/b Arabidopsis plants was enhanced under darkness and was accompanied by H2O2 accumulation and altered expression of autophagy-associated genes, which likely cause cellular damage and are proximate causes of the early leaf senescence. Expression of salicylic acid signalling and biosynthetic genes was also upregulated in StUBA2a/b plants. Consistent with the localization of UBA2s-GFPs and VfAKIP1-GFP, soluble-modified GFP-StUBA2s localized in the nucleus within nuclear speckles. StUBA2s potentially can be considered for transgenic approaches to induce potato shoot senescence, which is desirable at harvest.
Collapse
Affiliation(s)
- Jong-Kuk Na
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802 USA Molecular Breeding Division, National Academy of Agricultural Science, RDA, Wanju-gun, Jeollabuk-do 565-851, Republic of Korea
| | - Jae-Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406-772, Republic of Korea
| | - Dool-Yi Kim
- Crop Function Division, National Institute of Crop Science, Rural Development Administration, Wanju-gun, Jeollabuk-do 565-851, Republic of Korea Molecular Breeding Division, National Academy of Agricultural Science, RDA, Wanju-gun, Jeollabuk-do 565-851, Republic of Korea
| | - Sarah M Assmann
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802 USA
| |
Collapse
|
115
|
Transcriptome-Wide Identification of miRNA Targets under Nitrogen Deficiency in Populus tomentosa Using Degradome Sequencing. Int J Mol Sci 2015; 16:13937-58. [PMID: 26096002 PMCID: PMC4490532 DOI: 10.3390/ijms160613937] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/21/2015] [Accepted: 06/01/2015] [Indexed: 12/02/2022] Open
Abstract
miRNAs are endogenous non-coding small RNAs with important regulatory roles in stress responses. Nitrogen (N) is an indispensable macronutrient required for plant growth and development. Previous studies have identified a variety of known and novel miRNAs responsive to low N stress in plants, including Populus. However, miRNAs involved in the cleavage of target genes and the corresponding regulatory networks in response to N stress in Populus remain largely unknown. Consequently, degradome sequencing was employed for global detection and validation of N-responsive miRNAs and their targets. A total of 60 unique miRNAs (39 conserved, 13 non-conserved, and eight novel) were experimentally identified to target 64 mRNA transcripts and 21 precursors. Among them, we further verified the cleavage of 11 N-responsive miRNAs identified previously and provided empirical evidence for the cleavage mode of these miRNAs on their target mRNAs. Furthermore, five miRNA stars (miRNA*s) were shown to have cleavage function. The specificity and diversity of cleavage sites on the targets and miRNA precursors in P. tomentosa were further detected. Identification and annotation of miRNA-mediated cleavage of target genes in Populus can increase our understanding of miRNA-mediated molecular mechanisms of woody plants adapted to low N environments.
Collapse
|
116
|
Thatcher LF, Kamphuis LG, Hane JK, Oñate-Sánchez L, Singh KB. The Arabidopsis KH-Domain RNA-Binding Protein ESR1 Functions in Components of Jasmonate Signalling, Unlinking Growth Restraint and Resistance to Stress. PLoS One 2015; 10:e0126978. [PMID: 25985302 PMCID: PMC4436139 DOI: 10.1371/journal.pone.0126978] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/09/2015] [Indexed: 11/25/2022] Open
Abstract
Glutathione S-transferases (GSTs) play important roles in the protection of cells against toxins and oxidative damage where one Arabidopsis member, GSTF8, has become a commonly used marker gene for early stress and defense responses. A GSTF8 promoter fragment fused to the luciferase reporter gene was used in a forward genetic screen for Arabidopsis mutants with up-regulated GSTF8 promoter activity. This identified the esr1-1 (enhanced stress response 1) mutant which also conferred increased resistance to the fungal pathogen Fusarium oxysporum. Through positional cloning, the ESR1 gene was found to encode a KH-domain containing RNA-binding protein (At5g53060). Whole transcriptome sequencing of esr1-1 identified altered expression of genes involved in responses to biotic and abiotic stimuli, hormone signaling pathways and developmental processes. In particular was an overall significant enrichment for jasmonic acid (JA) mediated processes in the esr1-1 down-regulated dataset. A subset of these genes were tested for MeJA inducibility and we found the expression of some but not all were reduced in esr1-1. The esr1-1 mutant was not impaired in other aspects of JA-signalling such as JA- sensitivity or development, suggesting ESR1 functions in specific components of the JA-signaling pathway. Examination of salicylic acid (SA) regulated marker genes in esr1-1 showed no increase in basal or SA induced expression suggesting repression of JA-regulated genes is not due to antagonistic SA-JA crosstalk. These results define new roles for KH-domain containing proteins with ESR1 unlinking JA-mediated growth and defense responses.
Collapse
Affiliation(s)
- Louise F. Thatcher
- CSIRO Agriculture Flagship, Centre for Environment and Life Sciences, Wembley, Western Australia, Australia
| | - Lars G. Kamphuis
- CSIRO Agriculture Flagship, Centre for Environment and Life Sciences, Wembley, Western Australia, Australia
- The Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| | - James K. Hane
- CSIRO Agriculture Flagship, Centre for Environment and Life Sciences, Wembley, Western Australia, Australia
| | - Luis Oñate-Sánchez
- CSIRO Agriculture Flagship, Centre for Environment and Life Sciences, Wembley, Western Australia, Australia
| | - Karam B. Singh
- CSIRO Agriculture Flagship, Centre for Environment and Life Sciences, Wembley, Western Australia, Australia
- The Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
117
|
Waszczak C, Akter S, Jacques S, Huang J, Messens J, Van Breusegem F. Oxidative post-translational modifications of cysteine residues in plant signal transduction. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2923-34. [PMID: 25750423 DOI: 10.1093/jxb/erv084] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In plants, fluctuation of the redox balance by altered levels of reactive oxygen species (ROS) can affect many aspects of cellular physiology. ROS homeostasis is governed by a diversified set of antioxidant systems. Perturbation of this homeostasis leads to transient or permanent changes in the redox status and is exploited by plants in different stress signalling mechanisms. Understanding how plants sense ROS and transduce these stimuli into downstream biological responses is still a major challenge. ROS can provoke reversible and irreversible modifications to proteins that act in diverse signalling pathways. These oxidative post-translational modifications (Ox-PTMs) lead to oxidative damage and/or trigger structural alterations in these target proteins. Characterization of the effect of individual Ox-PTMs on individual proteins is the key to a better understanding of how cells interpret the oxidative signals that arise from developmental cues and stress conditions. This review focuses on ROS-mediated Ox-PTMs on cysteine (Cys) residues. The Cys side chain, with its high nucleophilic capacity, appears to be the principle target of ROS. Ox-PTMs on Cys residues participate in various signalling cascades initiated by plant stress hormones. We review the mechanistic aspects and functional consequences of Cys Ox-PTMs on specific target proteins in view of stress signalling events.
Collapse
Affiliation(s)
- Cezary Waszczak
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Structural Biology Research Center, VIB, 1050 Brussels, Belgium Brussels Center for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium * Present address: Division of Plant Biology, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | - Salma Akter
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Structural Biology Research Center, VIB, 1050 Brussels, Belgium Brussels Center for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium Faculty of Biological Sciences, University of Dhaka, 1000 Dhaka, Bangladesh
| | - Silke Jacques
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Department of Biochemistry, Ghent University, 9000 Gent, Belgium Department of Medical Protein Research, VIB, 9000 Gent, Belgium
| | - Jingjing Huang
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium Brussels Center for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Joris Messens
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium Brussels Center for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
118
|
Ambrosone A, Batelli G, Nurcato R, Aurilia V, Punzo P, Bangarusamy DK, Ruberti I, Sassi M, Leone A, Costa A, Grillo S. The Arabidopsis RNA-binding protein AtRGGA regulates tolerance to salt and drought stress. PLANT PHYSIOLOGY 2015; 168:292-306. [PMID: 25783413 PMCID: PMC4424017 DOI: 10.1104/pp.114.255802] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/16/2015] [Indexed: 05/20/2023]
Abstract
Salt and drought stress severely reduce plant growth and crop productivity worldwide. The identification of genes underlying stress response and tolerance is the subject of intense research in plant biology. Through microarray analyses, we previously identified in potato (Solanum tuberosum) StRGGA, coding for an Arginine Glycine Glycine (RGG) box-containing RNA-binding protein, whose expression was specifically induced in potato cell cultures gradually exposed to osmotic stress. Here, we show that the Arabidopsis (Arabidopsis thaliana) ortholog, AtRGGA, is a functional RNA-binding protein required for a proper response to osmotic stress. AtRGGA gene expression was up-regulated in seedlings after long-term exposure to abscisic acid (ABA) and polyethylene glycol, while treatments with NaCl resulted in AtRGGA down-regulation. AtRGGA promoter analysis showed activity in several tissues, including stomata, the organs controlling transpiration. Fusion of AtRGGA with yellow fluorescent protein indicated that AtRGGA is localized in the cytoplasm and the cytoplasmic perinuclear region. In addition, the rgga knockout mutant was hypersensitive to ABA in root growth and survival tests and to salt stress during germination and at the vegetative stage. AtRGGA-overexpressing plants showed higher tolerance to ABA and salt stress on plates and in soil, accumulating lower levels of proline when exposed to drought stress. Finally, a global analysis of gene expression revealed extensive alterations in the transcriptome under salt stress, including several genes such as ASCORBATE PEROXIDASE2, GLUTATHIONE S-TRANSFERASE TAU9, and several SMALL AUXIN UPREGULATED RNA-like genes showing opposite expression behavior in transgenic and knockout plants. Taken together, our results reveal an important role of AtRGGA in the mechanisms of plant response and adaptation to stress.
Collapse
Affiliation(s)
- Alfredo Ambrosone
- National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, 80055 Portici (Naples), Italy (A.A., G.B., R.N., P.P., A.C., S.G.);National Research Council of Italy, Institute for Mediterranean Agriculture and Forest Systems, 80056 Ercolano (Naples), Italy (V.A.);Bio-science Core Laboratories, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (D.K.B.);National Research Council of Italy, Institute of Molecular Biology and Pathology, 00185 Rome, Italy (I.R., M.S.); andDepartment of Pharmacy, University of Salerno, 84084 Fisciano (Salerno), Italy (A.L.)
| | - Giorgia Batelli
- National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, 80055 Portici (Naples), Italy (A.A., G.B., R.N., P.P., A.C., S.G.);National Research Council of Italy, Institute for Mediterranean Agriculture and Forest Systems, 80056 Ercolano (Naples), Italy (V.A.);Bio-science Core Laboratories, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (D.K.B.);National Research Council of Italy, Institute of Molecular Biology and Pathology, 00185 Rome, Italy (I.R., M.S.); andDepartment of Pharmacy, University of Salerno, 84084 Fisciano (Salerno), Italy (A.L.)
| | - Roberta Nurcato
- National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, 80055 Portici (Naples), Italy (A.A., G.B., R.N., P.P., A.C., S.G.);National Research Council of Italy, Institute for Mediterranean Agriculture and Forest Systems, 80056 Ercolano (Naples), Italy (V.A.);Bio-science Core Laboratories, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (D.K.B.);National Research Council of Italy, Institute of Molecular Biology and Pathology, 00185 Rome, Italy (I.R., M.S.); andDepartment of Pharmacy, University of Salerno, 84084 Fisciano (Salerno), Italy (A.L.)
| | - Vincenzo Aurilia
- National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, 80055 Portici (Naples), Italy (A.A., G.B., R.N., P.P., A.C., S.G.);National Research Council of Italy, Institute for Mediterranean Agriculture and Forest Systems, 80056 Ercolano (Naples), Italy (V.A.);Bio-science Core Laboratories, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (D.K.B.);National Research Council of Italy, Institute of Molecular Biology and Pathology, 00185 Rome, Italy (I.R., M.S.); andDepartment of Pharmacy, University of Salerno, 84084 Fisciano (Salerno), Italy (A.L.)
| | - Paola Punzo
- National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, 80055 Portici (Naples), Italy (A.A., G.B., R.N., P.P., A.C., S.G.);National Research Council of Italy, Institute for Mediterranean Agriculture and Forest Systems, 80056 Ercolano (Naples), Italy (V.A.);Bio-science Core Laboratories, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (D.K.B.);National Research Council of Italy, Institute of Molecular Biology and Pathology, 00185 Rome, Italy (I.R., M.S.); andDepartment of Pharmacy, University of Salerno, 84084 Fisciano (Salerno), Italy (A.L.)
| | - Dhinoth Kumar Bangarusamy
- National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, 80055 Portici (Naples), Italy (A.A., G.B., R.N., P.P., A.C., S.G.);National Research Council of Italy, Institute for Mediterranean Agriculture and Forest Systems, 80056 Ercolano (Naples), Italy (V.A.);Bio-science Core Laboratories, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (D.K.B.);National Research Council of Italy, Institute of Molecular Biology and Pathology, 00185 Rome, Italy (I.R., M.S.); andDepartment of Pharmacy, University of Salerno, 84084 Fisciano (Salerno), Italy (A.L.)
| | - Ida Ruberti
- National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, 80055 Portici (Naples), Italy (A.A., G.B., R.N., P.P., A.C., S.G.);National Research Council of Italy, Institute for Mediterranean Agriculture and Forest Systems, 80056 Ercolano (Naples), Italy (V.A.);Bio-science Core Laboratories, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (D.K.B.);National Research Council of Italy, Institute of Molecular Biology and Pathology, 00185 Rome, Italy (I.R., M.S.); andDepartment of Pharmacy, University of Salerno, 84084 Fisciano (Salerno), Italy (A.L.)
| | - Massimiliano Sassi
- National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, 80055 Portici (Naples), Italy (A.A., G.B., R.N., P.P., A.C., S.G.);National Research Council of Italy, Institute for Mediterranean Agriculture and Forest Systems, 80056 Ercolano (Naples), Italy (V.A.);Bio-science Core Laboratories, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (D.K.B.);National Research Council of Italy, Institute of Molecular Biology and Pathology, 00185 Rome, Italy (I.R., M.S.); andDepartment of Pharmacy, University of Salerno, 84084 Fisciano (Salerno), Italy (A.L.)
| | - Antonietta Leone
- National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, 80055 Portici (Naples), Italy (A.A., G.B., R.N., P.P., A.C., S.G.);National Research Council of Italy, Institute for Mediterranean Agriculture and Forest Systems, 80056 Ercolano (Naples), Italy (V.A.);Bio-science Core Laboratories, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (D.K.B.);National Research Council of Italy, Institute of Molecular Biology and Pathology, 00185 Rome, Italy (I.R., M.S.); andDepartment of Pharmacy, University of Salerno, 84084 Fisciano (Salerno), Italy (A.L.)
| | - Antonello Costa
- National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, 80055 Portici (Naples), Italy (A.A., G.B., R.N., P.P., A.C., S.G.);National Research Council of Italy, Institute for Mediterranean Agriculture and Forest Systems, 80056 Ercolano (Naples), Italy (V.A.);Bio-science Core Laboratories, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (D.K.B.);National Research Council of Italy, Institute of Molecular Biology and Pathology, 00185 Rome, Italy (I.R., M.S.); andDepartment of Pharmacy, University of Salerno, 84084 Fisciano (Salerno), Italy (A.L.)
| | - Stefania Grillo
- National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, 80055 Portici (Naples), Italy (A.A., G.B., R.N., P.P., A.C., S.G.);National Research Council of Italy, Institute for Mediterranean Agriculture and Forest Systems, 80056 Ercolano (Naples), Italy (V.A.);Bio-science Core Laboratories, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (D.K.B.);National Research Council of Italy, Institute of Molecular Biology and Pathology, 00185 Rome, Italy (I.R., M.S.); andDepartment of Pharmacy, University of Salerno, 84084 Fisciano (Salerno), Italy (A.L.)
| |
Collapse
|
119
|
Shin DH, Cho M, Choi MG, Das PK, Lee SK, Choi SB, Park YI. Identification of genes that may regulate the expression of the transcription factor production of anthocyanin pigment 1 (PAP1)/MYB75 involved in Arabidopsis anthocyanin biosynthesis. PLANT CELL REPORTS 2015; 34:805-15. [PMID: 25604992 DOI: 10.1007/s00299-015-1743-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/19/2014] [Accepted: 01/06/2015] [Indexed: 05/10/2023]
Abstract
A putative RNA-binding protein with a single RNA Recognition Motif (At3G63450) is involved in anthocyanin biosynthesis via its ability to modulate the transcript level of a major positive regulator PAP1 in Arabidopsis. The R2R3 MYB-activator production of anthocyanin pigment 1 (PAP1)/MYB75 plays a major role in anthocyanin biosynthesis in Arabidopsis in combination with one of three bHLH activators including transparent test 8 (TT8), enhancer of glabra3 (EGL3), glabra3 (GL3), and the WD-repeat transcription factor transparent testa 1 (TTG1), forming ternary MYB-basic HLH-WD40 complexes. Transcriptional activation of PAP1 expression is largely triggered by changes in light color and intensity, temperature fluctuations, nutrient status, and sugar and hormone treatments. However, the immediate upstream and downstream regulatory factors for PAP1 transcription are largely unknown. In the present study, using a T-DNA insertional mutagenesis approach, we transformed pap1-Dominant (pap1D) plants to modulate the levels of endogenous PAP1 transcripts. We employed Restriction Site Extension (RSE)-PCR analysis of 247 homogenous T3 genetic mutant lines exhibiting variations in anthocyanin accumulation compared to pap1D and identified 92 lines with T-DNA integrated in either intra- or inter-genic locations. This analysis revealed 80 novel candidate proteins, including a putative RNA-binding protein with a single RNA Recognition Motif (At3G63450), which may directly or indirectly regulate PAP1 expression at the transcriptional level.
Collapse
Affiliation(s)
- Dong Ho Shin
- Department of Biological Sciences, Chungnam National University, 99 Daehagro, Youseong, Daejeon, 305-764, Korea
| | | | | | | | | | | | | |
Collapse
|
120
|
Filichkin S, Priest HD, Megraw M, Mockler TC. Alternative splicing in plants: directing traffic at the crossroads of adaptation and environmental stress. CURRENT OPINION IN PLANT BIOLOGY 2015; 24:125-35. [PMID: 25835141 DOI: 10.1016/j.pbi.2015.02.008] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 05/20/2023]
Abstract
In recent years, high-throughput sequencing-based analysis of plant transcriptomes has suggested that up to ∼60% of plant gene loci encode alternatively spliced mature transcripts. These studies have also revealed that alternative splicing in plants can be regulated by cell type, developmental stage, the environment, and the circadian clock. Alternative splicing is coupled to RNA surveillance and processing mechanisms, including nonsense mediated decay. Recently, non-protein-coding transcripts have also been shown to undergo alternative splicing. These discoveries collectively describe a robust system of post-transcriptional regulatory feedback loops which influence RNA abundance. In this review, we summarize recent studies describing the specific roles alternative splicing and RNA surveillance play in plant adaptation to environmental stresses and the regulation of the circadian clock.
Collapse
Affiliation(s)
- Sergei Filichkin
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, USA.
| | - Henry D Priest
- Division of Biology and Biomedical Sciences, Washington University, Saint Louis, MO 63130, USA; Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
| | - Molly Megraw
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, USA
| | - Todd C Mockler
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, USA; Division of Biology and Biomedical Sciences, Washington University, Saint Louis, MO 63130, USA; Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA.
| |
Collapse
|
121
|
Liu J, Wang H, Chua NH. Long noncoding RNA transcriptome of plants. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:319-28. [PMID: 25615265 DOI: 10.1111/pbi.12336] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/09/2014] [Accepted: 12/16/2014] [Indexed: 05/20/2023]
Abstract
Since their discovery more than two decades ago, animal long noncoding RNAs (lncRNAs) have emerged as important regulators of many biological processes. Recently, a large number of lncRNAs have also been identified in higher plants, and here, we review their identification, classification and known regulatory functions in various developmental events and stress responses. Knowledge gained from a deeper understanding of this special group of noncoding RNAs may lead to biotechnological improvement of crops. Some possible examples in this direction are discussed.
Collapse
Affiliation(s)
- Jun Liu
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, NY, USA
| | | | | |
Collapse
|
122
|
Salicylic Acid Signaling in Plant Innate Immunity. PLANT HORMONE SIGNALING SYSTEMS IN PLANT INNATE IMMUNITY 2015. [DOI: 10.1007/978-94-017-9285-1_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
123
|
Thakur A, Bhatla SC. Proteomic analysis of oil body membrane proteins accompanying the onset of desiccation phase during sunflower seed development. PLANT SIGNALING & BEHAVIOR 2015; 10:e1030100. [PMID: 26786011 PMCID: PMC4854339 DOI: 10.1080/15592324.2015.1030100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 05/20/2023]
Abstract
A noteworthy metabolic signature accompanying oil body (OB) biogenesis during oilseed development is associated with the modulation of the oil body membranes proteins. Present work focuses on 2-dimensional polyacrylamide gel electrophoresis (2-D PAGE)-based analysis of the temporal changes in the OB membrane proteins analyzed by LC-MS/MS accompanying the onset of desiccation (20-30 d after anthesis; DAA) in the developing seeds of sunflower (Helianthus annuus L.). Protein spots unique to 20-30 DAA stages were picked up from 2-D gels for identification and the identified proteins were categorized into 7 functional classes. These include proteins involved in energy metabolism, reactive oxygen scavenging, proteolysis and protein turnover, signaling, oleosin and oil body biogenesis-associated proteins, desiccation and cytoskeleton. At 30 DAA stage, exclusive expressions of enzymes belonging to energy metabolism, desiccation and cytoskeleton were evident which indicated an increase in the metabolic and enzymatic activity in the cells at this stage of seed development (seed filling). Increased expression of cruciferina-like protein and dehydrin at 30 DAA stage marks the onset of desiccation. The data has been analyzed and discussed to highlight desiccation stage-associated metabolic events during oilseed development.
Collapse
Affiliation(s)
- Anita Thakur
- Laboratory of Plant Physiology and Biochemistry; Department of Botany; University of Delhi; Delhi, India
| | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry; Department of Botany; University of Delhi; Delhi, India
| |
Collapse
|
124
|
Tripet B, Mason KE, Eilers BJ, Burns J, Powell P, Fischer AM, Copié V. Structural and biochemical analysis of the Hordeum vulgare L. HvGR-RBP1 protein, a glycine-rich RNA-binding protein involved in the regulation of barley plant development and stress response. Biochemistry 2014; 53:7945-60. [PMID: 25495582 PMCID: PMC4278681 DOI: 10.1021/bi5007223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 11/25/2014] [Indexed: 12/26/2022]
Abstract
The timing of whole-plant senescence influences important agricultural traits such as yield and grain protein content. Post-transcriptional regulation by plant RNA-binding proteins is essential for proper control of gene expression, development, and stress responses. Here, we report the three-dimensional solution NMR structure and nucleic acid-binding properties of the barley glycine-rich RNA-binding protein HvGR-RBP1, whose transcript has been identified as being >45-fold up-regulated in early-as compared to late-senescing near-isogenic barley germplasm. NMR analysis reveals that HvGR-RBP1 is a multidomain protein comprising a well-folded N-terminal RNA Recognition Motif (RRM) and a structurally disordered C-terminal glycine-rich domain. Chemical shift differences observed in 2D (1)H-(15)N correlation (HSQC) NMR spectra of full-length HvGR-RBP1 and N-HvGR-RBP1 (RRM domain only) suggest that the two domains can interact both in-trans and intramolecularly, similar to what is observed in the tobacco NtGR-RBP1 protein. Further, we show that the RRM domain of HvGR-RBP1 binds single-stranded DNA nucleotide fragments containing the consensus nucleotide sequence 5'-TTCTGX-3' with low micromolar affinity in vitro. We also demonstrate that the C-terminal glycine-rich (HvGR) domain of Hv-GR-RBP1 can interact nonspecifically with ssRNA in vitro. Structural similarities with other plant glycine-rich RNA-binding proteins suggest that HvGR-RBP1 may be multifunctional. Based on gene expression analysis following cold stress in barley and E. coli growth studies following cold shock treatment, we conclude that HvGR-RBP1 functions in a manner similar to cold-shock proteins and harbors RNA chaperone activity. HvGR-RBP1 is therefore not only involved in the regulation of barley development including senescence, but also functions in plant responses to environmental stress.
Collapse
MESH Headings
- Cold-Shock Response/physiology
- DNA, Plant/chemistry
- DNA, Plant/genetics
- DNA, Plant/metabolism
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- Hordeum/genetics
- Hordeum/metabolism
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Protein Binding
- Protein Structure, Tertiary
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
Collapse
Affiliation(s)
- Brian
P. Tripet
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| | - Katelyn E. Mason
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| | - Brian J. Eilers
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| | - Jennifer Burns
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| | - Paul Powell
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| | - Andreas M. Fischer
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| | - Valérie Copié
- Department of Chemistry and Biochemistry and Department of Plant
Sciences and Plant
Pathology, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
125
|
Fonseca C, Planchon S, Serra T, Chander S, Saibo NJM, Renaut J, Oliveira MM, Batista R. In vitro culture may be the major contributing factor for transgenic versus nontransgenic proteomic plant differences. Proteomics 2014; 15:124-34. [DOI: 10.1002/pmic.201400018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 09/09/2014] [Accepted: 09/29/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Cátia Fonseca
- National Health Institute; Lisboa Portugal
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - Sébastien Planchon
- Department of Environment and Agrobiotechnologies (EVA); Centre de Recherche Public; Gabriel Lippmann; Belvaux Luxembourg
| | | | - Subhash Chander
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - Nelson J. M. Saibo
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - Jenny Renaut
- Department of Environment and Agrobiotechnologies (EVA); Centre de Recherche Public; Gabriel Lippmann; Belvaux Luxembourg
| | - M. Margarida Oliveira
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
- IBET; Oeiras Portugal
| | - Rita Batista
- National Health Institute; Lisboa Portugal
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| |
Collapse
|
126
|
Irar S, González EM, Arrese-Igor C, Marino D. A proteomic approach reveals new actors of nodule response to drought in split-root grown pea plants. PHYSIOLOGIA PLANTARUM 2014; 152:634-45. [PMID: 24754352 DOI: 10.1111/ppl.12214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/12/2014] [Accepted: 03/19/2014] [Indexed: 05/21/2023]
Abstract
Drought is considered the more harmful abiotic stress resulting in crops yield loss. Legumes in symbiosis with rhizobia are able to fix atmospheric nitrogen. Biological nitrogen fixation (SNF) is a very sensitive process to drought and limits legumes agricultural productivity. Several factors are known to regulate SNF including oxygen availability to bacteroids, carbon and nitrogen metabolisms; but the signaling pathways leading to SNF inhibition are largely unknown. In this work, we have performed a proteomic approach of pea plants grown in split-root system where one half of the root was well-irrigated and the other was subjected to drought. Water stress locally provoked nodule water potential decrease that led to SNF local inhibition. The proteomic approach revealed 11 and 7 nodule proteins regulated by drought encoded by Pisum sativum and Rhizobium leguminosarum genomes respectively. Among these 18 proteins, 3 proteins related to flavonoid metabolism, 2 to sulfur metabolism and 3 RNA-binding proteins were identified. These proteins could be molecular targets for future studies focused on the improvement of legumes tolerance to drought. Moreover, this work also provides new hints for the deciphering of SNF regulation machinery in nodules.
Collapse
Affiliation(s)
- Sami Irar
- Servicio de Proteómica y Metabolómica, CRAG - Centre de Recerca en Agrigenòmica - CSIC IRTA UAB UB, Campus UAB, Edifici CRAG, Bellaterra (Cerdenyola del Valles), 08193, Barcelona, Spain
| | | | | | | |
Collapse
|
127
|
Zhang J, Zhao Y, Xiao H, Zheng Y, Yue B. Genome-wide identification, evolution, and expression analysis of RNA-binding glycine-rich protein family in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:1020-1031. [PMID: 24783971 DOI: 10.1111/jipb.12210] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 04/25/2014] [Indexed: 06/03/2023]
Abstract
The RNA-binding glycine-rich protein (RB-GRP) family is characterized by the presence of a glycine-rich domain arranged in (Gly)n-X repeats and an RNA-recognition motif (RRM). RB-GRPs participate in varied physiological and biochemical processes especially in the stress response of plants. In this study, a total of 23 RB-GRPs distributed on 10 chromosomes were identified in maize (Zea mays L.), and they were divided into four subgroups according to their conserved domain architecture. Five pairs of paralogs were identified, while none of them was located on the same chromosomal region, suggesting that segmental duplication is predominant in the duplication events of the RB-GRPs in maize. Comparative analysis of RB-GRPs in maize, Arabidopsis (Arabidopsis thaliana L.), rice (Oryza sativa L.), and wheat (Triticum aestivum) revealed that two exclusive subgroups were only identified in maize. Expression of eight ZmRB-GRPs was significantly regulated by at least two kinds of stresses. In addition, cis-elements predicted in the promoter regions of the ZmRB-GRPs also indicated that these ZmRB-GRPs would be involved in stress response of maize. The preliminary genome-wide analysis of the RB-GRPs in maize would provide useful information for further study on the function of the ZmRB-GRPs.
Collapse
Affiliation(s)
- Jianhua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | |
Collapse
|
128
|
Reyes-Herrera PH, Ficarra E. Computational Methods for CLIP-seq Data Processing. Bioinform Biol Insights 2014; 8:199-207. [PMID: 25336930 PMCID: PMC4196881 DOI: 10.4137/bbi.s16803] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/29/2014] [Accepted: 08/01/2014] [Indexed: 12/25/2022] Open
Abstract
RNA-binding proteins (RBPs) are at the core of post-transcriptional regulation and thus of gene expression control at the RNA level. One of the principal challenges in the field of gene expression regulation is to understand RBPs mechanism of action. As a result of recent evolution of experimental techniques, it is now possible to obtain the RNA regions recognized by RBPs on a transcriptome-wide scale. In fact, CLIP-seq protocols use the joint action of CLIP, crosslinking immunoprecipitation, and high-throughput sequencing to recover the transcriptome-wide set of interaction regions for a particular protein. Nevertheless, computational methods are necessary to process CLIP-seq experimental data and are a key to advancement in the understanding of gene regulatory mechanisms. Considering the importance of computational methods in this area, we present a review of the current status of computational approaches used and proposed for CLIP-seq data.
Collapse
Affiliation(s)
- Paula H Reyes-Herrera
- Facultad de Ingeniería Electrónica y Biomédica, Universidad Antonio Nariño, Bogotá, Colombia
| | - Elisa Ficarra
- Department of Control and Computer Engineering, Politecnico di Torino, TO, Italy
| |
Collapse
|
129
|
Bartashevich DA, Karavaiko NN, Kusnetsov VV. The novel ABA-binding protein encoded by At4g01870 gene in A. thaliana is able to interact with RNA in vitro. DOKL BIOCHEM BIOPHYS 2014; 457:128-31. [PMID: 25172332 DOI: 10.1134/s1607672914040036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Indexed: 11/22/2022]
Affiliation(s)
- D A Bartashevich
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya 35, Moscow, 127276, Russia
| | | | | |
Collapse
|
130
|
Köster T, Meyer K, Weinholdt C, Smith LM, Lummer M, Speth C, Grosse I, Weigel D, Staiger D. Regulation of pri-miRNA processing by the hnRNP-like protein AtGRP7 in Arabidopsis. Nucleic Acids Res 2014; 42:9925-36. [PMID: 25104024 PMCID: PMC4150807 DOI: 10.1093/nar/gku716] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The hnRNP-like glycine-rich RNA-binding protein AtGRP7 regulates pre-mRNA splicing in Arabidopsis. Here we used small RNA-seq to show that AtGRP7 also affects the miRNA inventory. AtGRP7 overexpression caused a significant reduction in the level of 30 miRNAs and an increase for 14 miRNAs with a minimum log2 fold change of ± 0.5. Overaccumulation of several pri-miRNAs including pri-miR398b, pri-miR398c, pri-miR172b, pri-miR159a and pri-miR390 at the expense of the mature miRNAs suggested that AtGRP7 affects pri-miRNA processing. Indeed, RNA immunoprecipitation revealed that AtGRP7 interacts with these pri-miRNAs in vivo. Mutation of an arginine in the RNA recognition motif abrogated in vivo binding and the effect on miRNA and pri-miRNA levels, indicating that AtGRP7 inhibits processing of these pri-miRNAs by direct binding. In contrast, pri-miRNAs of selected miRNAs that were elevated or not changed in response to high AtGRP7 levels were not bound in vivo. Reduced accumulation of miR390, an initiator of trans-acting small interfering RNA (ta-siRNA) formation, also led to lower TAS3 ta-siRNA levels and increased mRNA expression of the target AUXIN RESPONSE FACTOR4. Furthermore, AtGRP7 affected splicing of pri-miR172b and pri-miR162a. Thus, AtGRP7 is an hnRNP-like protein with a role in processing of pri-miRNAs in addition to its role in pre-mRNA splicing.
Collapse
Affiliation(s)
- Tino Köster
- Molecular Cell Physiology, Bielefeld University
| | - Katja Meyer
- Molecular Cell Physiology, Bielefeld University
| | - Claus Weinholdt
- Institute of Computer Science, Martin-Luther-University Halle-Wittenberg, Germany
| | - Lisa M Smith
- Max Planck Institute for Developmental Biology, Tuebingen, Germany Department of Animal & Plant Sciences, University of Sheffield, UK
| | | | - Corinna Speth
- Max Planck Institute for Developmental Biology, Tuebingen, Germany Center for Plant Molecular Biology, University of Tuebingen Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany
| | - Ivo Grosse
- Institute of Computer Science, Martin-Luther-University Halle-Wittenberg, Germany German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Germany
| | - Detlef Weigel
- Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Dorothee Staiger
- Molecular Cell Physiology, Bielefeld University Institute for Genome Research & Systems Biology, CeBiTec, Bielefeld, Germany
| |
Collapse
|
131
|
Luo C, He XH, Hu Y, Yu HX, Ou SJ, Fang ZB. Oligo-dT anchored cDNA-SCoT: a novel differential display method for analyzing differential gene expression in response to several stress treatments in mango (Mangifera indica L.). Gene 2014; 548:182-9. [PMID: 25017057 DOI: 10.1016/j.gene.2014.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/03/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
Abstract
Differential display is a powerful technique for analyzing differences in gene expression. Oligo-dT cDNAstart codon targeted marker (cDNA-SCoT) technique is a novel, simple, cheap, rapid, and efficient method for differential gene expression research. In the present study, the oligo-dT anchored cDNA-SCoT technique was exploited to identify differentially expressed genes during several stress treatments in mango. A total of 37 primers combined with oligo-dT anchor primers 3side amplified approximately 150 fragments of 150 bp to 1500 bp in length. Up to 100 fragments were differentially expressed among the stress treatments and control samples, among which 92 were obtained and sequenced. Out of the 92 transcript derived fragments (TDFs), 70% were highly homologous to known genes, and 30% encoded unclassified proteins with unknown functions. The expression pattern of nine genes with known functions involved in several abiotic stresses in other species was confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) under cold (4 °C), salinity (NaCl), polyethylene glycol (PEG, MW 6000), and heavy metal treatments in leaves and stems at different time points (0, 24, 48, and 72 h). The expression patterns of the genes (TDF4, TDF7, TDF23, TDF45, TDF49, TDF50, TDF57, TDF91 and TDF92) that had direct or indirect relationships with cold, salinity, drought and heavy metal stress response were analyzed through qRT-PCR. The possible roles of these genes are discussed. This study suggests that the oligo-dT anchored cDNA-SCoT differential display method is a useful tool to serve as an initial step for characterizing transcriptional changes induced by abiotic stresses and provide gene information for further study and application in genetic improvement and breeding in mango.
Collapse
Affiliation(s)
- Cong Luo
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Xin-Hua He
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, Guangxi 530007, China.
| | - Ying Hu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Hai-xia Yu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Shi-Jin Ou
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhong-Bin Fang
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
132
|
|
133
|
Khan F, Daniëls MA, Folkers GE, Boelens R, Saqlan Naqvi SM, van Ingen H. Structural basis of nucleic acid binding by Nicotiana tabacum glycine-rich RNA-binding protein: implications for its RNA chaperone function. Nucleic Acids Res 2014; 42:8705-18. [PMID: 24957607 PMCID: PMC4117745 DOI: 10.1093/nar/gku468] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 04/30/2014] [Accepted: 05/12/2014] [Indexed: 12/30/2022] Open
Abstract
Glycine-rich RNA-binding proteins (GR-RBPs) are involved in cold shock response of plants as RNA chaperones facilitating mRNA transport, splicing and translation. GR-RBPs are bipartite proteins containing a RNA recognition motif (RRM) followed by a glycine-rich region. Here, we studied the structural basis of nucleic acid binding of full-length Nicotiana tabacum GR-RBP1. NMR studies of NtGR-RBP1 show that the glycine-rich domain, while intrinsically disordered, is responsible for mediating self-association by transient interactions with its RRM domain (NtRRM). Both NtGR-RBP1 and NtRRM bind specifically and with low micromolar affinity to RNA and single-stranded DNA. The solution structure of NtRRM shows that it is a canonical RRM domain. A HADDOCK model of the NtRRM-RNA complex, based on NMR chemical shift and NOE data, shows that nucleic acid binding results from a combination of stacking and electrostatic interactions with conserved RRM residues. Finally, DNA melting experiments demonstrate that NtGR-RBP1 is more efficient in melting CTG containing nucleic acids than isolated NtRRM. Together, our study supports the model that self-association of GR-RBPs by the glycine-rich region results in cooperative unfolding of non-native substrate structures, thereby enhancing its chaperone function.
Collapse
Affiliation(s)
- Fariha Khan
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands Department of Biochemistry, PMAS Agriculture University Rawalpindi, 46300 Rawalpindi, Pakistan
| | - Mark A Daniëls
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Gert E Folkers
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Rolf Boelens
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - S M Saqlan Naqvi
- Department of Biochemistry, PMAS Agriculture University Rawalpindi, 46300 Rawalpindi, Pakistan
| | - Hugo van Ingen
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
134
|
Le Roux C, Del Prete S, Boutet-Mercey S, Perreau F, Balagué C, Roby D, Fagard M, Gaudin V. The hnRNP-Q protein LIF2 participates in the plant immune response. PLoS One 2014; 9:e99343. [PMID: 24914891 PMCID: PMC4051675 DOI: 10.1371/journal.pone.0099343] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/02/2014] [Indexed: 12/21/2022] Open
Abstract
Eukaryotes have evolved complex defense pathways to combat invading pathogens. Here, we investigated the role of the Arabidopsis thaliana heterogeneous nuclear ribonucleoprotein (hnRNP-Q) LIF2 in the plant innate immune response. We show that LIF2 loss-of-function in A. thaliana leads to changes in the basal expression of the salicylic acid (SA)- and jasmonic acid (JA)- dependent defense marker genes PR1 and PDF1.2, respectively. Whereas the expression of genes involved in SA and JA biosynthesis and signaling was also affected in the lif2-1 mutant, no change in SA and JA hormonal contents was detected. In addition, the composition of glucosinolates, a class of defense-related secondary metabolites, was altered in the lif2-1 mutant in the absence of pathogen challenge. The lif2-1 mutant exhibited reduced susceptibility to the hemi-biotrophic pathogen Pseudomonas syringae and the necrotrophic ascomycete Botrytis cinerea. Furthermore, the lif2-1 sid2-2 double mutant was less susceptible than the wild type to P. syringae infection, suggesting that the lif2 response to pathogens was independent of SA accumulation. Together, our data suggest that lif2-1 exhibits a basal primed defense state, resulting from complex deregulation of gene expression, which leads to increased resistance to pathogens with various infection strategies. Therefore, LIF2 may function as a suppressor of cell-autonomous immunity. Similar to its human homolog, NSAP1/SYNCRIP, a trans-acting factor involved in both cellular processes and the viral life cycle, LIF2 may regulate the conflicting aspects of development and defense programs, suggesting that a conserved evolutionary trade-off between growth and defense pathways exists in eukaryotes.
Collapse
Affiliation(s)
- Clémentine Le Roux
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - Stefania Del Prete
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - Stéphanie Boutet-Mercey
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - François Perreau
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - Claudine Balagué
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Dominique Roby
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Mathilde Fagard
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - Valérie Gaudin
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
- * E-mail:
| |
Collapse
|
135
|
Lee SY, Seok HY, Tarte VN, Woo DH, Le DH, Lee EH, Moon YH. The Arabidopsis chloroplast protein S-RBP11 is involved in oxidative and salt stress responses. PLANT CELL REPORTS 2014; 33:837-847. [PMID: 24413693 DOI: 10.1007/s00299-013-1560-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 12/25/2013] [Accepted: 12/29/2013] [Indexed: 06/03/2023]
Abstract
S-RBP11, a chloroplast protein, which was isolated using activation tagging system, is shown to be the first Arabidopsis small RNA-binding group protein involved in oxidative and salt stress responses. Activation tagging is one of the most powerful tools in reverse genetics. In this study, we isolated S-RBP11, encoding a small RNA-binding protein in Arabidopsis, by salt-resistant activation tagging line screen and then characterized its function in the abiotic stress response. The isolated activation tagging line of S-RBP11 as well as transgenic plants overexpressing S-RBP11 showed increased tolerance to salt and MV stresses compared to WT plants, whereas s-rbp11 mutants were more sensitive to salt stresses. Transcription of S-RBP11 was elevated upon MV treatment but not NaCl or cold treatment. Interestingly, S-RBP11 protein was localized in the chloroplast and the N-terminal 34 amino acid region of S-RBP11 was necessary for its chloroplast targeting. Our results suggest that S-RBP11 is a chloroplast protein involved in the responses to salt and oxidative stresses.
Collapse
Affiliation(s)
- Sun-Young Lee
- Department of Molecular Biology, Pusan National University, Busan, 609-735, Korea
| | | | | | | | | | | | | |
Collapse
|
136
|
Xu T, Gu L, Choi MJ, Kim RJ, Suh MC, Kang H. Comparative functional analysis of wheat (Triticum aestivum) zinc finger-containing glycine-rich RNA-binding proteins in response to abiotic stresses. PLoS One 2014; 9:e96877. [PMID: 24800811 PMCID: PMC4011930 DOI: 10.1371/journal.pone.0096877] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/13/2014] [Indexed: 11/19/2022] Open
Abstract
Although the functional roles of zinc finger-containing glycine-rich RNA-binding proteins (RZs) have been characterized in several plant species, including Arabidopsis thaliana and rice (Oryza sativa), the physiological functions of RZs in wheat (Triticum aestivum) remain largely unknown. Here, the functional roles of the three wheat RZ family members, named TaRZ1, TaRZ2, and TaRZ3, were investigated using transgenic Arabidopsis plants under various abiotic stress conditions. Expression of TaRZs was markedly regulated by salt, dehydration, or cold stress. The TaRZ1 and TaRZ3 proteins were localized to the nucleus, whereas the TaRZ2 protein was localized to the nucleus, endoplasmic reticulum, and cytoplasm. Germination of all three TaRZ-expressing transgenic Arabidopsis seeds was retarded compared with that of wild-type seeds under salt stress conditions, whereas germination of TaRZ2- or TaRZ3-expressing transgenic Arabidopsis seeds was retarded under dehydration stress conditions. Seedling growth of TaRZ1-expressing transgenic plants was severely inhibited under cold or salt stress conditions, and seedling growth of TaRZ2-expressing plants was inhibited under salt stress conditions. By contrast, expression of TaRZ3 did not affect seedling growth of transgenic plants under any of the stress conditions. In addition, expression of TaRZ2 conferred freeze tolerance in Arabidopsis. Taken together, these results suggest that different TaRZ family members play various roles in seed germination, seedling growth, and freeze tolerance in plants under abiotic stress.
Collapse
Affiliation(s)
- Tao Xu
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Lili Gu
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Min Ji Choi
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Ryeo Jin Kim
- Department of Bioenergy Science and Technology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
- * E-mail:
| |
Collapse
|
137
|
Lee K, Lee HJ, Kim DH, Jeon Y, Pai HS, Kang H. A nuclear-encoded chloroplast protein harboring a single CRM domain plays an important role in the Arabidopsis growth and stress response. BMC PLANT BIOLOGY 2014; 14:98. [PMID: 24739417 PMCID: PMC4021458 DOI: 10.1186/1471-2229-14-98] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 04/11/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND Although several chloroplast RNA splicing and ribosome maturation (CRM) domain-containing proteins have been characterized for intron splicing and rRNA processing during chloroplast gene expression, the functional role of a majority of CRM domain proteins in plant growth and development as well as chloroplast RNA metabolism remains largely unknown. Here, we characterized the developmental and stress response roles of a nuclear-encoded chloroplast protein harboring a single CRM domain (At4g39040), designated CFM4, in Arabidopsis thaliana. RESULTS Analysis of CFM4-GFP fusion proteins revealed that CFM4 is localized to chloroplasts. The loss-of-function T-DNA insertion mutants for CFM4 (cfm4) displayed retarded growth and delayed senescence, suggesting that CFM4 plays a role in growth and development of plants under normal growth conditions. In addition, cfm4 mutants showed retarded seed germination and seedling growth under stress conditions. No alteration in the splicing patterns of intron-containing chloroplast genes was observed in the mutant plants, but the processing of 16S and 4.5S rRNAs was abnormal in the mutant plants. Importantly, CFM4 was determined to possess RNA chaperone activity. CONCLUSIONS These results suggest that the chloroplast-targeted CFM4, one of two Arabidopsis genes encoding a single CRM domain-containing protein, harbors RNA chaperone activity and plays a role in the Arabidopsis growth and stress response by affecting rRNA processing in chloroplasts.
Collapse
Affiliation(s)
- Kwanuk Lee
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, Korea
| | - Hwa Jung Lee
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, Korea
| | - Dong Hyun Kim
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, Korea
| | - Young Jeon
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, Korea
| |
Collapse
|
138
|
M Ller GL, Triassi A, Alvarez CE, Falcone Ferreyra MAL, Andreo CS, Lara MAV, Drincovich MAF. Circadian oscillation and development-dependent expression of glycine-rich RNA binding proteins in tomato fruits. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:411-423. [PMID: 32481001 DOI: 10.1071/fp13239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/22/2013] [Indexed: 06/11/2023]
Abstract
Glycine-rich RNA-binding proteins (GRPs) are involved in the modulation of the post-transcriptional processing of transcripts and participate as an output signal of the circadian clock. However, neither GRPs nor the circadian rhythmic have been studied in detail in fleshy fruits as yet. In the present work, the GRP1 gene family was analysed in Micro-Tom tomato (Solanum lycopersicum L.) fruit. Three highly homologous LeGRP1 genes (LeGRP1a-c) were identified. For each gene, three products were found, corresponding to the unspliced precursor mRNA (pre-mRNA), the mature mRNA and the alternatively spliced mRNA (preLeGRP1a-c, mLeGRP1a-c and asLeGRP1a-c, respectively). Tomato GRPs (LeGRPs) show the classic RNA recognition motif and glycine-rich region, and were found in the nucleus and in the cytosol of tomato fruit. By using different Escherichia coli mutants, it was found that LeGRP1s contained in vivo RNA-melting abilities and were able to complement the cold-sensitive phenotype of BX04 cells. Particular circadian profiles of expression, dependent on the fruits' developmental stage, were found for each LeGRP1 form. During ripening off the vine of fruits harvested at the mature green stage, the levels of all LeGRP1a-c forms drastically increased; however, incubation at 4°C prevented such increases. Analysis of the expression of all LeGRP1a-c forms suggests a positive regulation of expression in tomato fruit. Overall, the results obtained in this work reveal a complex pattern of expression of GRPs in tomato fruit, suggesting they might be involved in post-transcriptional modulation of circadian processes of this fleshy fruit.
Collapse
Affiliation(s)
- Gabriela L M Ller
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario (2000), Argentina. Corresponding author.
| | - Agustina Triassi
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario (2000), Argentina
| | - Clarisa E Alvarez
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario (2000), Argentina
| | - Mar A L Falcone Ferreyra
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario (2000), Argentina
| | - Carlos S Andreo
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario (2000), Argentina
| | - Mar A V Lara
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario (2000), Argentina
| | - Mar A F Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario (2000), Argentina
| |
Collapse
|
139
|
Huh SU, Paek KH. APUM5, encoding a Pumilio RNA binding protein, negatively regulates abiotic stress responsive gene expression. BMC PLANT BIOLOGY 2014; 14:75. [PMID: 24666827 PMCID: PMC3986970 DOI: 10.1186/1471-2229-14-75] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/18/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND A mutant screening was carried out previously to look for new genes related to the Cucumber mosaic virus infection response in Arabidopsis. A Pumilio RNA binding protein-coding gene, Arabidopsis Pumilio RNA binding protein 5 (APUM5), was obtained from this screening. RESULTS APUM5 transcriptional profiling was carried out using a bioinformatics tool. We found that APUM5 was associated with both biotic and abiotic stress responses. However, bacterial and fungal pathogen infection susceptibility was not changed in APUM5 transgenic plants compared to that in wild type plants although APUM5 expression was induced upon pathogen infection. In contrast, APUM5 was involved in the abiotic stress response. 35S-APUM5 transgenic plants showed hypersensitive phenotypes under salt and drought stresses during germination, primary root elongation at the seedling stage, and at the vegetative stage in soil. We also showed that some abiotic stress-responsive genes were negatively regulated in 35S-APUM5 transgenic plants. The APUM5-Pumilio homology domain (PHD) protein bound to the 3' untranslated region (UTR) of the abiotic stress-responsive genes which contained putative Pumilio RNA binding motifs at the 3' UTR. CONCLUSIONS These results suggest that APUM5 may be a new post-transcriptional regulator of the abiotic stress response by direct binding of target genes 3' UTRs.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Abscisic Acid/pharmacology
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Alternaria/drug effects
- Alternaria/physiology
- Arabidopsis/genetics
- Arabidopsis/immunology
- Arabidopsis/microbiology
- Arabidopsis/physiology
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Base Sequence
- Disease Resistance/drug effects
- Disease Resistance/genetics
- Disease Resistance/immunology
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Droughts
- Gene Expression Profiling
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant
- Genes, Reporter
- Germination/drug effects
- Germination/genetics
- Glucuronidase/metabolism
- Mannitol/pharmacology
- Molecular Sequence Data
- Organ Specificity/drug effects
- Organ Specificity/genetics
- Plant Diseases/genetics
- Plant Diseases/immunology
- Plant Diseases/microbiology
- Plant Roots/drug effects
- Plant Roots/growth & development
- Plants, Genetically Modified
- Promoter Regions, Genetic/genetics
- Pseudomonas syringae/drug effects
- Pseudomonas syringae/physiology
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Sodium Chloride/pharmacology
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Sung Un Huh
- College of Life Sciences and Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
- Present address: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Kyung-Hee Paek
- College of Life Sciences and Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
| |
Collapse
|
140
|
Wu JC, Chen CH, Fu JW, Yang HC. Electrophoresis-enhanced detection of deoxyribonucleic acids on a membrane-based lateral flow strip using avian influenza H5 genetic sequence as the model. SENSORS 2014; 14:4399-415. [PMID: 24603637 PMCID: PMC4003949 DOI: 10.3390/s140304399] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/14/2014] [Accepted: 02/28/2014] [Indexed: 12/13/2022]
Abstract
This study reports a simple strategy to detect a deoxyribonucleic acid (DNA) on a membrane-based lateral flow (MBLF) strip without tedious gel preparation, gel electrophoresis, and EtBr-staining processes. The method also enhances the detection signal of the genetic sample. A direct electric field was applied over two ends of the MBLF strips to induce an electrophoresis of DNAs through the strips. The signal enhancement was demonstrated by the detection of the H5 subtype of avian influenza virus (H5 AIV). This approach showed an excellent selectivity of H5 AIV from other two control species, Arabidopsis thaliana and human PSMA5. It also showed an effective signal repeatability and sensitivity over a series of analyte concentrations. Its detection limit could be enhanced, from 40 ng to 0.1 ng by applying 12 V. The nano-gold particles for the color development were labeled on the capture antibody, and UV-VIS and TEM were used to check if the labeling was successful. This detection strategy could be further developed to apply on the detection of drug-allergic genes at clinics or detection of infectious substances at incident sites by a simple manipulation with an aid of a mini-PCR machine and auxiliary kits.
Collapse
Affiliation(s)
- Jui-Chuang Wu
- Department of Chemical Engineering, Chung Yuan Christian University, Chung Li, Tao Yuan 32023, Taiwan.
| | - Chih-Hung Chen
- Department of Chemical Engineering, Chung Yuan Christian University, Chung Li, Tao Yuan 32023, Taiwan.
| | - Ja-Wei Fu
- Department of Chemical Engineering, Chung Yuan Christian University, Chung Li, Tao Yuan 32023, Taiwan.
| | - Huan-Ching Yang
- Department of Chemical Engineering, Chung Yuan Christian University, Chung Li, Tao Yuan 32023, Taiwan.
| |
Collapse
|
141
|
Reňák D, Gibalová A, Solcová K, Honys D. A new link between stress response and nucleolar function during pollen development in Arabidopsis mediated by AtREN1 protein. PLANT, CELL & ENVIRONMENT 2014; 37:670-83. [PMID: 23961845 DOI: 10.1111/pce.12186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Heat shock transcription factors (Hsfs) are involved in multiple aspects of stress response and plant growth. However, their role during male gametophyte development is largely unknown, although the generative phase is the most sensitive and critical period in the plant life cycle. Based on a wide screen of T-DNA mutant lines, we identified the atren1 mutation (restricted to nucleolus1) in early male gametophytic gene At1g77570, which has the closest homology to HSFA5 gene, the member of a heat shock transcription factor (HSF) gene family. The mutation causes multiple defects in male gametophyte development in both structure and function. Because the mutation disrupts an early acting (AtREN1) gene, these pollen phenotype abnormalities appear from bicellular pollen stage to pollen maturation. Moreover, the consequent progamic phase is compromised as well as documented by pollen germination defects and limited transmission via male gametophyte. In addition, atren1/- plants are defective in heat stress (HS) response and produce notably higher proportion of aberrant pollen grains. AtREN1 protein is targeted specifically to the nucleolus that, together with the increased size of the nucleolus in atren1 pollen, suggests that it is likely to be involved in ribosomal RNA biogenesis or other nucleolar functions.
Collapse
Affiliation(s)
- David Reňák
- Laboratory of Pollen Biology, Institute of Experimental Botany v.v.i. ASCR, Rozvojová 263, Prague 6, 165 02, Czech Republic
| | | | | | | |
Collapse
|
142
|
Huang SY, Zou X. A knowledge-based scoring function for protein-RNA interactions derived from a statistical mechanics-based iterative method. Nucleic Acids Res 2014; 42:e55. [PMID: 24476917 PMCID: PMC3985650 DOI: 10.1093/nar/gku077] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Protein-RNA interactions play important roles in many biological processes. Given the high cost and technique difficulties in experimental methods, computationally predicting the binding complexes from individual protein and RNA structures is pressingly needed, in which a reliable scoring function is one of the critical components. Here, we have developed a knowledge-based scoring function, referred to as ITScore-PR, for protein-RNA binding mode prediction by using a statistical mechanics-based iterative method. The pairwise distance-dependent atomic interaction potentials of ITScore-PR were derived from experimentally determined protein–RNA complex structures. For validation, we have compared ITScore-PR with 10 other scoring methods on four diverse test sets. For bound docking, ITScore-PR achieved a success rate of up to 86% if the top prediction was considered and up to 94% if the top 10 predictions were considered, respectively. For truly unbound docking, the respective success rates of ITScore-PR were up to 24 and 46%. ITScore-PR can be used stand-alone or easily implemented in other docking programs for protein–RNA recognition.
Collapse
Affiliation(s)
- Sheng-You Huang
- Department of Physics and Astronomy, Department of Biochemistry, Dalton Cardiovascular Research Center, and Informatics Institute, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
143
|
A genetic program theory of aging using an RNA population model. Ageing Res Rev 2014; 13:46-54. [PMID: 24263168 DOI: 10.1016/j.arr.2013.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/08/2013] [Indexed: 12/11/2022]
Abstract
Aging is a common characteristic of multicellular eukaryotes. Copious hypotheses have been proposed to explain the mechanisms of aging, but no single theory is generally acceptable. In this article, we refine the RNA population gene activating model (Lv et al., 2003) based on existing reports as well as on our own latest findings. We propose the RNA population model as a genetic theory of aging. The new model can also be applied to differentiation and tumorigenesis and could explain the biological significance of non-coding DNA, RNA, and repetitive sequence DNA. We provide evidence from the literature as well as from our own findings for the roles of repetitive sequences in gene activation. In addition, we predict several phenomena related to aging and differentiation based on this model.
Collapse
|
144
|
Abstract
RNA-based regulation is increasingly recognized as an important factor shaping the cellular transcriptome. RNA-binding proteins that interact with cis-regulatory motifs within pre-mRNAs determine the fate of their targets. Understanding posttranscriptional networks controlled by an RNA-binding protein requires the identification of its immediate in vivo targets. Here we describe RNA immunoprecipitation in Arabidopsis thaliana. Transgenic plants expressing an RNA-binding protein fused to green fluorescent protein are treated with formaldehyde to "trap" RNAs in complexes with their physiological protein partners. A whole-cell extract is subjected to immunoprecipitation with an antibody against the GFP tag. In parallel, a mock immunoprecipitation is performed using an unrelated antibody. Coprecipitated RNAs are eluted from the immunoprecipitate and identified via real-time PCR. Enrichment relative to immunoprecipitation from plants expressing GFP only and mock immunoprecipitation with an unrelated antibody indicates specific binding.
Collapse
|
145
|
Yang DH, Kwak KJ, Kim MK, Park SJ, Yang KY, Kang H. Expression of Arabidopsis glycine-rich RNA-binding protein AtGRP2 or AtGRP7 improves grain yield of rice (Oryza sativa) under drought stress conditions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 214:106-12. [PMID: 24268168 DOI: 10.1016/j.plantsci.2013.10.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 05/21/2023]
Abstract
Although posttranscriptional regulation of RNA metabolism is increasingly recognized as a key regulatory process in plant response to environmental stresses, reports demonstrating the importance of RNA metabolism control in crop improvement under adverse environmental stresses are severely limited. To investigate the potential use of RNA-binding proteins (RBPs) in developing stress-tolerant transgenic crops, we generated transgenic rice plants (Oryza sativa) that express Arabidopsis thaliana glycine-rich RBP (AtGRP) 2 or 7, which have been determined to harbor RNA chaperone activity and confer stress tolerance in Arabidopsis, and analyzed the response of the transgenic rice plants to abiotic stresses. AtGRP2- or AtGRP7-expressing transgenic rice plants displayed similar phenotypes comparable with the wild-type plants under high salt or cold stress conditions. By contrast, AtGRP2- or AtGRP7-expressing transgenic rice plants showed much higher recovery rates and grain yields compared with the wild-type plants under drought stress conditions. The higher grain yield of the transgenic rice plants was due to the increases in filled grain numbers per panicle. Collectively, the present results show the importance of posttranscriptional regulation of RNA metabolism in plant response to environmental stress and suggest that GRPs can be utilized to improve the yield potential of crops under stress conditions.
Collapse
Affiliation(s)
- Deok Hee Yang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, South Korea
| | | | | | | | | | | |
Collapse
|
146
|
Huh SU, Paek KH. Plant RNA binding proteins for control of RNA virus infection. Front Physiol 2013; 4:397. [PMID: 24427141 PMCID: PMC3875872 DOI: 10.3389/fphys.2013.00397] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/17/2013] [Indexed: 11/29/2022] Open
Abstract
Plant RNA viruses have effective strategies to infect host plants through either direct or indirect interactions with various host proteins, thus suppressing the host immune system. When plant RNA viruses enter host cells exposed RNAs of viruses are recognized by the host immune system through processes such as siRNA-dependent silencing. Interestingly, some host RNA binding proteins have been involved in the inhibition of RNA virus replication, movement, and translation through RNA-specific binding. Host plants intensively use RNA binding proteins for defense against viral infections in nature. In this mini review, we will summarize the function of some host RNA binding proteins which act in a sequence-specific binding manner to the infecting virus RNA. It is important to understand how plants effectively suppress RNA virus infections via RNA binding proteins, and this defense system can be potentially developed as a synthetic virus defense strategy for use in crop engineering.
Collapse
Affiliation(s)
- Sung Un Huh
- College of Life Sciences and Biotechnology, Korea University Seoul, South Korea
| | - Kyung-Hee Paek
- College of Life Sciences and Biotechnology, Korea University Seoul, South Korea
| |
Collapse
|
147
|
Junttila S, Laiho A, Gyenesei A, Rudd S. Whole transcriptome characterization of the effects of dehydration and rehydration on Cladonia rangiferina, the grey reindeer lichen. BMC Genomics 2013; 14:870. [PMID: 24325588 PMCID: PMC3878897 DOI: 10.1186/1471-2164-14-870] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 11/14/2013] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Lichens are symbiotic organisms with a fungal and an algal or a cyanobacterial partner. Lichens inhabit some of the harshest climates on earth and most lichen species are desiccation-tolerant. Lichen desiccation-tolerance has been studied at the biochemical level and through proteomics, but the underlying molecular genetic mechanisms remain largely unexplored. The objective of our study was to examine the effects of dehydration and rehydration on the gene expression of Cladonia rangiferina. RESULTS Samples of C. rangiferina were collected at several time points during both the dehydration and rehydration process and the gene expression intensities were measured using a custom DNA microarray. Several genes, which were differentially expressed in one or more time points, were identified. The microarray results were validated using qRT-PCR analysis. Enrichment analysis of differentially expressed transcripts was also performed to identify the Gene Ontology terms most associated with the rehydration and dehydration process. CONCLUSIONS Our data identify differential expression patterns for hundreds of genes that are modulated during dehydration and rehydration in Cladonia rangiferina. These dehydration and rehydration events clearly differ from each other at the molecular level and the largest changes to gene expression are observed within minutes following rehydration. Distinct changes are observed during the earliest stage of rehydration and the mechanisms not appear to be shared with the later stages of wetting or with drying. Several of the most differentially expressed genes are similar to genes identified in previous studies that have investigated the molecular mechanisms of other desiccation-tolerant organisms. We present here the first microarray experiment for any lichen species and have for the first time studied the genetic mechanisms behind lichen desiccation-tolerance at the whole transcriptome level.
Collapse
Affiliation(s)
- Sini Junttila
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu, Turku, Finland
- The Finnish Microarray and Sequencing Centre, Turku Centre for Biotechnology, Tykistökatu, Turku, Finland
| | - Asta Laiho
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu, Turku, Finland
- The Finnish Microarray and Sequencing Centre, Turku Centre for Biotechnology, Tykistökatu, Turku, Finland
| | - Attila Gyenesei
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu, Turku, Finland
- The Finnish Microarray and Sequencing Centre, Turku Centre for Biotechnology, Tykistökatu, Turku, Finland
| | - Stephen Rudd
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu, Turku, Finland
| |
Collapse
|
148
|
Xu T, Lee K, Gu L, Kim JI, Kang H. Functional characterization of a plastid-specific ribosomal protein PSRP2 in Arabidopsis thaliana under abiotic stress conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 73:405-411. [PMID: 24220572 DOI: 10.1016/j.plaphy.2013.10.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/22/2013] [Indexed: 06/02/2023]
Abstract
Plastids possess a small set of proteins unique to plastid ribosome, named plastid-specific ribosomal proteins (PSRPs). Among the six PSRPs found in Arabidopsis thaliana, PSRP2 is unique in that it harbors two RNA-recognition motifs found in diverse RNA-binding proteins. A recent report demonstrated that PSRP2 is not essential for ribosome function and plant growth under standard greenhouse conditions. Here, we investigated the functional role of PSRP2 during Arabidopsis seed germination and seedling growth under different light environments and various stress conditions, including high salinity, dehydration, and low temperature. The transgenic Arabidopsis plants overexpressing PSRP2 showed delayed germination compared with that of the wild-type plants under salt, dehydration, or low temperature stress conditions. The T-DNA insertion psrp2 mutant displayed better seedling growth but PSRP2-overexpressing transgenic plants showed poorer seedling growth than that of the wild-type plants under salt stress conditions. No noticeable differences in seedling growth were observed between the genotypes when grown under different light environments including dark, red, far-red, and blue light. Interestingly, the PSRP2 protein possessed RNA chaperone activity. Taken together, these results suggest that PSRP2 harboring RNA chaperone activity plays a role as a negative regulator in seed germination under all three abiotic stress conditions tested and in seedling growth of Arabidopsis under salt stress but not under cold or dehydration stress conditions.
Collapse
Affiliation(s)
- Tao Xu
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, Republic of Korea
| | | | | | | | | |
Collapse
|
149
|
Sripinyowanich S, Chamnanmanoontham N, Udomchalothorn T, Maneeprasopsuk S, Santawee P, Buaboocha T, Qu LJ, Gu H, Chadchawan S. Overexpression of a partial fragment of the salt-responsive gene OsNUC1 enhances salt adaptation in transgenic Arabidopsis thaliana and rice (Oryza sativa L.) during salt stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 213:67-78. [PMID: 24157209 DOI: 10.1016/j.plantsci.2013.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/12/2013] [Accepted: 08/30/2013] [Indexed: 05/08/2023]
Abstract
The rice (Oryza sativa L.) nucleolin gene, OsNUC1, transcripts were expressed in rice leaves, flowers, seeds and roots but differentially expressed within and between two pairs of salt-sensitive and salt-resistant rice lines when subjected to salt stress. Salt-resistant lines exhibited higher OsNUC1 transcript expression levels than salt-sensitive lines during 0.5% (w/v) NaCl salt stress for 6d. Two sizes of OsNUC1 full-length cDNA were found in the rice genome database and northern blot analysis confirmed their existence in rice tissues. The longer transcript (OsNUC1-L) putatively encodes for a protein with a serine rich N-terminal, RNA recognition motifs in the central domain and a glycine- and arginine-rich repeat in the C-terminal domain, while the shorter one (OsNUC1-S) putatively encodes for the similar protein without the N-terminus. Without salt stress, OsNUC1-L expressing Arabidopsis thaliana Atnuc1-L1 plants displayed a substantial but incomplete revertant phenotype, whereas OsNUC1-S expression only induced a weak effect. However, under 0.5% (w/v) NaCl salt stress they displayed a higher relative growth rate, longer root length and a lower H2O2 level than the wild type plants, suggesting a higher salt resistance. Moreover, they displayed elevated AtSOS1 and AtP5CS1 transcript levels. We propose that OsNUC1-S plays an important role in salt resistance during salt stress, a new role for nucleolin in plants.
Collapse
Affiliation(s)
- Siriporn Sripinyowanich
- Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Environmental and Plant Physiology Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Kappachery S, Yu JW, Baniekal-Hiremath G, Park SW. Rapid identification of potential drought tolerance genes from Solanum tuberosum by using a yeast functional screening method. C R Biol 2013; 336:530-45. [DOI: 10.1016/j.crvi.2013.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/09/2013] [Accepted: 09/28/2013] [Indexed: 10/26/2022]
|