101
|
Wang GF, Ji J, EI-Kasmi F, Dangl JL, Johal G, Balint-Kurti PJ. Molecular and functional analyses of a maize autoactive NB-LRR protein identify precise structural requirements for activity. PLoS Pathog 2015; 11:e1004674. [PMID: 25719542 PMCID: PMC4342346 DOI: 10.1371/journal.ppat.1004674] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/09/2015] [Indexed: 12/22/2022] Open
Abstract
Plant disease resistance is often mediated by nucleotide binding-leucine rich repeat (NLR) proteins which remain auto-inhibited until recognition of specific pathogen-derived molecules causes their activation, triggering a rapid, localized cell death called a hypersensitive response (HR). Three domains are recognized in one of the major classes of NLR proteins: a coiled-coil (CC), a nucleotide binding (NB-ARC) and a leucine rich repeat (LRR) domains. The maize NLR gene Rp1-D21 derives from an intergenic recombination event between two NLR genes, Rp1-D and Rp1-dp2 and confers an autoactive HR. We report systematic structural and functional analyses of Rp1 proteins in maize and N. benthamiana to characterize the molecular mechanism of NLR activation/auto-inhibition. We derive a model comprising the following three main features: Rp1 proteins appear to self-associate to become competent for activity. The CC domain is signaling-competent and is sufficient to induce HR. This can be suppressed by the NB-ARC domain through direct interaction. In autoactive proteins, the interaction of the LRR domain with the NB-ARC domain causes de-repression and thus disrupts the inhibition of HR. Further, we identify specific amino acids and combinations thereof that are important for the auto-inhibition/activity of Rp1 proteins. We also provide evidence for the function of MHD2, a previously uncharacterized, though widely conserved NLR motif. This work reports several novel insights into the precise structural requirement for NLR function and informs efforts towards utilizing these proteins for engineering disease resistance.
Collapse
Affiliation(s)
- Guan-Feng Wang
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail: (GFW); (PJBK)
| | - Jiabing Ji
- Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Farid EI-Kasmi
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeffery L. Dangl
- Department of Biology and Howard Hughes Medical Institute, Curriculum in Genetics and Molecular Biology, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Guri Johal
- Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Peter J. Balint-Kurti
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
- USDA-ARS Plant Science Research Unit, Raleigh, North Carolina, United States of America
- * E-mail: (GFW); (PJBK)
| |
Collapse
|
102
|
Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses. PLoS One 2015; 10:e0115042. [PMID: 25606855 PMCID: PMC4301866 DOI: 10.1371/journal.pone.0115042] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/18/2014] [Indexed: 12/01/2022] Open
Abstract
The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.
Collapse
|
103
|
Cui H, Tsuda K, Parker JE. Effector-triggered immunity: from pathogen perception to robust defense. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:487-511. [PMID: 25494461 DOI: 10.1146/annurev-arplant-050213-040012] [Citation(s) in RCA: 829] [Impact Index Per Article: 82.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plant innate immunity, individual cells have the capacity to sense and respond to pathogen attack. Intracellular recognition mechanisms have evolved to intercept perturbations by pathogen virulence factors (effectors) early in host infection and convert it to rapid defense. One key to resistance success is a polymorphic family of intracellular nucleotide-binding/leucine-rich-repeat (NLR) receptors that detect effector interference in different parts of the cell. Effector-activated NLRs connect, in various ways, to a conserved basal resistance network in order to transcriptionally boost defense programs. Effector-triggered immunity displays remarkable robustness against pathogen disturbance, in part by employing compensatory mechanisms within the defense network. Also, the mobility of some NLRs and coordination of resistance pathways across cell compartments provides flexibility to fine-tune immune outputs. Furthermore, a number of NLRs function close to the nuclear chromatin by balancing actions of defense-repressing and defense-activating transcription factors to program cells dynamically for effective disease resistance.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; , ,
| | | | | |
Collapse
|
104
|
Ali S, Magne M, Chen S, Obradovic N, Jamshaid L, Wang X, Bélair G, Moffett P. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses. FRONTIERS IN PLANT SCIENCE 2015; 6:623. [PMID: 26322064 PMCID: PMC4532164 DOI: 10.3389/fpls.2015.00623] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/27/2015] [Indexed: 05/08/2023]
Abstract
Potato cyst nematodes (PCNs), including Globodera rostochiensis (Woll.), are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins delivered to the apoplast and to the host cytoplasm. A number of effectors from G. rostochiensis predicted to be delivered to the host cytoplasm have been identified, including several belonging to the secreted SPRY domain (SPRYSEC) family. SPRYSEC proteins are unique to members of the genus Globodera and have been implicated in both the induction and the repression of host defense responses. We have tested the properties of six different G. rostochiensis SPRYSEC proteins by expressing them in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic of members of this effector protein family. At the same time, GrSPRYSEC-15 elicited a defense responses in N. tabacum, which was found to be resistant to a virus expressing GrSPRYSEC-15. These results suggest that SPRYSEC proteins may possess characteristics that allow them to be recognized by the plant immune system.
Collapse
Affiliation(s)
- Shawkat Ali
- Département de Biologie, Université de SherbrookeSherbrooke, QC, Canada
- Horticulture R & D Centre, Agriculture and Agri-Food CanadaSt-Jean-sur-Richelieu, QC, Canada
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Maxime Magne
- Département de Biologie, Université de SherbrookeSherbrooke, QC, Canada
| | - Shiyan Chen
- School of Integrative Plant Science, Cornell UniversityIthaca, NY, USA
| | - Natasa Obradovic
- Département de Biologie, Université de SherbrookeSherbrooke, QC, Canada
| | - Lubna Jamshaid
- Département de Biologie, Université de SherbrookeSherbrooke, QC, Canada
| | - Xiaohong Wang
- School of Integrative Plant Science, Cornell UniversityIthaca, NY, USA
- US Department of Agriculture, Robert W. Holley Center for Agriculture and Health, Agricultural Research ServiceIthaca, NY, USA
| | - Guy Bélair
- Horticulture R & D Centre, Agriculture and Agri-Food CanadaSt-Jean-sur-Richelieu, QC, Canada
| | - Peter Moffett
- Département de Biologie, Université de SherbrookeSherbrooke, QC, Canada
- *Correspondence: Peter Moffett, Faculté des Sciences, 2500 Boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
105
|
Piquerez SJM, Harvey SE, Beynon JL, Ntoukakis V. Improving crop disease resistance: lessons from research on Arabidopsis and tomato. FRONTIERS IN PLANT SCIENCE 2014; 5:671. [PMID: 25520730 PMCID: PMC4253662 DOI: 10.3389/fpls.2014.00671] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/10/2014] [Indexed: 05/04/2023]
Abstract
One of the great challenges for food security in the 21st century is to improve yield stability through the development of disease-resistant crops. Crop research is often hindered by the lack of molecular tools, growth logistics, generation time and detailed genetic annotations, hence the power of model plant species. Our knowledge of plant immunity today has been largely shaped by the use of models, specifically through the use of mutants. We examine the importance of Arabidopsis and tomato as models in the study of plant immunity and how they help us in revealing a detailed and deep understanding of the various layers contributing to the immune system. Here we describe examples of how knowledge from models can be transferred to economically important crops resulting in new tools to enable and accelerate classical plant breeding. We will also discuss how models, and specifically transcriptomics and effectoromics approaches, have contributed to the identification of core components of the defense response which will be key to future engineering of durable and sustainable disease resistance in plants.
Collapse
Affiliation(s)
| | | | - Jim L. Beynon
- School of Life Sciences, University of WarwickCoventry, UK
| | | |
Collapse
|
106
|
Chae E, Bomblies K, Kim ST, Karelina D, Zaidem M, Ossowski S, Martín-Pizarro C, Laitinen RAE, Rowan BA, Tenenboim H, Lechner S, Demar M, Habring-Müller A, Lanz C, Rätsch G, Weigel D. Species-wide genetic incompatibility analysis identifies immune genes as hot spots of deleterious epistasis. Cell 2014; 159:1341-51. [PMID: 25467443 DOI: 10.1016/j.cell.2014.10.049] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/22/2014] [Accepted: 10/07/2014] [Indexed: 01/07/2023]
Abstract
Intraspecific genetic incompatibilities prevent the assembly of specific alleles into single genotypes and influence genome- and species-wide patterns of sequence variation. A common incompatibility in plants is hybrid necrosis, characterized by autoimmune responses due to epistatic interactions between natural genetic variants. By systematically testing thousands of F1 hybrids of Arabidopsis thaliana strains, we identified a small number of incompatibility hot spots in the genome, often in regions densely populated by nucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes. In several cases, these immune receptor loci interact with each other, suggestive of conflict within the immune system. A particularly dangerous locus is a highly variable cluster of NLR genes, DM2, which causes multiple independent incompatibilities with genes that encode a range of biochemical functions, including NLRs. Our findings suggest that deleterious interactions of immune receptors limit the combinations of favorable disease resistance alleles accessible to plant genomes.
Collapse
Affiliation(s)
- Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Kirsten Bomblies
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Sang-Tae Kim
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Darya Karelina
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; Friedrich Miescher Laboratory, Max Planck Society, 72076 Tübingen, Germany
| | - Maricris Zaidem
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Stephan Ossowski
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Carmen Martín-Pizarro
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Roosa A E Laitinen
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Beth A Rowan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Hezi Tenenboim
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Sarah Lechner
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Monika Demar
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Anette Habring-Müller
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Christa Lanz
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Gunnar Rätsch
- Friedrich Miescher Laboratory, Max Planck Society, 72076 Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| |
Collapse
|
107
|
Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, Pietrella M, Zheng C, Alberti A, Anthony F, Aprea G, Aury JM, Bento P, Bernard M, Bocs S, Campa C, Cenci A, Combes MC, Crouzillat D, Da Silva C, Daddiego L, De Bellis F, Dussert S, Garsmeur O, Gayraud T, Guignon V, Jahn K, Jamilloux V, Joët T, Labadie K, Lan T, Leclercq J, Lepelley M, Leroy T, Li LT, Librado P, Lopez L, Muñoz A, Noel B, Pallavicini A, Perrotta G, Poncet V, Pot D, Priyono, Rigoreau M, Rouard M, Rozas J, Tranchant-Dubreuil C, VanBuren R, Zhang Q, Andrade AC, Argout X, Bertrand B, de Kochko A, Graziosi G, Henry RJ, Jayarama, Ming R, Nagai C, Rounsley S, Sankoff D, Giuliano G, Albert VA, Wincker P, Lashermes P. The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 2014; 345:1181-4. [PMID: 25190796 DOI: 10.1126/science.1255274] [Citation(s) in RCA: 358] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Coffee is a valuable beverage crop due to its characteristic flavor, aroma, and the stimulating effects of caffeine. We generated a high-quality draft genome of the species Coffea canephora, which displays a conserved chromosomal gene order among asterid angiosperms. Although it shows no sign of the whole-genome triplication identified in Solanaceae species such as tomato, the genome includes several species-specific gene family expansions, among them N-methyltransferases (NMTs) involved in caffeine production, defense-related genes, and alkaloid and flavonoid enzymes involved in secondary compound synthesis. Comparative analyses of caffeine NMTs demonstrate that these genes expanded through sequential tandem duplications independently of genes from cacao and tea, suggesting that caffeine in eudicots is of polyphyletic origin.
Collapse
Affiliation(s)
- France Denoeud
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France. CNRS, UMR 8030, CP5706, Evry, France. Université d'Evry, UMR 8030, CP5706, Evry, France
| | - Lorenzo Carretero-Paulet
- Department of Biological Sciences, 109 Cooke Hall, University at Buffalo (State University of New York), Buffalo, NY 14260, USA
| | - Alexis Dereeper
- Institut de Recherche pour le Développement (IRD), UMR Résistance des Plantes aux Bioagresseurs (RPB) [Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), IRD, UM2)], BP 64501, 34394 Montpellier Cedex 5, France
| | - Gaëtan Droc
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Romain Guyot
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Marco Pietrella
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA) Casaccia Research Center, Via Anguillarese 301, 00123 Roma, Italy
| | - Chunfang Zheng
- Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada
| | - Adriana Alberti
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - François Anthony
- Institut de Recherche pour le Développement (IRD), UMR Résistance des Plantes aux Bioagresseurs (RPB) [Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), IRD, UM2)], BP 64501, 34394 Montpellier Cedex 5, France
| | - Giuseppe Aprea
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA) Casaccia Research Center, Via Anguillarese 301, 00123 Roma, Italy
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - Pascal Bento
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - Maria Bernard
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - Stéphanie Bocs
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Claudine Campa
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Alberto Cenci
- Institut de Recherche pour le Développement (IRD), UMR Résistance des Plantes aux Bioagresseurs (RPB) [Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), IRD, UM2)], BP 64501, 34394 Montpellier Cedex 5, France. Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Marie-Christine Combes
- Institut de Recherche pour le Développement (IRD), UMR Résistance des Plantes aux Bioagresseurs (RPB) [Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), IRD, UM2)], BP 64501, 34394 Montpellier Cedex 5, France
| | - Dominique Crouzillat
- Nestlé Research and Development Centre, 101 Avenue Gustave Eiffel, Notre-Dame-d'Oé, BP 49716, 37097 Tours Cedex 2, France
| | - Corinne Da Silva
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | | | - Fabien De Bellis
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Stéphane Dussert
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Olivier Garsmeur
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Thomas Gayraud
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Valentin Guignon
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Katharina Jahn
- Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada. Center for Biotechnology, Universität Bielefeld, Universitätsstraße 27, D-33615 Bielefeld, Germany. AG Genominformatik, Technische Fakultät, Universität Bielefeld, 33594 Bielefeld, Germany
| | - Véronique Jamilloux
- Institut National de la Recherche Agronomique (INRA), Unité de Recherches en Génomique-Info (UR INRA 1164), Centre de Recherche de Versailles, 78026 Versailles Cedex, France
| | - Thierry Joët
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Karine Labadie
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - Tianying Lan
- Department of Biological Sciences, 109 Cooke Hall, University at Buffalo (State University of New York), Buffalo, NY 14260, USA. Department of Biology, Chongqing University of Science and Technology, 4000042 Chongqing, China
| | - Julie Leclercq
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Maud Lepelley
- Nestlé Research and Development Centre, 101 Avenue Gustave Eiffel, Notre-Dame-d'Oé, BP 49716, 37097 Tours Cedex 2, France
| | - Thierry Leroy
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Lei-Ting Li
- Department of Plant Biology, 148 Edward R. Madigan Laboratory, MC-051, 1201 West Gregory Drive, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Pablo Librado
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal 643, Barcelona 08028, Spain
| | | | - Adriana Muñoz
- Department of Mathematics, University of Maryland, Mathematics Building 084, University of Maryland, College Park, MD 20742, USA. School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada
| | - Benjamin Noel
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | | | - Valérie Poncet
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - David Pot
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Priyono
- Indonesian Coffee and Cocoa Institute, Jember, East Java, Indonesia
| | - Michel Rigoreau
- Nestlé Research and Development Centre, 101 Avenue Gustave Eiffel, Notre-Dame-d'Oé, BP 49716, 37097 Tours Cedex 2, France
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Julio Rozas
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal 643, Barcelona 08028, Spain
| | - Christine Tranchant-Dubreuil
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Robert VanBuren
- Department of Plant Biology, 148 Edward R. Madigan Laboratory, MC-051, 1201 West Gregory Drive, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Qiong Zhang
- Department of Plant Biology, 148 Edward R. Madigan Laboratory, MC-051, 1201 West Gregory Drive, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Alan C Andrade
- Laboratório de Genética Molecular, Núcleo de Biotecnologia (NTBio), Embrapa Recursos Genéticos e Biotecnologia, Final Av. W/5 Norte, Parque Estação Biológia, Brasília-DF 70770-917, Brazil
| | - Xavier Argout
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Benoît Bertrand
- CIRAD, UMR RPB (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Alexandre de Kochko
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Giorgio Graziosi
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy. DNA Analytica Srl, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia 4072, Australia
| | - Jayarama
- Central Coffee Research Institute, Coffee Board, Coffee Research Station (Post) - 577 117 Chikmagalur District, Karnataka State, India
| | - Ray Ming
- Department of Plant Biology, 148 Edward R. Madigan Laboratory, MC-051, 1201 West Gregory Drive, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chifumi Nagai
- Hawaii Agriculture Research Center, Post Office Box 100, Kunia, HI 96759-0100, USA
| | - Steve Rounsley
- BIO5 Institute, University of Arizona, 1657 Helen Street, Tucson, AZ 85721, USA
| | - David Sankoff
- Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA) Casaccia Research Center, Via Anguillarese 301, 00123 Roma, Italy
| | - Victor A Albert
- Department of Biological Sciences, 109 Cooke Hall, University at Buffalo (State University of New York), Buffalo, NY 14260, USA.
| | - Patrick Wincker
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France. CNRS, UMR 8030, CP5706, Evry, France. Université d'Evry, UMR 8030, CP5706, Evry, France.
| | - Philippe Lashermes
- Institut de Recherche pour le Développement (IRD), UMR Résistance des Plantes aux Bioagresseurs (RPB) [Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), IRD, UM2)], BP 64501, 34394 Montpellier Cedex 5, France.
| |
Collapse
|
108
|
Césari S, Kanzaki H, Fujiwara T, Bernoux M, Chalvon V, Kawano Y, Shimamoto K, Dodds P, Terauchi R, Kroj T. The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. EMBO J 2014; 33:1941-59. [PMID: 25024433 PMCID: PMC4195788 DOI: 10.15252/embj.201487923] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 05/20/2014] [Accepted: 06/05/2014] [Indexed: 12/27/2022] Open
Abstract
Plant resistance proteins of the class of nucleotide-binding and leucine-rich repeat domain proteins (NB-LRRs) are immune sensors which recognize pathogen-derived molecules termed avirulence (AVR) proteins. We show that RGA4 and RGA5, two NB-LRRs from rice, interact functionally and physically to mediate resistance to the fungal pathogen Magnaporthe oryzae and accomplish different functions in AVR recognition. RGA4 triggers an AVR-independent cell death that is repressed in the presence of RGA5 in both rice protoplasts and Nicotiana benthamiana. Upon recognition of the pathogen effector AVR-Pia by direct binding to RGA5, repression is relieved and cell death occurs. RGA4 and RGA5 form homo- and hetero-complexes and interact through their coiled-coil domains. Localization studies in rice protoplast suggest that RGA4 and RGA5 localize to the cytosol. Upon recognition of AVR-Pia, neither RGA4 nor RGA5 is re-localized to the nucleus. These results establish a model for the interaction of hetero-pairs of NB-LRRs in plants: RGA4 mediates cell death activation, while RGA5 acts as a repressor of RGA4 and as an AVR receptor.
Collapse
Affiliation(s)
- Stella Césari
- INRA UMR BGPI, Montpellier, France CIRAD UMR BGPI, Montpellier, France CSIRO Plant Industry, Canberra, ACT, Australia
| | | | - Tadashi Fujiwara
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Takayama Ikoma, Japan
| | | | - Véronique Chalvon
- INRA UMR BGPI, Montpellier, France CIRAD UMR BGPI, Montpellier, France
| | - Yoji Kawano
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Takayama Ikoma, Japan
| | - Ko Shimamoto
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Takayama Ikoma, Japan
| | - Peter Dodds
- CSIRO Plant Industry, Canberra, ACT, Australia
| | | | - Thomas Kroj
- INRA UMR BGPI, Montpellier, France CIRAD UMR BGPI, Montpellier, France
| |
Collapse
|
109
|
Vega-Arreguín JC, Jalloh A, Bos JI, Moffett P. Recognition of an Avr3a homologue plays a major role in mediating nonhost resistance to Phytophthora capsici in Nicotiana species. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:770-80. [PMID: 24725207 DOI: 10.1094/mpmi-01-14-0014-r] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nonhost resistance is a commonly occurring phenomenon wherein all accessions or cultivars of a plant species are resistant to all strains of a pathogen species and is likely the manifestation of multiple molecular mechanisms. Phytophthora capsici is a soil-borne oomycete that causes Phytophthora blight disease in many solanaceous and cucurbitaceous plants worldwide. Interest in P. capsici has increased considerably with the sequencing of its genome and its increasing occurrence in multiple crops. However, molecular interactions between P. capsici and both its hosts and its nonhosts are poorly defined. We show here that tobacco (Nicotiana tabacum) acts like a nonhost for P. capsici and responds to P. capsici infection with a hypersensitive response (HR). Furthermore, we have found that a P. capsici Avr3a-like gene (PcAvr3a1) encoding a putative RXLR effector protein produces a HR upon transient expression in tobacco and several other Nicotiana species. This HR response correlated with resistance in 19 of 23 Nicotiana species and accessions tested, and knock-down of PcAvr3a1 expression by host-induced gene silencing allowed infection of resistant tobacco. Our results suggest that many Nicotiana species have the capacity to recognize PcAvr3a1 via the products of endogenous disease resistance (R) genes and that this R gene-mediated response is a major component of nonhost resistance to P. capsici.
Collapse
|
110
|
Ntoukakis V, Saur IML, Conlan B, Rathjen JP. The changing of the guard: the Pto/Prf receptor complex of tomato and pathogen recognition. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:69-74. [PMID: 24845576 DOI: 10.1016/j.pbi.2014.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/07/2014] [Accepted: 04/17/2014] [Indexed: 05/05/2023]
Abstract
One important model for disease resistance is the Prf recognition complex of tomato, which responds to different bacterial effectors. Prf incorporates a protein kinase called Pto as its recognition domain that mimics effector virulence targets, and activates resistance after interaction with specific effectors. Recent findings show that this complex is oligomeric, and reveal how this impacts mechanism. Oligomerisation brings two or more kinases into proximity, where they can phosphorylate each other after effector perception. Effector attack on one kinase activates another in trans, constituting a molecular trap for the effector. Oligomerisation of plant resistance proteins may be a general concept that broadens pathogen recognition and restricts the ability of pathogens to evolve virulence.
Collapse
Affiliation(s)
- Vardis Ntoukakis
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Isabel M L Saur
- Research School of Biology, The Australian National University, Acton 0200, Australian Capital Territory, Australia
| | - Brendon Conlan
- Research School of Biology, The Australian National University, Acton 0200, Australian Capital Territory, Australia
| | - John P Rathjen
- Research School of Biology, The Australian National University, Acton 0200, Australian Capital Territory, Australia.
| |
Collapse
|
111
|
de Ronde D, Butterbach P, Kormelink R. Dominant resistance against plant viruses. FRONTIERS IN PLANT SCIENCE 2014; 5:307. [PMID: 25018765 PMCID: PMC4073217 DOI: 10.3389/fpls.2014.00307] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/10/2014] [Indexed: 05/17/2023]
Abstract
To establish a successful infection plant viruses have to overcome a defense system composed of several layers. This review will overview the various strategies plants employ to combat viral infections with main emphasis on the current status of single dominant resistance (R) genes identified against plant viruses and the corresponding avirulence (Avr) genes identified so far. The most common models to explain the mode of action of dominant R genes will be presented. Finally, in brief the hypersensitive response (HR) and extreme resistance (ER), and the functional and structural similarity of R genes to sensors of innate immunity in mammalian cell systems will be described.
Collapse
Affiliation(s)
- Dryas de Ronde
- Laboratory of Virology, Department of Plant Sciences, Wageningen University Wageningen, Netherlands
| | - Patrick Butterbach
- Laboratory of Virology, Department of Plant Sciences, Wageningen University Wageningen, Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University Wageningen, Netherlands
| |
Collapse
|
112
|
Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C, Chen W, Liang X, Shang H, Liu W, Shi C, Xiao G, Gou C, Ye W, Xu X, Zhang X, Wei H, Li Z, Zhang G, Wang J, Liu K, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu S. Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 2014; 46:567-72. [DOI: 10.1038/ng.2987] [Citation(s) in RCA: 634] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 04/24/2014] [Indexed: 01/05/2023]
|
113
|
Loss/retention and evolution of NBS-encoding genes upon whole genome triplication of Brassica rapa. Gene 2014; 540:54-61. [DOI: 10.1016/j.gene.2014.01.082] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/17/2013] [Accepted: 01/18/2014] [Indexed: 12/17/2022]
|
114
|
Goverse A, Smant G. The activation and suppression of plant innate immunity by parasitic nematodes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:243-65. [PMID: 24906126 DOI: 10.1146/annurev-phyto-102313-050118] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant-parasitic nematodes engage in prolonged and intimate relationships with their host plants, often involving complex alterations in host cell morphology and function. It is puzzling how nematodes can achieve this, seemingly without activating the innate immune system of their hosts. Secretions released by infective juvenile nematodes are thought to be crucial for host invasion, for nematode migration inside plants, and for feeding on host cells. In the past, much of the research focused on the manipulation of developmental pathways in host plants by plant-parasitic nematodes. However, recent findings demonstrate that plant-parasitic nematodes also deliver effectors into the apoplast and cytoplasm of host cells to suppress plant defense responses. In this review, we describe the current insights in the molecular and cellular mechanisms underlying the activation and suppression of host innate immunity by plant-parasitic nematodes along seven critical evolutionary and developmental transitions in plant parasitism.
Collapse
Affiliation(s)
- Aska Goverse
- Laboratory of Nematology, Wageningen University, 6708 PD Wageningen, The Netherlands;
| | | |
Collapse
|
115
|
Sobhanian S, Sacco M. Divergent evolution of potato immune receptor CC domain interactions with the Ran GTPase-activating protein 2. PLANT SIGNALING & BEHAVIOR 2014; 9:e29772. [PMID: 25763710 PMCID: PMC4203644 DOI: 10.4161/psb.29772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 05/24/2023]
Abstract
Effector-triggered immunity mediated by immune receptors in plants provides powerful defense against specific pathogens. Solanum tuberosum Ran GTPase-Activating Protein 2 (StRanGAP2) interacts with immune receptors Rx and Gpa2 through their coiled-coil (CC) domains. We assayed additional CC domains from other Solanaceous immune receptors and observed interaction by co-immunoprecipitation between StRanGAP2 and a novel immune receptor, STR5. A CC domain very similar to Rx and Gpa2, STR4, failed to interact, likely due to sequence divergence in the region implicated in StRanGAP2 binding. Like Rx and Gpa2, STR5 interacted with the StRanGAP2 N-terminal WPP domain. Our findings substantiate the importance of RanGAPs as common CC-interacting proteins of multiple immune receptors requiring further study to define their roles in pathogen perception.
Collapse
|
116
|
Harris CJ, Slootweg EJ, Goverse A, Baulcombe DC. Stepwise artificial evolution of a plant disease resistance gene. Proc Natl Acad Sci U S A 2013; 110:21189-94. [PMID: 24324167 PMCID: PMC3876221 DOI: 10.1073/pnas.1311134110] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genes encoding plant nucleotide-binding leucine-rich repeat (NB-LRR) proteins confer dominant resistance to diverse pathogens. The wild-type potato NB-LRR protein Rx confers resistance against a single strain of potato virus X (PVX), whereas LRR mutants protect against both a second PVX strain and the distantly related poplar mosaic virus (PopMV). In one of the Rx mutants there was a cost to the broad-spectrum resistance because the response to PopMV was transformed from a mild disease on plants carrying wild-type Rx to a trailing necrosis that killed the plant. To explore the use of secondary mutagenesis to eliminate this cost of broad-spectrum resistance, we performed random mutagenesis of the N-terminal domains of this broad-recognition version of Rx and isolated four mutants with a stronger response against the PopMV coat protein due to enhanced activation sensitivity. These mutations are located close to the nucleotide-binding pocket, a highly conserved structure that likely controls the "switch" between active and inactive NB-LRR conformations. Stable transgenic plants expressing one of these versions of Rx are resistant to the strains of PVX and the PopMV that previously caused trailing necrosis. We conclude from this work that artificial evolution of NB-LRR disease resistance genes in crops can be enhanced by modification of both activation and recognition phases, to both accentuate the positive and eliminate the negative aspects of disease resistance.
Collapse
Affiliation(s)
- C. Jake Harris
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom; and
| | - Erik J. Slootweg
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - David C. Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom; and
| |
Collapse
|
117
|
Khatabi B, Wen RH, Hajimorad MR. Fitness penalty in susceptible host is associated with virulence of Soybean mosaic virus on Rsv1-genotype soybean: a consequence of perturbation of HC-Pro and not P3. MOLECULAR PLANT PATHOLOGY 2013; 14:885-97. [PMID: 23782556 PMCID: PMC6638797 DOI: 10.1111/mpp.12054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The multigenic Rsv1 locus in the soybean plant introduction (PI) 'PI96983' confers extreme resistance against the majority of Soybean mosaic virus (SMV) strains, including SMV-N, but not SMV-G7 and SMV-G7d. In contrast, in susceptible soybean cultivars lacking a functional Rsv1 locus, such as 'Williams82' (rsv1), SMV-N induces severe disease symptoms and accumulates to a high level, whereas both SMV-G7 and SMV-G7d induce mild symptoms and accumulate to a significantly lower level. Gain of virulence by SMV-N on Rsv1-genotype soybean requires concurrent mutations in both the helper-component proteinase (HC-Pro) and P3 cistrons. This is because of the presence of at least two resistance (R) genes, probably belonging to the nucleotide-binding leucine-rich repeat (NB-LRR) class, within the Rsv1 locus, independently mediating the recognition of HC-Pro or P3. In this study, we show that the majority of experimentally evolved mutational pathways that disrupt the avirulence functions of SMV-N on Rsv1-genotype soybean also result in mild symptoms and reduced accumulation, relative to parental SMV-N, in Williams82 (rsv1). Furthermore, the evaluation of SMV-N-derived HC-Pro and P3 chimeras, containing homologous sequences from virulent SMV-G7 or SMV-G7d strains, as well as SMV-N-derived variants containing HC-Pro or P3 point mutation(s) associated with gain of virulence, reveals a direct correlation between the perturbation of HC-Pro and a fitness penalty in Williams82 (rsv1). Collectively, these data demonstrate that gain of virulence by SMV on Rsv1-genotype soybean results in fitness loss in a previously susceptible soybean genotype, this being a consequence of mutations in HC-Pro, but not in P3.
Collapse
Affiliation(s)
- B Khatabi
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | | | | |
Collapse
|
118
|
Hao W, Collier SM, Moffett P, Chai J. Structural basis for the interaction between the potato virus X resistance protein (Rx) and its cofactor Ran GTPase-activating protein 2 (RanGAP2). J Biol Chem 2013; 288:35868-76. [PMID: 24194517 DOI: 10.1074/jbc.m113.517417] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The potato (Solanum tuberosum) disease resistance protein Rx has a modular arrangement that contains coiled-coil (CC), nucleotide-binding (NB), and leucine-rich repeat (LRR) domains and mediates resistance to potato virus X. The Rx N-terminal CC domain undergoes an intramolecular interaction with the Rx NB-LRR region and an intermolecular interaction with the Rx cofactor RanGAP2 (Ran GTPase-activating protein 2). Here, we report the crystal structure of the Rx CC domain in complex with the Trp-Pro-Pro (WPP) domain of RanGAP2. The structure reveals that the Rx CC domain forms a heterodimer with RanGAP2, in striking contrast to the homodimeric structure of the CC domain of the barley disease resistance protein MLA10. Structure-based mutagenesis identified residues from both the Rx CC domain and the RanGAP2 WPP domain that are crucial for their interaction and function in vitro and in vivo. Our results reveal the molecular mechanism underlying the interaction of Rx with RanGAP2 and identify the distinct surfaces of the Rx CC domain that are involved in intramolecular and intermolecular interactions.
Collapse
Affiliation(s)
- Wei Hao
- From the College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | |
Collapse
|
119
|
Feechan A, Anderson C, Torregrosa L, Jermakow A, Mestre P, Wiedemann-Merdinoglu S, Merdinoglu D, Walker AR, Cadle-Davidson L, Reisch B, Aubourg S, Bentahar N, Shrestha B, Bouquet A, Adam-Blondon AF, Thomas MR, Dry IB. Genetic dissection of a TIR-NB-LRR locus from the wild North American grapevine species Muscadinia rotundifolia identifies paralogous genes conferring resistance to major fungal and oomycete pathogens in cultivated grapevine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:661-74. [PMID: 24033846 DOI: 10.1111/tpj.12327] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 08/22/2013] [Accepted: 09/02/2013] [Indexed: 05/20/2023]
Abstract
The most economically important diseases of grapevine cultivation worldwide are caused by the fungal pathogen powdery mildew (Erysiphe necator syn. Uncinula necator) and the oomycete pathogen downy mildew (Plasmopara viticola). Currently, grapegrowers rely heavily on the use of agrochemicals to minimize the potentially devastating impact of these pathogens on grape yield and quality. The wild North American grapevine species Muscadinia rotundifolia was recognized as early as 1889 to be resistant to both powdery and downy mildew. We have now mapped resistance to these two mildew pathogens in M. rotundifolia to a single locus on chromosome 12 that contains a family of seven TIR-NB-LRR genes. We further demonstrate that two highly homologous (86% amino acid identity) members of this gene family confer strong resistance to these unrelated pathogens following genetic transformation into susceptible Vitis vinifera winegrape cultivars. These two genes, designated resistance to Uncinula necator (MrRUN1) and resistance to Plasmopara viticola (MrRPV1) are the first resistance genes to be cloned from a grapevine species. Both MrRUN1 and MrRPV1 were found to confer resistance to multiple powdery and downy mildew isolates from France, North America and Australia; however, a single powdery mildew isolate collected from the south-eastern region of North America, to which M. rotundifolia is native, was capable of breaking MrRUN1-mediated resistance. Comparisons of gene organization and coding sequences between M. rotundifolia and the cultivated grapevine V. vinifera at the MrRUN1/MrRPV1 locus revealed a high level of synteny, suggesting that the TIR-NB-LRR genes at this locus share a common ancestor.
Collapse
Affiliation(s)
- Angela Feechan
- CSIRO Plant Industry, PO Box 350, Glen Osmond, SA, 5064, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Chang C, Zhang L, Shen QH. Partitioning, repressing and derepressing: dynamic regulations in MLA immune receptor triggered defense signaling. FRONTIERS IN PLANT SCIENCE 2013; 4:396. [PMID: 24115952 PMCID: PMC3792363 DOI: 10.3389/fpls.2013.00396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/16/2013] [Indexed: 05/09/2023]
Abstract
Plants and animals have evolved intracellular nucleotide-binding domain and leucine-rich repeat-containing immune receptors (NLRs) to perceive non-self and trigger immune responses. Plant NLRs detect strain-specific pathogen effectors and activate immune signaling leading to extensive transcriptional reprogramming and termination of pathogen infection. Here we review the recent findings in barley MLA immune receptor mediated immune responses against the barley powdery mildew fungus. We focus on nucleocytoplasmic partitioning of immune receptor, bifurcation of immune signaling, transcriptional repression and derepression connecting receptor activation to immune responses. We also discuss similar findings from other plant NLRs where appropriate.
Collapse
Affiliation(s)
- Cheng Chang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- Graduate University of Chinese Academy of SciencesBeijing, China
| | - Ling Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- *Correspondence: Qian-Hua Shen, State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China e-mail:
| |
Collapse
|
121
|
Abstract
Over the past decade, considerable advances have been made in understanding the molecular mechanisms that underpin the arms race between plant pathogens and their hosts. Alongside genomic, bioinformatic, proteomic, biochemical and cell biological analyses of plant-pathogen interactions, three-dimensional structural studies of virulence proteins deployed by pathogens to promote infection, in some cases complexed with their plant cell targets, have uncovered key insights into the functions of these molecules. Structural information on plant immune receptors, which regulate the response to pathogen attack, is also starting to emerge. Structural studies of bacterial plant pathogen-host systems have been leading the way, but studies of filamentous plant pathogens are gathering pace. In this Review, we summarize the key developments in the structural biology of plant pathogen-host interactions.
Collapse
|
122
|
Riaz S, Boursiquot JM, Dangl GS, Lacombe T, Laucou V, Tenscher AC, Walker MA. Identification of mildew resistance in wild and cultivated Central Asian grape germplasm. BMC PLANT BIOLOGY 2013; 13:149. [PMID: 24093598 PMCID: PMC3851849 DOI: 10.1186/1471-2229-13-149] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 09/30/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Cultivated grapevines, Vitis vinifera subsp. sativa, evolved from their wild relative, V. vinifera subsp. sylvestris. They were domesticated in Central Asia in the absence of the powdery mildew fungus, Erysiphe necator, which is thought to have originated in North America. However, powdery mildew resistance has previously been discovered in two Central Asian cultivars and in Chinese Vitis species. RESULTS A set of 380 unique genotypes were evaluated with data generated from 34 simple sequence repeat (SSR) markers. The set included 306 V. vinifera cultivars, 40 accessions of V. vinifera subsp. sylvestris, and 34 accessions of Vitis species from northern Pakistan, Afghanistan and China. Based on the presence of four SSR alleles previously identified as linked to the powdery mildew resistance locus, Ren1, 10 new mildew resistant genotypes were identified in the test set: eight were V. vinifera cultivars and two were V. vinifera subsp. sylvestris based on flower and seed morphology. Sequence comparison of a 620 bp region that includes the Ren1-linked allele (143 bp) of the co-segregating SSR marker SC8-0071-014, revealed that the ten newly identified genotypes have sequences that are essentially identical to the previously identified mildew resistant V. vinifera cultivars: 'Kishmish vatkana' and 'Karadzhandal'. Kinship analysis determined that three of the newly identified powdery mildew resistant accessions had a relationship with 'Kishmish vatkana' and 'Karadzhandal', and that six were not related to any other accession in this study set. Clustering procedures assigned accessions into three groups: 1) Chinese species; 2) a mixed group of cultivated and wild V. vinifera; and 3) table grape cultivars, including nine of the powdery mildew resistant accessions. Gene flow was detected among the groups. CONCLUSIONS This study provides evidence that powdery mildew resistance is present in V. vinifera subsp. sylvestris, the dioecious wild progenitor of the cultivated grape. Four first-degree parent progeny relationships were discovered among the hermaphroditic powdery mildew resistant cultivars, supporting the existence of intentional grape breeding efforts. Although several Chinese grape species are resistant to powdery mildew, no direct genetic link to the resistance found in V. vinifera could be established.
Collapse
Affiliation(s)
- Summaira Riaz
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| | - Jean-Michel Boursiquot
- UMR AGAP, Equipe Diversité et Adaptation de la Vigne et des Espèces Méditerranéennes, Montpellier SupAgro, 2 Place Viala, Montpellier 34060, France
| | - Gerald S Dangl
- Foundation Plant Services, University of California, Davis, CA 95616, USA
| | - Thierry Lacombe
- UMR AGAP, Equipe Diversité et Adaptation de la Vigne et des Espèces Méditerranéennes, INRA, 2 Place Viala, Montpellier 34060, France
| | - Valerie Laucou
- UMR AGAP, Equipe Diversité et Adaptation de la Vigne et des Espèces Méditerranéennes, INRA, 2 Place Viala, Montpellier 34060, France
| | - Alan C Tenscher
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| | - M Andrew Walker
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| |
Collapse
|
123
|
Jacob F, Vernaldi S, Maekawa T. Evolution and Conservation of Plant NLR Functions. Front Immunol 2013; 4:297. [PMID: 24093022 PMCID: PMC3782705 DOI: 10.3389/fimmu.2013.00297] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/09/2013] [Indexed: 12/21/2022] Open
Abstract
In plants and animals, nucleotide-binding domain and leucine-rich repeats (NLR)-containing proteins play pivotal roles in innate immunity. Despite their similar biological functions and protein architecture, comparative genome-wide analyses of NLRs and genes encoding NLR-like proteins suggest that plant and animal NLRs have independently arisen in evolution. Furthermore, the demonstration of interfamily transfer of plant NLR functions from their original species to phylogenetically distant species implies evolutionary conservation of the underlying immune principle across plant taxonomy. In this review we discuss plant NLR evolution and summarize recent insights into plant NLR-signaling mechanisms, which might constitute evolutionarily conserved NLR-mediated immune mechanisms.
Collapse
Affiliation(s)
- Florence Jacob
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research , Cologne , Germany ; Unité de Recherche en Génomique Végétale, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Evry Val d'Essone , Evry , France
| | | | | |
Collapse
|
124
|
Enciso-Rodríguez FE, González C, Rodríguez EA, López CE, Landsman D, Barrero LS, Mariño-Ramírez L. Identification of immunity related genes to study the Physalis peruviana--Fusarium oxysporum pathosystem. PLoS One 2013; 8:e68500. [PMID: 23844210 PMCID: PMC3701084 DOI: 10.1371/journal.pone.0068500] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 05/30/2013] [Indexed: 11/18/2022] Open
Abstract
The Cape gooseberry (Physalisperuviana L) is an Andean exotic fruit with high nutritional value and appealing medicinal properties. However, its cultivation faces important phytosanitary problems mainly due to pathogens like Fusarium oxysporum, Cercosporaphysalidis and Alternaria spp. Here we used the Cape gooseberry foliar transcriptome to search for proteins that encode conserved domains related to plant immunity including: NBS (Nucleotide Binding Site), CC (Coiled-Coil), TIR (Toll/Interleukin-1 Receptor). We identified 74 immunity related gene candidates in P. peruviana which have the typical resistance gene (R-gene) architecture, 17 Receptor like kinase (RLKs) candidates related to PAMP-Triggered Immunity (PTI), eight (TIR-NBS-LRR, or TNL) and nine (CC–NBS-LRR, or CNL) candidates related to Effector-Triggered Immunity (ETI) genes among others. These candidate genes were categorized by molecular function (98%), biological process (85%) and cellular component (79%) using gene ontology. Some of the most interesting predicted roles were those associated with binding and transferase activity. We designed 94 primers pairs from the 74 immunity-related genes (IRGs) to amplify the corresponding genomic regions on six genotypes that included resistant and susceptible materials. From these, we selected 17 single band amplicons and sequenced them in 14 F. oxysporum resistant and susceptible genotypes. Sequence polymorphisms were analyzed through preliminary candidate gene association, which allowed the detection of one SNP at the PpIRG-63 marker revealing a nonsynonymous mutation in the predicted LRR domain suggesting functional roles for resistance.
Collapse
Affiliation(s)
- Felix E. Enciso-Rodríguez
- Plant Molecular Genetics Laboratory, Center for Biotechnology and Bioindustry (CBB), Colombian Corporation for Agricultural Research (CORPOICA), Bogotá, Colombia
| | - Carolina González
- Molecular Microbiology Laboratory, Center for Biotechnology and Bioindustry (CBB), Colombian Corporation for Agricultural Research (CORPOICA), Bogotá, Colombia
| | - Edwin A. Rodríguez
- Molecular Microbiology Laboratory, Center for Biotechnology and Bioindustry (CBB), Colombian Corporation for Agricultural Research (CORPOICA), Bogotá, Colombia
| | - Camilo E. López
- Laboratorio de Fitopatología Molecular, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - David Landsman
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Luz Stella Barrero
- Plant Molecular Genetics Laboratory, Center for Biotechnology and Bioindustry (CBB), Colombian Corporation for Agricultural Research (CORPOICA), Bogotá, Colombia
- PanAmerican Bioinformatics Institute, Santa Marta, Magdalena, Colombia
| | - Leonardo Mariño-Ramírez
- Plant Molecular Genetics Laboratory, Center for Biotechnology and Bioindustry (CBB), Colombian Corporation for Agricultural Research (CORPOICA), Bogotá, Colombia
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
- PanAmerican Bioinformatics Institute, Santa Marta, Magdalena, Colombia
- * E-mail:
| |
Collapse
|
125
|
de Ronde D, Butterbach P, Lohuis D, Hedil M, van Lent JWM, Kormelink R. Tsw gene-based resistance is triggered by a functional RNA silencing suppressor protein of the Tomato spotted wilt virus. MOLECULAR PLANT PATHOLOGY 2013; 14:405-15. [PMID: 23360130 PMCID: PMC6638720 DOI: 10.1111/mpp.12016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
As a result of contradictory reports, the avirulence (Avr) determinant that triggers Tsw gene-based resistance in Capsicum annuum against the Tomato spotted wilt virus (TSWV) is still unresolved. Here, the N and NSs genes of resistance-inducing (RI) and resistance-breaking (RB) isolates were cloned and transiently expressed in resistant Capsicum plants to determine the identity of the Avr protein. It was shown that the NSs(RI) protein triggered a hypersensitive response (HR) in Tsw-containing Capsicum plants, but not in susceptible Capsicum, whereas no HR was discerned after expression of the N(RI) (/) (RB) protein, or when NSs(RB) was expressed. Although NSs(RI) was able to suppress the silencing of a functional green fluorescence protein (GFP) construct during Agrobacterium tumefaciens transient assays on Nicotiana benthamiana, NSs(RB) had lost this capacity. The observation that RB isolates suppressed local GFP silencing during an infection indicated a recovery of RNA silencing suppressor activity for the NSs protein or the presence of another RNA interference (RNAi) suppressor. The role of NSs as RNA silencing suppressor and Avr determinant is discussed in the light of a putative interplay between RNAi and the natural Tsw resistance gene.
Collapse
Affiliation(s)
- Dryas de Ronde
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | | | | | | | | | | |
Collapse
|
126
|
Carpentier J, Grenier E, Esquibet M, Hamel LP, Moffett P, Manzanares-Dauleux MJ, Kerlan MC. Evolution and variability of Solanum RanGAP2, a cofactor in the incompatible interaction between the resistance protein GPA2 and the Globodera pallida effector Gp-RBP-1. BMC Evol Biol 2013; 13:87. [PMID: 23601377 PMCID: PMC3656811 DOI: 10.1186/1471-2148-13-87] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 04/15/2013] [Indexed: 11/22/2022] Open
Abstract
Background The Ran GTPase Activating Protein 2 (RanGAP2) was first described as a regulator of mitosis and nucleocytoplasmic trafficking. It was then found to interact with the Coiled-Coil domain of the Rx and GPA2 resistance proteins, which confer resistance to Potato Virus X (PVX) and potato cyst nematode Globodera pallida, respectively. RanGAP2 is thought to mediate recognition of the avirulence protein GP-RBP-1 by GPA2. However, the Gpa2-induced hypersensitive response appears to be relatively weak and Gpa2 is limited in terms of spectrum of efficiency as it is effective against only two nematode populations. While functional and evolutionary analyses of Gp-Rbp-1 and Gpa2 identified key residues in both the resistance and avirulence proteins that are involved in recognition determination, whether variation in RanGAP2 also plays a role in pathogen recognition has not been investigated. Results We amplified a total of 147 RanGAP2 sequences from 55 accessions belonging to 18 different di-and tetraploid Solanum species from the section Petota. Among the newly identified sequences, 133 haplotypes were obtained and 19.1% of the nucleotide sites were found to be polymorphic. The observed intra-specific nucleotide diversity ranges from 0.1 to 1.3%. Analysis of the selection pressures acting on RanGAP2 suggests that this gene evolved mainly under purifying selection. Nonetheless, we identified polymorphic positions in the protein sequence at the intra-specific level, which could modulate the activity of RanGAP2. Two polymorphic sites and a three amino-acid deletion in RanGAP2 were found to affect the timing and intensity of the Gpa2-induced hypersensitive response to avirulent GP-RBP-1 variants even though they did not confer any gain of recognition of virulent GP-RBP-1 variants. Conclusions Our results highlight how a resistance gene co-factor can manage in terms of evolution both an established role as a cell housekeeping gene and an implication in plant parasite interactions. StRanGAP2 gene appears to evolve under purifying selection. Its variability does not seem to influence the specificity of GPA2 recognition but is able to modulate this activity by enhancing the defence response. It seems therefore that the interaction with the plant resistance protein GPA2 (and/or Rx) rather than with the nematode effector was the major force in the evolution of the RanGAP2 locus in potato. From a mechanistic point of view these results are in accordance with a physical interaction of RanGAP2 with GPA2 and suggest that RBP-1 would rather bind the RanGAP2-GPA2 complex than the RanGAP2 protein alone.
Collapse
Affiliation(s)
- Jean Carpentier
- INRA, UMR 1349 IGEPP INRA, Agrocampus Ouest, Université Rennes1, Ploudaniel, Keraïber F.29260, France
| | | | | | | | | | | | | |
Collapse
|
127
|
Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, Morel JB, Fournier E, Tharreau D, Terauchi R, Kroj T. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. THE PLANT CELL 2013; 25:1463-81. [PMID: 23548743 PMCID: PMC3663280 DOI: 10.1105/tpc.112.107201] [Citation(s) in RCA: 357] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Resistance (R) proteins recognize pathogen avirulence (Avr) proteins by direct or indirect binding and are multidomain proteins generally carrying a nucleotide binding (NB) and a leucine-rich repeat (LRR) domain. Two NB-LRR protein-coding genes from rice (Oryza sativa), RGA4 and RGA5, were found to be required for the recognition of the Magnaporthe oryzae effector AVR1-CO39. RGA4 and RGA5 also mediate recognition of the unrelated M. oryzae effector AVR-Pia, indicating that the corresponding R proteins possess dual recognition specificity. For RGA5, two alternative transcripts, RGA5-A and RGA5-B, were identified. Genetic analysis showed that only RGA5-A confers resistance, while RGA5-B is inactive. Yeast two-hybrid, coimmunoprecipitation, and fluorescence resonance energy transfer-fluorescence lifetime imaging experiments revealed direct binding of AVR-Pia and AVR1-CO39 to RGA5-A, providing evidence for the recognition of multiple Avr proteins by direct binding to a single R protein. Direct binding seems to be required for resistance as an inactive AVR-Pia allele did not bind RGA5-A. A small Avr interaction domain with homology to the Avr recognition domain in the rice R protein Pik-1 was identified in the C terminus of RGA5-A. This reveals a mode of Avr protein recognition through direct binding to a novel, non-LRR interaction domain.
Collapse
Affiliation(s)
- Stella Cesari
- INRA, UMR 385 Biologie et Génétique des Interactions Plante-Parasite, F-34398 Montpellier, France
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite, F-34398 Montpellier, France
| | - Gaëtan Thilliez
- INRA, UMR 385 Biologie et Génétique des Interactions Plante-Parasite, F-34398 Montpellier, France
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite, F-34398 Montpellier, France
| | - Cécile Ribot
- INRA, UMR 385 Biologie et Génétique des Interactions Plante-Parasite, F-34398 Montpellier, France
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite, F-34398 Montpellier, France
| | - Véronique Chalvon
- INRA, UMR 385 Biologie et Génétique des Interactions Plante-Parasite, F-34398 Montpellier, France
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite, F-34398 Montpellier, France
| | - Corinne Michel
- INRA, UMR 385 Biologie et Génétique des Interactions Plante-Parasite, F-34398 Montpellier, France
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite, F-34398 Montpellier, France
| | - Alain Jauneau
- CNRS, Plateforme Imagerie-Microscopie, Fédération de Recherche FR3450, 31326 Castanet-Tolosan, France
| | - Susana Rivas
- INRA, UMR 441 Laboratoire des Interactions Plantes-Microorganismes, F-31326 Castanet-Tolosan, France
- CNRS, UMR 2594 Laboratoire des Interactions Plantes-Microorganismes, F-31326 Castanet-Tolosan, France
| | - Ludovic Alaux
- INRA, UMR 385 Biologie et Génétique des Interactions Plante-Parasite, F-34398 Montpellier, France
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite, F-34398 Montpellier, France
| | - Hiroyuki Kanzaki
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Yudai Okuyama
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Jean-Benoit Morel
- INRA, UMR 385 Biologie et Génétique des Interactions Plante-Parasite, F-34398 Montpellier, France
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite, F-34398 Montpellier, France
| | - Elisabeth Fournier
- INRA, UMR 385 Biologie et Génétique des Interactions Plante-Parasite, F-34398 Montpellier, France
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite, F-34398 Montpellier, France
| | - Didier Tharreau
- INRA, UMR 385 Biologie et Génétique des Interactions Plante-Parasite, F-34398 Montpellier, France
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite, F-34398 Montpellier, France
| | - Ryohei Terauchi
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Thomas Kroj
- INRA, UMR 385 Biologie et Génétique des Interactions Plante-Parasite, F-34398 Montpellier, France
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite, F-34398 Montpellier, France
- Address correspondence to
| |
Collapse
|
128
|
Gao X, He P. Nuclear dynamics of Arabidopsis calcium-dependent protein kinases in effector-triggered immunity. PLANT SIGNALING & BEHAVIOR 2013; 8:e23868. [PMID: 23425856 PMCID: PMC3956488 DOI: 10.4161/psb.23868] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/02/2013] [Indexed: 05/22/2023]
Abstract
Plants have evolved sophisticated innate immune systems to protect themselves from potential microbial invasions. Recognition of pathogen-derived virulence effector proteins is mediated by plant resistance (R) proteins and elicits potent defense responses, collectively termed as effector-triggered immunity (ETI). It has long been known that ETI is often accompanied with the increase of cytosolic Ca(2+) levels. We recently identified six closely related calcium-dependent protein kinases (CPKs) in Arabidopsis that orchestrate bifurcate ETI signaling via distinct substrate specificity and subcellular dynamics. In particular, the activation of CPK4, 5, 6 and 11 phosphorylates a specific subgroup of WRKY transcription factors to regulate transcriptional reprogramming crucial for restriction of pathogen growth. Upon ETI activation, a significant portion of CPK5 re-localizes to nucleus where it interacts and phosphorylates WRKY8, 28 and 48. Mass spectrometry analysis identified several conserved residues, including T247/T248 in WRKY48 and T199 in WRKY28 as the phosphorylation sites by CPKs. Here we reported that mutation of T198/T199 into alanine (TT198AA) in WRKY28 completely abolished its phosphorylation by CPK4 and 11. The importance of nuclear localization of CPK5 was further demonstrated by that CPK5 fused with nuclear export signal abolished its synergistic effect with WRKY8, 28 and 48 on the activation of defense gene. In contrast, effector AvrRpt2 likely functions in the cytoplasm to activate the transcriptional reprogramming of defense genes, consistent with the plasma membrane localization of its RPS2 receptor. Our data established WRKYs as bona fide substrates of CPKs and provided a framework for the study of CPK-WRKY cascade in diverse biological processes. Our results also demonstrated that the nuclear localization and subcellular dynamics of CPKs are essential to relay distinct ETI signaling events.
Collapse
|
129
|
Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 2013; 496:87-90. [PMID: 23535596 DOI: 10.1038/nature11997] [Citation(s) in RCA: 481] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 02/08/2013] [Indexed: 01/20/2023]
Abstract
Bread wheat (Triticum aestivum, AABBDD) is one of the most widely cultivated and consumed food crops in the world. However, the complex polyploid nature of its genome makes genetic and functional analyses extremely challenging. The A genome, as a basic genome of bread wheat and other polyploid wheats, for example, T. turgidum (AABB), T. timopheevii (AAGG) and T. zhukovskyi (AAGGA(m)A(m)), is central to wheat evolution, domestication and genetic improvement. The progenitor species of the A genome is the diploid wild einkorn wheat T. urartu, which resembles cultivated wheat more extensively than do Aegilops speltoides (the ancestor of the B genome) and Ae. tauschii (the donor of the D genome), especially in the morphology and development of spike and seed. Here we present the generation, assembly and analysis of a whole-genome shotgun draft sequence of the T. urartu genome. We identified protein-coding gene models, performed genome structure analyses and assessed its utility for analysing agronomically important genes and for developing molecular markers. Our T. urartu genome assembly provides a diploid reference for analysis of polyploid wheat genomes and is a valuable resource for the genetic improvement of wheat.
Collapse
|
130
|
Padmanabhan MS, Ma S, Burch-Smith TM, Czymmek K, Huijser P, Dinesh-Kumar SP. Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity. PLoS Pathog 2013; 9:e1003235. [PMID: 23516366 PMCID: PMC3597514 DOI: 10.1371/journal.ppat.1003235] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 01/22/2013] [Indexed: 01/28/2023] Open
Abstract
Following the recognition of pathogen-encoded effectors, plant TIR-NB-LRR immune receptors induce defense signaling by a largely unknown mechanism. We identify a novel and conserved role for the SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-domain transcription factor SPL6 in enabling the activation of the defense transcriptome following its association with a nuclear-localized immune receptor. During an active immune response, the Nicotiana TIR-NB-LRR N immune receptor associates with NbSPL6 within distinct nuclear compartments. NbSPL6 is essential for the N-mediated resistance to Tobacco mosaic virus. Similarly, the presumed Arabidopsis ortholog AtSPL6 is required for the resistance mediated by the TIR-NB-LRR RPS4 against Pseudomonas syringae carrying the avrRps4 effector. Transcriptome analysis indicates that AtSPL6 positively regulates a subset of defense genes. A pathogen-activated nuclear-localized TIR-NB-LRR like N can therefore regulate defense genes through SPL6 in a mechanism analogous to the induction of MHC genes by mammalian immune receptors like CIITA and NLRC5.
Collapse
Affiliation(s)
- Meenu S. Padmanabhan
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, California, United States of America
| | - Shisong Ma
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, California, United States of America
| | - Tessa M. Burch-Smith
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Kirk Czymmek
- Department of Biological Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Peter Huijser
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Savithramma P. Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, California, United States of America
| |
Collapse
|
131
|
Chang C, Yu D, Jiao J, Jing S, Schulze-Lefert P, Shen QH. Barley MLA immune receptors directly interfere with antagonistically acting transcription factors to initiate disease resistance signaling. THE PLANT CELL 2013; 25:1158-73. [PMID: 23532068 PMCID: PMC3634683 DOI: 10.1105/tpc.113.109942] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/01/2013] [Accepted: 03/11/2013] [Indexed: 05/18/2023]
Abstract
The nucleotide binding domain and Leucine-rich repeat (NLR)-containing proteins in plants and animals mediate pathogen sensing inside host cells and mount innate immune responses against microbial pathogens. The barley (Hordeum vulgare) mildew A (MLA) locus encodes coiled-coil (CC)-type NLRs mediating disease resistance against the powdery mildew pathogen Blumeria graminis. Here, we report direct interactions between MLA and two antagonistically acting transcription factors, MYB6 and WRKY1. The N-terminal CC signaling domain of MLA interacts with MYB6 to stimulate its DNA binding activity. MYB6 functions as a positive regulator of basal and MLA-mediated immunity responses to B. graminis. MYB6 DNA binding is antagonized by direct association with WRKY1 repressor, which in turn also interacts with the MLA CC domain. The activated form of full-length MLA10 receptor is needed to release MYB6 activator from WRKY1 repression and to stimulate MYB6-dependent gene expression. This implies that, while sequestered by the WRKY1 repressor in the presence of the resting immune receptor, MYB6 acts as an immediate and positive postactivation signaling component of the active state of MLA during transcriptional reprogramming for innate immune responses.
Collapse
Affiliation(s)
- Cheng Chang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deshui Yu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Jiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaojuan Jing
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Address correspondence to
| |
Collapse
|
132
|
Kud J, Zhao Z, Du X, Liu Y, Zhao Y, Xiao F. SGT1 interacts with the Prf resistance protein and is required for Prf accumulation and Prf-mediated defense signaling. Biochem Biophys Res Commun 2013; 431:501-5. [PMID: 23333384 DOI: 10.1016/j.bbrc.2013.01.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/08/2013] [Indexed: 01/04/2023]
Abstract
The highly conserved eukaryotic co-chaperone SGT1 (suppressor of the G2 allele of skp1) is an important signaling component of plant defense responses and positively regulates disease resistance conferred by many resistance (R) proteins. In this study, we investigated the contribution of SGT1 in the Prf-mediated defense responses in both Nicotiana benthamiana and tomato (Solanum lycopersicum). SGT1 was demonstrated to interact with Prf in plant cells by co-immunoprecipitation. The requirement of SGT1 in the accumulation of Prf or autoactive Prf(D1416V) was determined by the degradation of these proteins in N. benthamiana, in which SGT1 was repressed by virus-induced gene silencing (VIGS). Pseudomonas pathogen assay on the SGT1-silenced tomato plants implicates SGT1 is required for the Prf-mediated full resistance to Pseudomonas syringae pv. tomato (Pst). These results suggest that, in both N. benthamiana and tomato, SGT1 contributes to the Prf-mediated defense responses by stabilizing Prf protein via its co-chaperone activity.
Collapse
Affiliation(s)
- Joanna Kud
- Department of Plant, Soil & Entomological Science, University of Idaho, Moscow, ID 83844, USA
| | | | | | | | | | | |
Collapse
|
133
|
Ntoukakis V, Balmuth AL, Mucyn TS, Gutierrez JR, Jones AME, Rathjen JP. The tomato Prf complex is a molecular trap for bacterial effectors based on Pto transphosphorylation. PLoS Pathog 2013; 9:e1003123. [PMID: 23382672 PMCID: PMC3561153 DOI: 10.1371/journal.ppat.1003123] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 11/27/2012] [Indexed: 02/02/2023] Open
Abstract
The major virulence strategy of phytopathogenic bacteria is to secrete effector proteins into the host cell to target the immune machinery. AvrPto and AvrPtoB are two such effectors from Pseudomonas syringae, which disable an overlapping range of kinases in Arabidopsis and Tomato. Both effectors target surface-localized receptor-kinases to avoid bacterial recognition. In turn, tomato has evolved an intracellular effector-recognition complex composed of the NB-LRR protein Prf and the Pto kinase. Structural analyses have shown that the most important interaction surface for AvrPto and AvrPtoB is the Pto P+1 loop. AvrPto is an inhibitor of Pto kinase activity, but paradoxically, this kinase activity is a prerequisite for defense activation by AvrPto. Here using biochemical approaches we show that disruption of Pto P+1 loop stimulates phosphorylation in trans, which is possible because the Pto/Prf complex is oligomeric. Both P+1 loop disruption and transphosphorylation are necessary for signalling. Thus, effector perturbation of one kinase molecule in the complex activates another. Hence, the Pto/Prf complex is a sophisticated molecular trap for effectors that target protein kinases, an essential aspect of the pathogen's virulence strategy. The data presented here give a clear view of why bacterial virulence and host recognition mechanisms are so often related and how the slowly evolving host is able to keep pace with the faster-evolving pathogen.
Collapse
Affiliation(s)
- Vardis Ntoukakis
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail: (VN); (JPN)
| | - Alexi L. Balmuth
- The Sainsbury Laboratory, Norwich Research Park, Colney, United Kingdom
| | - Tatiana S. Mucyn
- The Sainsbury Laboratory, Norwich Research Park, Colney, United Kingdom
| | - Jose R. Gutierrez
- The Sainsbury Laboratory, Norwich Research Park, Colney, United Kingdom
| | | | - John P. Rathjen
- The Sainsbury Laboratory, Norwich Research Park, Colney, United Kingdom
- * E-mail: (VN); (JPN)
| |
Collapse
|
134
|
Bifurcation of Arabidopsis NLR immune signaling via Ca²⁺-dependent protein kinases. PLoS Pathog 2013; 9:e1003127. [PMID: 23382673 PMCID: PMC3561149 DOI: 10.1371/journal.ppat.1003127] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 11/28/2012] [Indexed: 11/30/2022] Open
Abstract
Nucleotide-binding domain leucine-rich repeat (NLR) protein complexes sense infections and trigger robust immune responses in plants and humans. Activation of plant NLR resistance (R) proteins by pathogen effectors launches convergent immune responses, including programmed cell death (PCD), reactive oxygen species (ROS) production and transcriptional reprogramming with elusive mechanisms. Functional genomic and biochemical genetic screens identified six closely related Arabidopsis Ca2+-dependent protein kinases (CPKs) in mediating bifurcate immune responses activated by NLR proteins, RPS2 and RPM1. The dynamics of differential CPK1/2 activation by pathogen effectors controls the onset of cell death. Sustained CPK4/5/6/11 activation directly phosphorylates a specific subgroup of WRKY transcription factors, WRKY8/28/48, to synergistically regulate transcriptional reprogramming crucial for NLR-dependent restriction of pathogen growth, whereas CPK1/2/4/11 phosphorylate plasma membrane-resident NADPH oxidases for ROS production. Our studies delineate bifurcation of complex signaling mechanisms downstream of NLR immune sensors mediated by the myriad action of CPKs with distinct substrate specificity and subcellular dynamics. Distinguishing self from non-self is the fundamental principle of immunity. Nucleotide-binding leucine-rich repeat (NLR) proteins were first identified in plants as disease resistance proteins and were recently found to play essential roles in mammalian innate immunity and inflammation. NLR protein complexes sense intracellular pathogenic effectors in plants and microbial patterns and danger signals in humans, but the signaling mechanisms upon NLR activation remain elusive. Using the Arabidopsis-Pseudomonas interaction as a model system, we discovered the molecular link between NLR immune sensors and the convergent immune responses triggered by distinct pathogen effectors. Integrated functional genomic and biochemical genetic screens identified six closely related Ca2+-dependent protein kinases (CPKs) that orchestrate bifurcate NLR immune signaling via distinct substrate specificity and subcellular dynamics. The CPK1/2 regulate the onset of programmed cell death; CPK4/5/6/11 phosphorylate specific WRKY transcription factors to regulate immune gene expression crucial for NLR-dependent restriction of pathogen growth, whereas CPK1/2/4/11 phosphorylate NADPH oxidases for the production of reactive oxygen species. Our studies decode the complex signaling mechanisms via the myriad action of CPKs downstream of NLR immune sensors.
Collapse
|
135
|
Hatakeyama K, Suwabe K, Tomita RN, Kato T, Nunome T, Fukuoka H, Matsumoto S. Identification and characterization of Crr1a, a gene for resistance to clubroot disease (Plasmodiophora brassicae Woronin) in Brassica rapa L. PLoS One 2013; 8:e54745. [PMID: 23382954 PMCID: PMC3559844 DOI: 10.1371/journal.pone.0054745] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/14/2012] [Indexed: 11/19/2022] Open
Abstract
Clubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae Woronin, is one of the most economically important diseases of Brassica crops in the world. Although many clubroot resistance (CR) loci have been identified through genetic analysis and QTL mapping, the molecular mechanisms of defense responses against P. brassicae remain unknown. Fine mapping of the Crr1 locus, which was originally identified as a single locus, revealed that it comprises two gene loci, Crr1a and Crr1b. Here we report the map-based cloning and characterization of Crr1a, which confers resistance to clubroot in Brassica rapa. Crr1a(G004), cloned from the resistant line G004, encodes a Toll-Interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat (TIR-NB-LRR) protein expressed in the stele and cortex of hypocotyl and roots, where secondary infection of the pathogen occurs, but not in root hairs, where primary infection occurs. Gain-of-function analysis proved that Crr1a(G004) alone conferred resistance to isolate Ano-01 in susceptible Arabidopsis and B. rapa. In comparison, the susceptible allele Crr1a(A9709) encodes a truncated NB-LRR protein, which lacked more than half of the TIR domain on account of the insertion of a solo-long terminal repeat (LTR) in exon 1 and included several substitutions and insertion-deletions in the LRR domain. This study provides a basis for further molecular analysis of defense mechanisms against P. brassicae and will contribute to the breeding of resistant cultivars of Brassica vegetables by marker-assisted selection.Data deposition The sequence reported in this paper has been deposited in the GenBank database (accession no. AB605024).
Collapse
Affiliation(s)
- Katsunori Hatakeyama
- Vegetable Breeding and Genome Research Division, NARO Institute of Vegetable and Tea Science, Tsu, Mie, Japan
| | - Keita Suwabe
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Rubens Norio Tomita
- Vegetable Breeding and Genome Research Division, NARO Institute of Vegetable and Tea Science, Tsu, Mie, Japan
| | - Takeyuki Kato
- Vegetable Breeding and Genome Research Division, NARO Institute of Vegetable and Tea Science, Tsu, Mie, Japan
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Tsukasa Nunome
- Vegetable Breeding and Genome Research Division, NARO Institute of Vegetable and Tea Science, Tsu, Mie, Japan
| | - Hiroyuki Fukuoka
- Vegetable Breeding and Genome Research Division, NARO Institute of Vegetable and Tea Science, Tsu, Mie, Japan
| | - Satoru Matsumoto
- Vegetable Breeding and Genome Research Division, NARO Institute of Vegetable and Tea Science, Tsu, Mie, Japan
| |
Collapse
|
136
|
Heidrich K, Tsuda K, Blanvillain-Baufumé S, Wirthmueller L, Bautor J, Parker JE. Arabidopsis TNL-WRKY domain receptor RRS1 contributes to temperature-conditioned RPS4 auto-immunity. FRONTIERS IN PLANT SCIENCE 2013; 4:403. [PMID: 24146667 PMCID: PMC3797954 DOI: 10.3389/fpls.2013.00403] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/23/2013] [Indexed: 05/21/2023]
Abstract
In plant effector-triggered immunity (ETI), intracellular nucleotide binding-leucine rich repeat (NLR) receptors are activated by specific pathogen effectors. The Arabidopsis TIR (Toll-Interleukin-1 receptor domain)-NLR (denoted TNL) gene pair, RPS4 and RRS1, confers resistance to Pseudomonas syringae pv tomato (Pst) strain DC3000 expressing the Type III-secreted effector, AvrRps4. Nuclear accumulation of AvrRps4, RPS4, and the TNL resistance regulator EDS1 is necessary for ETI. RRS1 possesses a C-terminal "WRKY" transcription factor DNA binding domain suggesting that important RPS4/RRS1 recognition and/or resistance signaling events occur at the nuclear chromatin. In Arabidopsis accession Ws-0, the RPS4(Ws) /RRS1(Ws) allelic pair governs resistance to Pst/AvrRps4 accompanied by host programed cell death (pcd). In accession Col-0, RPS4(Col) /RRS1(Col) effectively limits Pst/AvrRps4 growth without pcd. Constitutive expression of HA-StrepII tagged RPS4(Col) (in a 35S:RPS4-HS line) confers temperature-conditioned EDS1-dependent auto-immunity. Here we show that a high (28°C, non-permissive) to moderate (19°C, permissive) temperature shift of 35S:RPS4-HS plants can be used to follow defense-related transcriptional dynamics without a pathogen effector trigger. By comparing responses of 35S:RPS4-HS with 35S:RPS4-HS rrs1-11 and 35S:RPS4-HS eds1-2 mutants, we establish that RPS4(Col) auto-immunity depends entirely on EDS1 and partially on RRS1(Col) . Examination of gene expression microarray data over 24 h after temperature shift reveals a mainly quantitative RRS1(Col) contribution to up- or down-regulation of a small subset of RPS4(Col) -reprogramed, EDS1-dependent genes. We find significant over-representation of WRKY transcription factor binding W-box cis-elements within the promoters of these genes. Our data show that RRS1(Col) contributes to temperature-conditioned RPS4(Col) auto-immunity and are consistent with activated RPS4(Col) engaging RRS1(Col) for resistance signaling.
Collapse
Affiliation(s)
| | | | - Servane Blanvillain-Baufumé
- Present address: Servane Blanvillain-Baufumé, Institut de Recherche pour le Développement, UMR RPB, 911 Avenue Agropolis - BP 64501, 34394 Montpellier Cedex 5, France; LennartWirthmueller, Norwich Research Park, John Innes Centre/TSL, Norwich NR4 7UH, UK
| | - Lennart Wirthmueller
- Present address: Servane Blanvillain-Baufumé, Institut de Recherche pour le Développement, UMR RPB, 911 Avenue Agropolis - BP 64501, 34394 Montpellier Cedex 5, France; LennartWirthmueller, Norwich Research Park, John Innes Centre/TSL, Norwich NR4 7UH, UK
| | | | - Jane E. Parker
- *Correspondence: Jane E. Parker, Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné weg 10, 50829 Cologne, Germany e-mail:
| |
Collapse
|
137
|
Sanseverino W, Ercolano MR. In silico approach to predict candidate R proteins and to define their domain architecture. BMC Res Notes 2012; 5:678. [PMID: 23216678 PMCID: PMC3532234 DOI: 10.1186/1756-0500-5-678] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 11/27/2012] [Indexed: 12/22/2022] Open
Abstract
Background Plant resistance genes, which encode R-proteins, constitute one of the most important and widely investigated gene families. Thanks to the use of both genetic and molecular approaches, more than 100 R genes have been cloned so far. Analysis of resistance proteins and investigation of domain properties may afford insights into their role and function. Moreover, genomic experiments and availability of high-throughput sequence data are very useful for discovering new R genes and establish hypotheses about R-genes architecture. Result We surveyed the PRGdb dataset to provide valuable information about hidden R-protein features. Through an in silico approach 4409 putative R-proteins belonging to 33 plant organisms were analysed for domain associations frequency. The proteins showed common domain associations as well as previously unknown classes. Interestingly, the number of proteins falling into each class was found inversely related to domain arrangement complexity. Out of 31 possible theoretical domain combinations, only 22 were found. Proteins retrieved were filtered to highlight, through the visualization of a Venn diagram, candidate classes able to exert resistance function. Detailed analyses performed on conserved profiles of those strong putative R proteins revealed interesting domain features. Finally, several atypical domain associations were identified. Conclusion The effort made in this study allowed us to approach the R-domains arrangement issue from a different point of view, sorting through the vast diversity of R proteins. Overall, many protein features were revealed and interesting new domain associations were found. In addition, insights on domain associations meaning and R domains modelling were provided.
Collapse
Affiliation(s)
- Walter Sanseverino
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples Federico II, Via Università 100, Portici, 80055, Italy
| | | |
Collapse
|
138
|
Deslandes L, Rivas S. Catch me if you can: bacterial effectors and plant targets. TRENDS IN PLANT SCIENCE 2012; 17:644-55. [PMID: 22796464 DOI: 10.1016/j.tplants.2012.06.011] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 05/18/2023]
Abstract
To suppress plant defense responses and favor the establishment of disease, phytopathogenic bacteria have gained the ability to deliver effector molecules inside host cells through the type III secretion system. Inside plant cells, bacterial effector proteins may be addressed to different subcellular compartments where they are able to manipulate a variety of host cellular components and molecular functions. Here we review how the recent identification and functional characterization of plant components targeted by bacterial effectors, as well as the discovery of new pathogen recognition capabilities evolved in turn by plant cells, have significantly contributed to further our knowledge about the intricate molecular interactions that are established between plants and their invading bacteria.
Collapse
Affiliation(s)
- Laurent Deslandes
- INRA, Laboratoire des Interactions Plantes-Microorganismes, UMR441, F-31326 Castanet-Tolosan, France
| | | |
Collapse
|
139
|
Postma WJ, Slootweg EJ, Rehman S, Finkers-Tomczak A, Tytgat TO, van Gelderen K, Lozano-Torres JL, Roosien J, Pomp R, van Schaik C, Bakker J, Goverse A, Smant G. The effector SPRYSEC-19 of Globodera rostochiensis suppresses CC-NB-LRR-mediated disease resistance in plants. PLANT PHYSIOLOGY 2012; 160:944-54. [PMID: 22904163 PMCID: PMC3461567 DOI: 10.1104/pp.112.200188] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/14/2012] [Indexed: 05/04/2023]
Abstract
The potato cyst nematode Globodera rostochiensis invades roots of host plants where it transforms cells near the vascular cylinder into a permanent feeding site. The host cell modifications are most likely induced by a complex mixture of proteins in the stylet secretions of the nematodes. Resistance to nematodes conferred by nucleotide-binding-leucine-rich repeat (NB-LRR) proteins usually results in a programmed cell death in and around the feeding site, and is most likely triggered by the recognition of effectors in stylet secretions. However, the actual role of these secretions in the activation and suppression of effector-triggered immunity is largely unknown. Here we demonstrate that the effector SPRYSEC-19 of G. rostochiensis physically associates in planta with the LRR domain of a member of the SW5 resistance gene cluster in tomato (Lycopersicon esculentum). Unexpectedly, this interaction did not trigger defense-related programmed cell death and resistance to G. rostochiensis. By contrast, agroinfiltration assays showed that the coexpression of SPRYSEC-19 in leaves of Nicotiana benthamiana suppresses programmed cell death mediated by several coiled-coil (CC)-NB-LRR immune receptors. Furthermore, SPRYSEC-19 abrogated resistance to Potato virus X mediated by the CC-NB-LRR resistance protein Rx1, and resistance to Verticillium dahliae mediated by an unidentified resistance in potato (Solanum tuberosum). The suppression of cell death and disease resistance did not require a physical association of SPRYSEC-19 and the LRR domains of the CC-NB-LRR resistance proteins. Altogether, our data demonstrated that potato cyst nematodes secrete effectors that enable the suppression of programmed cell death and disease resistance mediated by several CC-NB-LRR proteins in plants.
Collapse
Affiliation(s)
- Wiebe J. Postma
- Laboratory of Nematology, Wageningen University, 6700 ES Wageningen, The Netherlands (W.J.P., E.J.S., S.R., A.F.-T., T.O.G.T., K.v.G., J.L.L.-T., J.R., R.P., C.v.S., J.B., A.G., G.S.); and Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (W.J.P., R.P., J.B., A.G., G.S.)
| | - Erik J. Slootweg
- Laboratory of Nematology, Wageningen University, 6700 ES Wageningen, The Netherlands (W.J.P., E.J.S., S.R., A.F.-T., T.O.G.T., K.v.G., J.L.L.-T., J.R., R.P., C.v.S., J.B., A.G., G.S.); and Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (W.J.P., R.P., J.B., A.G., G.S.)
| | | | - Anna Finkers-Tomczak
- Laboratory of Nematology, Wageningen University, 6700 ES Wageningen, The Netherlands (W.J.P., E.J.S., S.R., A.F.-T., T.O.G.T., K.v.G., J.L.L.-T., J.R., R.P., C.v.S., J.B., A.G., G.S.); and Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (W.J.P., R.P., J.B., A.G., G.S.)
| | | | | | - Jose L. Lozano-Torres
- Laboratory of Nematology, Wageningen University, 6700 ES Wageningen, The Netherlands (W.J.P., E.J.S., S.R., A.F.-T., T.O.G.T., K.v.G., J.L.L.-T., J.R., R.P., C.v.S., J.B., A.G., G.S.); and Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (W.J.P., R.P., J.B., A.G., G.S.)
| | - Jan Roosien
- Laboratory of Nematology, Wageningen University, 6700 ES Wageningen, The Netherlands (W.J.P., E.J.S., S.R., A.F.-T., T.O.G.T., K.v.G., J.L.L.-T., J.R., R.P., C.v.S., J.B., A.G., G.S.); and Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (W.J.P., R.P., J.B., A.G., G.S.)
| | - Rikus Pomp
- Laboratory of Nematology, Wageningen University, 6700 ES Wageningen, The Netherlands (W.J.P., E.J.S., S.R., A.F.-T., T.O.G.T., K.v.G., J.L.L.-T., J.R., R.P., C.v.S., J.B., A.G., G.S.); and Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (W.J.P., R.P., J.B., A.G., G.S.)
| | - Casper van Schaik
- Laboratory of Nematology, Wageningen University, 6700 ES Wageningen, The Netherlands (W.J.P., E.J.S., S.R., A.F.-T., T.O.G.T., K.v.G., J.L.L.-T., J.R., R.P., C.v.S., J.B., A.G., G.S.); and Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (W.J.P., R.P., J.B., A.G., G.S.)
| | - Jaap Bakker
- Laboratory of Nematology, Wageningen University, 6700 ES Wageningen, The Netherlands (W.J.P., E.J.S., S.R., A.F.-T., T.O.G.T., K.v.G., J.L.L.-T., J.R., R.P., C.v.S., J.B., A.G., G.S.); and Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (W.J.P., R.P., J.B., A.G., G.S.)
| | - Aska Goverse
- Laboratory of Nematology, Wageningen University, 6700 ES Wageningen, The Netherlands (W.J.P., E.J.S., S.R., A.F.-T., T.O.G.T., K.v.G., J.L.L.-T., J.R., R.P., C.v.S., J.B., A.G., G.S.); and Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (W.J.P., R.P., J.B., A.G., G.S.)
| | - Geert Smant
- Laboratory of Nematology, Wageningen University, 6700 ES Wageningen, The Netherlands (W.J.P., E.J.S., S.R., A.F.-T., T.O.G.T., K.v.G., J.L.L.-T., J.R., R.P., C.v.S., J.B., A.G., G.S.); and Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (W.J.P., R.P., J.B., A.G., G.S.)
| |
Collapse
|
140
|
Takahashi H, Shoji H, Ando S, Kanayama Y, Kusano T, Takeshita M, Suzuki M, Masuta C. RCY1-mediated resistance to Cucumber mosaic virus is regulated by LRR domain-mediated interaction with CMV(Y) following degradation of RCY1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1171-85. [PMID: 22852808 DOI: 10.1094/mpmi-04-12-0076-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RCY1, which encodes a coiled coil nucleotide-binding site leucine-rich repeat (LRR) class R protein, confers the hypersensitive response (HR) to a yellow strain of Cucumber mosaic virus (CMV[Y]) in Arabidopsis thaliana. Nicotiana benthamiana transformed with hemagglutinin (HA) epitope-tagged RCY1 (RCY1-HA) also exhibited a defense response accompanied by HR cell death and induction of defense-related gene expression in response to CMV(Y). Following transient expression of RCY1-HA by agroinfiltration, the defense reaction was induced in N. benthamiana leaves infected with CMV(Y) but not in virulent CMV(B2)-infected N. benthamiana leaves transiently expressing RCY1-HA or CMV(Y)-infected N. benthamiana leaves transiently expressing HA-tagged RPP8 (RPP8-HA), which is allelic to RCY1. This result suggests that Arabidopsis RCY1-conferred resistance to CMV(Y) could be reproduced in N. benthamiana leaves in a gene-for-gene manner. Expression of a series of chimeric constructs between RCY1-HA and RPP8-HA in CMV(Y)-infected N. benthamiana indicated that induction of defense responses to CMV(Y) is regulated by the LRR domain of RCY1. Interestingly, in CMV(Y)-infected N. benthamiana manifesting the defense response, the levels of both RCY1 and chimeric proteins harboring the RCY1 LRR domain were significantly reduced. Taken together, these data indicate that the RCY1-conferred resistance response to CMV(Y) is regulated by an LRR domain-mediated interaction with CMV(Y) and seems to be tightly associated with the degradation of RCY1 in response to CMV(Y).
Collapse
|
141
|
Du X, Miao M, Ma X, Liu Y, Kuhl JC, Martin GB, Xiao F. Plant programmed cell death caused by an autoactive form of Prf is suppressed by co-expression of the Prf LRR domain. MOLECULAR PLANT 2012; 5:1058-67. [PMID: 22451646 DOI: 10.1093/mp/sss014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In tomato, the NBARC-LRR resistance (R) protein Prf acts in concert with the Pto or Fen kinase to determine immunity against Pseudomonas syringae pv. tomato (Pst). Prf-mediated defense signaling is initiated by the recognition of two sequence-unrelated Pst-secreted effector proteins, AvrPto and AvrPtoB, by tomato Pto or Fen. Prf detects these interactions and activates signaling leading to host defense responses including localized programmed cell death (PCD) that is associated with the arrest of Pst growth. We found that Prf variants with single amino acid substitutions at D1416 in the IHD motif (isoleucine-histidine-aspartic acid) in the NBARC domain cause effector-independent PCD when transiently expressed in leaves of Nicotiana benthamiana, suggesting D1416 plays an important role in activation of Prf. The N-terminal region of Prf (NPrf) and the LRR domain are required for this autoactive Prf cell death signaling but dispensable for accumulation of the Prf(D1416V) protein. Significantly, co-expression of the Prf LRR but not NPrf, with Prf(D1416V), AvrPto/Pto, AvrPtoB/Pto, an autoactive form of Pto (Pto(Y207D)), or Fen completely suppresses PCD. However, the Prf LRR does not interfere with PCD caused by Rpi-blb1(D475V), a distinct R protein-mediated PCD signaling event, or that caused by overexpression of MAPKKKα, a protein acting downstream of Prf. Furthermore, we found the Prf(D1416V) protein is unable to accumulate in plant cells when co-expressed with the Prf LRR domain, likely explaining the cell death suppression. The mechanism for the LRR-induced degradation of Prf(D1416V) is unknown but may involve interference in the intramolecular interactions of Prf or to binding of the unattached LRR to other host proteins that are needed for Prf stability.
Collapse
Affiliation(s)
- Xinran Du
- Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844, USA
| | | | | | | | | | | | | |
Collapse
|
142
|
Sekine KT, Tomita R, Takeuchi S, Atsumi G, Saitoh H, Mizumoto H, Kiba A, Yamaoka N, Nishiguchi M, Hikichi Y, Kobayashi K. Functional differentiation in the leucine-rich repeat domains of closely related plant virus-resistance proteins that recognize common avr proteins. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1219-29. [PMID: 22690804 DOI: 10.1094/mpmi-11-11-0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The N' gene of Nicotiana sylvestris and L genes of Capsicum plants confer the resistance response accompanying the hypersensitive response (HR) elicited by tobamovirus coat proteins (CP) but with different viral specificities. Here, we report the identification of the N' gene. We amplified and cloned an N' candidate using polymerase chain reaction primers designed from L gene sequences. The N' candidate gene was a single 4143 base pairs fragment encoding a coiled-coil nucleotide-binding leucine-rich repeat (LRR)-type resistance protein of 1,380 amino acids. The candidate gene induced the HR in response to the coexpression of tobamovirus CP with the identical specificity as reported for N'. Analysis of N'-containing and tobamovirus-susceptible N. tabacum accessions supported the hypothesis that the candidate is the N' gene itself. Chimera analysis between N' and L(3) revealed that their LRR domains determine the spectrum of their tobamovirus CP recognition. Deletion and mutation analyses of N' and L(3) revealed that the conserved sequences in their C-terminal regions have important roles but contribute differentially to the recognition of common avirulence proteins. The results collectively suggest that Nicotiana N' and Capsicum L genes, which most likely evolved from a common ancestor, differentiated in their recognition specificity through changes in the structural requirements for LRR function.
Collapse
|
143
|
Weihmann T, Palma K, Nitta Y, Li X. Pleiotropic regulatory locus 2 exhibits unequal genetic redundancy with its homolog PRL1. PLANT & CELL PHYSIOLOGY 2012; 53:1617-1626. [PMID: 22813545 DOI: 10.1093/pcp/pcs103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In plants, signaling leading to resistance against biotrophic pathogens is complex. Perception of pathogenic microbes by resistance (R) proteins is relayed though successive activities of downstream components, in a network that is not well understood. PLEIOTROPIC REGULATORY LOCUS 1 (PRL1) and >20 other proteins are members of the MOS4-associated complex (MAC), a regulatory node in defense signaling. Of all characterized MAC members, mutations in PRL1 cause the most severe susceptibility towards both virulent and avirulent microbial pathogens. Genetic suppressors of prl1 represent new signaling elements and may aid in further unraveling of defense mechanisms. Our identification and characterization of a dominant suppressor of prl1 revealed a regulatory, gain-of-function mutation in PLEIOTROPIC REGULATORY LOCUS 2 (PRL2), a close homolog of PRL1. Loss-of-function mutants of PRL2 do not exhibit altered phenotypes; however, prl1 prl2 double mutants exhibit enhanced morphological defects consistent with unequal genetic redundancy between the homologs. Up-regulated gene expression mediated by the dominant prl2-1D allele completely suppresses disease susceptibility in the prl1 mutant background and also restores wild-type appearance, further supporting functional equivalence between the two PRL proteins.
Collapse
Affiliation(s)
- Tabea Weihmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | | | | |
Collapse
|
144
|
Takken FLW, Goverse A. How to build a pathogen detector: structural basis of NB-LRR function. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:375-84. [PMID: 22658703 DOI: 10.1016/j.pbi.2012.05.001] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/27/2012] [Accepted: 05/02/2012] [Indexed: 05/20/2023]
Abstract
Many plant disease resistance (R) proteins belong to the family of nucleotide-binding-leucine rich repeat (NB-LRR) proteins. NB-LRRs mediate recognition of pathogen-derived effector molecules and subsequently activate host defence. Their multi-domain structure allows these pathogen detectors to simultaneously act as sensor, switch and response factor. Structure-function analyses and the recent elucidation of the 3D structures of subdomains have provided new insight in how these different functions are combined and what the contribution is of the individual subdomains. Besides interdomain contacts, interactions with chaperones, the proteasome and effector baits are required to keep NB-LRRs in a signalling-competent, yet auto-inhibited state. In this review we explore operational models of NB-LRR functioning based on recent advances in understanding their structure.
Collapse
Affiliation(s)
- Frank L W Takken
- University of Amsterdam, SILS, Molecular Plant Pathology, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | | |
Collapse
|
145
|
Heidrich K, Blanvillain-Baufumé S, Parker JE. Molecular and spatial constraints on NB-LRR receptor signaling. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:385-91. [PMID: 22503757 DOI: 10.1016/j.pbi.2012.03.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 03/22/2012] [Accepted: 03/22/2012] [Indexed: 05/24/2023]
Abstract
In plants, a large polymorphic family of intracellular NB-LRR receptors lies at the heart of robust resistance to diverse pathogens and mechanisms by which these versatile molecular switches operate in effector-triggered immunity are beginning to emerge. We outline recent advances in our understanding of NB-LRR receptor signaling leading to disease resistance. Themes covered are (i) NB-LRR molecular constraining forces and their intimate relationship with receptor activation in different parts of the cell, (ii) cooperativity between NB-LRR proteins and the formation of higher order NB-LRR signaling complexes, and (iii) the spatial separation of different resistance branches within cells. Finally, we examine evidence for dynamic signaling across cell compartments in coordinating diverse immune outputs.
Collapse
Affiliation(s)
- Katharina Heidrich
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | | | | |
Collapse
|
146
|
Orłowska E, Basile A, Kandzia I, Llorente B, Kirk HG, Cvitanich C. Revealing the importance of meristems and roots for the development of hypersensitive responses and full foliar resistance to Phytophthora infestans in the resistant potato cultivar Sarpo Mira. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4765-79. [PMID: 22844094 PMCID: PMC3428001 DOI: 10.1093/jxb/ers154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The defence responses of potato against Phytophthora infestans were studied using the highly resistant Sarpo Mira cultivar. The effects of plant integrity, meristems, and roots on the hypersensitive response (HR), plant resistance, and the regulation of PR genes were analysed. Sarpo Mira shoots and roots grafted with the susceptible Bintje cultivar as well as non-grafted different parts of Sarpo Mira plants were inoculated with P. infestans. The progress of the infection and the number of HR lesions were monitored, and the regulation of PR genes was compared in detached and attached leaves. Additionally, the antimicrobial activity of plant extracts was assessed. The presented data show that roots are needed to achieve full pathogen resistance, that the removal of meristems in detached leaves inhibits the formation of HR lesions, that PR genes are differentially regulated in detached leaves compared with leaves of whole plants, and that antimicrobial compounds accumulate in leaves and roots of Sarpo Mira plants challenged with P. infestans. While meristems are necessary for the formation of HR lesions, the roots of Sarpo Mira plants participate in the production of defence-associated compounds that increase systemic resistance. Based on the literature and on the presented results, a model is proposed for mechanisms involved in Sarpo Mira resistance that may apply to other resistant potato cultivars.
Collapse
Affiliation(s)
- Elzbieta Orłowska
- Department of Molecular Biology, Aarhus University, 8000 Aarhus C, Denmark.
| | | | | | | | | | | |
Collapse
|
147
|
DeYoung BJ, Qi D, Kim SH, Burke TP, Innes RW. Activation of a plant nucleotide binding-leucine rich repeat disease resistance protein by a modified self protein. Cell Microbiol 2012; 14:1071-84. [PMID: 22372664 PMCID: PMC3371279 DOI: 10.1111/j.1462-5822.2012.01779.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nucleotide binding-leucine rich repeat (NB-LRR) proteins function as intracellular receptors for the detection of pathogens in both plants and animals. Despite their central role in innate immunity, the molecular mechanisms that govern NB-LRR activation are poorly understood. The Arabidopsis NB-LRR protein RPS5 detects the presence of the Pseudomonas syringae effector protein AvrPphB by monitoring the status of the Arabidopsis protein kinase PBS1. AvrPphB is a cysteine protease that targets PBS1 for cleavage at a single site within the activation loop of PBS1. Using a transient expression system in the plant Nicotiana benthamiana and stable transgenic Arabidopsis plants we found that both PBS1 cleavage products are required to activate RPS5 and can do so in the absence of AvrPphB. We also found, however, that the requirement for cleavage of PBS1 could be bypassed simply by inserting five amino acids at the PBS1 cleavage site, which is located at the apex of the activation loop of PBS1. Activation of RPS5 did not require PBS1 kinase function, and thus RPS5 appears to sense a subtle conformational change in PBS1, rather than cleavage. This finding suggests that NB-LRR proteins may function as fine-tuned sensors of alterations in the structures of effector targets.
Collapse
Affiliation(s)
| | - Dong Qi
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Sang-Hee Kim
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | | | - Roger W. Innes
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
148
|
Fu SF, Tsai TM, Chen YR, Liu CP, Haiso LJ, Syue LH, Yeh HH, Huang HJ. Characterization of the early response of the orchid, Phalaenopsis amabilis, to Erwinia chrysanthemi infection using expression profiling. PHYSIOLOGIA PLANTARUM 2012; 145:406-25. [PMID: 22268629 DOI: 10.1111/j.1399-3054.2012.01582.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Erwinia chrysanthemi is a devastating bacterial pathogen in Phalaenopsis amabilis and causes soft-rotting disease by secretion of cell wall-degrading enzymes. However, the molecular mechanisms underlying the interaction of P. amabilis with E. chrysanthemi remain elusive. In this study, early molecular events of the plant in response to the pathogen attack were investigated. The alteration in reactive oxygen species accumulation and peroxidase activity occurred at the site of infection. Subsequently, a systematic sequencing of expressed sequence tags (ESTs) using suppression subtractive hybridization (SSH) was performed to obtain the first global picture of the assembly of genes involved in the pathogenesis. The majority of the SSH clones showed a high identity with genes coding for proteins that have known roles in redox homeostasis, responses to pathogens and metabolism. A notable number of the SSH clones were those encoding WRKY, MYB and basic leucine zipper transcription factors, indicating the stimulation of intracellular signal transduction. An orchid gene encoding trans-2-enoyl-CoA reductase (ECR) was the most abundant transcripts in the EST library. ECR is an enzyme catalyzing the very long chain fatty acids (VLCFAs) biosynthesis, and the full-length cDNA of the ECR gene (PaECR1) was obtained. Functional analysis of PaECR1 was conducted by virus-induced gene silencing to knock down the gene expression in P. amabilis. The PaECR1-silenced plants were more susceptible to E. chrysanthemi infection, implying potential roles for VLCFAs in the pathogenesis. In summary, the pathogen-responsive gene expression profiles facilitated a more comprehensive view of the molecular events that underlie this economically important plant-pathogen interaction.
Collapse
Affiliation(s)
- Shih-Feng Fu
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Bai S, Liu J, Chang C, Zhang L, Maekawa T, Wang Q, Xiao W, Liu Y, Chai J, Takken FLW, Schulze-Lefert P, Shen QH. Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance. PLoS Pathog 2012; 8:e1002752. [PMID: 22685408 PMCID: PMC3369952 DOI: 10.1371/journal.ppat.1002752] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 04/30/2012] [Indexed: 11/18/2022] Open
Abstract
Plant intracellular immune receptors comprise a large number of multi-domain proteins resembling animal NOD-like receptors (NLRs). Plant NLRs typically recognize isolate-specific pathogen-derived effectors, encoded by avirulence (AVR) genes, and trigger defense responses often associated with localized host cell death. The barley MLA gene is polymorphic in nature and encodes NLRs of the coiled-coil (CC)-NB-LRR type that each detects a cognate isolate-specific effector of the barley powdery mildew fungus. We report the systematic analyses of MLA10 activity in disease resistance and cell death signaling in barley and Nicotiana benthamiana. MLA10 CC domain-triggered cell death is regulated by highly conserved motifs in the CC and the NB-ARC domains and by the C-terminal LRR of the receptor. Enforced MLA10 subcellular localization, by tagging with a nuclear localization sequence (NLS) or a nuclear export sequence (NES), shows that MLA10 activity in cell death signaling is suppressed in the nucleus but enhanced in the cytoplasm. By contrast, nuclear localized MLA10 is sufficient to mediate disease resistance against powdery mildew fungus. MLA10 retention in the cytoplasm was achieved through attachment of a glucocorticoid receptor hormone-binding domain (GR), by which we reinforced the role of cytoplasmic MLA10 in cell death signaling. Together with our data showing an essential and sufficient nuclear MLA10 activity in disease resistance, this suggests a bifurcation of MLA10-triggered cell death and disease resistance signaling in a compartment-dependent manner.
Collapse
Affiliation(s)
- Shiwei Bai
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Jie Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Chang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Ling Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Takaki Maekawa
- Department of Plant Microbe Interactions, Max-Planck Institut Pflanzenzüchtungsforschung, Cologne, Germany
| | - Qiuyun Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenkai Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yule Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jijie Chai
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Frank L. W. Takken
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Centre for BioSystem Genomics, Wageningen, The Netherlands
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max-Planck Institut Pflanzenzüchtungsforschung, Cologne, Germany
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
150
|
Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode. Proc Natl Acad Sci U S A 2012; 109:10119-24. [PMID: 22675118 DOI: 10.1073/pnas.1202867109] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Plants lack the seemingly unlimited receptor diversity of a somatic adaptive immune system as found in vertebrates and rely on only a relatively small set of innate immune receptors to resist a myriad of pathogens. Here, we show that disease-resistant tomato plants use an efficient mechanism to leverage the limited nonself recognition capacity of their innate immune system. We found that the extracellular plant immune receptor protein Cf-2 of the red currant tomato (Solanum pimpinellifolium) has acquired dual resistance specificity by sensing perturbations in a common virulence target of two independently evolved effectors of a fungus and a nematode. The Cf-2 protein, originally identified as a monospecific immune receptor for the leaf mold fungus Cladosporium fulvum, also mediates disease resistance to the root parasitic nematode Globodera rostochiensis pathotype Ro1-Mierenbos. The Cf-2-mediated dual resistance is triggered by effector-induced perturbations of the apoplastic Rcr3(pim) protein of S. pimpinellifolium. Binding of the venom allergen-like effector protein Gr-VAP1 of G. rostochiensis to Rcr3(pim) perturbs the active site of this papain-like cysteine protease. In the absence of the Cf-2 receptor, Rcr3(pim) increases the susceptibility of tomato plants to G. rostochiensis, thus showing its role as a virulence target of these nematodes. Furthermore, both nematode infection and transient expression of Gr-VAP1 in tomato plants harboring Cf-2 and Rcr3(pim) trigger a defense-related programmed cell death in plant cells. Our data demonstrate that monitoring host proteins targeted by multiple pathogens broadens the spectrum of disease resistances mediated by single plant immune receptors.
Collapse
|