101
|
Abstract
![]()
Current tuberculosis
(TB) drug development efforts are not sufficient
to end the global TB epidemic. Recent efforts have focused on the
development of whole-cell screening assays because biochemical, target-based
inhibitor screens during the last two decades have not delivered new
TB drugs. Mycobacterium tuberculosis (Mtb), the causative
agent of TB, encounters diverse microenvironments and can be found
in a variety of metabolic states in the human host. Due to the complexity
and heterogeneity of Mtb infection, no single model can fully recapitulate
the in vivo conditions in which Mtb is found in TB patients, and there
is no single “standard” screening condition to generate
hit compounds for TB drug development. However, current screening
assays have become more sophisticated as researchers attempt to mirror
the complexity of TB disease in the laboratory. In this review, we
describe efforts using surrogates and engineered strains of Mtb to
focus screens on specific targets. We explain model culture systems
ranging from carbon starvation to hypoxia, and combinations thereof,
designed to represent the microenvironment which Mtb encounters in
the human body. We outline ongoing efforts to model Mtb infection
in the lung granuloma. We assess these different models, their ability
to generate hit compounds, and needs for further TB drug development,
to provide direction for future TB drug discovery.
Collapse
Affiliation(s)
- Tianao Yuan
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States.,Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University , Stellenbosch 7600, South Africa
| |
Collapse
|
102
|
Characterization of Three Ocular Clinical Isolates of P. aeruginosa: Viability, Biofilm Formation, Adherence, Infectivity, and Effects of Glycyrrhizin. Pathogens 2017; 6:pathogens6040052. [PMID: 29064403 PMCID: PMC5750576 DOI: 10.3390/pathogens6040052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/15/2017] [Accepted: 10/19/2017] [Indexed: 11/16/2022] Open
Abstract
We selectively characterized three isolates from Pseudomonas aeruginosa keratitis patients and how glycyrrhizin (GLY) affected them. Type III toxins were determined using polymerase chain reaction (PCR). Minimum Inhibitory Concentration (MIC) of GLY and assays for its effects on: time kill, bacterial permeability, and biofilm/adhesion were done. In vivo, C57BL/6 (B6) mice were treated topically with GLY after G81007 infection. Clinical score, photography with a slit lamp and RT-PCR were used to assess treatment effects. Isolates expressed exoS and exoT, but not exoU. MIC for all isolates was 40 mg/mL GLY and bacteriostatic effects were seen for G81007 after treatment using time kill assays. From viability testing, GLY treatment significantly increased the number of permeabilized bacteria (live/dead assay). Isolates 070490 and G81007 formed more biofilms compared with R59733 and PAO1 (control). GLY-treated bacteria had diminished biofilm compared with controls for all isolates. GLY reduced adherence of the G81007 isolate to cultured cells and affected specific biofilm associated systems tested by reverse transcription PCR (RT-PCR). In vivo, after G81007 infection, GLY treatment reduced clinical score and messenger RNA (mRNA) expression of IL-1β, TNF-α, CXCL2 and HMGB1. This study provides evidence that GLY is bacteriostatic for G81007. It also affects biofilm production, adherence to cultured cells, and an improved keratitis outcome.
Collapse
|
103
|
Brengel C, Thomann A, Schifrin A, Allegretta G, Kamal AAM, Haupenthal J, Schnorr I, Cho SH, Franzblau SG, Empting M, Eberhard J, Hartmann RW. Biophysical Screening of a Focused Library for the Discovery of CYP121 Inhibitors as Novel Antimycobacterials. ChemMedChem 2017; 12:1616-1626. [DOI: 10.1002/cmdc.201700363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/04/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Christian Brengel
- Helmholtz Institute for Pharmaceutical Research Saarland, HIPS; Department for Drug Design and Optimization; Campus E8.1 66123 Saarbrücken Germany
| | - Andreas Thomann
- Helmholtz Institute for Pharmaceutical Research Saarland, HIPS; Department for Drug Design and Optimization; Campus E8.1 66123 Saarbrücken Germany
| | - Alexander Schifrin
- Department of Biochemistry; Saarland University; Campus B2.2 66123 Saarbrücken Germany
| | - Giuseppe Allegretta
- Helmholtz Institute for Pharmaceutical Research Saarland, HIPS; Department for Drug Design and Optimization; Campus E8.1 66123 Saarbrücken Germany
| | - Ahmed A. M. Kamal
- Helmholtz Institute for Pharmaceutical Research Saarland, HIPS; Department for Drug Design and Optimization; Campus E8.1 66123 Saarbrücken Germany
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland, HIPS; Department for Drug Design and Optimization; Campus E8.1 66123 Saarbrücken Germany
| | - Isabell Schnorr
- Helmholtz Institute for Pharmaceutical Research Saarland, HIPS; Department for Drug Design and Optimization; Campus E8.1 66123 Saarbrücken Germany
| | - Sang Hyun Cho
- Institute for Tuberculosis Research; College of Pharmacy; University of Illinois at Chicago; 833 S. Wood Street Chicago IL 60612-7231 USA
| | - Scott G. Franzblau
- Institute for Tuberculosis Research; College of Pharmacy; University of Illinois at Chicago; 833 S. Wood Street Chicago IL 60612-7231 USA
| | - Martin Empting
- Helmholtz Institute for Pharmaceutical Research Saarland, HIPS; Department for Drug Design and Optimization; Campus E8.1 66123 Saarbrücken Germany
| | - Jens Eberhard
- Helmholtz Institute for Pharmaceutical Research Saarland, HIPS; Department for Drug Design and Optimization; Campus E8.1 66123 Saarbrücken Germany
| | - Rolf W. Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland, HIPS; Department for Drug Design and Optimization; Campus E8.1 66123 Saarbrücken Germany
- Department of Pharmacy; Pharmaceutical and Medicinal Chemistry; Saarland University; Campus C2.3 66123 Saarbrücken Germany
| |
Collapse
|
104
|
Jiménez-Romero C, Rode JE, Pérez YM, Franzblau SG, Rodríguez AD. Exploring the Sponge Consortium Plakortis symbiotica-Xestospongia deweerdtae as a Potential Source of Antimicrobial Compounds and Probing the Pharmacophore for Antituberculosis Activity of Smenothiazole A by Diverted Total Synthesis. JOURNAL OF NATURAL PRODUCTS 2017; 80:2295-2303. [PMID: 28742349 DOI: 10.1021/acs.jnatprod.7b00300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fractionation of the bioactive CHCl3-MeOH (1:1) extracts obtained from two collections of the sponge consortium Plakortis symbiotica-Xestospongia deweerdtae from Puerto Rico provided two new plakinidone analogues, designated as plakinidone B (2) and plakinidone C (3), as well as the known plakinidone (1), plakortolide F (4), and smenothiazole A (5). The structures of 1-5 were characterized on the basis of 1D and 2D NMR spectroscopic, IR, UV, and HRMS analysis. The absolute configurations of plakinidones 2 and 3 were established through chemical correlation methods, VCD/ECD experiments, and spectroscopic data comparisons. When assayed in vitro against Mycobacterium tuberculosis H37Rv, none of the plakinidones 1-3 displayed significant activity, whereas smenothiazole A (5) was the most active compound, exhibiting an MIC value of 4.1 μg/mL. Synthesis and subsequent biological screening of 8, a dechlorinated version of smenothiazole A, revealed that the chlorine atom in 5 is indispensable for anti-TB activity.
Collapse
Affiliation(s)
- Carlos Jiménez-Romero
- Molecular Sciences Research Center, University of Puerto Rico , 1390 Ponce de León Avenue, San Juan, Puerto Rico 00926, United States
| | - Joanna E Rode
- Institute of Organic Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Yeiry M Pérez
- Molecular Sciences Research Center, University of Puerto Rico , 1390 Ponce de León Avenue, San Juan, Puerto Rico 00926, United States
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago , Chicago, Illinois 60612, United States
| | - Abimael D Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico , 1390 Ponce de León Avenue, San Juan, Puerto Rico 00926, United States
| |
Collapse
|
105
|
Mukherjee R, Chandra Pal A, Banerjee M. Enabling faster Go/No-Go decisions through secondary screens in anti-mycobacterial drug discovery. Tuberculosis (Edinb) 2017; 106:44-52. [PMID: 28802404 DOI: 10.1016/j.tube.2017.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/30/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
Abstract
Management of tuberculosis, already a global health emergency, is becoming increasingly challenging with extensive misuse of second line drugs and their inaccessibility to eighty percent of the eligible patients. Rising statistics of antimicrobial resistance underscores the need for a set of completely new and more effective class of compounds with novel mechanisms of action that can be administered in combination to replace and shorten the present intensive six months regimen. In this review, we stress on the importance and the successes of phenotypic screening for discovery of anti-mycobacterial compound and discuss the importance of performing secondary screens and counter screens to get early estimate on compound's potentials for a successful development. We also highlight the recent advances and the related caveats in the assays that have been developed and discuss new screening modalities that can be incorporated during hit-selection to gain a quick insight into the mechanism of action, thus enabling quicker decisions in a hit triage.
Collapse
Affiliation(s)
- Raju Mukherjee
- Division of Biology, Indian Institute of Science Education and Research, Karakambadi Road, Tirupati, 517507, India.
| | - Anup Chandra Pal
- Division of Biology, Indian Institute of Science Education and Research, Karakambadi Road, Tirupati, 517507, India
| | - Mousumi Banerjee
- Indian Institute of Technology, Tirupati, Renigunta Road, Tirupati, 517506, India
| |
Collapse
|
106
|
Nuermberger EL. Preclinical Efficacy Testing of New Drug Candidates. Microbiol Spectr 2017; 5:10.1128/microbiolspec.tbtb2-0034-2017. [PMID: 28643624 PMCID: PMC11687513 DOI: 10.1128/microbiolspec.tbtb2-0034-2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Indexed: 01/17/2023] Open
Abstract
This is a review of the preclinical efficacy testing of new antituberculosis drug candidates. It describes existing dynamic in vitro and in vivo models of antituberculosis chemotherapy and their utility in preclinical evaluations of promising new drugs and combination regimens, with an effort to highlight recent developments. Emphasis is given to the integration of quantitative pharmacokinetic/pharmacodynamic analyses and the impact of lesion pathology on drug efficacy. Discussion also includes in vivo models of chemotherapy of latent tuberculosis infection.
Collapse
Affiliation(s)
- Eric L Nuermberger
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, and Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21231-1002
| |
Collapse
|
107
|
Basaraba RJ, Hunter RL. Pathology of Tuberculosis: How the Pathology of Human Tuberculosis Informs and Directs Animal Models. Microbiol Spectr 2017; 5:10.1128/microbiolspec.tbtb2-0029-2016. [PMID: 28597826 PMCID: PMC11687511 DOI: 10.1128/microbiolspec.tbtb2-0029-2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis (TB) is a chronic inflammatory disease caused by the pathogenic bacterium Mycobacterium tuberculosis. A wide variety of host- and pathogen-associated variables influence the clinical manifestation of TB in different individuals within the human population. As a consequence, the characteristic granulomatous lesions that develop within the lung are heterogeneous in size and cellular composition. Due to the lack of appropriate tissues from human TB patients, a variety of animal models are used as surrogates to study the basic pathogenesis and to test experimental vaccines and new drug therapies. Few animal models mimic the clinical course and pathological response of M. tuberculosis seen in the naturally occurring disease in people. In particular, post-primary TB, which accounts for the majority of cases of active TB and is responsible for transmission between individuals via aerosol exposers, cannot be reproduced in animals and therefore cannot be adequately modeled experimentally. This article describes a new paradigm that explains the pathogenesis of post-primary TB in humans. This new evidence was derived from histological examination of tissues from patients with different stages of M. tuberculosis infection and that had not been treated with antimicrobial drugs. Gaining a better understanding of this unique stage of TB disease will lead to more effective treatment, diagnostic, and prevention strategies.
Collapse
Affiliation(s)
- Randall J Basaraba
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80524
| | - Robert L Hunter
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
108
|
Ekanayaka SA, McClellan SA, Barrett RP, Kharotia S, Hazlett LD. Glycyrrhizin Reduces HMGB1 and Bacterial Load in Pseudomonas aeruginosa Keratitis. Invest Ophthalmol Vis Sci 2017; 57:5799-5809. [PMID: 27792814 PMCID: PMC5089214 DOI: 10.1167/iovs.16-20103] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Purpose High mobility group box 1 (HMGB1) contributes to poor disease outcome in Pseudomonas aeruginosa keratitis. This study tests the prophylactic effect of treatment with HMGB1 inhibitors, glycyrrhizin (GLY) and its derivative, carbenoxolone (CBX), for Pseudomonas keratitis. Methods We treated C57BL/6 (B6) mice subconjunctivally with GLY or CBX, infected with a noncytotoxic clinical isolate (KEI 1025) or a cytotoxic strain (ATCC 19660) of P. aeruginosa, and injected intraperitoneally with either agent. Clinical score, photography with a slit lamp, real-time RT-PCR, ELISA, myeloperoxidase (MPO) assay, bacterial plate count, histopathology, and absorbance assays were used to assess treatment efficacy and bacteriostatic activity. Results After KEI 1025 infection, GLY treatment reduced HMGB1 (mRNA and protein levels) and improved disease outcome with significant reduction in mRNA levels of IL-1β, TLR4, CXCL2, and IL-12; protein expression (IL-1β, CXCL2); neutrophil infiltrate; and bacterial load. Treatment with GLY enhanced antimicrobial proteins, including CRAMP and mBD2, but not mBD3. Glycyrrhizin also reduced clinical scores and improved disease outcome in corneas infected with strain 19660. However, neither HMGB1 mRNA or protein levels were reduced, but rather, CXCL2 expression (mRNA and protein), neutrophil infiltrate, and bacterial load were reduced statistically. Treatment with GLY initiated 6 hours after infection reduced plate count; GLY also was bacteriostatic for KEI 1025 and ATCC 19660. Conclusions Glycyrrhizin reduces HMGB1 and is protective against P. aeruginosa-induced keratitis with a clinical isolate that is noncytotoxic. It was similar, but less effective when used after infection with a cytotoxic strain, which did not reduce HMGB1.
Collapse
Affiliation(s)
- Sandamali A Ekanayaka
- Department of Anatomy & Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Sharon A McClellan
- Department of Anatomy & Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ronald P Barrett
- Department of Anatomy & Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Shikhil Kharotia
- Department of Anatomy & Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Linda D Hazlett
- Department of Anatomy & Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
109
|
Delamanid Kills Dormant Mycobacteria In Vitro and in a Guinea Pig Model of Tuberculosis. Antimicrob Agents Chemother 2017; 61:AAC.02402-16. [PMID: 28373190 DOI: 10.1128/aac.02402-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/24/2017] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis (TB) treatment is long and requires multiple drugs, likely due to various phenotypes of TB bacilli with variable drug susceptibilities. Drugs with broad activity are urgently needed. This study aimed to evaluate delamanid's activity against growing or dormant bacilli in vitro as well as in vivo Cultures of Mycobacterium bovis BCG Tokyo under aerobic and anaerobic conditions were used to study the activity of delamanid against growing and dormant bacilli, respectively. Delamanid exhibited significant bactericidal activity against replicating and dormant bacilli at or above concentrations of 0.016 and 0.4 mg/liter, respectively. To evaluate delamanid's antituberculosis activity in vivo, we used a guinea pig model of chronic TB infection in which the lung lesions were similar to those in human TB disease. In the guinea pig TB model, a daily dose of 100 mg delamanid/kg of body weight for 4 or 8 weeks demonstrated strong bactericidal activity against Mycobacterium tuberculosis Importantly, histological examination revealed that delamanid killed TB bacilli within hypoxic lesions of the lung. The combination regimens containing delamanid with rifampin and pyrazinamide or delamanid with levofloxacin, ethionamide, pyrazinamide, and amikacin were more effective than the standard regimen (rifampin, isoniazid, and pyrazinamide). Our data show that delamanid is effective in killing both growing and dormant bacilli in vitro and in the guinea pig TB model. Adding delamanid to current TB regimens may improve treatment outcomes, as demonstrated in recent clinical trials with pulmonary multidrug-resistant (MDR) TB patients. Delamanid may be an important drug for consideration in the construction of new regimens to shorten TB treatment duration.
Collapse
|
110
|
Gomes MN, Braga RC, Grzelak EM, Neves BJ, Muratov E, Ma R, Klein LL, Cho S, Oliveira GR, Franzblau SG, Andrade CH. QSAR-driven design, synthesis and discovery of potent chalcone derivatives with antitubercular activity. Eur J Med Chem 2017; 137:126-138. [PMID: 28582669 DOI: 10.1016/j.ejmech.2017.05.026] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
New anti-tuberculosis (anti-TB) drugs are urgently needed to battle drug-resistant Mycobacterium tuberculosis strains and to shorten the current 6-12-month treatment regimen. In this work, we have continued the efforts to develop chalcone-based anti-TB compounds by using an in silico design and QSAR-driven approach. Initially, we developed SAR rules and binary QSAR models using literature data for targeted design of new heteroaryl chalcone compounds with anti-TB activity. Using these models, we prioritized 33 compounds for synthesis and biological evaluation. As a result, 10 heteroaryl chalcone compounds (4, 8, 9, 11, 13, 17-20, and 23) were found to exhibit nanomolar activity against replicating mycobacteria, low micromolar activity against nonreplicating bacteria, and nanomolar and micromolar against rifampin (RMP) and isoniazid (INH) monoresistant strains (rRMP and rINH) (<1 μM and <10 μM, respectively). The series also show low activity against commensal bacteria and generally show good selectivity toward M. tuberculosis, with very low cytotoxicity against Vero cells (SI = 11-545). Our results suggest that our designed heteroaryl chalcone compounds, due to their high potency and selectivity, are promising anti-TB agents.
Collapse
Affiliation(s)
- Marcelo N Gomes
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Rua 240, Qd.87, Setor Leste Universitário, Goiânia, Goiás 74605-510, Brazil
| | - Rodolpho C Braga
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Rua 240, Qd.87, Setor Leste Universitário, Goiânia, Goiás 74605-510, Brazil
| | - Edyta M Grzelak
- Institute for Tuberculosis Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, United States
| | - Bruno J Neves
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Rua 240, Qd.87, Setor Leste Universitário, Goiânia, Goiás 74605-510, Brazil; Postgraduate Program of Society, Technology and Environment, University Center of Anápolis/UniEVANGELICA, Anápolis, Goiás, 75083-515, Brazil
| | - Eugene Muratov
- Laboratory for Molecular Modeling, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27955-7568, United States; Department of Chemical Technology, Odessa National Polytechnic University, Odessa, 65000, Ukraine
| | - Rui Ma
- Institute for Tuberculosis Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, United States
| | - Larry L Klein
- Institute for Tuberculosis Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, United States
| | - Sanghyun Cho
- Institute for Tuberculosis Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, United States
| | | | - Scott G Franzblau
- Institute for Tuberculosis Research, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, United States.
| | - Carolina Horta Andrade
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Rua 240, Qd.87, Setor Leste Universitário, Goiânia, Goiás 74605-510, Brazil.
| |
Collapse
|
111
|
Muliaditan M, Davies GR, Simonsson US, Gillespie SH, Della Pasqua O. The implications of model-informed drug discovery and development for tuberculosis. Drug Discov Today 2017; 22:481-486. [DOI: 10.1016/j.drudis.2016.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/05/2016] [Accepted: 09/06/2016] [Indexed: 12/31/2022]
|
112
|
Gao C, Ye TH, Peng CT, Shi YJ, You XY, Xiong L, Ran K, Zhang LD, Zeng XX, Wang NY, Yu LT, Wei YQ. A novel benzothiazinethione analogue SKLB-TB1001 displays potent antimycobacterial activities in a series of murine models. Biomed Pharmacother 2017; 88:603-609. [PMID: 28142116 DOI: 10.1016/j.biopha.2017.01.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 01/16/2017] [Accepted: 01/16/2017] [Indexed: 02/05/2023] Open
Abstract
New chemotherapeutic compounds and regimens are needed to combat multidrug-resistant Mycobacterium tuberculosis. Here, we used a series of murine models to assess an antitubercular lead compound SKLB-TB1001. In the Mycobacterium bovis bacillus Calmette-Guérin and the acute M. tuberculosis H37Rv infection mouse models, SKLB-TB1001 significantly attenuated the mycobacterial load in lungs and spleens. The colony forming unit counts and histological examination of lungs from H37Rv infected mice revealed that the benzothiazinethione analogue SKLB-TB1001 as a higher dose level was as effective as isoniazid. Moreover, in a multidrug-resistant (MDR)-TB mouse model, SKLB-TB1001 showed significant activity in a dose-dependent manner and was more effective than streptomycin. These results suggested that SKLB-TB1001 could be an antitubercular drug candidate worth further investigation.
Collapse
Affiliation(s)
- Chao Gao
- Department of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Ting-Hong Ye
- Department of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China.
| | - Cui-Ting Peng
- Department of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China; Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Yao-Jie Shi
- Department of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Xin-Yu You
- Department of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China; Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Lu Xiong
- Department of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Kai Ran
- Department of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Li-Dan Zhang
- Department of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China; Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Xiu-Xiu Zeng
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Ning-Yu Wang
- Department of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Luo-Ting Yu
- Department of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China.
| | - Yu-Quan Wei
- Department of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University/Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
113
|
Gold B, Nathan C. Targeting Phenotypically Tolerant Mycobacterium tuberculosis. Microbiol Spectr 2017; 5:10.1128/microbiolspec.tbtb2-0031-2016. [PMID: 28233509 PMCID: PMC5367488 DOI: 10.1128/microbiolspec.tbtb2-0031-2016] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 01/08/2023] Open
Abstract
While the immune system is credited with averting tuberculosis in billions of individuals exposed to Mycobacterium tuberculosis, the immune system is also culpable for tempering the ability of antibiotics to deliver swift and durable cure of disease. In individuals afflicted with tuberculosis, host immunity produces diverse microenvironmental niches that support suboptimal growth, or complete growth arrest, of M. tuberculosis. The physiological state of nonreplication in bacteria is associated with phenotypic drug tolerance. Many of these host microenvironments, when modeled in vitro by carbon starvation, complete nutrient starvation, stationary phase, acidic pH, reactive nitrogen intermediates, hypoxia, biofilms, and withholding streptomycin from the streptomycin-addicted strain SS18b, render M. tuberculosis profoundly tolerant to many of the antibiotics that are given to tuberculosis patients in clinical settings. Targeting nonreplicating persisters is anticipated to reduce the duration of antibiotic treatment and rate of posttreatment relapse. Some promising drugs to treat tuberculosis, such as rifampin and bedaquiline, only kill nonreplicating M. tuberculosisin vitro at concentrations far greater than their minimal inhibitory concentrations against replicating bacilli. There is an urgent demand to identify which of the currently used antibiotics, and which of the molecules in academic and corporate screening collections, have potent bactericidal action on nonreplicating M. tuberculosis. With this goal, we review methods of high-throughput screening to target nonreplicating M. tuberculosis and methods to progress candidate molecules. A classification based on structures and putative targets of molecules that have been reported to kill nonreplicating M. tuberculosis revealed a rich diversity in pharmacophores.
Collapse
Affiliation(s)
- Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
114
|
Gold B, Roberts J, Ling Y, Lopez Quezada L, Glasheen J, Ballinger E, Somersan-Karakaya S, Warrier T, Nathan C. Visualization of the Charcoal Agar Resazurin Assay for Semi-quantitative, Medium-throughput Enumeration of Mycobacteria. J Vis Exp 2016. [PMID: 28060290 PMCID: PMC5226417 DOI: 10.3791/54690] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
There is an urgent need to discover and progress anti-infectives that shorten the duration of tuberculosis (TB) treatment. Mycobacterium tuberculosis, the etiological agent of TB, is refractory to rapid and lasting chemotherapy due to the presence of bacilli exhibiting phenotypic drug resistance. The charcoal agar resazurin assay (CARA) was developed as a tool to characterize active molecules discovered by high-throughput screening campaigns against replicating and non-replicating M. tuberculosis. Inclusion of activated charcoal in bacteriologic agar medium helps mitigate the impact of compound carry-over, and eliminates the requirement to pre-dilute cells prior to spotting on CARA microplates. After a 7-10 day incubation period at 37 °C, the reduction of resazurin by mycobacterial microcolonies growing on the surface of CARA microplate wells permits semi-quantitative assessment of bacterial numbers via fluorometry. The CARA detects approximately a 2-3 log10 difference in bacterial numbers and predicts a minimal bactericidal concentration leading to ≥99% bacterial kill (MBC≥99). The CARA helps determine whether a molecule is active on bacilli that are replicating, non-replicating, or both. Pilot experiments using the CARA facilitate the identification of which concentration of test agent and time of compound exposure require further evaluation by colony forming unit (CFU) assays. In addition, the CARA can predict if replicating actives are bactericidal or bacteriostatic.
Collapse
Affiliation(s)
- Ben Gold
- Departments of Microbiology & Immunology, Weill Cornell Medical College;
| | - Julia Roberts
- Departments of Microbiology & Immunology, Weill Cornell Medical College
| | - Yan Ling
- Departments of Microbiology & Immunology, Weill Cornell Medical College
| | | | - Jou Glasheen
- Departments of Microbiology & Immunology, Weill Cornell Medical College
| | - Elaine Ballinger
- Departments of Microbiology & Immunology, Weill Cornell Medical College
| | | | - Thulasi Warrier
- Departments of Microbiology & Immunology, Weill Cornell Medical College
| | - Carl Nathan
- Departments of Microbiology & Immunology, Weill Cornell Medical College
| |
Collapse
|
115
|
Mikušová K, Ekins S. Learning from the past for TB drug discovery in the future. Drug Discov Today 2016; 22:534-545. [PMID: 27717850 DOI: 10.1016/j.drudis.2016.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/25/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022]
Abstract
Tuberculosis drug discovery has shifted in recent years from a primarily target-based approach to one that uses phenotypic high-throughput screens. As examples of this, through our EU-funded FP7 collaborations, New Medicines for Tuberculosis was target-based and our more-recent More Medicines for Tuberculosis project predominantly used phenotypic screening. From these projects we have examples of success (DprE1) and failure (PimA) going from drug to target and from target to drug, respectively. It is clear that we still have much to learn about the drug targets and the complex effects of the drugs on Mycobacterium tuberculosis. We propose a more integrated approach that learns from earlier drug discovery efforts that could help to move drug discovery forward.
Collapse
Affiliation(s)
- Katarína Mikušová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Sean Ekins
- Collaborative Drug Discovery, Inc., 1633 Bayshore Highway, Suite 342, Burlingame, CA 94010, USA; Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay Varina, NC 27526, USA.
| |
Collapse
|
116
|
Ramón-García S, González Del Río R, Villarejo AS, Sweet GD, Cunningham F, Barros D, Ballell L, Mendoza-Losana A, Ferrer-Bazaga S, Thompson CJ. Repurposing clinically approved cephalosporins for tuberculosis therapy. Sci Rep 2016; 6:34293. [PMID: 27678056 PMCID: PMC5039641 DOI: 10.1038/srep34293] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/09/2016] [Indexed: 12/28/2022] Open
Abstract
While modern cephalosporins developed for broad spectrum antibacterial activities have never been pursued for tuberculosis (TB) therapy, we identified first generation cephalosporins having clinically relevant inhibitory concentrations, both alone and in synergistic drug combinations. Common chemical patterns required for activity against Mycobacterium tuberculosis were identified using structure-activity relationships (SAR) studies. Numerous cephalosporins were synergistic with rifampicin, the cornerstone drug for TB therapy, and ethambutol, a first-line anti-TB drug. Synergy was observed even under intracellular growth conditions where beta-lactams typically have limited activities. Cephalosporins and rifampicin were 4- to 64-fold more active in combination than either drug alone; however, limited synergy was observed with rifapentine or rifabutin. Clavulanate was a key synergistic partner in triple combinations. Cephalosporins (and other beta-lactams) together with clavulanate rescued the activity of rifampicin against a rifampicin resistant strain. Synergy was not due exclusively to increased rifampicin accumulation within the mycobacterial cells. Cephalosporins were also synergistic with new anti-TB drugs such as bedaquiline and delamanid. Studies will be needed to validate their in vivo activities. However, the fact that cephalosporins are orally bioavailable with good safety profiles, together with their anti-mycobacterial activities reported here, suggest that they could be repurposed within new combinatorial TB therapies.
Collapse
Affiliation(s)
- Santiago Ramón-García
- Department of Microbiology and Immunology, Centre for Tuberculosis Research, Life Sciences Centre, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada.,GlaxoSmithKline-Diseases of the Developing World, Tres Cantos, Madrid, Spain
| | | | | | - Gaye D Sweet
- Department of Microbiology and Immunology, Centre for Tuberculosis Research, Life Sciences Centre, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - Fraser Cunningham
- GlaxoSmithKline-Diseases of the Developing World, Tres Cantos, Madrid, Spain
| | - David Barros
- GlaxoSmithKline-Diseases of the Developing World, Tres Cantos, Madrid, Spain
| | - Lluís Ballell
- GlaxoSmithKline-Diseases of the Developing World, Tres Cantos, Madrid, Spain
| | | | | | - Charles J Thompson
- Department of Microbiology and Immunology, Centre for Tuberculosis Research, Life Sciences Centre, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| |
Collapse
|
117
|
Development of an In Vitro Assay for Detection of Drug-Induced Resuscitation-Promoting-Factor-Dependent Mycobacteria. Antimicrob Agents Chemother 2016; 60:6227-33. [PMID: 27503641 PMCID: PMC5038329 DOI: 10.1128/aac.00518-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/29/2016] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis is a major infectious disease that requires prolonged chemotherapy with a combination of four drugs. Here we present data suggesting that treatment of Mycobacterium tuberculosis, the causative agent of tuberculosis, and Mycobacterium smegmatis, a model organism widely used for the screening of antituberculosis agents, with first-line drugs resulted in the generation of substantial populations that could be recovered only by the addition of a culture supernatant from growing mycobacteria. These bacilli failed to grow in standard media, resulting in significant underestimation of the numbers of viable mycobacteria in treated samples. We generated M. smegmatis strains overexpressing M. tuberculosis resuscitation-promoting factors (Rpfs) and demonstrated their application for the detection of Rpf-dependent mycobacteria generated after drug exposure. Our data offer novel opportunities for validation of the sterilizing activity of antituberculosis agents.
Collapse
|
118
|
Amphiphilic xanthones as a potent chemical entity of anti-mycobacterial agents with membrane-targeting properties. Eur J Med Chem 2016; 123:684-703. [PMID: 27517813 DOI: 10.1016/j.ejmech.2016.07.068] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 12/31/2022]
Abstract
Tuberculosis (TB) remains a deadly disease and infects one-third of the world's population. Given the low success rates encountered in clinical development, there is an urgent need to identify structurally novel antimicrobials for tuberculosis. The present report details the anti-mycobacterial activities, structure-activity relationships (SARs) and mechanism of action of amphiphilic xanthone derivatives. The xanthones exhibited potent MIC, rapid time-kill and no cross-resistance with the current anti-TB drugs. Evidence is presented that these compounds disrupted the inner membrane and led to ATP depletion. Amphiphilic xanthone derivatives exhibited superior metabolic stability, low cytotoxicity and low activity against the common cytochrome P450. Compound 5 was selected for an in vivo pharmacokinetic study. Its bioavailability at an oral dose of 2 mg/kg was 15%. The xanthones thuse provide valuable insight for the development of a new class of membrane targeting antimycobacterial agents that may assist in overcoming the limitations of the current TB medications.
Collapse
|
119
|
Antimycobacterial activity of pyrazinoate prodrugs in replicating and non-replicating Mycobacterium tuberculosis. Tuberculosis (Edinb) 2016; 99:11-16. [PMID: 27449999 DOI: 10.1016/j.tube.2016.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 03/31/2016] [Accepted: 04/05/2016] [Indexed: 11/20/2022]
Abstract
Tuberculosis (TB) is an important infectious disease caused by Mycobacterium tuberculosis (Mtb) and responsible for thousands of deaths every year. Although there are antimycobacterial drugs available in therapeutics, just few new chemical entities have reached clinical trials, and in fact, since introduction of rifampin only two important drugs had reached the market. Pyrazinoic acid (POA), the active agent of pyrazinamide, has been explored through prodrug approach to achieve novel molecules with anti-Mtb activity, however, there is no activity evaluation of these molecules against non-replicating Mtb until the present. Additionally, pharmacokinetic must be preliminary evaluated to avoid future problems during clinical trials. In this paper, we have presented six POA esters as prodrugs in order to evaluate their anti-Mtb activity in replicating and non-replicating Mtb, and these showed activity highly influenced by medium composition (especially by albumin). Lipophilicity seems to play the main role in the activity, possibly due to controlling membrane passage. Novel duplicated prodrugs of POA were also described, presenting interesting activity. Cytotoxicity of these prodrugs set was also evaluated, and these showed no important cytotoxic profile.
Collapse
|
120
|
Awodele O, Momoh A, Awolola N, Kale O, Okunowo W. The combined fixed-dose antituberculous drugs alter some reproductive functions with oxidative stress involvement in wistar rats. Toxicol Rep 2016; 3:620-627. [PMID: 28959585 PMCID: PMC5615933 DOI: 10.1016/j.toxrep.2016.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 12/02/2022] Open
Abstract
The reproductive toxicity of combined fixed-dose first-line antituberculosis (CFDAT) regimen was assessed in rats. Thirty-two (32) Wistar rats weighing 168.1 ± 8.0 g were divided into four groups of eight rats per group. Two groups of male and female rats were administered oral distilled water (1.6 ml) and CFDAT drugs containing rifampicin, isoniazid, pyrazinamide and ethambutol (RIPE, 92.5 mg/m2 per body surface area) respectively for forty-five days. Serum follicle stimulating hormone, luteinizing and testosterone were reduced significantly (p < 0.05) in the treated male rats. Similarly, sperm count levels were decreased by 27.3% when compared with control. RIPE elevated serum oestrogen (p < 0.05), progesterone (p < 0.05) as well as prolactin (p > 0.05) levels in the treated females. In addition, RIPE reduced (p < 0.05) total proteins levels and increased (p < 0.05, 53%) catalase levels in male but not female animals. Superoxide dismutase, glutathione-S-transferase, glutathione peroxidase, reduced glutathione levels as well as lipid peroxidation were unaltered in all rats respectively. Histopathological studies revealed congested peritesticular vessels and no changes in the ovary when compared with control. Overall, our results demonstrate reproductive toxicity potentials of RIPE in the rat, thus, suggesting that these reproductive parameters be monitored during antituberculous chemotherapy.
Collapse
Affiliation(s)
- O. Awodele
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine, PMB 12003, Idi-Araba Campus, University of Lagos, Nigeria
| | - A.A. Momoh
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine, PMB 12003, Idi-Araba Campus, University of Lagos, Nigeria
| | - N.A. Awolola
- Department of Anatomic and Molecular Pathology, College of Medicine, Idi-Araba Campus, University of Lagos, Nigeria
| | - O.E. Kale
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine, PMB 12003, Idi-Araba Campus, University of Lagos, Nigeria
- Department of Pharmacology, Benjamin Carson (Snr.) School of Medicine, Babcock University, Ilisan Remo, Ogun Nigeria, Nigeria
| | - W.O. Okunowo
- Department of Biochemistry, College of Medicine University of Lagos, PMB 12003, Lagos, Nigeria
| |
Collapse
|
121
|
Benzothiazinethione is a potent preclinical candidate for the treatment of drug-resistant tuberculosis. Sci Rep 2016; 6:29717. [PMID: 27405961 PMCID: PMC4942819 DOI: 10.1038/srep29717] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/22/2016] [Indexed: 02/05/2023] Open
Abstract
New chemotherapeutic compounds are needed to combat multidrug-resistant Mycobacterium tuberculosis (Mtb), which remains a serious public-health challenge. Decaprenylphosphoryl-β-D-ribose 2′-epimerase (DprE1 enzyme) has been characterized as an attractive therapeutic target to address this urgent demand. Herein, we have identified a new class of DprE1 inhibitors benzothiazinethiones as antitubercular agents. Benzothiazinethione analogue SKLB-TB1001 exhibited excellent activity against Mtb in the Microplate Alamar blue assay and intracellular model, meanwhile SKLB-TB1001 was also highly potent against multi-drug resistant extensively and drug resistant clinical isolates. Importantly, no antagonism interaction was found with any two-drug combinations tested in the present study and the combination of SKLB-TB1001 with rifampicin (RMP) was proved to be synergistic. Furthermore, benzothiazinethione showed superb in vivo antitubercular efficacy in an acute Mtb infection mouse model, significantly better than that of BTZ043. These data combined with the bioavailability and safety profiles of benzothiazinethione indicates SKLB-TB1001 is a promising preclinical candidate for the treatment of drug-resistant tuberculosis.
Collapse
|
122
|
O'Connor G, Gleeson LE, Fagan-Murphy A, Cryan SA, O'Sullivan MP, Keane J. Sharpening nature's tools for efficient tuberculosis control: A review of the potential role and development of host-directed therapies and strategies for targeted respiratory delivery. Adv Drug Deliv Rev 2016; 102:33-54. [PMID: 27151307 DOI: 10.1016/j.addr.2016.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/04/2016] [Accepted: 04/20/2016] [Indexed: 12/18/2022]
Abstract
Centuries since it was first described, tuberculosis (TB) remains a significant global public health issue. Despite ongoing holistic measures implemented by health authorities and a number of new oral treatments reaching the market, there is still a need for an advanced, efficient TB treatment. An adjunctive, host-directed therapy designed to enhance endogenous pathways and hence compliment current regimens could be the answer. The integration of drug repurposing, including synthetic and naturally occurring compounds, with a targeted drug delivery platform is an attractive development option. In order for a new anti-tubercular treatment to be produced in a timely manner, a multidisciplinary approach should be taken from the outset including stakeholders from academia, the pharmaceutical industry, and regulatory bodies keeping the patient as the key focus. Pre-clinical considerations for the development of a targeted host-directed therapy are discussed here.
Collapse
Affiliation(s)
- Gemma O'Connor
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin and St. James's Hospital, D08 W9RT, Dublin, Ireland.
| | - Laura E Gleeson
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin and St. James's Hospital, D08 W9RT, Dublin, Ireland.
| | - Aidan Fagan-Murphy
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland; SFI Centre for Research in Medical Devices (CURAM), Dublin 2, Ireland.
| | - Sally-Ann Cryan
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland; SFI Centre for Research in Medical Devices (CURAM), Dublin 2, Ireland.
| | - Mary P O'Sullivan
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin and St. James's Hospital, D08 W9RT, Dublin, Ireland.
| | - Joseph Keane
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin and St. James's Hospital, D08 W9RT, Dublin, Ireland.
| |
Collapse
|
123
|
Ekins S, Perryman AL, Clark AM, Reynolds RC, Freundlich JS. Machine Learning Model Analysis and Data Visualization with Small Molecules Tested in a Mouse Model of Mycobacterium tuberculosis Infection (2014-2015). J Chem Inf Model 2016; 56:1332-43. [PMID: 27335215 PMCID: PMC4962118 DOI: 10.1021/acs.jcim.6b00004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
The
renewed urgency to develop new treatments for Mycobacterium
tuberculosis (Mtb)
infection has resulted in large-scale phenotypic screening and thousands
of new active compounds in vitro. The next challenge
is to identify candidates to pursue in a mouse in vivo efficacy model as a step to predicting clinical efficacy. We previously
analyzed over 70 years of this mouse in vivo efficacy
data, which we used to generate and validate machine learning models.
Curation of 60 additional small molecules with in vivo data published in 2014 and 2015 was undertaken to further test these
models. This represents a much larger test set than for the previous
models. Several computational approaches have now been applied to
analyze these molecules and compare their molecular properties beyond
those attempted previously. Our previous machine learning models have
been updated, and a novel aspect has been added in the form of mouse
liver microsomal half-life (MLM t1/2)
and in vitro-based Mtb models incorporating
cytotoxicity data that were used to predict in vivo activity for comparison. Our best Mtbin
vivo models possess fivefold ROC values > 0.7, sensitivity
> 80%, and concordance > 60%, while the best specificity value
is
>40%. Use of an MLM t1/2 Bayesian model
affords comparable results for scoring the 60 compounds tested. Combining
MLM stability and in vitroMtb models
in a novel consensus workflow in the best cases has a positive predicted
value (hit rate) > 77%. Our results indicate that Bayesian models
constructed with literature in vivoMtb data generated by different laboratories in various mouse models
can have predictive value and may be used alongside MLM t1/2 and in vitro-based Mtb models to assist in selecting antitubercular compounds with desirable in vivo efficacy. We demonstrate for the first time that
consensus models of any kind can be used to predict in vivo activity for Mtb. In addition, we describe a new
clustering method for data visualization and apply this to the in vivo training and test data, ultimately making the method
accessible in a mobile app.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborative Drug Discovery , 1633 Bayshore Highway, Suite 342, Burlingame, California 94010, United States.,Collaborations in Chemistry , 5616 Hilltop Needmore Road, Fuquay-Varina, North Carolina 27526, United States
| | - Alexander L Perryman
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University-New Jersey Medical School , Newark, New Jersey 07103, United States
| | - Alex M Clark
- Molecular Materials Informatics, Inc. , 1900 St. Jacques #302, Montreal, Quebec H3J 2S1, Canada
| | - Robert C Reynolds
- Division of Hematology and Oncology, Department of Medicine, and Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham , 1530 Third Avenue South, Birmingham, Alabama 35294-1240, United States
| | - Joel S Freundlich
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University-New Jersey Medical School , Newark, New Jersey 07103, United States.,Division of Infectious Diseases, Department of Medicine, and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University-New Jersey Medical School , Newark, New Jersey 07103, United States
| |
Collapse
|
124
|
Alam MA, Arora K, Gurrapu S, Jonnalagadda SK, Nelson GL, Kiprof P, Jonnalagadda SC, Mereddy VR. Synthesis and evaluation of functionalized benzoboroxoles as potential anti-tuberculosis agents. Tetrahedron 2016; 72:3795-3801. [PMID: 27642196 PMCID: PMC5021310 DOI: 10.1016/j.tet.2016.03.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Several derivatives of aminobenzoboroxole have been prepared starting from 2-boronobenzaldehyde. All of these derivatives have been evaluated for their anti-mycobacterial activity on Mycobacterium smegmatis and cytotoxicity on breast cancer cell line MCF7. Based on these studies, all the tested molecules have been found to be generally non-toxic and benzoboroxoles with unsubstituted (primary) amines have been found to exhibit good anti-mycobacterial activity. Some of the key compounds have been evaluated for their anti-tubercular activity on Mycobacterium tuberculosis H37Rv using 7H9 and GAST media. 7-Bromo-6-aminobenzoboroxole 4 has been identified as the lead candidate compound for further development.
Collapse
Affiliation(s)
- Mohammad A. Alam
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Kriti Arora
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Shirisha Gurrapu
- Integrated Biosciences Graduate Program, University of Minnesota, MN 55812, USA
| | | | - Grady L. Nelson
- Integrated Biosciences Graduate Program, University of Minnesota, MN 55812, USA
| | - Paul Kiprof
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Subash C. Jonnalagadda
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
- Department of Biomedical and Translational Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Venkatram R. Mereddy
- Integrated Biosciences Graduate Program, University of Minnesota, MN 55812, USA
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN 55812, USA
| |
Collapse
|
125
|
McDaniel MM, Krishna N, Handagama WG, Eda S, Ganusov VV. Quantifying Limits on Replication, Death, and Quiescence of Mycobacterium tuberculosis in Mice. Front Microbiol 2016; 7:862. [PMID: 27379030 PMCID: PMC4906525 DOI: 10.3389/fmicb.2016.00862] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/23/2016] [Indexed: 02/02/2023] Open
Abstract
When an individual is exposed to Mycobacterium tuberculosis (Mtb) three outcomes are possible: bacterial clearance, active disease, or latent infection. It is generally believed that most individuals exposed to Mtb become latently infected and carry the mycobacteria for life. How Mtb is maintained during this latent infection remains largely unknown. During an Mtb infection in mice, there is a phase of rapid increase in bacterial numbers in the murine lungs within the first 3 weeks, and then bacterial numbers either stabilize or increase slowly over the period of many months. It has been debated whether the relatively constant numbers of bacteria in the chronic infection result from latent (dormant, quiescent), non-replicating bacteria, or whether the observed Mtb cell numbers are due to balance between rapid replication and death. A recent study of mice, infected with a Mtb strain carrying an unstable plasmid, showed that during the chronic phase, Mtb was replicating at significant rates. Using experimental data from this study and mathematical modeling we investigated the limits of the rates of bacterial replication, death, and quiescence during Mtb infection of mice. First, we found that to explain the data the rates of bacterial replication and death could not be constant and had to decrease with time since infection unless there were large changes in plasmid segregation probability over time. While a decrease in the rate of Mtb replication with time since infection was expected due to depletion of host's resources, a decrease in the Mtb death rate was counterintuitive since Mtb-specific immune response, appearing in the lungs 3–4 weeks after infection, should increase removal of bacteria. Interestingly, we found no significant correlation between estimated rates of Mtb replication and death suggesting the decline in these rates was driven by independent mechanisms. Second, we found that the data could not be explained by assuming that bacteria do not die, suggesting that some removal of bacteria from lungs of these mice had to occur even though the total bacterial counts in these mice always increased over time. Third and finally, we showed that to explain the data the majority of bacterial cells (at least ~60%) must be replicating in the chronic phase of infection further challenging widespread belief of nonreplicating Mtb in latency. Our predictions were robust to some changes in the structure of the model, for example, when the loss of plasmid-bearing cells was mainly due to high fitness cost of the plasmid. Further studies should determine if more mechanistic models for Mtb dynamics are also able to accurately explain these data.
Collapse
Affiliation(s)
- Margaret M McDaniel
- National Institute for Mathematical and Biological SynthesisKnoxville, TN, USA; Department of Biochemistry, Cellular and Molecular Biology, University of TennesseeKnoxville, TN, USA; Department of Mathematics, University of TennesseeKnoxville, TN, USA
| | - Nitin Krishna
- National Institute for Mathematical and Biological SynthesisKnoxville, TN, USA; The College at the University of ChicagoChicago, IL, USA
| | - Winode G Handagama
- National Institute for Mathematical and Biological SynthesisKnoxville, TN, USA; Departments of Chemistry and Mathematics, Maryville CollegeMaryville, TN, USA
| | - Shigetoshi Eda
- National Institute for Mathematical and Biological SynthesisKnoxville, TN, USA; Department of Forestry, Wildlife and Fisheries, University of TennesseeKnoxville, TN, USA
| | - Vitaly V Ganusov
- National Institute for Mathematical and Biological SynthesisKnoxville, TN, USA; Department of Mathematics, University of TennesseeKnoxville, TN, USA; Department of Microbiology, University of TennesseeKnoxville, TN, USA
| |
Collapse
|
126
|
Oxadiazoles Have Butyrate-Specific Conditional Activity against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2016; 60:3608-16. [PMID: 27044545 DOI: 10.1128/aac.02896-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/24/2016] [Indexed: 12/31/2022] Open
Abstract
Mycobacterium tuberculosis is a global pathogen of huge importance which can adapt to several host niche environments in which carbon source availability is likely to vary. We developed and ran a phenotypic screen using butyrate as the sole carbon source to be more reflective of the host lung environment. We screened a library of ∼87,000 small compounds and identified compounds which demonstrated good antitubercular activity against M. tuberculosis grown with butyrate but not with glucose as the carbon source. Among the hits, we identified an oxadiazole series (six compounds) which had specific activity against M. tuberculosis but which lacked cytotoxicity against mammalian cells.
Collapse
|
127
|
Urdániz E, Rondón L, Martí MA, Hatfull GF, Piuri M. Rapid Whole-Cell Assay of Antitubercular Drugs Using Second-Generation Fluoromycobacteriophages. Antimicrob Agents Chemother 2016; 60:3253-6. [PMID: 26976860 PMCID: PMC4862496 DOI: 10.1128/aac.03016-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Estefanía Urdániz
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Liliana Rondón
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Marcelo A Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Graham F Hatfull
- Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mariana Piuri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina
| |
Collapse
|
128
|
Mycobacterium tuberculosis Transcription Machinery: Ready To Respond to Host Attacks. J Bacteriol 2016; 198:1360-73. [PMID: 26883824 DOI: 10.1128/jb.00935-15] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Regulating responses to stress is critical for all bacteria, whether they are environmental, commensal, or pathogenic species. For pathogenic bacteria, successful colonization and survival in the host are dependent on adaptation to diverse conditions imposed by the host tissue architecture and the immune response. Once the bacterium senses a hostile environment, it must enact a change in physiology that contributes to the organism's survival strategy. Inappropriate responses have consequences; hence, the execution of the appropriate response is essential for survival of the bacterium in its niche. Stress responses are most often regulated at the level of gene expression and, more specifically, transcription. This minireview focuses on mechanisms of regulating transcription initiation that are required by Mycobacterium tuberculosis to respond to the arsenal of defenses imposed by the host during infection. In particular, we highlight how certain features of M. tuberculosis physiology allow this pathogen to respond swiftly and effectively to host defenses. By enacting highly integrated and coordinated gene expression changes in response to stress,M. tuberculosis is prepared for battle against the host defense and able to persist within the human population.
Collapse
|
129
|
Phenotypically Adapted Mycobacterium tuberculosis Populations from Sputum Are Tolerant to First-Line Drugs. Antimicrob Agents Chemother 2016; 60:2476-83. [PMID: 26883695 PMCID: PMC4808147 DOI: 10.1128/aac.01380-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 02/06/2016] [Indexed: 12/12/2022] Open
Abstract
Tuberculous sputum contains multiple Mycobacterium tuberculosis populations with different requirements for isolation in vitro. These include cells that form colonies on solid media (plateable M. tuberculosis), cells requiring standard liquid medium for growth (nonplateable M. tuberculosis), and cells requiring supplementation of liquid medium with culture supernatant (SN) for growth (SN-dependent M. tuberculosis). Here, we describe protocols for the cryopreservation and direct assessment of antimicrobial tolerance of these M. tuberculosis populations within sputum. Our results show that first-line drugs achieved only modest bactericidal effects on all three populations over 7 days (1 to 2.5 log10 reductions), and SN-dependent M. tuberculosis was more tolerant to streptomycin and isoniazid than the plateable and nonplateable M. tuberculosis strains. Susceptibility of plateable M. tuberculosis to bactericidal drugs was significantly increased after passage in vitro; thus, tolerance observed in the sputum samples from the population groups was likely associated with mycobacterial adaptation to the host environment at some time prior to expectoration. Our findings support the use of a simple ex vivo system for testing drug efficacies against mycobacteria that have phenotypically adapted during tuberculosis infection.
Collapse
|
130
|
Majewski MW, Tiwari R, Miller PA, Cho S, Franzblau SG, Miller MJ. Design, syntheses, and anti-tuberculosis activities of conjugates of piperazino-1,3-benzothiazin-4-ones (pBTZs) with 2,7-dimethylimidazo [1,2-a]pyridine-3-carboxylic acids and 7-phenylacetyl cephalosporins. Bioorg Med Chem Lett 2016; 26:2068-71. [PMID: 26951749 DOI: 10.1016/j.bmcl.2016.02.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 12/19/2022]
Abstract
Tuberculosis (TB) remains one of the most threatening diseases in the world and the need for development of new therapies is dire. Herein we describe the rationale for the design and subsequent syntheses and studies of conjugates between pBTZ and both the imidazopyridine and cephalosporin scaffolds. Overall some compounds exhibited notable anti-TB activity in the range of 2-0.2 μM in the Microplate Alamar Blue (MABA) Assay.
Collapse
Affiliation(s)
- Mark W Majewski
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rohit Tiwari
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Patricia A Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sanghyun Cho
- Institute for Tuberculosis Research, College of Pharmacy, MIC 964, Rm. 412, University of Illinois at Chicago, IL 60612, USA
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, MIC 964, Rm. 412, University of Illinois at Chicago, IL 60612, USA
| | - Marvin J Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
131
|
Perryman AL, Stratton TP, Ekins S, Freundlich JS. Predicting Mouse Liver Microsomal Stability with "Pruned" Machine Learning Models and Public Data. Pharm Res 2016; 33:433-49. [PMID: 26415647 PMCID: PMC4712113 DOI: 10.1007/s11095-015-1800-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/22/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE Mouse efficacy studies are a critical hurdle to advance translational research of potential therapeutic compounds for many diseases. Although mouse liver microsomal (MLM) stability studies are not a perfect surrogate for in vivo studies of metabolic clearance, they are the initial model system used to assess metabolic stability. Consequently, we explored the development of machine learning models that can enhance the probability of identifying compounds possessing MLM stability. METHODS Published assays on MLM half-life values were identified in PubChem, reformatted, and curated to create a training set with 894 unique small molecules. These data were used to construct machine learning models assessed with internal cross-validation, external tests with a published set of antitubercular compounds, and independent validation with an additional diverse set of 571 compounds (PubChem data on percent metabolism). RESULTS "Pruning" out the moderately unstable / moderately stable compounds from the training set produced models with superior predictive power. Bayesian models displayed the best predictive power for identifying compounds with a half-life ≥1 h. CONCLUSIONS Our results suggest the pruning strategy may be of general benefit to improve test set enrichment and provide machine learning models with enhanced predictive value for the MLM stability of small organic molecules. This study represents the most exhaustive study to date of using machine learning approaches with MLM data from public sources.
Collapse
Affiliation(s)
- Alexander L Perryman
- Division of Infectious Disease, Department of Medicine, and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University-New Jersey Medical School, Newark, New Jersey, 07103, USA
| | - Thomas P Stratton
- Department of Pharmacology & Physiology, Rutgers University-New Jersey Medical School, Medical Sciences Building, I-503, 185 South Orange Ave., Newark, New Jersey, 07103, USA
| | - Sean Ekins
- Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, NC, 27526, USA
- Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, CA, 94010, USA
| | - Joel S Freundlich
- Division of Infectious Disease, Department of Medicine, and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University-New Jersey Medical School, Newark, New Jersey, 07103, USA.
- Department of Pharmacology & Physiology, Rutgers University-New Jersey Medical School, Medical Sciences Building, I-503, 185 South Orange Ave., Newark, New Jersey, 07103, USA.
| |
Collapse
|
132
|
Knight-Connoni V, Mascio C, Chesnel L, Silverman J. Discovery and development of surotomycin for the treatment of Clostridium difficile. J Ind Microbiol Biotechnol 2015; 43:195-204. [PMID: 26670919 DOI: 10.1007/s10295-015-1714-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/24/2015] [Indexed: 02/08/2023]
Abstract
The primary challenge for treating Clostridium difficile infections (CDI) is maintenance of clinical response after the end of treatment (sustained clinical response). Disease recurrence following a positive clinical response occurs in approximately 6-25 % of patients after the first episode and in up to 65 % for subsequent recurrences. Surotomycin, a novel cyclic lipopeptide antibiotic with a core derived by Streptomyces roseosporus fermentation, disrupts C. difficile cellular membrane activity in both logarithmic and stationary phases and minimally disturbs normal gastrointestinal microbiota because of its lack of activity against Gram-negative anaerobes and facultative anaerobes. Preclinical and clinical evidence indicate that surotomycin has low oral bioavailability, allowing gastrointestinal tract concentrations to greatly exceed its minimum inhibitory concentration for C. difficile. Surotomycin is well tolerated and effective in hamster models of CDI. Phase 2 clinical evidence suggests that surotomycin (250 mg twice daily) is an effective CDI treatment, with statistically lower recurrence rates than vancomycin.
Collapse
Affiliation(s)
| | | | - Laurent Chesnel
- Cubist Pharmaceuticals, Lexington, MA, USA. .,Merck & Co., Inc., Lexington, MA, USA. .,Clinical Microbiology, Merck Research Labs, 65 Hayden Avenue, Lexington, MA, 02421, USA.
| | | |
Collapse
|
133
|
Abstract
Our understanding of the host-pathogen relationship in tuberculosis (TB) can help guide drug discovery in at least two ways. First, the recognition that host immunopathology affects lesional TB drug distribution means that pharmacokinetic evaluation of drug candidates needs to move beyond measurements of drug levels in blood, whole lungs, or alveolar epithelial lining fluid to include measurements in specific types of lesions. Second, by restricting the replication of M. tuberculosis (Mtb) subpopulations in latent TB infection and in active disease, the host immune response puts Mtb into a state associated with phenotypic tolerance to TB drugs selected for their activity against replicating Mtb. This has spurred a major effort to conduct high throughput screens in vitro for compounds that can kill Mtb when it is replicating slowly if at all. Each condition used in vitro to slow Mtb's replication and thereby model the phenotypically drug-tolerant state has advantages and disadvantages. Lead candidates emerging from such in vitro studies face daunting challenges in the design of proof-of-concept studies in animal models. Moreover, some non-replicating subpopulations of Mtb fail to resume replication when plated on agar, although their viability is demonstrable by other means. There is as yet no widely replicated assay in which to screen compounds for their ability to kill this 'viable but non-culturable' subpopulation. Despite these hurdles, drugs that can kill slowly replicating or non-replicating Mtb may offer our best hope for treatment-shortening combination chemotherapy of TB.
Collapse
Affiliation(s)
- Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | | |
Collapse
|
134
|
Katsuno K, Burrows JN, Duncan K, van Huijsduijnen RH, Kaneko T, Kita K, Mowbray CE, Schmatz D, Warner P, Slingsby BT. Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nat Rev Drug Discov 2015; 14:751-8. [DOI: 10.1038/nrd4683] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
135
|
Majewski MW, Watson KD, Cho S, Miller PA, Franzblau SG, Miller MJ. Syntheses and Biological Evaluations of Highly Functionalized Hydroxamate Containing and N-Methylthio Monobactams as Anti-Tuberculosis and β-Lactamase Inhibitory Agents. MEDCHEMCOMM 2015; 7:141-147. [PMID: 26918106 DOI: 10.1039/c5md00340g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Both the resurgence of tuberculosis (TB) and antibiotic resistance continue to threaten modern healthcare and new means of combating pathogenic bacterial infections are needed. The syntheses of monobactams possessing hydroxamate and N-methylthio functionality are described, as well as their anti-TB, in vitro β-lactamase inhibitory, and general antimicrobial evaluations. A number of compounds exhibited significant anti-TB and β-lactamase inhibitory activity, with MIC values in the range of 25 to < 0.19 μM against Mycobacteria tuberculosis (M.tb), and Ki values in the range of 25-0.03 μM against purified NDM-1 and VIM-1 lystate metallo β-lactamases. This work suggests that these scaffolds may serve as promising leads in developing new antibiotics and/or β-lactamase inhibitors.
Collapse
Affiliation(s)
- Mark W Majewski
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kyle D Watson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Sanghyun Cho
- Institute for Tuberculosis Research, College of Pharmacy, MIC 964, Rm. 412, University of Illinois at Chicago, IL, 60612, USA
| | - Patricia A Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, MIC 964, Rm. 412, University of Illinois at Chicago, IL, 60612, USA
| | - Marvin J Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
136
|
Zuniga ES, Early J, Parish T. The future for early-stage tuberculosis drug discovery. Future Microbiol 2015; 10:217-29. [PMID: 25689534 DOI: 10.2217/fmb.14.125] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There is an urgent need for new and better drugs to treat tuberculosis due to lengthy and complex treatment regimens and a rising problem of drug resistance. Drug discovery efforts have increased over the past few years, with a larger focus on modern high-throughput screening technologies. A combination of target-based approaches, with the traditional empirical means of drug identification, has been complemented by the use of target-based phenotypic screens only recently made possibly with newer genetic tools. Using these approaches, a number of promising compound series have been discovered. However, significant problems remain in developing these into drugs. This review highlights recent advances in TB drug discovery, including an overview of screening campaigns, lessons learned and future directions.
Collapse
Affiliation(s)
- Edison S Zuniga
- TB Discovery Research, Infectious Disease Research Institute, Seattle, WA 98102, USA
| | | | | |
Collapse
|
137
|
Myllymäki H, Niskanen M, Oksanen KE, Rämet M. Animal models in tuberculosis research - where is the beef? Expert Opin Drug Discov 2015; 10:871-83. [PMID: 26073097 DOI: 10.1517/17460441.2015.1049529] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Tuberculosis (TB) is a major global health problem, and new drugs and vaccines are urgently needed. As clinical trials in humans require tremendous resources, preclinical drug and vaccine development largely relies on valid animal models that recapitulate the pathology of human disease and the immune responses of the host as closely as possible. AREAS COVERED This review describes the animal models used in TB research, the most widely used being mice, guinea pigs and nonhuman primates. In addition, rabbits and cattle provide models with a disease pathology resembling that of humans. Invertebrate models, including the fruit fly and the Dictyostelium amoeba, have also been used to study mycobacterial infections. Recently, the zebrafish has emerged as a promising model for studying mycobacterial infections. The zebrafish model also facilitates the large-scale screening of drug and vaccine candidates. EXPERT OPINION Animal models are needed for TB research and provide valuable information on the mechanisms of the disease and on ways of preventing it. However, the data obtained in animal studies need to be carefully interpreted and evaluated before making assumptions concerning humans. With an increasing understanding of disease mechanisms, animal models can be further improved to best serve research goals.
Collapse
Affiliation(s)
- Henna Myllymäki
- BioMediTech, University of Tampere , FIN 33014 Tampere , Finland
| | | | | | | |
Collapse
|
138
|
Gumbo T, Lenaerts AJ, Hanna D, Romero K, Nuermberger E. Nonclinical Models for Antituberculosis Drug Development: A Landscape Analysis. J Infect Dis 2015; 211 Suppl 3:S83-95. [DOI: 10.1093/infdis/jiv183] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
139
|
Majewski MW, Cho S, Miller PA, Franzblau SG, Miller MJ. Syntheses and evaluation of substituted aromatic hydroxamates and hydroxamic acids that target Mycobacterium tuberculosis. Bioorg Med Chem Lett 2015; 25:4933-4936. [PMID: 26037320 DOI: 10.1016/j.bmcl.2015.04.099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/24/2015] [Accepted: 04/30/2015] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) continues to remain one of the most threatening diseases in the world. With the emergence of multi-drug resistant (MDR) and extensively drug resistant (XDR) strains, the need to develop new therapies is dire. The syntheses of a focused library of hydroxamates and hydroxamic acids is described, as well as anti-TB activity in the microplate alamar blue assay (MABA). A number of compounds exhibited good activity against Mtb, with notable compounds exhibiting MIC values in the range of 20-0.71 μM. This work suggests that both hydroxamates and their free acids may be incorporated into more complex scaffolds and serve as potential leads for the development of anti-TB agents.
Collapse
Affiliation(s)
- Mark W Majewski
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sanghyun Cho
- Institute for Tuberculosis Research, College of Pharmacy, MIC 964, Rm. 412, University of Illinois at Chicago, IL 60612, USA
| | - Patricia A Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, MIC 964, Rm. 412, University of Illinois at Chicago, IL 60612, USA
| | - Marvin J Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
140
|
A sterilizing tuberculosis treatment regimen is associated with faster clearance of bacteria in cavitary lesions in marmosets. Antimicrob Agents Chemother 2015; 59:4181-9. [PMID: 25941223 DOI: 10.1128/aac.00115-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/28/2015] [Indexed: 01/09/2023] Open
Abstract
Shortening the lengthy treatment duration for tuberculosis patients is a major goal of current drug development efforts. The common marmoset develops human-like disease pathology and offers an attractive model to better understand the basis for relapse and test regimens for effective shorter duration therapy. We treated Mycobacterium tuberculosis-infected marmosets with two drug regimens known to differ in their relapse rates in human clinical trials: the standard four-drug combination of isoniazid, rifampin, pyrazinamide, and ethambutol (HRZE) that has very low relapse rates and the combination of isoniazid and streptomycin that is associated with higher relapse rates. As early as 2 weeks, the more sterilizing regimen significantly reduced the volume of lung disease by computed tomography (P = 0.035) and also significantly reduced uptake of [(18)F]-2-fluoro-2-deoxyglucose by positron emission tomography (P = 0.049). After 6 weeks of therapy, both treatments caused similar reductions in granuloma bacterial load, but the more sterilizing, four-drug regimen caused greater reduction in bacterial load in cavitary lesions (P = 0.009). These findings, combined with the association in humans between cavitary disease and relapse, suggest that the basis for improved sterilizing activity of the four-drug combination is both its faster disease volume resolution and its stronger sterilizing effect on cavitary lesions. Definitive data from relapse experiments are needed to support this observation.
Collapse
|
141
|
Mycobacterium-Host Cell Relationships in Granulomatous Lesions in a Mouse Model of Latent Tuberculous Infection. BIOMED RESEARCH INTERNATIONAL 2015; 2015:948131. [PMID: 26064970 PMCID: PMC4433666 DOI: 10.1155/2015/948131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/21/2014] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB) is a dangerous infectious disease characterized by a tight interplay between mycobacteria and host cells in granulomatous lesions (granulomas) during the latent, asymptomatic stage of infection. Mycobacterium-host cell relationships were analyzed in granulomas obtained from various organs of BALB/c mice with chronic TB infection caused by in vivo exposure to the Bacillus Calmette-Guérin (BCG) vaccine. Acid-fast BCG-mycobacteria were found to be morphologically and functionally heterogeneous (in size, shape, and replication rates in colonies) in granuloma macrophages, dendritic cells, and multinucleate Langhans giant cells. Cord formation by BCG-mycobacteria in granuloma cells has been observed. Granuloma macrophages retained their ability to ingest damaged lymphocytes and thrombocytes in the phagosomes; however, their ability to destroy BCG-mycobacteria contained in these cells was compromised. No colocalization of BCG-mycobacteria and the LysoTracker dye was observed in the mouse cells. Various relationships between granuloma cells and BCG-mycobacteria were observed in different mice belonging to the same line. Several mice totally eliminated mycobacterial infection. Granulomas in the other mice had mycobacteria actively replicating in cells of different types and forming cords, which is an indicator of mycobacterial virulence and, probably, a marker of the activation of tuberculous infection in animals.
Collapse
|
142
|
Salunke SB, Azad AK, Kapuriya NP, Balada-Llasat JM, Pancholi P, Schlesinger LS, Chen CS. Design and synthesis of novel anti-tuberculosis agents from the celecoxib pharmacophore. Bioorg Med Chem 2015; 23:1935-43. [PMID: 25818768 DOI: 10.1016/j.bmc.2015.03.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/03/2015] [Accepted: 03/15/2015] [Indexed: 11/15/2022]
Abstract
The identification of compounds with anti-mycobacterial activity within classes of molecules that have been developed for other purposes is a fruitful approach for the development of anti-tuberculosis (TB) agents. In this study we used the scaffold of celecoxib which exhibits several activities against different pathogens, for the design and focused synthesis of a library of 64 compounds. For the primary screen, we used a bioluminescence-based method by constructing a luciferase-expressing reporter M.tb strain which contains the entire bacterial Lux operon cloned in a mycobacterial integrative expression vector. Through the screening of this library, we identified 6 hit compounds with high in vitro anti-mycobacterial activity (IC₅₀ ∼0.18-0.48 μM). In particular, compounds 41, 51 and 53 were capable of inhibiting M.tb as effectively as the anti-TB drug isoniazid (INH) at 5 μM over a 72-h period, as analyzed by both bioluminescence- and colony forming unit (CFU)-based assays. All hit compounds also showed anti-M.tb activities against several multi-drug-resistant (MDR) strains. Most of the hit compounds showed no cytotoxicity for human macrophages at concentrations as high as 40 μM, setting the stage for further optimization and development of these anti-TB hit compounds both ex vivo and in vivo.
Collapse
Affiliation(s)
- Santosh B Salunke
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH 43210, United States
| | - Abul K Azad
- Center for Microbial Interface Biology, The Ohio State University, 460 W 12th Avenue, Columbus, OH 43210, United States; Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Wexner Medical Center, 460 W 12th Avenue, Columbus, OH 43210, United States
| | - Naval P Kapuriya
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH 43210, United States; Division of Pharmaceutical and Organic Chemistry, M. & N. Virani Science College, Saurashtra University, Rajkot 360005, Gujarat, India
| | - Joan-Miquel Balada-Llasat
- Department of Pathology, The Ohio State University, 410 W. 10th Avenue, Columbus, OH 43210, United States
| | - Preeti Pancholi
- Department of Pathology, The Ohio State University, 410 W. 10th Avenue, Columbus, OH 43210, United States
| | - Larry S Schlesinger
- Center for Microbial Interface Biology, The Ohio State University, 460 W 12th Avenue, Columbus, OH 43210, United States; Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Wexner Medical Center, 460 W 12th Avenue, Columbus, OH 43210, United States.
| | - Ching-Shih Chen
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH 43210, United States; Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
143
|
Tsouh PVF, Addo P, Yeboah-Manu D, Boyom FF. Methods used in preclinical assessment of anti-Buruli ulcer agents: A global perspective. J Pharmacol Toxicol Methods 2015; 73:27-33. [PMID: 25792087 DOI: 10.1016/j.vascn.2015.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/28/2015] [Accepted: 03/10/2015] [Indexed: 11/30/2022]
Abstract
Buruli ulcer (BU) caused by Mycobacterium ulcerans is the third most common chronic mycobacterial infection in humans. Approximately 5000 cases are reported annually from at least 33 countries around the globe, especially in rural African communities. Even though anti-mycobacterial therapy is often effective for early nodular or ulcerative lesions, surgery is sometimes employed for aiding wound healing and correction of deformities. The usefulness of the antibiotherapy nonetheless is challenged by huge restrictive factors such as high cost, surgical scars and loss of income due to loss of man-hours, and in some instances employment. For these reasons, more effective and safer drugs are urgently needed, and research programs into alternative therapeutics including investigation of natural products should be encouraged. There is the need for appropriate susceptibility testing methods for the evaluation of potency. A number of biological assay methodologies are in current use, ranging from the classical agar and broth dilution assay formats, to radiorespirometric, dye-based, and fluorescent/luminescence reporter assays. Mice, rats, armadillo, guinea pigs, monkeys, grass cutters and lizards have been suggested as animal models for Buruli ulcer. This review presents an overview of in vitro and in vivo susceptibility testing methods developed so far for the determination of anti-Buruli ulcer activity of natural products and derivatives.
Collapse
Affiliation(s)
- Patrick Valere Fokou Tsouh
- Noguchi Memorial Institute for Medical Research, University of Ghana, P. O. Box LG 581, Accra, Ghana; Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé 1, P.O. 812 Yaoundé, Cameroon.
| | - Phyllis Addo
- Noguchi Memorial Institute for Medical Research, University of Ghana, P. O. Box LG 581, Accra, Ghana
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, P. O. Box LG 581, Accra, Ghana
| | - Fabrice Fekam Boyom
- Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé 1, P.O. 812 Yaoundé, Cameroon
| |
Collapse
|
144
|
Moraski GC, Miller PA, Bailey MA, Ollinger J, Parish T, Boshoff HI, Cho S, Anderson JR, Mulugeta S, Franzblau SG, Miller MJ. Putting Tuberculosis (TB) To Rest: Transformation of the Sleep Aid, Ambien, and "Anagrams" Generated Potent Antituberculosis Agents. ACS Infect Dis 2015; 1:85-90. [PMID: 25984566 PMCID: PMC4426345 DOI: 10.1021/id500008t] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Indexed: 11/30/2022]
Abstract
![]()
Zolpidem
(Ambien, 1) is an imidazo[1,2-a]pyridine-3-acetamide
and an approved drug for the treatment of insomnia.
As medicinal chemists enamored by how structure imparts biological
function, we found it to have strikingly similar structure to the
antitubercular imidazo[1,2-a]pyridine-3-carboxyamides.
Zolpidem was found to have antituberculosis activity (MIC of 10–50
μM) when screened against replicating Mycobacterium
tuberculosis (Mtb) H37Rv. Manipulation of the Zolpidem structure, notably, to structural
isomers (“anagrams”), attains remarkably improved potency
(5, MIC of 0.004 μM) and impressive potency against
clinically relevant drug-sensitive, multi- and extensively drug-resistant Mtb strains (MIC < 0.03 μM). Zolpidem anagrams
and analogues were synthesized and evaluated for their antitubercular
potency, toxicity, and spectrum of activity against nontubercular
mycobacteria and Gram-positive and Gram-negative bacteria. These efforts
toward the rational design of isomeric anagrams of a well-known sleep
aid underscore the possibility that further optimization of the imidazo[1,2-a]pyridine core may well “put TB to rest”.
Collapse
Affiliation(s)
- Garrett C. Moraski
- Department
of Chemistry and Biochemistry, 251 Nieuwland Science
Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Patricia A. Miller
- Department
of Chemistry and Biochemistry, 251 Nieuwland Science
Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Mai Ann Bailey
- TB Discovery Research,
Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, Washington 98102, United States
| | - Juliane Ollinger
- TB Discovery Research,
Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, Washington 98102, United States
| | - Tanya Parish
- TB Discovery Research,
Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, Washington 98102, United States
| | - Helena I. Boshoff
- Tuberculosis
Research Section, Laboratory of Clinical Infectious Diseases, National
Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sanghyun Cho
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Jeffery R. Anderson
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Surafel Mulugeta
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Scott G. Franzblau
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Marvin J. Miller
- Department
of Chemistry and Biochemistry, 251 Nieuwland Science
Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
145
|
Cho S, Lee HS, Franzblau S. Microplate Alamar Blue Assay (MABA) and Low Oxygen Recovery Assay (LORA) for Mycobacterium tuberculosis. Methods Mol Biol 2015; 1285:281-292. [PMID: 25779323 DOI: 10.1007/978-1-4939-2450-9_17] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Throughput in tuberculosis drug discovery was extremely limited prior to the introduction of microplate-based susceptibility assays. The 96-well Microplate Alamar Blue Assay (MABA) allows for the quantitative determination of drug susceptibility against any strain of replicating Mycobacterium tuberculosis to be completed within a week at minimal cost. The Low-Oxygen Recovery Assay (LORA) uses a recombinant M. tuberculosis expressing luciferase and provides results of drug activity against non-replicating M. tuberculosis surviving under hypoxic conditions. Determining activity against non-replicating M. tuberculosis is an important factor when developing drug candidates against M. tuberculosis. Here we describe a step-by-step procedure for both the MABA and LORA.
Collapse
Affiliation(s)
- Sanghyun Cho
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street (M/C 964), Chicago, IL, 60612, USA
| | | | | |
Collapse
|
146
|
Abstract
Metabolism underpins the physiology and pathogenesis of Mycobacterium tuberculosis. However, although experimental mycobacteriology has provided key insights into the metabolic pathways that are essential for survival and pathogenesis, determining the metabolic status of bacilli during different stages of infection and in different cellular compartments remains challenging. Recent advances-in particular, the development of systems biology tools such as metabolomics-have enabled key insights into the biochemical state of M. tuberculosis in experimental models of infection. In addition, their use to elucidate mechanisms of action of new and existing antituberculosis drugs is critical for the development of improved interventions to counter tuberculosis. This review provides a broad summary of mycobacterial metabolism, highlighting the adaptation of M. tuberculosis as specialist human pathogen, and discusses recent insights into the strategies used by the host and infecting bacillus to influence the outcomes of the host-pathogen interaction through modulation of metabolic functions.
Collapse
Affiliation(s)
- Digby F Warner
- Medical Research Council/National Health Laboratory Services/University of Cape Town Molecular Mycobacteriology Research Unit and Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine and Division of Medical Microbiology, University of Cape Town, Rondebosch 7700, South Africa
| |
Collapse
|
147
|
Coleman MT, Chen RY, Lee M, Lin PL, Dodd LE, Maiello P, Via LE, Kim Y, Marriner G, Dartois V, Scanga C, Janssen C, Wang J, Klein E, Cho SN, Barry CE, Flynn JL. PET/CT imaging reveals a therapeutic response to oxazolidinones in macaques and humans with tuberculosis. Sci Transl Med 2014; 6:265ra167. [PMID: 25473035 PMCID: PMC6413515 DOI: 10.1126/scitranslmed.3009500] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oxazolidinone antibiotics such as linezolid have shown significant therapeutic effects in patients with extensively drug-resistant (XDR) tuberculosis (TB) despite modest effects in rodents and no demonstrable early bactericidal activity in human phase 2 trials. We show that monotherapy with either linezolid or AZD5847, a second-generation oxazolidinone, reduced bacterial load at necropsy in Mycobacterium tuberculosis-infected cynomolgus macaques with active TB. This effect coincided with a decline in 2-deoxy-2-[(18)F]-fluoro-d-glucose positron emission tomography (FDG PET) imaging avidity in the lungs of these animals and with reductions in pulmonary pathology measured by serial computed tomography (CT) scans over 2 months of monotherapy. In a parallel phase 2 clinical study of linezolid in patients infected with XDR-TB, we also collected PET/CT imaging data from subjects receiving linezolid that had been added to their failing treatment regimens. Quantitative comparisons of PET/CT imaging changes in these human subjects were similar in magnitude to those observed in macaques, demonstrating that the therapeutic effect of these oxazolidinones can be reproduced in this model of experimental chemotherapy. PET/CT imaging may be useful as an early quantitative measure of drug efficacy against TB in human patients.
Collapse
Affiliation(s)
- M Teresa Coleman
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Ray Y Chen
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Myungsun Lee
- International Tuberculosis Research Center, Changwon 631-710, Republic of Korea
| | - Philana Ling Lin
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
| | - Lori E Dodd
- Biostatistics Research Branch, NIAID, NIH, Bethesda, MD 20892, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Youngran Kim
- International Tuberculosis Research Center, Changwon 631-710, Republic of Korea
| | - Gwendolyn Marriner
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Veronique Dartois
- Public Health Research Institute Center, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Charles Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Christopher Janssen
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jing Wang
- Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Edwin Klein
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sang Nae Cho
- International Tuberculosis Research Center, Changwon 631-710, Republic of Korea. Department of Microbiology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA. Institute of Infectious Disease and Molecular Medicine, and the Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Rondebosch 7701, South Africa.
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| |
Collapse
|
148
|
The cyclic peptide ecumicin targeting ClpC1 is active against Mycobacterium tuberculosis in vivo. Antimicrob Agents Chemother 2014; 59:880-9. [PMID: 25421483 DOI: 10.1128/aac.04054-14] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Drug-resistant tuberculosis (TB) has lent urgency to finding new drug leads with novel modes of action. A high-throughput screening campaign of >65,000 actinomycete extracts for inhibition of Mycobacterium tuberculosis viability identified ecumicin, a macrocyclic tridecapeptide that exerts potent, selective bactericidal activity against M. tuberculosis in vitro, including nonreplicating cells. Ecumicin retains activity against isolated multiple-drug-resistant (MDR) and extensively drug-resistant (XDR) strains of M. tuberculosis. The subcutaneous administration to mice of ecumicin in a micellar formulation at 20 mg/kg body weight resulted in plasma and lung exposures exceeding the MIC. Complete inhibition of M. tuberculosis growth in the lungs of mice was achieved following 12 doses at 20 or 32 mg/kg. Genome mining of lab-generated, spontaneous ecumicin-resistant M. tuberculosis strains identified the ClpC1 ATPase complex as the putative target, and this was confirmed by a drug affinity response test. ClpC1 functions in protein breakdown with the ClpP1P2 protease complex. Ecumicin markedly enhanced the ATPase activity of wild-type (WT) ClpC1 but prevented activation of proteolysis by ClpC1. Less stimulation was observed with ClpC1 from ecumicin-resistant mutants. Thus, ClpC1 is a valid drug target against M. tuberculosis, and ecumicin may serve as a lead compound for anti-TB drug development.
Collapse
|
149
|
Lakshminarayana SB, Huat TB, Ho PC, Manjunatha UH, Dartois V, Dick T, Rao SPS. Comprehensive physicochemical, pharmacokinetic and activity profiling of anti-TB agents. J Antimicrob Chemother 2014; 70:857-67. [PMID: 25587994 DOI: 10.1093/jac/dku457] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The discovery and development of TB drugs has met limited success, with two new drugs approved over the last 40 years. Part of the difficulty resides in the lack of well-established in vitro or in vivo targets of potency and physicochemical and pharmacokinetic parameters. In an attempt to benchmark and compare such properties for anti-TB agents, we have experimentally determined and compiled these parameters for 36 anti-TB compounds, using standardized and centralized assays, thus ensuring direct comparability across drugs and drug classes. METHODS Potency parameters included growth inhibition, cidal activity against growing and non-growing bacteria and activity against intracellular mycobacteria. Pharmacokinetic parameters included basic physicochemical properties, solubility, permeability and metabolic stability. We then attempted to establish correlations between physicochemical, in vitro and in vivo pharmacokinetic and pharmacodynamic indices to tentatively inform future drug discovery efforts. RESULTS Two-thirds of the compounds tested showed bactericidal and intramacrophage activity. Most compounds exhibited favourable solubility, permeability and metabolic stability in standard in vitro pharmacokinetic assays. An analysis of human pharmacokinetic parameters revealed associations between lipophilicity and volume of distribution, clearance, plasma protein binding and oral bioavailability. Not surprisingly, most compounds with favourable pharmacokinetic properties complied with Lipinski's rule of five. CONCLUSIONS However, most attempts to detect in vitro-in vivo correlations were unsuccessful, emphasizing the challenges of anti-TB drug discovery. The objective of this work is to provide a reference dataset for the TB drug discovery community with a focus on comparative in vitro potency and pharmacokinetics.
Collapse
Affiliation(s)
| | - Tan Bee Huat
- Novartis Institute for Tropical Diseases, Singapore
| | - Paul C Ho
- Department of Pharmacy, National University of Singapore, Singapore
| | | | | | - Thomas Dick
- Novartis Institute for Tropical Diseases, Singapore Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
150
|
Abstract
Rapidly growing mycobacteria (RGM) include a diverse group of species. We address the treatment of the most commonly isolated RGM-M abscessus complex, M fortuitum, and M chelonae. The M abscessus complex is composed of 3 closely related species: M abscessus senso stricto (hereafter M abscessus), M massiliense, and M bolletii. Most studies address treatment of M abscessus complex, which accounts for 80% of lung disease caused by RGM and is the second most common RGM to cause extrapulmonary disease (after M fortuitum). The M abscessus complex represent the most drug-resistant nontuberculous mycobacteria and are the most difficult to treat.
Collapse
Affiliation(s)
- Shannon H Kasperbauer
- Division of Mycobacterial and Respiratory Infections, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA; Division of Infectious Diseases, University of Colorado Health Sciences Center, 12700 East 19th Avenue, Research Complex 2, Campus Box B168, Aurora, CO 80045, USA.
| | - Mary Ann De Groote
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Box 1682, Fort Collins, CO 80523, USA
| |
Collapse
|