101
|
Phylogenetic analysis of members of the Phycodnaviridae virus family, using amplified fragments of the major capsid protein gene. Appl Environ Microbiol 2008; 74:3048-57. [PMID: 18359826 DOI: 10.1128/aem.02548-07] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Algal viruses are considered ecologically important by affecting host population dynamics and nutrient flow in aquatic food webs. Members of the family Phycodnaviridae are also interesting due to their extraordinary genome size. Few algal viruses in the Phycodnaviridae family have been sequenced, and those that have been have few genes in common and low gene homology. It has hence been difficult to design general PCR primers that allow further studies of their ecology and diversity. In this study, we screened the nine type I core genes of the nucleocytoplasmic large DNA viruses for sequences suitable for designing a general set of primers. Sequence comparison between members of the Phycodnaviridae family, including three partly sequenced viruses infecting the prymnesiophyte Pyramimonas orientalis and the haptophytes Phaeocystis pouchetii and Chrysochromulina ericina (Pyramimonas orientalis virus 01B [PoV-01B], Phaeocystis pouchetii virus 01 [PpV-01], and Chrysochromulina ericina virus 01B [CeV-01B], respectively), revealed eight conserved regions in the major capsid protein (MCP). Two of these regions also showed conservation at the nucleotide level, and this allowed us to design degenerate PCR primers. The primers produced 347- to 518-bp amplicons when applied to lysates from algal viruses kept in culture and from natural viral communities. The aim of this work was to use the MCP as a proxy to infer phylogenetic relationships and genetic diversity among members of the Phycodnaviridae family and to determine the occurrence and diversity of this gene in natural viral communities. The results support the current legitimate genera in the Phycodnaviridae based on alga host species. However, while placing the mimivirus in close proximity to the type species, PBCV-1, of Phycodnaviridae along with the three new viruses assigned to the family (PoV-01B, PpV-01, and CeV-01B), the results also indicate that the coccolithoviruses and phaeoviruses are more diverged from this group. Phylogenetic analysis of amplicons from virus assemblages from Norwegian coastal waters as well as from isolated algal viruses revealed a cluster of viruses infecting members of the prymnesiophyte and prasinophyte alga divisions. Other distinct clusters were also identified, containing amplicons from this study as well as sequences retrieved from the Sargasso Sea metagenome. This shows that closely related sequences of this family are present at geographically distant locations within the marine environment.
Collapse
|
102
|
Diverse responses of the bivalve-killing dinoflagellate Heterocapsa circularisquama to infection by a single-stranded RNA virus. Appl Environ Microbiol 2008; 74:3105-11. [PMID: 18359824 DOI: 10.1128/aem.02190-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses are believed to be significant pathogens for phytoplankton. Usually, they infect a single algal species, and often their infection is highly strain specific. However, the detailed molecular background of the strain specificity and its ecological significance have not been sufficiently understood. Here, we investigated the temporal changes in viral RNA accumulation and virus-induced cell lysis using a bloom-forming dinoflagellate Heterocapsa circularisquama and its single-stranded RNA virus, HcRNAV. We observed at least three host response patterns to virus inoculation: sensitive, resistant, and delayed lysis. In the sensitive response, the host cell culture was permissive for viral RNA replication and apparent cell lysis was observed; in contrast, resistant cell culture was nonpermissive for viral RNA replication and not lysed. In the delayed-lysis response, although viral RNA replication occurred, virus-induced cell lysis was faint and remarkably delayed. In addition, the number of infectious virus particles released to the culture supernatant at 12 days postinoculation was comparable to that of the sensitive strain. By further analysis, a few strains were characterized as variants of the delayed-lysis strain. These observations indicate that the response of H. circularisquama to HcRNAV infection is highly diverse.
Collapse
|
103
|
Fruscione F, Sturla L, Duncan G, Van Etten JL, Valbuzzi P, De Flora A, Di Zanni E, Tonetti M. Differential role of NADP+ and NADPH in the activity and structure of GDP-D-mannose 4,6-dehydratase from two chlorella viruses. J Biol Chem 2007; 283:184-193. [PMID: 17974560 DOI: 10.1074/jbc.m706614200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
GDP-D-mannose 4,6-dehydratase (GMD) is a key enzyme involved in the synthesis of 6-deoxyhexoses in prokaryotes and eukaryotes. Paramecium bursaria chlorella virus-1 (PBCV-1) encodes a functional GMD, which is unique among characterized GMDs because it also has a strong stereospecific NADPH-dependent reductase activity leading to GDP-D-rhamnose formation (Tonetti, M., Zanardi, D., Gurnon, J., Fruscione, F., Armirotti, A., Damonte, G., Sturla, L., De Flora, A., and Van Etten, J.L. (2003) J. Biol. Chem. 278, 21559-21565). In the present study we characterized a recombinant GMD encoded by another chlorella virus, Acanthocystis turfacea chlorella virus 1 (ATCV-1), demonstrating that it has the expected dehydratase activity. However, it also displayed significant differences when compared with PBCV-1 GMD. In particular, ATCV-1 GMD lacks the reductase activity present in the PBCV-1 enzyme. Using recombinant PBCV-1 and ATCV-1 GMDs, we determined that the enzymatically active proteins contain tightly bound NADPH and that NADPH is essential for maintaining the oligomerization status as well as for the stabilization and function of both enzymes. Phylogenetic analysis indicates that PBCV-1 GMD is the most evolutionary diverged of the GMDs. We conclude that this high degree of divergence was the result of the selection pressures that led to the acquisition of new reductase activity to synthesize GDP-D-rhamnose while maintaining the dehydratase activity in order to continue to synthesize GDP-L-fucose.
Collapse
Affiliation(s)
- Floriana Fruscione
- Department of Experimental Medicine, University of Genova and Center of Excellence for Biomedical Research, Viale Benedetto XV, 1, 16132, Genova, Italy
| | - Laura Sturla
- Department of Experimental Medicine, University of Genova and Center of Excellence for Biomedical Research, Viale Benedetto XV, 1, 16132, Genova, Italy
| | - Garry Duncan
- Department of Biology, Nebraska Wesleyan University, Lincoln, Nebraska 68504-2794
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0722
| | - Paola Valbuzzi
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0722
| | - Antonio De Flora
- Department of Experimental Medicine, University of Genova and Center of Excellence for Biomedical Research, Viale Benedetto XV, 1, 16132, Genova, Italy
| | - Eleonora Di Zanni
- Department of Experimental Medicine, University of Genova and Center of Excellence for Biomedical Research, Viale Benedetto XV, 1, 16132, Genova, Italy
| | - Michela Tonetti
- Department of Experimental Medicine, University of Genova and Center of Excellence for Biomedical Research, Viale Benedetto XV, 1, 16132, Genova, Italy.
| |
Collapse
|
104
|
Culley AI, Steward GF. New genera of RNA viruses in subtropical seawater, inferred from polymerase gene sequences. Appl Environ Microbiol 2007; 73:5937-44. [PMID: 17644642 PMCID: PMC2074930 DOI: 10.1128/aem.01065-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses are an integral component of the marine food web, contributing to the disease and mortality of essentially every type of marine life, yet the diversity of viruses in the sea, especially those with RNA genomes, remains very poorly characterized. Isolates of RNA-containing viruses that infect marine plankton are still rare, and the only cultivation-independent surveys of RNA viral diversity reported so far were conducted for temperate coastal waters of British Columbia. Here, we report on our improvements to a previously used protocol to investigate the diversity of marine picorna-like viruses and our results from applying this protocol in subtropical waters. The original protocol was simplified by using direct filtration, rather than tangential flow filtration, to harvest viruses from seawater, and new degenerate primers were designed to amplify a fragment of the RNA-dependent RNA polymerase gene by reverse transcription-PCR from RNA extracted from the filters. Whereas the original protocol was unsuccessful in a preliminary test, the new protocol resulted in amplification of picorna-like virus sequences in every sample of subtropical and temperate coastal seawater assayed. These polymerase sequences formed a diverse, but monophyletic cluster along with other sequences amplified previously from seawater and sequences from isolates infecting marine protists. Phylogenetic analysis suggested that our sequences represent at least five new genera and 24 new species of RNA viruses. These results contribute to our understanding of RNA virus diversity and suggest that picorna-like viruses are a source of mortality for a wide variety of marine protists.
Collapse
Affiliation(s)
- Alexander I Culley
- Department of Oceanography, University of Hawaii at Mānoa, 1000 Pope Road, Marine Sciences Building, Honolulu, HI 96822, USA.
| | | |
Collapse
|
105
|
Fitzgerald LA, Graves MV, Li X, Hartigan J, Pfitzner AJP, Hoffart E, Van Etten JL. Sequence and annotation of the 288-kb ATCV-1 virus that infects an endosymbiotic chlorella strain of the heliozoon Acanthocystis turfacea. Virology 2007; 362:350-61. [PMID: 17276475 PMCID: PMC2018652 DOI: 10.1016/j.virol.2006.12.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 11/16/2006] [Accepted: 12/24/2006] [Indexed: 11/25/2022]
Abstract
Acanthocystis turfacea chlorella virus (ATCV-1), a prospective member of the family Phycodnaviridae, genus Chlorovirus, infects a unicellular, eukaryotic, chlorella-like green alga, Chlorella SAG 3.83, that is a symbiont in the heliozoon A. turfacea. The 288,047-bp ATCV-1 genome is the first virus to be sequenced that infects Chlorella SAG 3.83. ATCV-1 contains 329 putative protein-encoding and 11 tRNA-encoding genes. The protein-encoding genes are almost evenly distributed on both strands and intergenic space is minimal. Thirty-four percent of the viral gene products resemble entries in the public databases, including some that are unexpected for a virus. For example, these unique gene products include ribonucleoside-triphosphate reductase, dTDP-d-glucose 4,6 dehydratase, potassium ion transporter, aquaglyceroporin, and mucin-desulfating sulfatase. Comparison of ATCV-1 protein-encoding genes with the prototype chlorella virus PBCV-1 indicates that about 80% of the ATCV-1 genes are present in PBCV-1.
Collapse
Affiliation(s)
- Lisa A Fitzgerald
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | | | | | | | | | | | | |
Collapse
|
106
|
Zhang Y, Maley F, Maley GF, Duncan G, Dunigan DD, Van Etten JL. Chloroviruses encode a bifunctional dCMP-dCTP deaminase that produces two key intermediates in dTTP formation. J Virol 2007; 81:7662-71. [PMID: 17475641 PMCID: PMC1933376 DOI: 10.1128/jvi.00186-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chlorovirus PBCV-1, like many large double-stranded DNA-containing viruses, contains several genes that encode putative proteins involved in nucleotide biosynthesis. This report describes the characterization of the PBCV-1 dCMP deaminase, which produces dUMP, a key intermediate in the synthesis of dTTP. As predicted, the recombinant protein has dCMP deaminase activity that is activated by dCTP and inhibited by dTTP. Unexpectedly, however, the viral enzyme also has dCTP deaminase activity, producing dUTP. Typically, these two reactions are catalyzed by proteins in separate enzyme classes; to our knowledge, this is the first example of a protein having both deaminase activities. Kinetic experiments established that (i) the PBCV-1 enzyme has a higher affinity for dCTP than for dCMP, (ii) dCTP serves as a positive heterotropic effector for the dCMP deaminase activity and a positive homotropic effector for the dCTP deaminase activity, and (iii) the enzymatic efficiency of the dCMP deaminase activity is about four times higher than that of the dCTP deaminase activity. Inhibitor studies suggest that the same active site is involved in both dCMP and dCTP deaminations. The discovery that the PBCV-1 dCMP deaminase has two activities, together with a previous report that the virus also encodes a functional dUTP triphosphatase (Y. Zhang, H. Moriyama, K. Homma, and J. L. Van Etten, J. Virol. 79:9945-9953, 2005), means that PBCV-1 is the first virus to encode enzymes involved in all three known pathways to form dUMP.
Collapse
Affiliation(s)
- Yuanzheng Zhang
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583-0722, USA
| | | | | | | | | | | |
Collapse
|
107
|
Monné M, Robinson AJ, Boes C, Harbour ME, Fearnley IM, Kunji ERS. The mimivirus genome encodes a mitochondrial carrier that transports dATP and dTTP. J Virol 2007; 81:3181-6. [PMID: 17229695 PMCID: PMC1866048 DOI: 10.1128/jvi.02386-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 01/08/2007] [Indexed: 11/20/2022] Open
Abstract
Members of the mitochondrial carrier family have been reported in eukaryotes only, where they transport metabolites and cofactors across the mitochondrial inner membrane to link the metabolic pathways of the cytosol and the matrix. The genome of the giant virus Mimiviridae mimivirus encodes a member of the mitochondrial carrier family of transport proteins. This viral protein has been expressed in Lactococcus lactis and is shown to transport dATP and dTTP. As the 1.2-Mb double-stranded DNA mimivirus genome is rich in A and T residues, we speculate that the virus is using this protein to target the host mitochondria as a source of deoxynucleotides for its replication.
Collapse
Affiliation(s)
- Magnus Monné
- Dunn Human Nutrition Unit, Medical Research Council, Hills Road, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | | | |
Collapse
|
108
|
Baumann S, Sander A, Gurnon JR, Yanai-Balser G, VanEtten JL, Piotrowski M. Chlorella viruses contain genes encoding a complete polyamine biosynthetic pathway. Virology 2007; 360:209-17. [PMID: 17101165 PMCID: PMC1971760 DOI: 10.1016/j.virol.2006.10.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 10/02/2006] [Accepted: 10/04/2006] [Indexed: 11/27/2022]
Abstract
Two genes encoding the putative polyamine biosynthetic enzymes agmatine iminohydrolase (AIH) and N-carbamoylputrescine amidohydrolase (CPA) were cloned from the chloroviruses PBCV-1, NY-2A and MT325. They were expressed in Escherichia coli to form C-terminal (His)6-tagged proteins and the recombinant proteins were purified by Ni2+-binding affinity chromatography. The biochemical properties of the two enzymes are similar to AIH and CPA enzymes from Arabidopsis thaliana and Pseudomonas aeruginosa. Together with the previously known virus genes encoding ornithine/arginine decarboxlyase (ODC/ADC) and homospermidine synthase, the chloroviruses have genes that encode a complete set of functional enzymes that synthesize the rare polyamine homospermidine from arginine via agmatine, N-carbamoylputrescine and putrescine. The PBCV-1 aih and cpa genes are expressed early during virus infection together with the odc/adc gene, suggesting that biosynthesis of putrescine is important in early stages of viral replication. The aih and cpa genes are widespread in the chlorella viruses.
Collapse
Affiliation(s)
- Sascha Baumann
- Department of Plant Physiology, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Adrianne Sander
- Department of Plant Physiology, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - James R. Gurnon
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE, 68583-0722, USA
| | - Giane Yanai-Balser
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE, 68583-0722, USA
| | - James L. VanEtten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE, 68583-0722, USA
| | - Markus Piotrowski
- Department of Plant Physiology, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
109
|
Bidle KD, Haramaty L, Barcelos E Ramos J, Falkowski P. Viral activation and recruitment of metacaspases in the unicellular coccolithophore, Emiliania huxleyi. Proc Natl Acad Sci U S A 2007; 104:6049-54. [PMID: 17392426 PMCID: PMC1838821 DOI: 10.1073/pnas.0701240104] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lytic viral infection and programmed cell death (PCD) are thought to represent two distinct death mechanisms in phytoplankton, unicellular photoautotrophs that drift with ocean currents. Here, we demonstrate an interaction between autocatalytic PCD and lytic viral infection in the cosmopolitan coccolithophorid, Emiliania huxleyi. Successful infection of E. huxleyi strain 374 with a lytic virus, EhV1, resulted in rapid internal degradation of cellular components, a dramatic reduction in the photosynthetic efficiency (F(v)/F(m)), and an up-regulation of metacaspase protein expression, concomitant with induction of caspase-like activity. Caspase activation was confirmed through in vitro cleavage in cell extracts of the fluorogenic peptide substrate, IETD-AFC, and direct, in vivo staining of cells with the fluorescently labeled irreversible caspase inhibitor, FITC-VAD-FMK. Direct addition of z-VAD-FMK to infected cultures abolished cellular caspase activity and protein expression and severely impaired viral production. The absence of metacaspase protein expression in resistant E. huxleyi strain 373 during EhV1 infection further demonstrated the critical role of these proteases in facilitating viral lysis. Together with the presence of caspase cleavage recognition sequences within virally encoded proteins, we provide experimental evidence that coccolithoviruses induce and actively recruit host metacaspases as part of their replication strategy. These findings reveal a critical role for metacaspases in the turnover of phytoplankton biomass upon infection with viruses and point to coevolution of host-virus interactions in the activation and maintenance of these enzymes in planktonic, unicellular protists.
Collapse
Affiliation(s)
- Kay D Bidle
- Environmental Biophysics and Molecular Ecology Group, Institute of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ 08901, USA.
| | | | | | | |
Collapse
|
110
|
Abstract
BACKGROUND The genomes of both long-genome (> 200 Kb) bacteriophages and long-genome eukaryotic viruses have cellular gene homologs whose selective advantage is not explained. These homologs add genomic and possibly biochemical complexity. Understanding their significance requires a definition of complexity that is more biochemically oriented than past empirically based definitions. HYPOTHESIS Initially, I propose two biochemistry-oriented definitions of complexity: either decreased randomness or increased encoded information that does not serve immediate needs. Then, I make the assumption that these two definitions are equivalent. This assumption and recent data lead to the following four-part hypothesis that explains the presence of cellular gene homologs in long bacteriophage genomes and also provides a pathway for complexity increases in prokaryotic cells: (1) Prokaryotes underwent evolutionary increases in biochemical complexity after the eukaryote/prokaryote splits. (2) Some of the complexity increases occurred via multi-step, weak selection that was both protected from strong selection and accelerated by embedding evolving cellular genes in the genomes of bacteriophages and, presumably, also archaeal viruses (first tier selection). (3) The mechanisms for retaining cellular genes in viral genomes evolved under additional, longer-term selection that was stronger (second tier selection). (4) The second tier selection was based on increased access by prokaryotic cells to improved biochemical systems. This access was achieved when DNA transfer moved to prokaryotic cells both the more evolved genes and their more competitive and complex biochemical systems. TESTING THE HYPOTHESIS I propose testing this hypothesis by controlled evolution in microbial communities to (1) determine the effects of deleting individual cellular gene homologs on the growth and evolution of long genome bacteriophages and hosts, (2) find the environmental conditions that select for the presence of cellular gene homologs, (3) determine which, if any, bacteriophage genes were selected for maintaining the homologs and (4) determine the dynamics of homolog evolution. IMPLICATIONS OF THE HYPOTHESIS This hypothesis is an explanation of evolutionary leaps in general. If accurate, it will assist both understanding and influencing the evolution of microbes and their communities. Analysis of evolutionary complexity increase for at least prokaryotes should include analysis of genomes of long-genome bacteriophages.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, USA.
| |
Collapse
|
111
|
Serwer P, Hayes SJ, Thomas JA, Hardies SC. Propagating the missing bacteriophages: a large bacteriophage in a new class. Virol J 2007; 4:21. [PMID: 17324288 PMCID: PMC1817643 DOI: 10.1186/1743-422x-4-21] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 02/26/2007] [Indexed: 11/18/2022] Open
Abstract
The number of successful propagations/isolations of soil-borne bacteriophages is small in comparison to the number of bacteriophages observed by microscopy (great plaque count anomaly). As one resolution of the great plaque count anomaly, we use propagation in ultra-dilute agarose gels to isolate a Bacillus thuringiensis bacteriophage with a large head (95 nm in diameter), tail (486 × 26 nm), corkscrew-like tail fibers (187 × 10 nm) and genome (221 Kb) that cannot be detected by the usual procedures of microbiology. This new bacteriophage, called 0305φ8-36 (first number is month/year of isolation; remaining two numbers identify the host and bacteriophage), has a high dependence of plaque size on the concentration of a supporting agarose gel. Bacteriophage 0305φ8-36 does not propagate in the traditional gels used for bacteriophage plaque formation and also does not produce visible lysis of liquid cultures. Bacteriophage 0305φ8-36 aggregates and, during de novo isolation from the environment, is likely to be invisible to procedures of physical detection that use either filtration or centrifugal pelleting to remove bacteria. Bacteriophage 0305φ8-36 is in a new genomic class, based on genes for both structural components and DNA packaging ATPase. Thus, knowledge of environmental virus diversity is expanded with prospect of greater future expansion.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, USA.
| | | | | | | |
Collapse
|
112
|
Taylor JW, Turner E, Townsend JP, Dettman JR, Jacobson D. Eukaryotic microbes, species recognition and the geographic limits of species: examples from the kingdom Fungi. Philos Trans R Soc Lond B Biol Sci 2007; 361:1947-63. [PMID: 17062413 PMCID: PMC1764934 DOI: 10.1098/rstb.2006.1923] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The claim that eukaryotic micro-organisms have global geographic ranges, constituting a significant departure from the situation with macro-organisms, has been supported by studies of morphological species from protistan kingdoms. Here, we examine this claim by reviewing examples from another kingdom of eukaryotic microbes, the Fungi. We show that inferred geographic range of a fungal species depends upon the method of species recognition. While some fungal species defined by morphology show global geographic ranges, when fungal species are defined by phylogenetic species recognition they are typically shown to harbour several to many endemic species. We advance two non-exclusive reasons to explain the perceived difference between the size of geographic ranges of microscopic and macroscopic eukaryotic species when morphological methods of species recognition are used. These reasons are that microbial organisms generally have fewer morphological characters, and that the rate of morphological change will be slower for organisms with less elaborate development and fewer cells. Both of these reasons result in fewer discriminatory morphological differences between recently diverged lineages. The rate of genetic change, moreover, is similar for both large and small organisms, which helps to explain why phylogenetic species of large and small organisms show a more similar distribution of geographic ranges. As a consequence of the different rates in fungi of genetic and morphological changes, genetic isolation precedes a recognizable morphological change. The final step in speciation, reproductive isolation, also follows genetic isolation and may precede morphological change.
Collapse
Affiliation(s)
- John W Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.
| | | | | | | | | |
Collapse
|
113
|
Fitzgerald LA, Graves MV, Li X, Feldblyum T, Hartigan J, Van Etten JL. Sequence and annotation of the 314-kb MT325 and the 321-kb FR483 viruses that infect Chlorella Pbi. Virology 2006; 358:459-71. [PMID: 17023017 PMCID: PMC1890046 DOI: 10.1016/j.virol.2006.08.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 08/18/2006] [Accepted: 08/23/2006] [Indexed: 11/26/2022]
Abstract
Viruses MT325 and FR483, members of the family Phycodnaviridae, genus Chlorovirus, infect the fresh water, unicellular, eukaryotic, chlorella-like green alga, Chlorella Pbi. The 314,335-bp genome of MT325 and the 321,240-bp genome of FR483 are the first viruses that infect Chlorella Pbi to have their genomes sequenced and annotated. Furthermore, these genomes are the two smallest chlorella virus genomes sequenced to date, MT325 has 331 putative protein-encoding and 10 tRNA-encoding genes and FR483 has 335 putative protein-encoding and 9 tRNA-encoding genes. The protein-encoding genes are almost evenly distributed on both strands, and intergenic space is minimal. Approximately 40% of the viral gene products resemble entries in public databases, including some that are the first of their kind to be detected in a virus. For example, these unique gene products include an aquaglyceroporin in MT325, a potassium ion transporter protein and an alkyl sulfatase in FR483, and a dTDP-glucose pyrophosphorylase in both viruses. Comparison of MT325 and FR483 protein-encoding genes with the prototype chlorella virus PBCV-1 indicates that approximately 82% of the genes are present in all three viruses.
Collapse
Affiliation(s)
- Lisa A. Fitzgerald
- Deparment of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304
| | - Michael V. Graves
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, MA 01854
| | - Xiao Li
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, MA 01854
| | - Tamara Feldblyum
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850
| | - James Hartigan
- Agencourt Bioscience Corporation, 500 Cummings Center, Suite 2450, Beverly, MA 01915
| | - James L. Van Etten
- Deparment of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583-0722 and Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68588-0666
- *Corresponding author. Mailing address: Department of Plant Pathology, University of Nebraska-Lincoln, NE 68383-0722. Phone: (402) 472-3168. Fax: (402) 472-2853. E-mail:
| |
Collapse
|
114
|
Fitzgerald LA, Graves MV, Li X, Feldblyum T, Nierman WC, Van Etten JL. Sequence and annotation of the 369-kb NY-2A and the 345-kb AR158 viruses that infect Chlorella NC64A. Virology 2006; 358:472-84. [PMID: 17027058 PMCID: PMC1904511 DOI: 10.1016/j.virol.2006.08.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 08/17/2006] [Accepted: 08/23/2006] [Indexed: 10/24/2022]
Abstract
Viruses NY-2A and AR158, members of the family Phycodnaviridae, genus Chlorovirus, infect the fresh water, unicellular, eukaryotic, chlorella-like green alga, Chlorella NC64A. The 368,683-bp genome of NY-2A and the 344,690-bp genome of AR158 are the two largest chlorella virus genomes sequenced to date; NY-2A contains 404 putative protein-encoding and 7 tRNA-encoding genes and AR158 contains 360 putative protein-encoding and 6 tRNA-encoding genes. The protein-encoding genes are almost evenly distributed on both strands, and intergenic space is minimal. Two of the NY-2A genes encode inteins, the large subunit of ribonucleotide reductase and a superfamily II helicase. These are the first inteins to be detected in the chlorella viruses. Approximately 40% of the viral gene products resemble entries in the public databases, including some that are unexpected for a virus. These include GDP-d-mannose dehydratase, fucose synthase, aspartate transcarbamylase, Ca(++) transporting ATPase and ubiquitin. Comparison of NY-2A and AR158 protein-encoding genes with the prototype chlorella virus PBCV-1 indicates that 85% of the genes are present in all three viruses.
Collapse
Affiliation(s)
- Lisa A. Fitzgerald
- Deparment of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304
| | - Michael V. Graves
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, MA 01854
| | - Xiao Li
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, MA 01854
| | - Tamara Feldblyum
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850
| | - William C. Nierman
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850
- The George Washington University School of Medicine, Department of Biochemistry and Molecular Biology, Washington, DC 20037
| | - James L. Van Etten
- Deparment of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583-0722 and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68588-0666
- *Corresponding author. Mailing address: Department of Plant Pathology, University of Nebraska-Lincoln, NE 68383-0722. Phone: (402) 472-3168. Fax: (402) 472-2853. E-mail:
| |
Collapse
|
115
|
Koonin EV, Dolja VV. Evolution of complexity in the viral world: the dawn of a new vision. Virus Res 2006; 117:1-4. [PMID: 16497406 DOI: 10.1016/j.virusres.2006.01.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2005] [Accepted: 01/19/2006] [Indexed: 11/15/2022]
Abstract
Recent sequencing of the genomes of numerous large viruses provide for unprecedented opportunities to study the emergence and evolution of complexity in the virus world. This special issue of Virus Research explores trends in the evolution of complex genomes in most major classes of viruses.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
116
|
Abstract
Chlorella viruses or chloroviruses are large, icosahedral, plaque-forming, double-stranded-DNA-containing viruses that replicate in certain strains of the unicellular green alga Chlorella. DNA sequence analysis of the 330-kbp genome of Paramecium bursaria chlorella virus 1 (PBCV-1), the prototype of this virus family (Phycodnaviridae), predict approximately 366 protein-encoding genes and 11 tRNA genes. The predicted gene products of approximately 50% of these genes resemble proteins of known function, including many that are completely unexpected for a virus. In addition, the chlorella viruses have several features and encode many gene products that distinguish them from most viruses. These products include: (1) multiple DNA methyltransferases and DNA site-specific endonucleases, (2) the enzymes required to glycosylate their proteins and synthesize polysaccharides such as hyaluronan and chitin, (3) a virus-encoded K(+) channel (called Kcv) located in the internal membrane of the virions, (4) a SET domain containing protein (referred to as vSET) that dimethylates Lys27 in histone 3, and (5) PBCV-1 has three types of introns; a self-splicing intron, a spliceosomal processed intron, and a small tRNA intron. Accumulating evidence indicates that the chlorella viruses have a very long evolutionary history. This review mainly deals with research on the virion structure, genome rearrangements, gene expression, cell wall degradation, polysaccharide synthesis, and evolution of PBCV-1 as well as other related viruses.
Collapse
Affiliation(s)
- Takashi Yamada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi, Japan
| | | | | |
Collapse
|
117
|
Abstract
The origins of viruses are shrouded in mystery, but advances in genomics and the discovery of highly complex giant DNA viruses have stimulated new hypotheses that DNA viruses were involved in the emergence of the eukaryotic cell nucleus, and that they are worthy of being considered as living organisms.
Collapse
Affiliation(s)
- Jean-Michel Claverie
- Structural and Genomic Information Laboratory, CNRS-UPR2589, IBSM, Parc Scientifique de Luminy, 163 Avenue de Luminy, case 934, Marseille 13288, cedex 9, France.
| |
Collapse
|