101
|
Duerr R, Crosse KM, Valero-Jimenez AM, Dittmann M. SARS-CoV-2 Portrayed against HIV: Contrary Viral Strategies in Similar Disguise. Microorganisms 2021; 9:1389. [PMID: 34198973 PMCID: PMC8307803 DOI: 10.3390/microorganisms9071389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 and HIV are zoonotic viruses that rapidly reached pandemic scale, causing global losses and fear. The COVID-19 and AIDS pandemics ignited massive efforts worldwide to develop antiviral strategies and characterize viral architectures, biological and immunological properties, and clinical outcomes. Although both viruses have a comparable appearance as enveloped viruses with positive-stranded RNA and envelope spikes mediating cellular entry, the entry process, downstream biological and immunological pathways, clinical outcomes, and disease courses are strikingly different. This review provides a systemic comparison of both viruses' structural and functional characteristics, delineating their distinct strategies for efficient spread.
Collapse
Affiliation(s)
- Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; (K.M.C.); (A.M.V.-J.); (M.D.)
| | | | | | | |
Collapse
|
102
|
Giamarellos-Bourboulis EJ, Bettoli V, Jemec GBE, Del Marmol V, Marzano AV, Prens EP, Tzellos T, Zouboulis CC. Anti-COVID-19 measurements for hidradenitis suppurativa patients. Exp Dermatol 2021; 30 Suppl 1:18-22. [PMID: 34085330 PMCID: PMC8207032 DOI: 10.1111/exd.14339] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022]
Abstract
The reported incidence of COVID‐19 among cohorts of patients with inflammatory bowel and skin diseases under treatment with biologicals is low. Treatment may further modify disease severity as some biological modifiers, such as anakinra, are also proposed for the management of COVID‐19 patients potentially providing HS patients with an advantage. The above preliminary evidence suggests that hidradenitis suppurativa (HS) does probably not provide an increased susceptibility for COVID‐19 and that any susceptibility is unlikely to be modified negatively by treatment with biologicals. On the occasion of its 10th International Conference, experts of the European Hidradenitis Suppurativa Foundation e.V. have prepared a consensus statement regarding anti‐COVID‐19 measurements for HS patients. Based on the available knowledge, patients with HS may be vaccinated against SARS‐CoV2 and patients affected by metabolic syndrome constitute a high‐risk group for COVID‐19 and should be vaccinated at the earliest convenient point in time. HS patients on treatment with adalimumab can be vaccinated with non‐living virus anti‐SARS‐CoV2 vaccines. A possible suboptimal effect of the vaccine may be suspected but might not be expected universally. The management of the biological treatment in HS patients is at the discretion of the dermatologist / responsible physician.
Collapse
Affiliation(s)
- Evangelos J Giamarellos-Bourboulis
- European Hidradenitis Suppurativa Foundation e.V., Dessau, Germany.,4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vincenzo Bettoli
- European Hidradenitis Suppurativa Foundation e.V., Dessau, Germany.,Department of Medical Sciences, O.U. of Dermatology, Azienda Ospedaliera - University of Ferrara, Ferrara, Italy
| | - Gregor B E Jemec
- European Hidradenitis Suppurativa Foundation e.V., Dessau, Germany.,Department of Dermatology, Zealand University Hospital, Faculty of Health Science, University of Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Veronique Del Marmol
- European Hidradenitis Suppurativa Foundation e.V., Dessau, Germany.,Department of Dermatology, Hôpital Erasme, Universite Libre de Bruxelles, Bruxelles, Belgium
| | - Angelo V Marzano
- European Hidradenitis Suppurativa Foundation e.V., Dessau, Germany.,Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Errol P Prens
- European Hidradenitis Suppurativa Foundation e.V., Dessau, Germany.,Laboratory for Experimental Immunodermatology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Dermatology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Thrasyvoulos Tzellos
- European Hidradenitis Suppurativa Foundation e.V., Dessau, Germany.,Department of Dermatology, NLSH University Hospital, Bodø, Norway
| | - Christos C Zouboulis
- European Hidradenitis Suppurativa Foundation e.V., Dessau, Germany.,Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| |
Collapse
|
103
|
Rowntree LC, Petersen J, Juno JA, Chaurasia P, Wragg K, Koutsakos M, Hensen L, Wheatley AK, Kent SJ, Rossjohn J, Kedzierska K, Nguyen TH. SARS-CoV-2-specific CD8 + T-cell responses and TCR signatures in the context of a prominent HLA-A*24:02 allomorph. Immunol Cell Biol 2021; 99:990-1000. [PMID: 34086357 PMCID: PMC8242669 DOI: 10.1111/imcb.12482] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/29/2022]
Abstract
In‐depth understanding of human T‐cell‐mediated immunity in coronavirus disease 2019 (COVID‐19) is needed if we are to optimize vaccine strategies and immunotherapies. Identification of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) T‐cell epitopes and generation of peptide–human leukocyte antigen (peptide–HLA) tetramers facilitate direct ex vivo analyses of SARS‐CoV‐2‐specific T cells and their T‐cell receptor (TCR) repertoires. We utilized a combination of peptide prediction and in vitro peptide stimulation to validate novel SARS‐CoV‐2 epitopes restricted by HLA‐A*24:02, one of the most prominent HLA class I alleles, especially in Indigenous and Asian populations. Of the peptides screened, three spike‐derived peptides generated CD8+IFNγ+ responses above background, S1208–1216 (QYIKWPWYI), S448–456 (NYNYLYRLF) and S193–201 (VFKNIDGYF), with S1208 generating immunodominant CD8+IFNγ+ responses. Using peptide–HLA‐I tetramers, we performed direct ex vivo tetramer enrichment for HLA‐A*24:02‐restricted CD8+ T cells in COVID‐19 patients and prepandemic controls. The precursor frequencies for HLA‐A*24:02‐restricted epitopes were within the range previously observed for other SARS‐CoV‐2 epitopes for both COVID‐19 patients and prepandemic individuals. Naïve A24/SARS‐CoV‐2‐specific CD8+ T cells increased nearly 7.5‐fold above the average precursor frequency during COVID‐19, gaining effector and memory phenotypes. Ex vivo single‐cell analyses of TCRαβ repertoires found that the A24/S448+CD8+ T‐cell TCRαβ repertoire was driven by a common TCRβ chain motif, whereas the A24/S1208+CD8+ TCRαβ repertoire was diverse across COVID‐19 patients. Our study provides an in depth characterization and important insights into SARS‐CoV‐2‐specific CD8+ T‐cell responses associated with a prominent HLA‐A*24:02 allomorph. This contributes to our knowledge on adaptive immune responses during primary COVID‐19 and could be exploited in vaccine or immunotherapeutic approaches.
Collapse
Affiliation(s)
- Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Priyanka Chaurasia
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kathleen Wragg
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3000, Australia.,Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Thi Ho Nguyen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| |
Collapse
|
104
|
Chen LY, Biggs CM, Jamal S, Stukas S, Wellington CL, Sekhon MS. Soluble interleukin-6 receptor in the COVID-19 cytokine storm syndrome. Cell Rep Med 2021; 2:100269. [PMID: 33899032 PMCID: PMC8055165 DOI: 10.1016/j.xcrm.2021.100269] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Data suggest that interleukin (IL)-6 blockade could reduce mortality in severe COVID-19, yet IL-6 is only modestly elevated in most patients. Chen et al. describe the role of soluble interleukin-6 receptor (sIL-6R) in IL-6 trans-signaling and how understanding the IL-6:sIL-6R axis might help define and treat COVID-19 cytokine storm syndrome.
Collapse
Affiliation(s)
- Luke Y.C. Chen
- Division of Hematology, University of British Columbia, Vancouver, BC V5Z1M9, Canada
- Centre for Health Education Scholarship, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Catherine M. Biggs
- Division of Allergy and Immunology, University of British Columbia, Vancouver, BC V5Z1M9, Canada
| | - Shahin Jamal
- Division of Rheumatology, University of British Columbia, Vancouver, BC V5Z1M9, Canada
| | - Sophie Stukas
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V5Z1M9, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Cheryl L. Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V5Z1M9, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Mypinder S. Sekhon
- Division of Critical Care Medicine, University of British Columbia, Vancouver, BC V5Z1M9, Canada
| |
Collapse
|
105
|
Nguyen THO, Rowntree LC, Petersen J, Chua BY, Hensen L, Kedzierski L, van de Sandt CE, Chaurasia P, Tan HX, Habel JR, Zhang W, Allen LF, Earnest L, Mak KY, Juno JA, Wragg K, Mordant FL, Amanat F, Krammer F, Mifsud NA, Doolan DL, Flanagan KL, Sonda S, Kaur J, Wakim LM, Westall GP, James F, Mouhtouris E, Gordon CL, Holmes NE, Smibert OC, Trubiano JA, Cheng AC, Harcourt P, Clifton P, Crawford JC, Thomas PG, Wheatley AK, Kent SJ, Rossjohn J, Torresi J, Kedzierska K. CD8 + T cells specific for an immunodominant SARS-CoV-2 nucleocapsid epitope display high naive precursor frequency and TCR promiscuity. Immunity 2021; 54:1066-1082.e5. [PMID: 33951417 PMCID: PMC8049468 DOI: 10.1016/j.immuni.2021.04.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/23/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022]
Abstract
To better understand primary and recall T cell responses during coronavirus disease 2019 (COVID-19), it is important to examine unmanipulated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells. By using peptide-human leukocyte antigen (HLA) tetramers for direct ex vivo analysis, we characterized CD8+ T cells specific for SARS-CoV-2 epitopes in COVID-19 patients and unexposed individuals. Unlike CD8+ T cells directed toward subdominant epitopes (B7/N257, A2/S269, and A24/S1,208) CD8+ T cells specific for the immunodominant B7/N105 epitope were detected at high frequencies in pre-pandemic samples and at increased frequencies during acute COVID-19 and convalescence. SARS-CoV-2-specific CD8+ T cells in pre-pandemic samples from children, adults, and elderly individuals predominantly displayed a naive phenotype, indicating a lack of previous cross-reactive exposures. T cell receptor (TCR) analyses revealed diverse TCRαβ repertoires and promiscuous αβ-TCR pairing within B7/N105+CD8+ T cells. Our study demonstrates high naive precursor frequency and TCRαβ diversity within immunodominant B7/N105-specific CD8+ T cells and provides insight into SARS-CoV-2-specific T cell origins and subsequent responses.
Collapse
Affiliation(s)
- Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-0808, Japan
| | - Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam 1066CX, the Netherlands
| | - Priyanka Chaurasia
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer R Habel
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Wuji Zhang
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Linda Earnest
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Kai Yan Mak
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Kathleen Wragg
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Francesca L Mordant
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole A Mifsud
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD 4870, Australia
| | - Katie L Flanagan
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS 7248, Australia; Department of Immunology and Pathology, Monash University, Commercial Road, Melbourne, VIC 3004, Australia; School of Health and Biomedical Science, RMIT University, Melbourne, VIC 3000, Australia; Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS 7250, Australia
| | - Sabrina Sonda
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS 7248, Australia
| | - Jasveen Kaur
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS 7248, Australia; Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS 7250, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Glen P Westall
- Lung Transplant Unit, Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Fiona James
- Department of Infectious Diseases, Austin Hospital, Heidelberg, VIC 3084, Australia
| | - Effie Mouhtouris
- Department of Infectious Diseases, Austin Hospital, Heidelberg, VIC 3084, Australia
| | - Claire L Gordon
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Department of Infectious Diseases, Austin Hospital, Heidelberg, VIC 3084, Australia
| | - Natasha E Holmes
- Department of Infectious Diseases, Austin Hospital, Heidelberg, VIC 3084, Australia; Department of Medicine and Radiology, The University of Melbourne, Parkville, VIC 3000, Australia; Data Analytics Research and Evaluation (DARE) Centre, Austin Health and The University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Olivia C Smibert
- Department of Infectious Diseases, Austin Hospital, Heidelberg, VIC 3084, Australia; Department of Infectious Diseases, Peter McCallum Cancer Centre, Melbourne, VIC 3000, Australia; The National Centre for Infections in Cancer, Peter McCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Jason A Trubiano
- Department of Infectious Diseases, Peter McCallum Cancer Centre, Melbourne, VIC 3000, Australia; The National Centre for Infections in Cancer, Peter McCallum Cancer Centre, Melbourne, VIC 3000, Australia; Centre for Antibiotic Allergy and Research, Department of Infectious Diseases Austin Health, Heidelberg, VIC 3084, Australia; Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Allen C Cheng
- Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, Melbourne, VIC 3004, Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | | | | | - Jeremy Chase Crawford
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3000, Australia; Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Joseph Torresi
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-0808, Japan.
| |
Collapse
|
106
|
Ashhurst TM, Marsh-Wakefield F, Putri GH, Spiteri AG, Shinko D, Read MN, Smith AL, King NJC. Integration, exploration, and analysis of high-dimensional single-cell cytometry data using Spectre. Cytometry A 2021; 101:237-253. [PMID: 33840138 DOI: 10.1002/cyto.a.24350] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022]
Abstract
As the size and complexity of high-dimensional (HD) cytometry data continue to expand, comprehensive, scalable, and methodical computational analysis approaches are essential. Yet, contemporary clustering and dimensionality reduction tools alone are insufficient to analyze or reproduce analyses across large numbers of samples, batches, or experiments. Moreover, approaches that allow for the integration of data across batches or experiments are not well incorporated into computational toolkits to allow for streamlined workflows. Here we present Spectre, an R package that enables comprehensive end-to-end integration and analysis of HD cytometry data from different batches or experiments. Spectre streamlines the analytical stages of raw data pre-processing, batch alignment, data integration, clustering, dimensionality reduction, visualization, and population labelling, as well as quantitative and statistical analysis. Critically, the fundamental data structures used within Spectre, along with the implementation of machine learning classifiers, allow for the scalable analysis of very large HD datasets, generated by flow cytometry, mass cytometry, or spectral cytometry. Using open and flexible data structures, Spectre can also be used to analyze data generated by single-cell RNA sequencing or HD imaging technologies, such as Imaging Mass Cytometry. The simple, clear, and modular design of analysis workflows allow these tools to be used by bioinformaticians and laboratory scientists alike. Spectre is available as an R package or Docker container. R code is available on Github (https://github.com/immunedynamics/spectre).
Collapse
Affiliation(s)
- Thomas Myles Ashhurst
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, Centenary Institute and The University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Felix Marsh-Wakefield
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Vascular Immunology Unit, Department of Pathology, The University of Sydney, Sydney, New South Wales, Australia
| | - Givanna Haryono Putri
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,School of Computer Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Alanna Gabrielle Spiteri
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Viral Immunopathology Laboratory, Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Diana Shinko
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, Centenary Institute and The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Mark Norman Read
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,School of Computer Science, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Initiative, The University of Sydney, Sydney, New South Wales, Australia
| | - Adrian Lloyd Smith
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, Centenary Institute and The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Nicholas Jonathan Cole King
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, Centenary Institute and The University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Viral Immunopathology Laboratory, Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Sydney Nano, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
107
|
Rowntree LC, Chua BY, Nicholson S, Koutsakos M, Hensen L, Douros C, Selva K, Mordant FL, Wong CY, Habel JR, Zhang W, Jia X, Allen L, Doolan DL, Jackson DC, Wheatley AK, Kent SJ, Amanat F, Krammer F, Subbarao K, Cheng AC, Chung AW, Catton M, Nguyen THO, van de Sandt CE, Kedzierska K. Robust correlations across six SARS-CoV-2 serology assays detecting distinct antibody features. Clin Transl Immunology 2021; 10:e1258. [PMID: 33680466 PMCID: PMC7916820 DOI: 10.1002/cti2.1258] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES As the world transitions into a new era of the COVID-19 pandemic in which vaccines become available, there is an increasing demand for rapid reliable serological testing to identify individuals with levels of immunity considered protective by infection or vaccination. METHODS We used 34 SARS-CoV-2 samples to perform a rapid surrogate virus neutralisation test (sVNT), applicable to many laboratories as it circumvents the need for biosafety level-3 containment. We correlated results from the sVNT with five additional commonly used SARS-CoV-2 serology techniques: the microneutralisation test (MNT), in-house ELISAs, commercial Euroimmun- and Wantai-based ELISAs (RBD, spike and nucleoprotein; IgG, IgA and IgM), antigen-binding avidity, and high-throughput multiplex analyses to profile isotype, subclass and Fc effector binding potential. We correlated antibody levels with antibody-secreting cell (ASC) and circulatory T follicular helper (cTfh) cell numbers. RESULTS Antibody data obtained with commercial ELISAs closely reflected results using in-house ELISAs against RBD and spike. A correlation matrix across ten measured ELISA parameters revealed positive correlations for all factors. The frequency of inhibition by rapid sVNT strongly correlated with spike-specific IgG and IgA titres detected by both commercial and in-house ELISAs, and MNT titres. Multiplex analyses revealed strongest correlations between IgG, IgG1, FcR and C1q specific to spike and RBD. Acute cTfh-type 1 cell numbers correlated with spike and RBD-specific IgG antibodies measured by ELISAs and sVNT. CONCLUSION Our comprehensive analyses provide important insights into SARS-CoV-2 humoral immunity across distinct serology assays and their applicability for specific research and/or diagnostic questions to assess SARS-CoV-2-specific humoral responses.
Collapse
Affiliation(s)
- Louise C Rowntree
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Brendon Y Chua
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- Global Station for Zoonosis ControlGlobal Institution for Collaborative Research and Education (GI‐CoRE)Hokkaido UniversitySapporoHokkaidoJapan
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference LaboratoryThe Royal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Marios Koutsakos
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Luca Hensen
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Celia Douros
- Victorian Infectious Diseases Reference LaboratoryThe Royal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Kevin Selva
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Francesca L Mordant
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Chinn Yi Wong
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Jennifer R Habel
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Wuji Zhang
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Xiaoxiao Jia
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Lily Allen
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Denise L Doolan
- Centre for Molecular TherapeuticsAustralian Institute of Tropical Health & MedicineJames Cook UniversityCairnsQLDAustralia
| | - David C Jackson
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- Global Station for Zoonosis ControlGlobal Institution for Collaborative Research and Education (GI‐CoRE)Hokkaido UniversitySapporoHokkaidoJapan
| | - Adam K Wheatley
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyUniversity of MelbourneMelbourneVICAustralia
| | - Stephen J Kent
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyUniversity of MelbourneMelbourneVICAustralia
- Infectious Diseases DepartmentMelbourne Sexual Health CentreAlfred HealthCentral Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Fatima Amanat
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Graduate School of Biomedical SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Florian Krammer
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Kanta Subbarao
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- World Health Organisation (WHO) Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Allen C Cheng
- School of Public Health and Preventive MedicineMonash UniversityMelbourneVICAustralia
- Infection Prevention and Healthcare Epidemiology UnitAlfred HealthMelbourneVICAustralia
| | - Amy W Chung
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Mike Catton
- Victorian Infectious Diseases Reference LaboratoryThe Royal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Thi HO Nguyen
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Carolien E van de Sandt
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- Department of HematopoiesisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Katherine Kedzierska
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- Global Station for Zoonosis ControlGlobal Institution for Collaborative Research and Education (GI‐CoRE)Hokkaido UniversitySapporoHokkaidoJapan
| |
Collapse
|