101
|
Liang Y, Chu PH, Tian L, Ho KF, Ip MSM, Mak JCW. Targeting mitochondrial permeability transition pore ameliorates PM 2.5-induced mitochondrial dysfunction in airway epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118720. [PMID: 34953947 DOI: 10.1016/j.envpol.2021.118720] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Particulate matter with aerodynamic diameter not larger than 2.5 μm (PM2.5) escalated the risk of respiratory diseases. Mitochondrial dysfunction may play a pivotal role in PM2.5-induced airway injury. However, the potential effect of PM2.5 on mitochondrial permeability transition pore (mPTP)-related airway injury is still unknown. This study aimed to investigate the role of mPTP in PM2.5-induced mitochondrial dysfunction in airway epithelial cells in vitro. PM2.5 significantly reduced cell viability and caused apoptosis in BEAS-2B cells. We also found PM2.5 caused cellular and mitochondrial morphological alterations, evidenced by the disappearance of mitochondrial cristae, mitochondrial swelling, and the rupture of the outer mitochondrial membrane. PM2.5 induced mPTP opening via upregulation of voltage-dependent anion-selective channel (VDAC), leading to deprivation of mitochondrial membrane potential, increased mitochondrial reactive oxygen species (ROS) generation and intracellular calcium level. PM2.5 suppressed mitochondrial respiratory function by reducing basal and maximal respiration, and ATP production. The mPTP targeting compounds cyclosporin A [CsA; a potent inhibitor of cyclophilin D (CypD)] and VBIT-12 (a selective VDAC1 inhibitor) significantly inhibited PM2.5-induced mPTP opening and apoptosis, and preserved mitochondrial function by restoring mitochondrial membrane potential, reducing mitochondrial ROS generation and intracellular calcium content, and maintaining mitochondrial respiration function. Our data further demonstrated that PM2.5 caused reduction in nuclear expressions of PPARγ and PGC-1α, which were reversed in the presence of CsA. These findings suggest that mPTP might be a potential therapeutic target in the treatment of PM2.5-induced airway injury.
Collapse
Affiliation(s)
- Yingmin Liang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Pak Hin Chu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Linwei Tian
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Kin Fai Ho
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Mary Sau Man Ip
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Judith Choi Wo Mak
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.
| |
Collapse
|
102
|
Sun Q, Li Y, Shi L, Hussain R, Mehmood K, Tang Z, Zhang H. Heavy metals induced mitochondrial dysfunction in animals: Molecular mechanism of toxicity. Toxicology 2022; 469:153136. [DOI: 10.1016/j.tox.2022.153136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 12/17/2022]
|
103
|
Kaludercic N, Di Lisa F. Cyclophilin D and p66Shc contribute to KCl-induced Ca2+ increase in pulmonary artery smooth muscle cells: a potentially relevant phenomenon awaiting a definite mechanism. Cardiovasc Res 2022; 118:16-17. [PMID: 34343269 DOI: 10.1093/cvr/cvab261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
- Institute for Pediatric Research Città della Speranza, Padova, Italy
| | - Fabio Di Lisa
- Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
104
|
Mendoza AM, Karch J. Simultaneous Acquisition of Mitochondrial Calcium Retention Capacity and Swelling to Measure Permeability Transition Sensitivity. Methods Mol Biol 2022; 2497:129-140. [PMID: 35771440 PMCID: PMC10263276 DOI: 10.1007/978-1-0716-2309-1_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The loss of mitochondrial cristae integrity and mitochondrial swelling are hallmarks of multiple forms of necrotic cell death. One of the most well-studied and relevant inducers of mitochondrial swelling is matrix calcium (Ca2+). Respiring mitochondria will intake available Ca2+ into their matrix until a threshold is reached which triggers the opening of the mitochondrial permeability transition pore (MPTP). Upon opening of the pore, mitochondrial membrane potential dissipates and the mitochondria begin to swell, rendering them dysfunctional. The total amount of Ca2+ taken up by a mitochondrion prior to the engagement of the MPTP is referred to as mitochondrial Ca2+ retention capacity (CRC). The CRC/swelling assay is a useful tool for observing the dose-dependent event of mitochondrial dysfunction in real-time. In this technique, isolated mitochondria are treated with specific boluses of Ca2+ until they reach CRC and undergo swelling. A fluorometer is utilized to detect an increase in transmitted light passing through the sample as the mitochondria lose cristae density, and simultaneously measures calcium uptake by way of a Ca2+-specific membrane impermeable fluorescent dye. Here we provide a detailed protocol describing the mitochondrial CRC/swelling assay and we discuss how varying amounts of mitochondria and Ca2+ added to the system affect the dose-dependency of the assay. We also report how to validate the assay by using MPTP and calcium uptake inhibitors and troubleshooting common mistakes that occur with this approach.
Collapse
Affiliation(s)
- Arielys M Mendoza
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jason Karch
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
105
|
Liu S, Chong W. Roles of LncRNAs in Regulating Mitochondrial Dysfunction in Septic Cardiomyopathy. Front Immunol 2021; 12:802085. [PMID: 34899764 PMCID: PMC8652231 DOI: 10.3389/fimmu.2021.802085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 01/20/2023] Open
Abstract
Sepsis is an abnormal systemic inflammatory response of the host immune system to infection and can lead to fatal multiorgan dysfunction syndrome. Epidemiological studies have shown that approximately 10-70% of sepsis cases can lead to septic cardiomyopathy. Since the pathogenesis of septic cardiomyopathy is not clear, it is difficult for medical doctors to treat the disease. Therefore, finding effective interventions to prevent and reduce myocardial damage in septic cardiomyopathy is clinically significant. Epigenetics is the study of stable genetic phenotype inheritance that does not involve changing gene sequences. Epigenetic inheritance is affected by both gene and environmental regulation. Epigenetic studies focus on the modification and influence of chromatin structure, mainly including chromatin remodelling, DNA methylation, histone modification and noncoding RNA (ncRNA)-related mechanisms. Recently, long ncRNA (lncRNA)-related mechanisms have been the focus of epigenetic studies. LncRNAs are expected to become important targets to prevent, diagnose and treat human diseases. As the energy metabolism centre of cells, mitochondria are important targets in septic cardiomyopathy. Intervention measures to prevent and treat mitochondrial damage are of great significance for improving the prognosis of septic cardiomyopathy. LncRNAs play important roles in life activities. Recently, studies have focused on the involvement of lncRNAs in regulating mitochondrial dysfunction. However, few studies have revealed the involvement of lncRNAs in regulating mitochondrial dysfunction in septic cardiomyopathy. In this article, we briefly review recent research in this area.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Emergency, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wei Chong
- Department of Emergency, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
106
|
Majka M, Kleibert M, Wojciechowska M. Impact of the Main Cardiovascular Risk Factors on Plasma Extracellular Vesicles and Their Influence on the Heart's Vulnerability to Ischemia-Reperfusion Injury. Cells 2021; 10:3331. [PMID: 34943838 PMCID: PMC8699798 DOI: 10.3390/cells10123331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of cardiovascular deaths are associated with acute coronary syndrome, especially ST-elevation myocardial infarction. Therapeutic reperfusion alone can contribute up to 40 percent of total infarct size following coronary artery occlusion, which is called ischemia-reperfusion injury (IRI). Its size depends on many factors, including the main risk factors of cardiovascular mortality, such as age, sex, systolic blood pressure, smoking, and total cholesterol level as well as obesity, diabetes, and physical effort. Extracellular vesicles (EVs) are membrane-coated particles released by every type of cell, which can carry content that affects the functioning of other tissues. Their role is essential in the communication between healthy and dysfunctional cells. In this article, data on the variability of the content of EVs in patients with the most prevalent cardiovascular risk factors is presented, and their influence on IRI is discussed.
Collapse
Affiliation(s)
- Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
107
|
TASK-1 regulates mitochondrial function under hypoxia. Biochem Biophys Res Commun 2021; 578:163-169. [PMID: 34571371 DOI: 10.1016/j.bbrc.2021.09.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022]
Abstract
TASK-1, TWIK-related acid-sensitive potassium channel 1, is a member of the two-pore- domain potassium channel family. It is constitutively active at resting potentials and strongly expressed in the heart. However, little is known about the role of TASK-1 channels in hypoxia. A cellular model of hypoxia and reoxygenation from rat heart-derived H9c2 cells or TASK-1 deficient HEK293T cells was employed to explore the role of TASK-1 channels in cytoprotection against hypoxia. The cell viability assay revealed that TASK-1 expression increased the number of viable cells subjected to 2 h of hypoxia followed by 2 h of reoxygenation (H/R). To dissect the protective role of TASK-1 on mitochondrial function, mitochondrial membrane potential (MMP) was assessed by tetramethylrhodamine fluorescence. It was demonstrated that MMP was significantly decreased by H/R, but it was maintained by TASK-1 expression or pretreatment with cyclosporin A, an inhibitor of mitochondrial permeability transition pore (mPTP). The effect of cyclosporin A on MMP was not further altered by TASK-1 expression. Moreover, TASK-1 expression significantly blocked cytochrome c release induced by H/R. While a small fraction of endogenous TASK-1 was found to colocalize with the mitochondrial marker MitoTracker in H9c2 cells, H/R did not alter the extent of colocalization of TASK-1 with MitoTracker. The total TASK-1 protein level was not significantly affected by H/R. In summary, we provided the evidence that TASK-1 channels confer cytoprotection against hypoxia-reoxygenation injury, possibly by their capacity of maintaining the mitochondrial membrane potential via inhibiting MPTP opening.
Collapse
|
108
|
Dynamic Regulation of Cysteine Oxidation and Phosphorylation in Myocardial Ischemia-Reperfusion Injury. Cells 2021; 10:cells10092388. [PMID: 34572037 PMCID: PMC8469016 DOI: 10.3390/cells10092388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/02/2023] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury significantly alters heart function following infarct and increases the risk of heart failure. Many studies have sought to preserve irreplaceable myocardium, termed cardioprotection, but few, if any, treatments have yielded a substantial reduction in clinical I/R injury. More research is needed to fully understand the molecular pathways that govern cardioprotection. Redox mechanisms, specifically cysteine oxidations, are acute and key regulators of molecular signaling cascades mediated by kinases. Here, we review the role of reactive oxygen species in modifying cysteine residues and how these modifications affect kinase function to impact cardioprotection. This exciting area of research may provide novel insight into mechanisms and likely lead to new treatments for I/R injury.
Collapse
|
109
|
Angeli S, Foulger A, Chamoli M, Peiris TH, Gerencser A, Shahmirzadi AA, Andersen J, Lithgow G. The mitochondrial permeability transition pore activates the mitochondrial unfolded protein response and promotes aging. eLife 2021; 10:63453. [PMID: 34467850 PMCID: PMC8410078 DOI: 10.7554/elife.63453] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 08/15/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial activity determines aging rate and the onset of chronic diseases. The mitochondrial permeability transition pore (mPTP) is a pathological pore in the inner mitochondrial membrane thought to be composed of the F-ATP synthase (complex V). OSCP, a subunit of F-ATP synthase, helps protect against mPTP formation. How the destabilization of OSCP may contribute to aging, however, is unclear. We have found that loss OSCP in the nematode Caenorhabditis elegans initiates the mPTP and shortens lifespan specifically during adulthood, in part via initiation of the mitochondrial unfolded protein response (UPRmt). Pharmacological or genetic inhibition of the mPTP inhibits the UPRmt and restores normal lifespan. Loss of the putative pore-forming component of F-ATP synthase extends adult lifespan, suggesting that the mPTP normally promotes aging. Our findings reveal how an mPTP/UPRmt nexus may contribute to aging and age-related diseases and how inhibition of the UPRmt may be protective under certain conditions.
Collapse
Affiliation(s)
- Suzanne Angeli
- Buck Institute for Research on Aging, Novato, United States
| | - Anna Foulger
- Buck Institute for Research on Aging, Novato, United States
| | - Manish Chamoli
- Buck Institute for Research on Aging, Novato, United States
| | | | - Akos Gerencser
- Buck Institute for Research on Aging, Novato, United States
| | - Azar Asadi Shahmirzadi
- Buck Institute for Research on Aging, Novato, United States.,USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, United States
| | - Julie Andersen
- Buck Institute for Research on Aging, Novato, United States.,USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, United States
| | - Gordon Lithgow
- Buck Institute for Research on Aging, Novato, United States.,USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, United States
| |
Collapse
|
110
|
Hao C, Zhang J, Zhang F, Wu J, Cao H, Wang W. Mitochondrial DNA may act as a biomarker to predict donor-kidney quality. Clin Transplant 2021; 35:e14469. [PMID: 34448256 DOI: 10.1111/ctr.14469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/29/2022]
Abstract
Kidney transplantation is the best therapy for end-stage renal disease. Demand for kidney transplantation rises year-on-year, and the gap between kidney supply and demand remains large. To meet this clinical need, a gradual expansion in the supply of donors is required. However, clinics lack appropriate tools capable of quickly and accurately predicting post-transplant renal allograft function, and thus assess donor-kidney quality before transplantation. Mitochondrial DNA (mtDNA) is a key component of damage-associated molecular patterns (DAMPs) and plays an important part in ischemia-reperfusion injury (IRI), accelerating the progression of IRI by inducing inflammation and type I interferon responses. mtDNA is known to be closely involved in delayed graft function (DGF) and acute kidney injury (AKI) after transplantation. Thus, mtDNA is a potential biomarker able to predict post-transplant renal allograft function. This review summarizes mtDNA biology, the role mtDNA plays in renal transplantation, outlines advances in detecting mtDNA, and details mtDNA's able to predict post-transplant renal allograft function. We aim to elucidate the potential value of mtDNA as a biomarker in the prediction of IRI, and eventually provide help for predicting donor-kidney quality.
Collapse
Affiliation(s)
- Changzhen Hao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Jiandong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Feilong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Jiyue Wu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Huawei Cao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| |
Collapse
|
111
|
Daiber A, Steven S, Euler G, Schulz R. Vascular and Cardiac Oxidative Stress and Inflammation as Targets for Cardioprotection. Curr Pharm Des 2021; 27:2112-2130. [PMID: 33550963 DOI: 10.2174/1381612827666210125155821] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022]
Abstract
Cardiac and vascular diseases are often associated with increased oxidative stress and inflammation, and both may contribute to the disease progression. However, successful applications of antioxidants in the clinical setting are very rare and specific anti-inflammatory therapeutics only emerged recently. Reasons for this rely on the great diversity of oxidative stress and inflammatory cells that can either act as cardioprotective or cause tissue damage in the heart. Recent large-scale clinical trials found that highly specific anti-inflammatory therapies using monoclonal antibodies against cytokines resulted in lower cardiovascular mortality in patients with pre-existing atherosclerotic disease. In addition, unspecific antiinflammatory medication and established cardiovascular drugs with pleiotropic immunomodulatory properties such as angiotensin converting enzyme (ACE) inhibitors or statins have proven beneficial cardiovascular effects. Normalization of oxidative stress seems to be a common feature of these therapies, which can be explained by a close interaction/crosstalk of the cellular redox state and inflammatory processes. In this review, we give an overview of cardiac reactive oxygen species (ROS) sources and processes of cardiac inflammation as well as the connection of ROS and inflammation in ischemic cardiomyopathy in order to shed light on possible cardioprotective interventions.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology, Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Gerhild Euler
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
112
|
Wang C, Wang Y, Shen L. Mitochondrial proteins in heart failure: The role of deacetylation by SIRT3. Pharmacol Res 2021; 172:105802. [PMID: 34363948 DOI: 10.1016/j.phrs.2021.105802] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022]
Abstract
Heart failure (HF) is still the leading cause of death worldwide, occurring with a variety of complex mechanisms. However, most intervention for HF do not directly target the pathological mechanisms underlying cell damage in failing cardiomyocytes. Mitochondria are involved in many physiological processes, which is an important guarantee for normal heart function. Mitochondrial dysfunction is considered to be the critical node of the development of HF. Strict modulation of the mitochondrial function can ameliorate the myocardial injury and protect cardiac function. Acetylation plays an important role in mitochondrial protein homeostasis, and SIRT3, the most important deacetylation protein in mitochondria, is involved in the maintenance of mitochondrial function. SIRT3 can delay the progression of HF by improving mitochondrial function. Herein we summarize the interaction between SIRT3 and proteins related to mitochondrial function including oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), mitochondrial biosynthesis, mitochondrial quality control. In addition, we also sum up the effects of this interaction on HF and the research progress of treatments targeting SIRT3, so as to find potential HF therapeutic for clinical use in the future.
Collapse
Affiliation(s)
- Chunfang Wang
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renming Road, Changsha, Hunan 410011, PR China.
| | - Yating Wang
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renming Road, Changsha, Hunan 410011, PR China.
| | - Li Shen
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renming Road, Changsha, Hunan 410011, PR China.
| |
Collapse
|
113
|
Goda AE, Elenany AM, Elsisi AE. Novel in vivo potential of trifluoperazine to ameliorate doxorubicin-induced cardiotoxicity involves suppression of NF-κB and apoptosis. Life Sci 2021; 283:119849. [PMID: 34343539 DOI: 10.1016/j.lfs.2021.119849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 11/25/2022]
Abstract
AIMS Cardiotoxicity of doxorubicin frequently complicates treatment outcome. Aberrantly activated calcium/calmodulin pathway can eventually trigger signaling cascades that mediate cardiotoxicity. Therefore, we tested the hypothesis that trifluoperazine, a strong calmodulin antagonist, may alleviate this morbidity. MATERIALS AND METHODS Heart failure and cardiotoxicity were assessed via echocardiography, PCR, immunohistochemistry, histopathology, Masson's trichrome staining and transmission electron microscopy. Whereas liver and kidney structural and functional alterations were evaluated histopathologically and biochemically. KEY FINDINGS Results revealed that combination treatment with trifluoperazine could overcome doxorubicin-induced heart failure with reduced ejection fraction. Moreover, heart weight/body weight ratio and histopathological examination showed that trifluoperazine mitigated doxorubicin-induced cardiac atrophy, inflammation and myofibril degeneration. Transmission electron microscopy further confirmed the marked restoration of the left ventricular ultrastructures by trifluoperazine pretreatment. In addition, Masson's trichrome staining revealed that trifluoperazine could significantly inhibit doxorubicin-induced left ventricular remodeling by fibrosis. Of note, doxorubicin induced the expression of myocardial nuclear NF-κB-p65 and caspase-3 which were markedly inhibited by trifluoperazine, suggesting that cardioprotection conferred by trifluoperazine involved, at least in part, suppression of NF-κB and apoptosis. Furthermore, biochemical and histopathological examinations showed that trifluoperazine improved doxorubicin-induced renal and hepatic impairments both functionally and structurally. SIGNIFICANCE In conclusion, the present in vivo study is the first to provide evidences underscoring the protective effects of trifluoperazine that may pave the way for repurposing this calmodulin antagonist in ameliorating organ toxicity by doxorubicin.
Collapse
Affiliation(s)
- Ahmed E Goda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Egypt.
| | - Amr M Elenany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Egypt
| | - Alaa E Elsisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Egypt
| |
Collapse
|
114
|
Mitochondrial Dysfunction and Alterations in Mitochondrial Permeability Transition Pore (mPTP) Contribute to Apoptosis Resistance in Idiopathic Pulmonary Fibrosis Fibroblasts. Int J Mol Sci 2021; 22:ijms22157870. [PMID: 34360637 PMCID: PMC8346102 DOI: 10.3390/ijms22157870] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/04/2021] [Accepted: 07/17/2021] [Indexed: 01/03/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by increased activation of fibroblasts/myofibroblasts. Previous reports have shown that IPF fibroblasts are resistant to apoptosis, but the mechanisms remain unclear. Since inhibition of the mitochondrial permeability transition pore (mPTP) has been implicated in the resistance to apoptosis, in this study, we analyzed the role of mitochondrial function and the mPTP on the apoptosis resistance of IPF fibroblasts under basal conditions and after mitomycin C-induced apoptosis. We measured the release of cytochrome c, mPTP opening, mitochondrial calcium release, oxygen consumption, mitochondrial membrane potential, ADP/ATP ratio, ATP concentration, and mitochondrial morphology. We found that IPF fibroblasts were resistant to mitomycin C-induced apoptosis and that calcium, a well-established activator of mPTP, is decreased as well as the release of pro-apoptotic proteins such as cytochrome c. Likewise, IPF fibroblasts showed decreased mitochondrial function, while mPTP was less sensitive to ionomycin-induced opening. Although IPF fibroblasts did not present changes in the mitochondrial membrane potential, we found a fragmented mitochondrial network with scarce, thinned, and disordered mitochondria with reduced ATP levels. Our findings demonstrate that IPF fibroblasts are resistant to mitomycin C-induced apoptosis and that altered mPTP opening contributes to this resistance. In addition, IPF fibroblasts show mitochondrial dysfunction evidenced by a decrease in respiratory parameters.
Collapse
|
115
|
(Sex differences in cardiac tolerance to ischemia-reperfusion injury - the role of mitochondria). COR ET VASA 2021. [DOI: 10.33678/cor.2021.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
116
|
Wang R, Xu Y, Fang Y, Wang C, Xue Y, Wang F, Cheng J, Ren H, Wang J, Guo W, Liu L, Zhang M. Pathogenetic mechanisms of septic cardiomyopathy. J Cell Physiol 2021; 237:49-58. [PMID: 34278573 DOI: 10.1002/jcp.30527] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/17/2021] [Accepted: 07/06/2021] [Indexed: 12/29/2022]
Abstract
Sepsis is a serious complication after infection, whose further development may lead to multiple organ dysfunction syndrome and so on. It is an important cause of death in critically ill patients who suffered an infection. Sepsis cardiomyopathy is a common complication that exacerbates the prognosis of patients. At present, though the pathogenesis of sepsis cardiomyopathy is not completely clear, in-depth study of the pathogenesis of sepsis cardiomyopathy and the discovery of its potential therapeutic targets may decrease the mortality of sepsis patients and bring clinical benefits. This article reviews mitochondrial dysfunction, mitophagy, oxidation stress, and other mechanisms in sepsis cardiomyopathy.
Collapse
Affiliation(s)
- Runze Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Hematology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuerong Xu
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yexian Fang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chiyao Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yugang Xue
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fangfang Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jin Cheng
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - He Ren
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jie Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wangang Guo
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Li Liu
- Department of Hematology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
117
|
Hypoxia Tolerance Declines with Age in the Absence of Methionine Sulfoxide Reductase (MSR) in Drosophila melanogaster. Antioxidants (Basel) 2021; 10:antiox10071135. [PMID: 34356368 PMCID: PMC8301005 DOI: 10.3390/antiox10071135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
Unlike the mammalian brain, Drosophila melanogaster can tolerate several hours of hypoxia without any tissue injury by entering a protective coma known as spreading depression. However, when oxygen is reintroduced, there is an increased production of reactive oxygen species (ROS) that causes oxidative damage. Methionine sulfoxide reductase (MSR) acts to restore functionality to oxidized methionine residues. In the present study, we have characterized in vivo effects of MSR deficiency on hypoxia tolerance throughout the lifespan of Drosophila. Flies subjected to sudden hypoxia that lacked MSR activity exhibited a longer recovery time and a reduced ability to survive hypoxic/re-oxygenation stress as they approached senescence. However, when hypoxia was induced slowly, MSR deficient flies recovered significantly quicker throughout their entire adult lifespan. In addition, the wildtype and MSR deficient flies had nearly 100% survival rates throughout their lifespan. Neuroprotective signaling mediated by decreased apoptotic pathway activation, as well as gene reprogramming and metabolic downregulation are possible reasons for why MSR deficient flies have faster recovery time and a higher survival rate upon slow induction of spreading depression. Our data are the first to suggest important roles of MSR and longevity pathways in hypoxia tolerance exhibited by Drosophila.
Collapse
|
118
|
Khmelinskii I, Makarov V. Stretching tension effects in permeability transition pores of inner mitochondrial membrane. Biosystems 2021; 208:104488. [PMID: 34274463 DOI: 10.1016/j.biosystems.2021.104488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/30/2022]
Abstract
Presently a mechanism of permeability transition pore (PTP) opening was proposed and discussed. This mechanism is based on mechanical stretching of inner mitochondrial membrane (IMM) caused by mitochondrial swelling (MS). The latter is induced by osmotic pressure generated by solute imbalance between the matrix and the surrounding cyto(sarco)plasm. Modelled by the Monte-Carlo method, an IMM fragment of 350 simulated biological molecules exhibited formation of micro-domains containing two protein and seven phospholipid molecules. The energies (-0.191 eV per molecule) in these micro-domains were significantly larger than those (-0.375 eV per molecule) of other parts of the IMM fragment. Stretching forces applied to such domains expanded them much more than other parts of the IMM fragment. We identify these micro-domains as the PTPs. Both linear and nonlinear functions were used for the strain-stress relation of the IMM fragment, with nonlinear effects more important at large IMM stretching strains. Thus, two main factors are incorporated into the PTP opening mechanism: (1) presence of micro-domains in the IMM structure and (2) IMM stretching stress caused by MS. Taking into account both of these factors, the equation for the probability of PTP opening was deduced, with matrix Ca2+ and H+ ionic concentrations as its parameters. Note that the equation deduced was similar to an earlier reported empirical equation describing PTP opening dynamics. This correspondence provides support to the presently proposed mechanism. Thus, a new look at the PTP opening mechanism is provided, of interest to various research areas related to mitochondrial biophysics.
Collapse
Affiliation(s)
- Igor Khmelinskii
- Universidade do Algarve, FCT, DQB and CEOT, 8005-139, Faro, Portugal
| | - Vladimir Makarov
- University of Puerto Rico, Rio Piedras Campus, PO Box 23343, San Juan, PR, 00931-3343, USA.
| |
Collapse
|
119
|
The Role of Voltage-Dependent Anion Channel in Mitochondrial Dysfunction and Human Disease. Cells 2021; 10:cells10071737. [PMID: 34359907 PMCID: PMC8305817 DOI: 10.3390/cells10071737] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
The voltage-dependent anion channel (VDAC) is a β-barrel membrane protein located in the outer mitochondrial membrane (OMM). VDAC has two conductance states: an open anion selective state, and a closed and slightly cation-selective state. VDAC conductance states play major roles in regulating permeability of ATP/ADP, regulation of calcium homeostasis, calcium flux within ER-mitochondria contact sites, and apoptotic signaling events. Three reported structures of VDAC provide information on the VDAC open state via X-ray crystallography and nuclear magnetic resonance (NMR). Together, these structures provide insight on how VDAC aids metabolite transport. The interaction partners of VDAC, together with the permeability of the pore, affect the molecular pathology of diseases including Parkinson’s disease (PD), Friedreich’s ataxia (FA), lupus, and cancer. To fully address the molecular role of VDAC in disease pathology, major questions must be answered on the structural conformers of VDAC. For example, further information is needed on the structure of the closed state, how binding partners or membrane potential could lead to the open/closed states, the function and mobility of the N-terminal α-helical domain of VDAC, and the physiological role of VDAC oligomers. This review covers our current understanding of the various states of VDAC, VDAC interaction partners, and the roles they play in mitochondrial regulation pertaining to human diseases.
Collapse
|
120
|
Li S, Liu S, Dai Z, Zhang Q, Xu Y, Chen Y, Jiang Z, Huang W, Sun H. The UL16 protein of HSV-1 promotes the metabolism of cell mitochondria by binding to ANT2 protein. Sci Rep 2021; 11:14001. [PMID: 34234233 PMCID: PMC8263751 DOI: 10.1038/s41598-021-93430-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/15/2021] [Indexed: 11/09/2022] Open
Abstract
Long-term studies have shown that virus infection affects the energy metabolism of host cells, which mainly affects the function of mitochondria and leads to the hydrolysis of ATP in host cells, but it is not clear how virus infection participates in mitochondrial energy metabolism in host cells. In our study, HUVEC cells were infected with HSV-1, and the differentially expressed genes were obtained by microarray analysis and data analysis. The viral gene encoding protein UL16 was identified to interact with host protein ANT2 by immunoprecipitation and mass spectrometry. We also reported that UL16 transfection promoted oxidative phosphorylation of glucose and significantly increased intracellular ATP content. Furthermore, UL16 was transfected into the HUVEC cell model with mitochondrial dysfunction induced by d-Gal, and it was found that UL16 could restore the mitochondrial function of cells. It was first discovered that viral protein UL16 could enhance mitochondrial function in mammalian cells by promoting mitochondrial metabolism. This study provides a theoretical basis for the prevention and treatment of mitochondrial dysfunction or the pathological process related to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Shiyu Li
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuting Liu
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhenning Dai
- Department of Stomatology, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, 510095, China
| | - Qian Zhang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yichao Xu
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Youyu Chen
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhenyou Jiang
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou, 510632, China.
| | - Wenhua Huang
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Hanxiao Sun
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
121
|
Sen P, Gupta K, Kumari A, Singh G, Pandey S, Singh R. Wnt/β-Catenin Antagonist Pyrvinium Exerts Cardioprotective Effects in Polymicrobial Sepsis Model by Attenuating Calcium Dyshomeostasis and Mitochondrial Dysfunction. Cardiovasc Toxicol 2021; 21:517-532. [PMID: 33723718 DOI: 10.1007/s12012-021-09643-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/01/2021] [Indexed: 01/22/2023]
Abstract
Calcium dysregulation and mitochondrial dysfunction are key elements in the development of sepsis-induced cardiac dysfunction. Evidences have suggested that inhibition of Wnt/β-Catenin signalling prevents cardiac dysfunction and remodelling in surgical, hypertension and pressure overload models. The present study investigated the effects of Wnt/β-Catenin inhibitor on calcium overload and mitochondrial dysfunction in rat sepsis model of cardiomyopathy. Induction of sepsis by cecal ligation puncture (CLP) resulted in the up-regulation of cardiac β-catenin transcriptional levels and cardiac dysfunction depicted by increased serum lactate dehydrogenase, CK-MB levels reduced maximum (dp/dt max.) and minimum developed pressure (dp/dt min.), increased LVEsDP and relaxation constant tau values. Moreover, oxidative and inflammatory stress, immune cell infiltration, increased myeloperoxidase activity, enhanced caspase-3 activity and fibronectin protein levels were observed in septic rat's heart. Also, septic rat's heart displayed mitochondrial dysfunction due to mPTP opening, increased calcium up-regulation in left ventricular apex tissues and whole heart, increased collagen staining, necrosis and structural damage. Pre-treatment with Wnt/β-Catenin antagonist attenuated sepsis-induced serum and tissue biochemical changes, cardiac dysfunction and structural alterations by inhibiting mitochondrial mPTP opening and restricting calcium overloading in cardiac tissue.
Collapse
Affiliation(s)
- Pallavi Sen
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Kirti Gupta
- Department of Pharmacy, Maharishi Markandeshwar Deemed to be University, Mullana, Ambala, Haryana, India
| | - Abha Kumari
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Gaaminepreet Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| | - Sneha Pandey
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Ragini Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
122
|
Moya GE, Rivera PD, Dittenhafer-Reed KE. Evidence for the Role of Mitochondrial DNA Release in the Inflammatory Response in Neurological Disorders. Int J Mol Sci 2021; 22:7030. [PMID: 34209978 PMCID: PMC8268735 DOI: 10.3390/ijms22137030] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are regarded as the metabolic centers of cells and are integral in many other cell processes, including the immune response. Each mitochondrion contains numerous copies of mitochondrial DNA (mtDNA), a small, circular, and bacterial-like DNA. In response to cellular damage or stress, mtDNA can be released from the mitochondrion and trigger immune and inflammatory responses. mtDNA release into the cytosol or bloodstream can occur as a response to hypoxia, sepsis, traumatic injury, excitatory cytotoxicity, or drastic mitochondrial membrane potential changes, some of which are hallmarks of neurodegenerative and mood disorders. Released mtDNA can mediate inflammatory responses observed in many neurological and mood disorders by driving the expression of inflammatory cytokines and the interferon response system. The current understanding of the role of mtDNA release in affective mood disorders and neurodegenerative diseases will be discussed.
Collapse
Affiliation(s)
| | - Phillip D. Rivera
- Department of Chemistry and Biology, Hope College, Holland, MI 49423, USA;
| | | |
Collapse
|
123
|
Kulawiak B, Bednarczyk P, Szewczyk A. Multidimensional Regulation of Cardiac Mitochondrial Potassium Channels. Cells 2021; 10:1554. [PMID: 34205420 PMCID: PMC8235349 DOI: 10.3390/cells10061554] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria play a fundamental role in the energetics of cardiac cells. Moreover, mitochondria are involved in cardiac ischemia/reperfusion injury by opening the mitochondrial permeability transition pore which is the major cause of cell death. The preservation of mitochondrial function is an essential component of the cardioprotective mechanism. The involvement of mitochondrial K+ transport in this complex phenomenon seems to be well established. Several mitochondrial K+ channels in the inner mitochondrial membrane, such as ATP-sensitive, voltage-regulated, calcium-activated and Na+-activated channels, have been discovered. This obliges us to ask the following question: why is the simple potassium ion influx process carried out by several different mitochondrial potassium channels? In this review, we summarize the current knowledge of both the properties of mitochondrial potassium channels in cardiac mitochondria and the current understanding of their multidimensional functional role. We also critically summarize the pharmacological modulation of these proteins within the context of cardiac ischemia/reperfusion injury and cardioprotection.
Collapse
Affiliation(s)
- Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland;
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland;
| |
Collapse
|
124
|
Abstract
Sepsis is the life-threatening organ dysfunction caused by a dysregulated host response to infection and is the leading cause of death in intensive care units. Cardiac dysfunction caused by sepsis, usually termed sepsis-induced cardiomyopathy, is common and has long been a subject of interest. In this Review, we explore the definition, epidemiology, diagnosis and pathophysiology of septic cardiomyopathy, with an emphasis on how best to interpret this condition in the clinical context. Advances in diagnostic techniques have increased the sensitivity of detection of myocardial abnormalities but have posed challenges in linking those abnormalities to therapeutic strategies and relevant clinical outcomes. Sophisticated methodologies have elucidated various pathophysiological mechanisms but the extent to which these are adaptive responses is yet to be definitively answered. Although the indications for monitoring and treating septic cardiomyopathy are clinical and directed towards restoring tissue perfusion, a better understanding of the course and implications of septic cardiomyopathy can help to optimize interventions and improve clinical outcomes.
Collapse
|
125
|
Rodríguez-Graciani KM, Chapa-Dubocq XR, MacMillan-Crow LA, Javadov S. Association Between L-OPA1 Cleavage and Cardiac Dysfunction During Ischemia-Reperfusion Injury in Rats. Cell Physiol Biochem 2021; 54:1101-1114. [PMID: 33119220 PMCID: PMC8170594 DOI: 10.33594/000000303] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
Background/Aims: Structural and functional alterations in mitochondria, particularly, the inner mitochondrial membrane (IMM) plays a critical role in mitochondria-mediated cell death in response to cardiac ischemia-reperfusion (IR) injury. The integrity of IMM can be affected by two potential intra-mitochondrial factors: i) mitochondrial matrix swelling, and ii) proteolytic cleavage of the long optic atrophy type 1 (L-OPA1), an IMM-localized dynamin-like GTPase engaged in the regulation of structural organization and integrity of the mitochondrial cristae. However, the relationship between these two factors in response to oxidative stress remains unclear. Here, we elucidated the effects of cardiac IR injury on L-OPA1 cleavage and OMA1 activity. Methods: Langendorff-mode perfused isolated rat hearts were subjected to 25-min of global ischemia followed by 90-min reperfusion in the presence or absence of XJB-5-131 (XJB, a mitochondria-targeting ROS scavenger) and sanglifehrin A (SfA, a permeability transition pore inhibitor). Results: XJB in combination with SfA increased post-ischemic recovery of cardiac function and reduced mitochondrial ROS production at 30- and 60-min reperfusion and affected mitochondrial swelling. L-OPA1 levels were reduced in IR hearts; however, neither XJB, SfA, and their combination prevented IR-induced reduction of L-OPA1 cleavage. Likewise, IR increased the OMA1 enzymatic activity, which remained unchanged in the presence of XJB and/or SfA. Conclusion: IR-induced cardiac and mitochondrial dysfunctions are associated with OMA1 activation and L-OPA1 cleavage. However, XJB, SfA, and their combination do not prevent these changes despite improved heart and mitochondria function, thus, suggesting that different mechanisms can be implicated in L-OPA1 processing in response to cardiac IR injury.
Collapse
Affiliation(s)
| | - Xavier R Chapa-Dubocq
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, USA
| | - Lee Ann MacMillan-Crow
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, USA,
| |
Collapse
|
126
|
Frantsiyants E, Neskubina I, Shikhlyarova A, Yengibaryan M, Vashchenko L, Surikova E, Nemashkalova L, Kaplieva I, Trepitaki L, Bandovkina V, Pogorelova Y. Content of apoptosis factors and self-organization processes in the mitochondria of heart cells in female mice C57BL/6 under growth of melanoma B16 / F10 linked with comorbid pathology. CARDIOMETRY 2021. [DOI: 10.18137/cardiometry.2021.18.121130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The aim is to study some mechanisms of regulation of apoptosis and self-organization in the mitochondria in the heart cells in female mice during the growth of experimental melanoma B16/ F10 linked with chronic neurogenic pain as comorbid pathology.
Collapse
|
127
|
Oyedeji TA, Onireti DO, Lasisi OS, Akobi CI, Olorunsogo OO. Stigmasterol isolated from the chloroform fraction of Adenopus breviflorus Benth fruit induces mitochondrial-dependent apoptosis in rat liver. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 18:737-744. [PMID: 33964200 DOI: 10.1515/jcim-2020-0323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/12/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Decoction of Adenopus breviflorus fruit is used in folkloric medicine for treating dysmenorrhea and gonorrhea. Phytochemicals from A. breviflorus may be potent in inducing mitochondrial-dependent apoptosis via the opening of the mitochondrial permeability transition (MPT) pore. Therefore, this study investigated the in vitro effects of stigmasterol isolated from the chloroform fraction of A. breviflorus (CFAB) and also the increasing concentration of CFAB on the opening of rat liver mitochondrial permeability transition (MPT) pore. METHODS Fractionation of CFAB on column chromatography yielded a needle-like crystal which structure was elucidated by standard spectroscopic techniques. The effects of stigmasterol and CFAB on MPT pore opening were assayed spectrophotometrically. Also, the effect of CFAB on mitochondrial ATPase (mATPase) activity and cytochrome c (Cyt c) release were determined. RESULTS Stigmasterol isolated from CFAB induced MPT pore opening significantly (p<0.05) when compared with the control. Similarly, CFAB significantly (p<0.05) induced MPT pore opening in rat liver mitochondria in a concentration-dependent manner in the presence and absence of the triggering agent - calcium ion. Furthermore, the increasing concentration of CFAB significantly (p<0.05) stimulated mitochondrial ATPase (mATPase) activity and Cyt c release in a concentration-dependent manner. CONCLUSIONS The study showed that stigmasterol isolated from the chloroform fraction of A. breviflorus is a potent inducer of mitochondrial-dependent apoptosis. Also, the study further revealed that CFAB possesses potent bioactive compounds which can induce the mitochondrial-dependent apoptosis through the opening of the mitochondrial permeability transition pore, activation of mitochondrial ATPase (mATPase) activity and cytochrome c release.
Collapse
Affiliation(s)
- Tolulope A Oyedeji
- Department of Biochemistry, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Daniel O Onireti
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Olaitan S Lasisi
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Chibuzor I Akobi
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Olufunso O Olorunsogo
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
128
|
The Regulation of Non-Specific Membrane Permeability Transition in Yeast Mitochondria under Oxidative Stress. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, the mechanism of non-specific membrane permeability (yPTP) in the Endomyces magnusii yeast mitochondria under oxidative stress due to blocking the key antioxidant enzymes has been investigated. We used monitoring the membrane potential at the cellular (potential-dependent staining) and mitochondrial levels and mitochondria ultra-structural images with transmission electron microscopy (TEM) to demonstrate the mitochondrial permeability transition induction due to the pore opening. Analysis of the yPTP opening upon respiring different substrates showed that NAD(P)H completely blocked the development of the yPTP. The yPTP opening was inhibited by 5–20 mM Pi, 5 mM Mg2+, adenine nucleotides (AN), 5 mM GSH, the inhibitor of the Pi transporter (PiC), 100 μM mersalyl, the blockers of the adenine nucleotide transporter (ANT) carboxyatractyloside (CATR), and bongkrekic acid (BA). We concluded that the non-specific membrane permeability pore opens in the E. magnusii mitochondria under oxidative stress, and the ANT and PiC are involved in its formation. The crucial role of the Ca2+ ions in the process has not been confirmed. We showed that the Ca2+ ions affected the yPTP both with and without the Ca2+ ionophore ETH129 application insignificantly. This phenomenon in the E. magnusii yeast unites both mitochondrial unselective channel (ScMUC) features in the Saccharomyces cerevisiae mitochondria and the classical membrane pore in the mammalian ones (mPTP).
Collapse
|
129
|
Strubbe-Rivera JO, Chen J, West BA, Parent KN, Wei GW, Bazil JN. Modeling the Effects of Calcium Overload on Mitochondrial Ultrastructural Remodeling. APPLIED SCIENCES-BASEL 2021; 11. [PMID: 33898062 PMCID: PMC8067326 DOI: 10.3390/app11052071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mitochondrial cristae are dynamic invaginations of the inner membrane and play a key role in its metabolic capacity to produce ATP. Structural alterations caused by either genetic abnormalities or detrimental environmental factors impede mitochondrial metabolic fluxes and lead to a decrease in their ability to meet metabolic energy requirements. While some of the key proteins associated with mitochondrial cristae are known, very little is known about how the inner membrane dynamics are involved in energy metabolism. In this study, we present a computational strategy to understand how cristae are formed using a phase-based separation approach of both the inner membrane space and matrix space, which are explicitly modeled using the Cahn–Hilliard equation. We show that cristae are formed as a consequence of minimizing an energy function associated with phase interactions which are subject to geometric boundary constraints. We then extended the model to explore how the presence of calcium phosphate granules, entities that form in calcium overload conditions, exert a devastating inner membrane remodeling response that reduces the capacity for mitochondria to produce ATP. This modeling approach can be extended to include arbitrary geometrical constraints, the spatial heterogeneity of enzymes, and electrostatic effects to mechanize the impact of ultrastructural changes on energy metabolism.
Collapse
Affiliation(s)
- Jasiel O. Strubbe-Rivera
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Jiahui Chen
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
| | - Benjamin A. West
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Kristin N. Parent
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Jason N. Bazil
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- Correspondence:
| |
Collapse
|
130
|
Thiel G, Schmidt T, Rössler OG. Ca 2+ Microdomains, Calcineurin and the Regulation of Gene Transcription. Cells 2021; 10:cells10040875. [PMID: 33921430 PMCID: PMC8068893 DOI: 10.3390/cells10040875] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/18/2022] Open
Abstract
Ca2+ ions function as second messengers regulating many intracellular events, including neurotransmitter release, exocytosis, muscle contraction, metabolism and gene transcription. Cells of a multicellular organism express a variety of cell-surface receptors and channels that trigger an increase of the intracellular Ca2+ concentration upon stimulation. The elevated Ca2+ concentration is not uniformly distributed within the cytoplasm but is organized in subcellular microdomains with high and low concentrations of Ca2+ at different locations in the cell. Ca2+ ions are stored and released by intracellular organelles that change the concentration and distribution of Ca2+ ions. A major function of the rise in intracellular Ca2+ is the change of the genetic expression pattern of the cell via the activation of Ca2+-responsive transcription factors. It has been proposed that Ca2+-responsive transcription factors are differently affected by a rise in cytoplasmic versus nuclear Ca2+. Moreover, it has been suggested that the mode of entry determines whether an influx of Ca2+ leads to the stimulation of gene transcription. A rise in cytoplasmic Ca2+ induces an intracellular signaling cascade, involving the activation of the Ca2+/calmodulin-dependent protein phosphatase calcineurin and various protein kinases (protein kinase C, extracellular signal-regulated protein kinase, Ca2+/calmodulin-dependent protein kinases). In this review article, we discuss the concept of gene regulation via elevated Ca2+ concentration in the cytoplasm and the nucleus, the role of Ca2+ entry and the role of enzymes as signal transducers. We give particular emphasis to the regulation of gene transcription by calcineurin, linking protein dephosphorylation with Ca2+ signaling and gene expression.
Collapse
|
131
|
Pharmacological Inhibition of S-Nitrosoglutathione Reductase Reduces Cardiac Damage Induced by Ischemia-Reperfusion. Antioxidants (Basel) 2021; 10:antiox10040555. [PMID: 33918310 PMCID: PMC8065739 DOI: 10.3390/antiox10040555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 01/09/2023] Open
Abstract
The cardioprotective effects of nitric oxide (NO) have been described through S-nitrosylation of several important proteins in the mitochondria of the cardiomyocyte. S-nitrosoglutathione reductase (GSNOR) is an enzyme involved in the metabolism of S-nitrosothiols by producing denitrosylation, thus limiting the cardioprotective effect of NO. The effect of GSNOR inhibition on the damage by cardiac ischemia–reperfusion is still unclear. We tested the hypothesis that pharmacological inhibition of GSNOR promotes cardioprotection by increasing the levels of protein S-nitrosylation. In a model of ischemia–reperfusion in isolated rat heart, the effect of a GSNOR inhibitor, 5-chloro-3-(2-[4-ethoxyphenyl) (ethyl) amino]-2-oxoethyl)-1H-indole-2-carboxylic acid (C2), was investigated. Ventricular function and hemodynamics were determined, in addition to tissue damage and S-nitrosylation of mitochondrial proteins. Hearts treated with C2 showed a lower release of myocardial damage marker creatine kinase and a reduction in the infarcted area. It also improved post-ischemia ventricular function compared to controls. These results were associated with increasing protein S-nitrosylation, specifically of the mitochondrial complexes III and V. The pharmacological inhibition of GSNOR showed a concentration-dependent cardioprotective effect, being observed in functional parameters and myocardial damage, which was maximal at 1 µmol/L, associated with increased S-nitrosylation of mitochondrial proteins. These data suggest that GSNOR is an interesting pharmacological target for cardiac reperfusion injury.
Collapse
|
132
|
Zhou F, Feng T, Lu X, Wang H, Chen Y, Zhang Q, Zhang X, Xiu J. Interleukin 35 protects cardiomyocytes following ischemia/reperfusion-induced apoptosis via activation of mitochondrial STAT3. Acta Biochim Biophys Sin (Shanghai) 2021; 53:410-418. [PMID: 33619515 DOI: 10.1093/abbs/gmab007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial reactive oxygen species (mtROS)-induced apoptosis has been suggested to contribute to myocardial ischemia/reperfusion injury. Interleukin 35 (IL-35), a novel anti-inflammatory cytokine, has been shown to protect the myocardium and inhibit mtROS production. However, its effect on cardiomyocytes upon exposure to hypoxia/reoxygenation (H/R) damage has not yet been elucidated. The present study aimed to investigate the potential protective role and underlying mechanisms of IL-35 in H/R-induced mouse neonatal cardiomyocyte injury. Mouse neonatal cardiomyocytes were challenged to H/R in the presence of IL-35, and we found that IL-35 dose dependently promotes cell viability, diminishes mtROS, maintains mitochondrial membrane potential, and decreases the number of apoptotic cardiomyocytes. Meanwhile, IL-35 remarkably activates mitochondrial STAT3 (mitoSTAT3) signaling, inhibits cytochrome c release, and reduces apoptosis signaling. Furthermore, co-treatment of the cardiomyocytes with the STAT3 inhibitor AG490 abrogates the IL-35-induced cardioprotective effects. Our study identified the protective role of IL-35 in cardiomyocytes following H/R damage and revealed that IL-35 protects cardiomyocytes against mtROS-induced apoptosis through the mitoSTAT3 signaling pathway during H/R.
Collapse
Affiliation(s)
- Fengyun Zhou
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ting Feng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiangqi Lu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Huicheng Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yangping Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiuxia Zhang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinlu Zhang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiancheng Xiu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
133
|
Zheng J, Chen P, Zhong J, Cheng Y, Chen H, He Y, Chen C. HIF‑1α in myocardial ischemia‑reperfusion injury (Review). Mol Med Rep 2021; 23:352. [PMID: 33760122 PMCID: PMC7974458 DOI: 10.3892/mmr.2021.11991] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a severe injury to the ischemic myocardium following the recovery of blood flow. Currently, there is no effective treatment for MIRI in clinical practice. Over the past two decades, biological studies of hypoxia and hypoxia-inducible factor-1α (HIF-1α) have notably improved understanding of oxygen homeostasis. HIF-1α is an oxygen-sensitive transcription factor that mediates adaptive metabolic responses to hypoxia and serves a pivotal role in MIRI. In particular, previous studies have demonstrated that HIF-1α improves mitochondrial function, decreases cellular oxidative stress, activates cardioprotective signaling pathways and downstream protective genes and interacts with non-coding RNAs. The present review summarizes the roles and associated mechanisms of action of HIF-1α in MIRI. In addition, HIF-1α-associated MIRI intervention, including natural compounds, exosomes, ischemic preconditioning and ischemic post-processing are presented. The present review provides evidence for the roles of HIF-1α activation in MIRI and supports its use as a therapeutic target.
Collapse
Affiliation(s)
- Jie Zheng
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Peier Chen
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Jianfeng Zhong
- Guangdong Key Laboratory of Age‑related Cardiac and Cerebral Diseases, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yu Cheng
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Hao Chen
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Yuan He
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Can Chen
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524003, P.R. China
| |
Collapse
|
134
|
Olowofolahan AO, Olorunsogo OO. Effect of Gloriosa superba linn (EEGS) on mPT and monosodium glutamate-induced proliferative disorder using rat model. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113498. [PMID: 33091496 DOI: 10.1016/j.jep.2020.113498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hyperplasia, Tumors and cancers are various forms of proliferative disorders affecting humans. Surgery is the main treatment approach while other options are also associated with adverse effects. There is therefore a need for the development of better alternative therapy that is cost effective and readily available with little or no adverse effect. Some bioactive agents in medicinal plants exhibit their anti-proliferative potential by induction of mitochondrial permeability transition pore (mPT) opening. Gloriosa superba, a medicinal plant, is folklorically used in the treatment of tumors and cancers. AIM OF THE STUDY This study therefore aimed at investigating the effect of ethanol leaf extract of Gloriosa superba (EEGS) on mPT and monosodium glutamate-induced proliferative disorder in some specific tissues using rat model. MATERIALS AND METHODS Isolated rat liver mitochondria were exposed to different concentrations (10, 30, 50, 70 and 90 μg/ml) of EEGS. The mPT pore opening, cytochrome c release, mitochondrial ATPase activity and lipid peroxidation were assessed spectrophotometrically. Caspases 9 and 3 activities were carried out using ELISA technique. Histological assessment of the liver, prostate and uterus of normal and monosodium glutamate (MSG)-treated rats were carried out. RESULTS The results showed significant induction of mPT pore opening, release of cytochrome c, enhancement of mitochondrial ATPase activity, inhibition of lipid peroxidation and activation of caspases 9 and 3 activities by EEGS. The histological assessment revealed the presence of MSG-induced hepato-cellular damage, benign prostate hyperplasia and uterine hyperplasia which were ameliorated by EEGS co-administration. CONCLUSIONS These findings suggest that EEGS contains putative agents that can induce apoptosis via induction of mPT pore opening and as well protect against MSG-induced hepato-cellular damage and proliferative disorder in prostate and uterus.
Collapse
Affiliation(s)
- Adeola Oluwakemi Olowofolahan
- Laboratory for Membrane Biochemistry Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria.
| | - Olufunso Olabode Olorunsogo
- Laboratory for Membrane Biochemistry Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria.
| |
Collapse
|
135
|
Elorza AA, Soffia JP. mtDNA Heteroplasmy at the Core of Aging-Associated Heart Failure. An Integrative View of OXPHOS and Mitochondrial Life Cycle in Cardiac Mitochondrial Physiology. Front Cell Dev Biol 2021; 9:625020. [PMID: 33692999 PMCID: PMC7937615 DOI: 10.3389/fcell.2021.625020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
The most common aging-associated diseases are cardiovascular diseases which affect 40% of elderly people. Elderly people are prone to suffer aging-associated diseases which are not only related to health and medical cost but also to labor, household productivity and mortality cost. Aging is becoming a world problem and it is estimated that 21.8% of global population will be older than 65 years old in 2050; and for the first time in human history, there will be more elderly people than children. It is well accepted that the origin of aging-associated cardiovascular diseases is mitochondrial dysfunction. Mitochondria have their own genome (mtDNA) that is circular, double-stranded, and 16,569 bp long in humans. There are between 500 to 6000 mtDNA copies per cell which are tissue-specific. As a by-product of ATP production, reactive oxygen species (ROS) are generated which damage proteins, lipids, and mtDNA. ROS-mutated mtDNA co-existing with wild type mtDNA is called mtDNA heteroplasmy. The progressive increase in mtDNA heteroplasmy causes progressive mitochondrial dysfunction leading to a loss in their bioenergetic capacity, disruption in the balance of mitochondrial fusion and fission events (mitochondrial dynamics, MtDy) and decreased mitophagy. This failure in mitochondrial physiology leads to the accumulation of depolarized and ROS-generating mitochondria. Thus, besides attenuated ATP production, dysfunctional mitochondria interfere with proper cellular metabolism and signaling pathways in cardiac cells, contributing to the development of aging-associated cardiovascular diseases. In this context, there is a growing interest to enhance mitochondrial function by decreasing mtDNA heteroplasmy. Reduction in mtDNA heteroplasmy is associated with increased mitophagy, proper MtDy balance and mitochondrial biogenesis; and those processes can delay the onset or progression of cardiovascular diseases. This has led to the development of mitochondrial therapies based on the application of nutritional, pharmacological and genetic treatments. Those seeking to have a positive impact on mtDNA integrity, mitochondrial biogenesis, dynamics and mitophagy in old and sick hearts. This review covers the current knowledge of mitochondrial physiopathology in aging, how disruption of OXPHOS or mitochondrial life cycle alter mtDNA and cardiac cell function; and novel mitochondrial therapies to protect and rescue our heart from cardiovascular diseases.
Collapse
Affiliation(s)
- Alvaro A Elorza
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Juan Pablo Soffia
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
136
|
Greco M, Spinelli CC, De Riccardis L, Buccolieri A, Di Giulio S, Musarò D, Pagano C, Manno D, Maffia M. Copper Dependent Modulation of α-Synuclein Phosphorylation in Differentiated SHSY5Y Neuroblastoma Cells. Int J Mol Sci 2021; 22:ijms22042038. [PMID: 33670800 PMCID: PMC7922547 DOI: 10.3390/ijms22042038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/31/2021] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
Copper (Cu) dyshomeostasis plays a pivotal role in several neuropathologies, such as Parkinson's disease (PD). Metal accumulation in the central nervous system (CNS) could result in loss-of-function of proteins involved in Cu metabolism and redox cycling, generating reactive oxygen species (ROS). Moreover, neurodegenerative disorders imply the presence of an excess of misfolded proteins known to lead to neuronal damage. In PD, Cu accumulates in the brain, binds α-synuclein, and initiates its aggregation. We assessed the correlation between neuronal differentiation, Cu homeostasis regulation, and α-synuclein phosphorylation. At this purpose, we used differentiated SHSY5Y neuroblastoma cells to reproduce some of the characteristics of the dopaminergic neurons. Here, we reported that differentiated cells expressed a significantly higher amount of a copper transporter protein 1 (CTR1), increasing the copper uptake. Cells also showed a significantly more phosphorylated form of α-synuclein, further increased by copper treatment, without modifications in α-synuclein levels. This effect depended on the upregulation of the polo-like kinase 2 (PLK2), whereas the levels of the relative protein phosphatase 2A (PP2A) remained unvaried. No changes in the oxidative state of the cells were identified. The Cu dependent alteration of α-synuclein phosphorylation pattern might potentially offer new opportunities for clinical intervention.
Collapse
Affiliation(s)
- Marco Greco
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 73100 Lecce, Italy; (M.G.); (D.M.)
| | - Chiara Carmela Spinelli
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
| | - Lidia De Riccardis
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
| | - Alessandro Buccolieri
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
| | - Simona Di Giulio
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
| | - Debora Musarò
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
| | - Claudia Pagano
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
| | - Daniela Manno
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 73100 Lecce, Italy; (M.G.); (D.M.)
| | - Michele Maffia
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
- Correspondence: ; Tel.: +39-0832-298670
| |
Collapse
|
137
|
Ruiz M, Khairallah M, Dingar D, Vaniotis G, Khairallah RJ, Lauzier B, Thibault S, Trépanier J, Shi Y, Douillette A, Hussein B, Nawaito SA, Sahadevan P, Nguyen A, Sahmi F, Gillis MA, Sirois MG, Gaestel M, Stanley WC, Fiset C, Tardif JC, Allen BG. MK2-Deficient Mice Are Bradycardic and Display Delayed Hypertrophic Remodeling in Response to a Chronic Increase in Afterload. J Am Heart Assoc 2021; 10:e017791. [PMID: 33533257 PMCID: PMC7955338 DOI: 10.1161/jaha.120.017791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Mitogen‐activated protein kinase–activated protein kinase‐2 (MK2) is a protein serine/threonine kinase activated by p38α/β. Herein, we examine the cardiac phenotype of pan MK2‐null (MK2−/−) mice. Methods and Results Survival curves for male MK2+/+ and MK2−/− mice did not differ (Mantel‐Cox test, P=0.580). At 12 weeks of age, MK2−/− mice exhibited normal systolic function along with signs of possible early diastolic dysfunction; however, aging was not associated with an abnormal reduction in diastolic function. Both R‐R interval and P‐R segment durations were prolonged in MK2‐deficient mice. However, heart rates normalized when isolated hearts were perfused ex vivo in working mode. Ca2+ transients evoked by field stimulation or caffeine were similar in ventricular myocytes from MK2+/+ and MK2−/− mice. MK2−/− mice had lower body temperature and an age‐dependent reduction in body weight. mRNA levels of key metabolic genes, including Ppargc1a, Acadm, Lipe, and Ucp3, were increased in hearts from MK2−/− mice. For equivalent respiration rates, mitochondria from MK2−/− hearts showed a significant decrease in Ca2+ sensitivity to mitochondrial permeability transition pore opening. Eight weeks of pressure overload increased left ventricular mass in MK2+/+ and MK2−/− mice; however, after 2 weeks the increase was significant in MK2+/+ but not MK2−/− mice. Finally, the pressure overload–induced decrease in systolic function was attenuated in MK2−/− mice 2 weeks, but not 8 weeks, after constriction of the transverse aorta. Conclusions Collectively, these results implicate MK2 in (1) autonomic regulation of heart rate, (2) cardiac mitochondrial function, and (3) the early stages of myocardial remodeling in response to chronic pressure overload.
Collapse
Affiliation(s)
- Matthieu Ruiz
- Department of Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Maya Khairallah
- Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Dharmendra Dingar
- Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - George Vaniotis
- Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | | | | | - Simon Thibault
- Faculté de Pharmacie Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Joëlle Trépanier
- Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Yanfen Shi
- Montreal Heart Institute Montréal Québec Canada
| | | | | | - Sherin Ali Nawaito
- Department of Pharmacology and Physiology Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada.,Department of Physiology Faculty of Medicine Suez Canal University Ismailia Egypt
| | - Pramod Sahadevan
- Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Albert Nguyen
- Department of Pharmacology and Physiology Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | | | | | - Martin G Sirois
- Department of Pharmacology and Physiology Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Matthias Gaestel
- Institute of Cell BiochemistryHannover Medical School Hannover Germany
| | | | - Céline Fiset
- Faculté de Pharmacie Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Jean-Claude Tardif
- Department of Medicine Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| | - Bruce G Allen
- Department of Medicine Université de Montréal Québec Canada.,Department of Biochemistry and Molecular Medicine Université de Montréal Québec Canada.,Department of Pharmacology and Physiology Université de Montréal Québec Canada.,Montreal Heart Institute Montréal Québec Canada
| |
Collapse
|
138
|
Grieco JP, Allen ME, Perry JB, Wang Y, Song Y, Rohani A, Compton SLE, Smyth JW, Swami NS, Brown DA, Schmelz EM. Progression-Mediated Changes in Mitochondrial Morphology Promotes Adaptation to Hypoxic Peritoneal Conditions in Serous Ovarian Cancer. Front Oncol 2021; 10:600113. [PMID: 33520711 PMCID: PMC7838066 DOI: 10.3389/fonc.2020.600113] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is the deadliest gynecological cancer in women, with a survival rate of less than 30% when the cancer has spread throughout the peritoneal cavity. Aggregation of cancer cells increases their viability and metastatic potential; however, there are limited studies that correlate these functional changes to specific phenotypic alterations. In this study, we investigated changes in mitochondrial morphology and dynamics during malignant transition using our MOSE cell model for progressive serous ovarian cancer. Mitochondrial morphology was changed with increasing malignancy from a filamentous network to single, enlarged organelles due to an imbalance of mitochondrial dynamic proteins (fusion: MFN1/OPA1, fission: DRP1/FIS1). These phenotypic alterations aided the adaptation to hypoxia through the promotion of autophagy and were accompanied by changes in the mitochondrial ultrastructure, mitochondrial membrane potential, and the regulation of reactive oxygen species (ROS) levels. The tumor-initiating cells increased mitochondrial fragmentation after aggregation and exposure to hypoxia that correlated well with our previously observed reduced growth and respiration in spheroids, suggesting that these alterations promote viability in non-permissive conditions. Our identification of such mitochondrial phenotypic changes in malignancy provides a model in which to identify targets for interventions aimed at suppressing metastases.
Collapse
Affiliation(s)
- Joseph P Grieco
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - Mitchell E Allen
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Justin B Perry
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Yao Wang
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Yipei Song
- Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, United States
| | - Ali Rohani
- Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, United States
| | - Stephanie L E Compton
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - James W Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carillion (VTC), Roanoke, VA, United States.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States.,Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Nathan S Swami
- Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, United States
| | - David A Brown
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Eva M Schmelz
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
139
|
Abstract
The 3',5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase type I (cGKI aka PKGI) is a major cardiac effector acting downstream of nitric oxide (NO)-sensitive soluble guanylyl cyclase and natriuretic peptides (NPs), which signal through transmembrane guanylyl cyclases. Consistent with the wide distribution of the cGMP-generating guanylyl cyclases, cGKI, which usually elicits its cellular effects by direct phosphorylation of its targets, is present in multiple cardiac cell types including cardiomyocytes (CMs). Although numerous targets of cGMP/cGKI in heart were identified in the past, neither their exact patho-/physiological functions nor cell-type specific roles are clear. Herein, we inform about the current knowledge on the signal transduction downstream of CM cGKI. We believe that better insights into the specific actions of cGMP and cGKI in these cells will help to guide future studies in the search for predictive biomarkers for the response to pharmacological cGMP pathway modulation. In addition, targets downstream of cGMP/cGKI may be exploited for refined and optimized diagnostic and therapeutic strategies in different types of heart disease and their causes. Importantly, key functions of these proteins and particularly sites of regulatory phosphorylation by cGKI should, at least in principle, remain intact, although upstream signaling through the second messenger cGMP is impaired or dysregulated in a stressed or diseased heart state.
Collapse
|
140
|
Canepa E, Fossati S. Impact of Tau on Neurovascular Pathology in Alzheimer's Disease. Front Neurol 2021; 11:573324. [PMID: 33488493 PMCID: PMC7817626 DOI: 10.3389/fneur.2020.573324] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the most prevalent cause of dementia. The main cerebral histological hallmarks are represented by parenchymal insoluble deposits of amyloid beta (Aβ plaques) and neurofibrillary tangles (NFT), intracellular filamentous inclusions of tau, a microtubule-associated protein. It is well-established that cerebrovascular dysfunction is an early feature of AD pathology, but the detrimental mechanisms leading to blood vessel impairment and the associated neurovascular deregulation are not fully understood. In 90% of AD cases, Aβ deposition around the brain vasculature, known as cerebral amyloid angiopathy (CAA), alters blood brain barrier (BBB) essential functions. While the effects of vascular Aβ accumulation are better documented, the scientific community has only recently started to consider the impact of tau on neurovascular pathology in AD. Emerging compelling evidence points to transmission of neuronal tau to different brain cells, including astrocytes, as well as to the release of tau into brain interstitial fluids, which may lead to perivascular neurofibrillar tau accumulation and toxicity, affecting vessel architecture, cerebral blood flow (CBF), and vascular permeability. BBB integrity and functionality may therefore be impacted by pathological tau, consequentially accelerating the progression of the disease. Tau aggregates have also been shown to induce mitochondrial damage: it is known that tau impairs mitochondrial localization, distribution and dynamics, alters ATP and reactive oxygen species production, and compromises oxidative phosphorylation systems. In light of this previous knowledge, we postulate that tau can initiate neurovascular pathology in AD through mitochondrial dysregulation. In this review, we will explore the literature investigating tau pathology contribution to the malfunction of the brain vasculature and neurovascular unit, and its association with mitochondrial alterations and caspase activation, in cellular, animal, and human studies of AD and tauopathies.
Collapse
Affiliation(s)
- Elisa Canepa
- Alzheimer's Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Silvia Fossati
- Alzheimer's Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
141
|
Singh S, Mabalirajan U. Mitochondrial calcium in command of juggling myriads of cellular functions. Mitochondrion 2021; 57:108-118. [PMID: 33412334 DOI: 10.1016/j.mito.2020.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023]
Abstract
The puzzling traits related to the evolutionary aspect of mitochondria, still positions the mitochondrion at the center of the research. The theory of endosymbiosis popularized by Lynn Margulis in 1967 gained prominence wherein the mitochondrion is believed to have emerged as a prokaryote and later integrated into the eukaryotic system. This semi-autonomous organelle has bagged two responsible but perilous cellular functions: a) energy metabolism, and b) calcium buffering, though both are interdependent. While most of the mitochondrial functions are saliently regulated by calcium ions, the calcium buffering role of mitochondria decides the cellular fate. Though calcium overload in few mitochondria makes them dysfunctional at the early stage of cellular stress, this doesn't lead to sudden cell death due to critical checkpoints like mitophagy, mitochondrial fusion, etc. Thus, mitochondrion juggles with multiple crucial cellular functions with its calcium buffering skill.
Collapse
Affiliation(s)
- Sabita Singh
- Molecular Pathobiology Of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology Of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
142
|
|
143
|
Hamilton J, Brustovetsky T, Brustovetsky N. The effect of mitochondrial calcium uniporter and cyclophilin D knockout on resistance of brain mitochondria to Ca 2+-induced damage. J Biol Chem 2021; 296:100669. [PMID: 33864812 PMCID: PMC8131324 DOI: 10.1016/j.jbc.2021.100669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
The mitochondrial calcium uniporter (MCU) and cyclophilin D (CyD) are key players in induction of the permeability transition pore (PTP), which leads to mitochondrial depolarization and swelling, the major signs of Ca2+-induced mitochondrial damage. Mitochondrial depolarization inhibits ATP production, whereas swelling results in the release of mitochondrial pro-apoptotic proteins. The extent to which simultaneous deletion of MCU and CyD inhibits PTP induction and prevents damage of brain mitochondria is not clear. Here, we investigated the effects of MCU and CyD deletion on the propensity for PTP induction using mitochondria isolated from the brains of MCU-KO, CyD-KO, and newly created MCU/CyD-double knockout (DKO) mice. Neither deletion of MCU nor of CyD affected respiration or membrane potential in mitochondria isolated from the brains of these mice. Mitochondria from MCU-KO and MCU/CyD-DKO mice displayed reduced Ca2+ uptake and diminished extent of PTP induction. The Ca2+ uptake by mitochondria from CyD-KO mice was increased compared with mitochondria from WT mice. Deletion of CyD prevented mitochondrial swelling and resulted in transient depolarization in response to Ca2+, but it did not prevent Ca2+-induced delayed mitochondrial depolarization. Mitochondria from MCU/CyD-DKO mice did not swell in response to Ca2+, but they did exhibit mild sustained depolarization. Dibucaine, an inhibitor of the Ca2+-activated mitochondrial phospholipase A2, attenuated and bovine serum albumin completely eliminated the sustained depolarization. This suggests the involvement of phospholipase A2 and free fatty acids. Thus, in addition to induction of the classical PTP, alternative deleterious mechanisms may contribute to mitochondrial damage following exposure to elevated Ca2+.
Collapse
Affiliation(s)
- James Hamilton
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tatiana Brustovetsky
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nickolay Brustovetsky
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
144
|
Inflammation-Induced Protein Unfolding in Airway Smooth Muscle Triggers a Homeostatic Response in Mitochondria. Int J Mol Sci 2020; 22:ijms22010363. [PMID: 33396378 PMCID: PMC7795579 DOI: 10.3390/ijms22010363] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
The effects of airway inflammation on airway smooth muscle (ASM) are mediated by pro-inflammatory cytokines such as tumor necrosis factor alpha (TNFα). In this review article, we will provide a unifying hypothesis for a homeostatic response to airway inflammation that mitigates oxidative stress and thereby provides resilience to ASM. Previous studies have shown that acute exposure to TNFα increases ASM force generation in response to muscarinic stimulation (hyper-reactivity) resulting in increased ATP consumption and increased tension cost. To meet this increased energetic demand, mitochondrial O2 consumption and oxidative phosphorylation increases but at the cost of increased reactive oxygen species (ROS) production (oxidative stress). TNFα-induced oxidative stress results in the accumulation of unfolded proteins in the endoplasmic reticulum (ER) and mitochondria of ASM. In the ER, TNFα selectively phosphorylates inositol-requiring enzyme 1 alpha (pIRE1α) triggering downstream splicing of the transcription factor X-box binding protein 1 (XBP1s); thus, activating the pIRE1α/XBP1s ER stress pathway. Protein unfolding in mitochondria also triggers an unfolded protein response (mtUPR). In our conceptual framework, we hypothesize that activation of these pathways is homeostatically directed towards mitochondrial remodeling via an increase in peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC1α) expression, which in turn triggers: (1) mitochondrial fragmentation (increased dynamin-related protein-1 (Drp1) and reduced mitofusin-2 (Mfn2) expression) and mitophagy (activation of the Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)/Parkin mitophagy pathway) to improve mitochondrial quality; (2) reduced Mfn2 also results in a disruption of mitochondrial tethering to the ER and reduced mitochondrial Ca2+ influx; and (3) mitochondrial biogenesis and increased mitochondrial volume density. The homeostatic remodeling of mitochondria results in more efficient O2 consumption and oxidative phosphorylation and reduced ROS formation by individual mitochondrion, while still meeting the increased ATP demand. Thus, the energetic load of hyper-reactivity is shared across the mitochondrial pool within ASM cells.
Collapse
|
145
|
Kang KW, Ok M, Lee SK. Leptin as a Key between Obesity and Cardiovascular Disease. J Obes Metab Syndr 2020; 29:248-259. [PMID: 33342767 PMCID: PMC7789022 DOI: 10.7570/jomes20120] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity increases the risk of cardiovascular disease through various influencing factors. Leptin, which is predominantly secreted by adipose tissue, regulates satiety homeostasis and energy balance, and influences cardiovascular functions directly and indirectly. Leptin appears to play a role in heart protection in leptin-deficient and leptin-receptor-deficient rodent model experiments. Hyperleptinemia or leptin resistance in human obesity influences the vascular endothelium, cardiovascular structure and functions, inflammation, and sympathetic activity, which may lead to cardiovascular disease. Leptin is involved in many processes, including signal transduction, vascular endothelial function, and cardiac structural remodeling. However, the dual (positive and negative) regulator effect of leptin and its receptor on cardiovascular disease has not been completely understood. The protective role of leptin signaling in cardiovascular disease could be a promising target for cardiovascular disease prevention in obese patients.
Collapse
Affiliation(s)
- Ki-Woon Kang
- Division of Cardiology, Department of Internal Medicine, Eulji University School of Medicine, Daejeon, Korea
| | - Minho Ok
- Department of Cardiovascular Pharmacology, Mokpo National University, Mokpo, Korea
| | - Seong-Kyu Lee
- Division of Endocrinology, Department of Internal Medicine, Daejeon, Korea.,Department of Biochemistry-Molecular Biology, Eulji University School of Medicine, Daejeon, Korea
| |
Collapse
|
146
|
Zhang L, Gui T, Console L, Scalise M, Indiveri C, Hausler S, Kullak-Ublick GA, Gai Z, Visentin M. Cholesterol stimulates the cellular uptake of L-carnitine by the carnitine/organic cation transporter novel 2 (OCTN2). J Biol Chem 2020; 296:100204. [PMID: 33334877 PMCID: PMC7948396 DOI: 10.1074/jbc.ra120.015175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
The carnitine/organic cation transporter novel 2 (OCTN2) is responsible for the cellular uptake of carnitine in most tissues. Being a transmembrane protein OCTN2 must interact with the surrounding lipid microenvironment to function. Among the main lipid species that constitute eukaryotic cells, cholesterol has highly dynamic levels under a number of physiopathological conditions. This work describes how plasma membrane cholesterol modulates OCTN2 transport of L-carnitine in human embryonic kidney 293 cells overexpressing OCTN2 (OCTN2-HEK293) and in proteoliposomes harboring human OCTN2. We manipulated the cholesterol content of intact cells, assessed by thin layer chromatography, through short exposures to empty and/or cholesterol-saturated methyl-β-cyclodextrin (mβcd), whereas free cholesterol was used to enrich reconstituted proteoliposomes. We measured OCTN2 transport using [3H]L-carnitine, and expression levels and localization by surface biotinylation and Western blotting. A 20-min preincubation with mβcd reduced the cellular cholesterol content and inhibited L-carnitine influx by 50% in comparison with controls. Analogously, the insertion of cholesterol in OCTN2-proteoliposomes stimulated L-carnitine uptake in a dose-dependent manner. Carnitine uptake in cells incubated with empty mβcd and cholesterol-saturated mβcd to preserve the cholesterol content was comparable with controls, suggesting that the mβcd effect on OCTN2 was cholesterol dependent. Cholesterol stimulated L-carnitine influx in cells by markedly increasing the affinity for L-carnitine and in proteoliposomes by significantly enhancing the affinity for Na+ and, in turn, the L-carnitine maximal transport capacity. Because of the antilipogenic and antioxidant features of L-carnitine, the stimulatory effect of cholesterol on L-carnitine uptake might represent a novel protective effect against lipid-induced toxicity and oxidative stress.
Collapse
Affiliation(s)
- Lu Zhang
- College of Traditional Chinese Medicine, Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ting Gui
- College of Traditional Chinese Medicine, Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Stephanie Hausler
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland
| | - Zhibo Gai
- College of Traditional Chinese Medicine, Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
147
|
Olowofolahan AO, Adeosun OA, Olorunsogo OO. Monosodium Glutamate Induces Cytotoxicity in Rat Liver via Mitochondrial Permeability Transition Pore Opening. Cell Biochem Biophys 2020; 78:429-437. [PMID: 32964329 DOI: 10.1007/s12013-020-00944-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2020] [Indexed: 01/06/2023]
Abstract
Monosodium glutamate (MSG) is a major food additive used as a flavor enhancer. A lot of controversies have been generated over the use of MSG. The present study therefore investigated whether MSG would induce cytotoxicity via the induction of mitochondrial permeability transition (mPT) pore opening. 36 male albino rats were used for this study. The rats were equally divided into six groups: group I is the control while group II, III, IV, V, and VI were orally treated with MSG (25, 50, 100, 200, and 400 mg/kg) daily for 28 days. The opening of the pore, cytochrome c release, mitochondrial ATPase activity, mitochondrial lipid peroxidation and hepatic DNA fragmentation were determined spectrophotometrically. Histological assessment of prostate and brain was carried out. The results show that MSG at concentrations ≤30 µg/ml did not induce mPT pore opening while higher concentrations caused significant induction of pore opening. Also, at lower doses (25 and 50 mg/kg), MSG did not cause any significant induction of mPT pore opening while at higher doses, there were significant induction of pore opening. Similar trend of results was recorded for cytochrome c release, mitochondrial ATPase activity and lipid peroxidation. The histological results show that at low doses (25 and 50 mg/kg), no significant lesion was observed while higher doses caused benign prostatic hyperplasia (BPH) in the prostate and necrotic damage in the brain. MSG administration at low dose is tolerable while high doses induce cytotoxicity via mPT pore opening.
Collapse
Affiliation(s)
- Adeola Oluwakemi Olowofolahan
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Oluwatobi Andrew Adeosun
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunso Olabode Olorunsogo
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
148
|
Branca JJV, Pacini A, Gulisano M, Taddei N, Fiorillo C, Becatti M. Cadmium-Induced Cytotoxicity: Effects on Mitochondrial Electron Transport Chain. Front Cell Dev Biol 2020; 8:604377. [PMID: 33330504 PMCID: PMC7734342 DOI: 10.3389/fcell.2020.604377] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022] Open
Abstract
Cadmium (Cd) is a well-known heavy metal and environmental toxicant and pollutant worldwide, being largely present in every kind of item such as plastic (toys), battery, paints, ceramics, contaminated water, air, soil, food, fertilizers, and cigarette smoke. Nowadays, it represents an important research area for the scientific community mainly for its effects on public health. Due to a half-life ranging between 15 and 30 years, Cd owns the ability to accumulate in organs and tissues, exerting deleterious effects. Thus, even at low doses, a Cd prolonged exposure may cause a multiorgan toxicity. Mitochondria are key intracellular targets for Cd-induced cytotoxicity, but the underlying mechanisms are not fully elucidated. The present review is aimed to clarify the effects of Cd on mitochondria and, particularly, on the mitochondrial electron transport chain.
Collapse
Affiliation(s)
- Jacopo Junio Valerio Branca
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Firenze, Firenze, Italy
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Firenze, Firenze, Italy
| | - Massimo Gulisano
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Firenze, Firenze, Italy
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| |
Collapse
|
149
|
Oliver DMA, Reddy PH. Molecular Basis of Alzheimer's Disease: Focus on Mitochondria. J Alzheimers Dis 2020; 72:S95-S116. [PMID: 30932888 DOI: 10.3233/jad-190048] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, characterized by memory loss and multiple cognitive impairments. With the increased aging population, AD is a major health concern in society. Morphological and pathological studies revealed that AD is associated with the loss of synapses, defective mitochondria, and the proliferation of reactive astrocytes and microglia, in addition to the presence amyloid-β and phosphorylated tau in learning and memory regions of the brain in AD patients. AD occurs in two forms: early-onset familial and late-onset sporadic. Genetic mutations in APP, PS1, and PS2 loci cause familial AD. Multiple factors are reported to be involved in late-onset AD, including APOE4 genotype, polymorphisms in several gene loci and type 2 diabetes, traumatic brain injury, stroke, and age-related factors, including increased reactive oxygen species production and dysfunction in mitochondria. It is widely accepted that synaptic damage and mitochondrial dysfunction are early events in disease process. The purpose of this article is to highlight molecular triggers to the disease process. This article also reviews factors, including age, gender, lifestyle, epigenetic factors, and type 2 diabetes, that are involved in late-onset AD. This article also discusses recent developments in research of mitochondrial structure, function, physiology, dynamics, biogenesis, mitophagy, and mitochondrial DNA changes in healthy and diseased states.
Collapse
Affiliation(s)
- Darryll M A Oliver
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Public Health, Graduate School of Biomedical Sciences, Lubbock, TX, United States
| |
Collapse
|
150
|
Gonzalez-Ibanez AM, Ruiz LM, Jensen E, Echeverria CA, Romero V, Stiles L, Shirihai OS, Elorza AA. Erythroid Differentiation and Heme Biosynthesis Are Dependent on a Shift in the Balance of Mitochondrial Fusion and Fission Dynamics. Front Cell Dev Biol 2020; 8:592035. [PMID: 33330472 PMCID: PMC7719720 DOI: 10.3389/fcell.2020.592035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Erythropoiesis is the most robust cellular differentiation and proliferation system, with a production of ∼2 × 1011 cells per day. In this fine-tuned process, the hematopoietic stem cells (HSCs) generate erythroid progenitors, which proliferate and mature into erythrocytes. During erythropoiesis, mitochondria are reprogrammed to drive the differentiation process before finally being eliminated by mitophagy. In erythropoiesis, mitochondrial dynamics (MtDy) are expected to be a key regulatory point that has not been described previously. We described that a specific MtDy pattern occurs in human erythropoiesis from EPO-induced human CD34+ cells, characterized predominantly by mitochondrial fusion at early stages followed by fission at late stages. The fusion protein MFN1 and the fission protein FIS1 are shown to play a key role in the progression of erythropoiesis. Fragmentation of the mitochondrial web by the overexpression of FIS1 (gain of fission) resulted in both the inhibition of hemoglobin biosynthesis and the arrest of erythroid differentiation, keeping cells in immature differentiation stages. These cells showed specific mitochondrial features as compared with control cells, such as an increase in round and large mitochondrial morphology, low mitochondrial membrane potential, a drop in the expression of the respiratory complexes II and IV and increased ROS. Interestingly, treatment with the mitochondrial permeability transition pore (mPTP) inhibitor, cyclosporin A, rescued mitochondrial morphology, hemoglobin biosynthesis and erythropoiesis. Studies presented in this work reveal MtDy as a hot spot in the control of erythroid differentiation, which might signal downstream for metabolic reprogramming through regulation of the mPTP.
Collapse
Affiliation(s)
- Alvaro M Gonzalez-Ibanez
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Lina M Ruiz
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Erik Jensen
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | | | - Valentina Romero
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Linsey Stiles
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alvaro A Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|