101
|
Zhang Z, Suwabe T, Ishikawa M, Funahashi Y, Inomata T, Ozawa T, Masuda H. Highly selective binding of nitric oxide by CoIII and FeIII complexes. Dalton Trans 2013; 42:4470-8. [DOI: 10.1039/c2dt32708b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
102
|
Gonzalez D, Rojas A, Herrera MB, Conlan RS. iNOS activation regulates β-catenin association with its partners in endothelial cells. PLoS One 2012; 7:e52964. [PMID: 23285236 PMCID: PMC3532412 DOI: 10.1371/journal.pone.0052964] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 11/26/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Signals that disrupt β-catenin association to cadherins may influence the translocation of β-catenin to the nucleus to regulate transcription. Post-translational modification of proteins is a signalling event that may lead to changes in structural conformation, association or function of the target proteins. NO and its derivatives induce nitration of proteins during inflammation. It has been described that animals treated with NO donors showed increased permeability due to modulation of VE-cadherin/catenin complex. We, therefore, aim to evaluate the effect of iNOS activation on the expression, nuclear localisation and function of β-catenin in endothelial cells. METHODOLOGY/PRINCIPAL FINDINGS Expression, nuclear localisation, post-translational modifications and function of β-catenin was analysed by cell fractionation, immunoprecipitation, immunoblots, QRT-PCR and permeability assays in murine endothelial cells (H5V). Influence of macrophage activation on expression of VE-cadherin/p120-catenin/β-catenin complex in co-cultured H5V cells was also assessed. Activation of macrophages to produce NO provoked a decrease in VE-cadherin/p120-catenin/β-catenin expression in H5V cells. Phosphorylation of β-catenin, p120-catenin and VE-cadherin, and reduction in the barrier properties of the cell monolayer was associated with iNOS induction. Moreover, high NO levels provoked nitration of β-catenin, and induced its translocation to the nucleus. In the nucleus of NOS activated cells, nitration levels of β-catenin influenced its association with TCF4 and p65 proteins. High levels of NO altered β-catenin mediated gene expression of NFκB and Wnt target genes without affecting cell viability. CONCLUSIONS NOS activity modulates β-catenin post-translational modifications, function and its association with different partners to promote endothelial cell survival. Therapeutic manipulation of iNOS levels may remove a critical cytoprotective mechanism of importance in tumour angiogenesis.
Collapse
Affiliation(s)
- Deyarina Gonzalez
- Centre for NanoHealth, College of Medicine, Swansea University, Swansea, United Kingdom.
| | | | | | | |
Collapse
|
103
|
Neuzillet Y, Hupertan V, Cour F, Botto H, Lebret T. A randomized, double-blind, crossover, placebo-controlled comparative clinical trial of arginine aspartate plus adenosine monophosphate for the intermittent treatment of male erectile dysfunction. Andrology 2012; 1:223-8. [DOI: 10.1111/j.2047-2927.2012.00046.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/30/2012] [Accepted: 11/02/2012] [Indexed: 11/26/2022]
Affiliation(s)
| | - V. Hupertan
- Department of Urology; Hôpital Bichat; Paris; France
| | - F. Cour
- Department of Urology; Hôpital Foch; Suresnes; France
| | - H. Botto
- Department of Urology; Hôpital Foch; Suresnes; France
| | | |
Collapse
|
104
|
Downregulation of oxidative and nitrosative apoptotic signaling by L-carnitine in Ifosfamide-induced Fanconi syndrome rat model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:696704. [PMID: 23213347 PMCID: PMC3504455 DOI: 10.1155/2012/696704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 10/19/2012] [Indexed: 11/18/2022]
Abstract
It is well documented that ifosfamide (IFO) therapy is associated with sever nephropathy in the form of Fanconi syndrome. Although oxidative stress has been reported as a major player in IFO-induced Fanconi syndrome, no mechanism for this effect has been ascertained. Therefore, this study has been initiated to investigate, on gene expression level, the mechanism of IFO-induce nephrotoxicity and those whereby carnitine supplementation attenuates this serious side effect of IFO. To achieve the ultimate goals of this study, adult male rats were assigned to one of four treatment groups, namely, control, L-carnitine, IFO, and IFO plus L-carnitine. Administration of IFO for 5 days significantly increased serum creatinine, blood urea nitrogen (BUN), and total nitrate/nitrite (NOx) production in kidney tissues. In addition, IFO significantly increased mRNA expression of inducible nitric oxide synthase (iNOS), caspase-9, and caspase-3 and significantly decreased expression of glutathione peroxides (GPx), catalase (CAT), and Bcl2 in kidney tissues. Administration of L-carnitine to IFO-treated rats resulted in a complete reversal of the all biochemical and gene expression changes, induced by IFO, to the control values. Data from this study suggest that L-carnitine prevents the development of IFO-induced nephrotoxicity via downregulation of oxidative and nitrosative apoptotic signaling in kidney tissues.
Collapse
|
105
|
Abe S, Watabe H, Takaseki S, Aihara M, Yoshitomi T. The effects of prostaglandin analogues on intracellular Ca2+ in ciliary arteries of wild-type and prostanoid receptor-deficient mice. J Ocul Pharmacol Ther 2012; 29:55-60. [PMID: 23046436 DOI: 10.1089/jop.2011.0197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE To clarify the mechanism of prostaglandin (PG) analogue-dependent relaxation in ciliary arteries from wild-type (WT) and prostanoid receptor-deficient mice. METHODS The intracellular-free calcium concentration ([Ca(2+)](i)) in isolated WT mouse ciliary arteries was measured by fluorescence photometry. Reduction of [Ca(2+)](i) leading to vascular relaxation by PG analogues latanoprost, isopropyl unoprostone, or tafluprost was compared to the maximum increase of [Ca(2+)](i) by 50 mM KCl. The cyclooxygenase inhibitor indomethacin and the NO synthase inhibitor N(G)-nitro-(L)-arginine methylester ((L)-NAME) were added to investigate the involvement of vascular endothelial factors. Moreover, PG analogue-dependent reduction of [Ca(2+)](i) was measured in ciliary artery strips from FP, EP1, EP2, and EP3 receptor-deficient mice. RESULTS The 3 PG analogues reduced K(+)-dependent increase in [Ca(2+)](i) in a concentration-dependent manner. Indomethacin (10 μM) had little effect. The reductions of [Ca(2+)](i) induced by 10 μM PG analogues were not significantly affected by the treatment with the NO synthase inhibitor (L)-NAME (10(-4) M). The effect of all 3 PG analogues in FP and EP3 receptor-deficient arteries was similar to the effect in WT arteries. Latanoprost significantly enhanced the reduction of [Ca(2+)](i) in ciliary arteries from prostanoid EP1 and EP2 receptor-deficient mice compared to WT mice. Tafluprost had a similar effect in arteries from EP2 receptor-deficient mice. CONCLUSIONS PG analogues latanoprost, isopropyl unoprostone, and tafluprost reduced the K(+)-dependent increase in [Ca(2+)](i) in isolated mouse ciliary arteries. Endothelial-derived factors and FP and EP3 receptors were not involved in the responses. The increased effectiveness of latanoprost and tafluprost in reducing [Ca(2+)](i) in EP1 and EP2 receptor-deficient arteries suggests that the PG analogues may act, at least partially, through nonprostanoid receptor pathways. For glaucoma patients, PG analogues can be selected to reduce the intraocular pressure and increase the ocular blood flow.
Collapse
Affiliation(s)
- Sanae Abe
- Department of Ophthalmology, Akita University School of Medicine, Akita City, Japan.
| | | | | | | | | |
Collapse
|
106
|
Defective nitric oxide-cyclic guanosine monophosphate signaling in patients with bipolar disorder: a potential role for platelet dysfunction. Psychosom Med 2012; 74:873-7. [PMID: 23023680 DOI: 10.1097/psy.0b013e3182689460] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Bipolar disorder (BD) is associated with elevated cardiovascular mortality rates. We investigated the modulation of l-arginine-nitric oxide (NO) signaling in platelets from patients with BD at different phases. METHODS Platelets obtained from 28 patients with BD and 10 healthy volunteers were analyzed for l-arginine transport, NO synthase (NOS) activity, cyclic guanosine monophosphate content, and biomarkers of oxidative stress. Expressions of NOS isoforms, soluble guanylyl cyclase, and arginase were also measured in platelets. Amino acid and C-reactive protein levels in plasma were assessed. RESULTS Plasma concentrations of l-arginine (mean [M] ± standard error of the mean [SEM] = 97 ± 10 versus 121 ± 10 µM) and its transport into platelets (median [interquartile range] = 26.0 [28.6] versus 26.5 [43.9] pmol/10(9) cells per minute) did not differ between patients with BD and controls (p > .05). Patients with BD showed reduced NOS activity (M ± SEM = 0.037 ± 0.003 versus 0.135 ± 0.022 pmol/10(8) cells, p < .001), but not endothelial NOS, inducible NOS, and arginase expression, compared with controls (p > .05). Cyclic guanosine monophosphate content was reduced (M ± SEM = 0.022 ± 0.003 versus 0.086 ± 0.020 pmol/10(8) cells, p < .05) despite the absence of changes in soluble guanylyl cyclase expression (median [interquartile range] = 21.6 [15.5] versus 9.5 [9.4] arbitrary units, p > .05) in patients with BD. Superoxide dismutase activity, but not catalase activity, was increased in patients with BD in the manic phase (M ± SEM = 2094 ± 335 versus 172 ± 17 U/mg protein, p < .001). C-reactive protein was elevated only in manic episodes (M ± SEM = 0.8 ± 0.2 versus 0.1 ± 0.02 mg/L, p < .001). CONCLUSIONS Impaired NO generation from platelets, inflammation, and oxidative stress may play pivotal roles in the multifaceted process of cardiovascular events in BD.
Collapse
|
107
|
Aqueous humor oxidative stress proteomic levels in primary open angle glaucoma. Exp Eye Res 2012; 103:55-62. [DOI: 10.1016/j.exer.2012.07.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 07/26/2012] [Accepted: 07/31/2012] [Indexed: 11/21/2022]
|
108
|
Le-Dong NN, Duong-Quy S, Bei Y, Hua-Huy T, Chen W, Dinh-Xuan AT. Measuring exhaled nitric oxide in animal models: methods and clinical implications. J Breath Res 2012; 6:047001. [PMID: 22990104 DOI: 10.1088/1752-7155/6/4/047001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Animal models such as rats and mice are useful for studying the multiple roles of nitric oxide (NO) in various respiratory disorders. The production of NO is catalyzed by the three isoforms of the enzymes (NO synthases; NOS). Indirect assessment of NOS gene or protein expression only provides partial information on the role of NO in health and lung disease. NO can also be measured in exhaled air by invasive or non-invasive approaches as a direct and quantitative marker of NO production in animal models. Whilst addressing the different methods of exhaled NO analysis in small animals (rats and mice), this review also focuses on the possible clinical implications, and discusses the advantages and limitations of these methods.
Collapse
Affiliation(s)
- Nhât-Nam Le-Dong
- Paris Descartes University, Medical School, Assistance Publique Hôpitaux de Paris, Service de Physiologie-Explorations Fonctionnelles. Hôpital Cochin, 27 rue du faubourg Saint-Jacques, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|
109
|
Víteček J, Lojek A, Valacchi G, Kubala L. Arginine-based inhibitors of nitric oxide synthase: therapeutic potential and challenges. Mediators Inflamm 2012; 2012:318087. [PMID: 22988346 PMCID: PMC3441039 DOI: 10.1155/2012/318087] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/30/2012] [Indexed: 12/24/2022] Open
Abstract
In the past three decades, nitric oxide has been well established as an important bioactive molecule implicated in regulation of cardiovascular, nervous, and immune systems. Therefore, it is not surprising that much effort has been made to find specific inhibitors of nitric oxide synthases (NOS), the enzymes responsible for production of nitric oxide. Among the many NOS inhibitors developed to date, inhibitors based on derivatives and analogues of arginine are of special interest, as this category includes a relatively high number of compounds with good potential for experimental as well as clinical application. Though this group of inhibitors covers early nonspecific compounds, modern drug design strategies such as biochemical screening and computer-aided drug design have provided NOS-isoform-specific inhibitors. With an emphasis on major advances in this field, a comprehensive list of inhibitors based on their structural characteristics is discussed in this paper. We provide a summary of their biochemical properties as well as their observed effects both in vitro and in vivo. Furthermore, we focus in particular on their pharmacology and use in recent clinical studies. The potential of newly designed specific NOS inhibitors developed by means of modern drug development strategies is highlighted.
Collapse
Affiliation(s)
- Jan Víteček
- International Clinical Research Center-Center of Biomolecular and Cell Engineering, St. Anne's University Hospital Brno, 656 91 Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic
| | - Antonín Lojek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic
| | - Giuseppe Valacchi
- Department of Evolutionary Biology, University of Ferrara, 44100 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Lukáš Kubala
- International Clinical Research Center-Center of Biomolecular and Cell Engineering, St. Anne's University Hospital Brno, 656 91 Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic
| |
Collapse
|
110
|
Peyton KJ, Liu XM, Yu Y, Yates B, Durante W. Activation of AMP-activated protein kinase inhibits the proliferation of human endothelial cells. J Pharmacol Exp Ther 2012; 342:827-34. [PMID: 22700432 PMCID: PMC3422516 DOI: 10.1124/jpet.112.194712] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/12/2012] [Indexed: 01/09/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is an evolutionary conserved energy-sensing enzyme that regulates cell metabolism. Emerging evidence indicates that AMPK also plays an important role in modulating endothelial cell function. In the present study, we investigated whether AMPK modulates endothelial cell growth. Treatment of cultured human umbilical vein endothelial cells with the AMPK activators 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), 6,7-dihydro-4-hydroxy-3-(2'-hydroxy[1,1'-biphenyl]-4-yl)-6-oxo-thieno[2,3-b]pyridine-5-carbonitrile (A-769662), or metformin inhibited cell proliferation and DNA synthesis. The antiproliferative action of AICAR was largely prevented by the adenosine kinase inhibitor 5'-iodotubercidin and mimicked by infecting endothelial cells with an adenovirus expressing constitutively active AMPK. In contrast, pharmacological blockade of endothelial nitric oxide synthase or heme oxygenase-1 activity failed to reverse the inhibition of endothelial cell growth by AICAR. Flow cytometry experiments revealed that pharmacological activation of AMPK arrested endothelial cells in the G₀/G₁ phase of the cell cycle, and this was associated with increases in p53 phosphorylation and p53, p21, and p27 protein expression and decreases in cyclin A protein expression and retinoblastoma protein phosphorylation. In addition, silencing p21 and p27 expression partially restored the mitogenic response of AMPK-activated cells. Finally, activation of AMPK by AICAR blocked the migration of endothelial cells after scrape injury and stimulated tube formation by endothelial cells plated onto Matrigel-coated plates. In conclusion, these studies demonstrate that AMPK activation inhibits endothelial cell proliferation by elevating p21 and p27 expression. In addition, they show that AMPK regulates endothelial cell migration and differentiation and identify AMPK as an attractive therapeutic target in treating diseases associated with aberrant endothelial cell growth.
Collapse
Affiliation(s)
- Kelly J Peyton
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | | | | | | | | |
Collapse
|
111
|
Sharma V, Ten Have GAM, Ytrebo L, Sen S, Rose CF, Dalton RN, Turner C, Revhaug A, van-Eijk HMH, Deutz NEP, Jalan R, Mookerjee RP, Davies NA. Nitric oxide and L-arginine metabolism in a devascularized porcine model of acute liver failure. Am J Physiol Gastrointest Liver Physiol 2012; 303:G435-41. [PMID: 22421619 PMCID: PMC3774247 DOI: 10.1152/ajpgi.00268.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In acute liver failure (ALF), the hyperdynamic circulation is believed to be the result of overproduction of nitric oxide (NO) in the splanchnic circulation. However, it has been suggested that arginine concentrations (the substrate for NO) are believed to be decreased, limiting substrate availability for NO production. To characterize the metabolic fate of arginine in early-phase ALF, we systematically assessed its interorgan transport and metabolism and measured the endogenous NO synthase inhibitor asymmetric dimethylarginine (ADMA) in a porcine model of ALF. Female adult pigs (23-30 kg) were randomized to sham (N = 8) or hepatic devascularization ALF (N = 8) procedure for 6 h. We measured plasma arginine, citrulline, ornithine levels; arginase activity, NO, and ADMA. Whole body metabolic rates and interorgan flux measurements were calculated using stable isotope-labeled amino acids. Plasma arginine decreased >85% of the basal level at t = 6 h (P < 0.001), whereas citrulline and ornithine progressively increased in ALF (P < 0.001 and P < 0.001, vs. sham respectively). No difference was found between the groups in the whole body rate of appearance of arginine or NO. However, ALF showed a significant increase in de novo arginine synthesis (P < 0.05). Interorgan data showed citrulline net intestinal production and renal consumption that was related to net renal production of arginine and ornithine. Both plasma arginase activity and plasma ADMA levels significantly increased in ALF (P < 0.001). In this model of early-phase ALF, arginine deficiency or higher ADMA levels do not limit whole body NO production. Arginine deficiency is caused by arginase-related arginine clearance in which arginine production is stimulated de novo.
Collapse
Affiliation(s)
- Vikram Sharma
- 1UCL Institute of Hepatology, Royal Free Campus, University College London;
| | - Gabriella A. M. Ten Have
- 2Center for Translational Research in Aging & Longevity, Donald W. Reynolds Institute on Aging, University of Arkansas Medical Sciences, Little Rock, Arkansas; ,3Department of Surgery, University Maastricht, Maastricht, The Netherlands;
| | - Lars Ytrebo
- 5Department of Anesthesiology, University Hospital of North Norway and University of Tromsø, Norway;
| | - Sambit Sen
- 1UCL Institute of Hepatology, Royal Free Campus, University College London;
| | - Christopher F. Rose
- 6Neuroscience Research Unit, Ho^pital Saint-Luc (CRCHUM), Universite' de Montre'al, Que'bec, Canada
| | - R. Neil Dalton
- 4WellChild Laboratory, Evelina Children's Hospital, London, United Kingdom;
| | - Charles Turner
- 4WellChild Laboratory, Evelina Children's Hospital, London, United Kingdom;
| | - Arthur Revhaug
- 5Department of Anesthesiology, University Hospital of North Norway and University of Tromsø, Norway;
| | | | - Nicolaas E. P. Deutz
- 2Center for Translational Research in Aging & Longevity, Donald W. Reynolds Institute on Aging, University of Arkansas Medical Sciences, Little Rock, Arkansas; ,3Department of Surgery, University Maastricht, Maastricht, The Netherlands;
| | - Rajiv Jalan
- 1UCL Institute of Hepatology, Royal Free Campus, University College London;
| | | | - Nathan A. Davies
- 1UCL Institute of Hepatology, Royal Free Campus, University College London;
| |
Collapse
|
112
|
Catalgol B, Batirel S, Taga Y, Ozer NK. Resveratrol: French paradox revisited. Front Pharmacol 2012; 3:141. [PMID: 22822401 PMCID: PMC3398412 DOI: 10.3389/fphar.2012.00141] [Citation(s) in RCA: 286] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/27/2012] [Indexed: 12/12/2022] Open
Abstract
Resveratrol is a polyphenol that plays a potentially important role in many disorders and has been studied in different diseases. The research on this chemical started through the “French paradox,” which describes improved cardiovascular outcomes despite a high-fat diet in French people. Since then, resveratrol has been broadly studied and shown to have antioxidant, anti-inflammatory, anti-proliferative, and anti-angiogenic effects, with those on oxidative stress possibly being most important and underlying some of the others, but many signaling pathways are among the molecular targets of resveratrol. In concert they may be beneficial in many disorders, particularly in diseases where oxidative stress plays an important role. The main focus of this review will be the pathways affected by resveratrol. Based on these mechanistic considerations, the involvement of resveratrol especially in cardiovascular diseases, cancer, neurodegenerative diseases, and possibly in longevity will be is addressed.
Collapse
Affiliation(s)
- Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center, Marmara University Istanbul, Turkey
| | | | | | | |
Collapse
|
113
|
El-Hattab AW, Hsu JW, Emrick LT, Wong LJC, Craigen WJ, Jahoor F, Scaglia F. Restoration of impaired nitric oxide production in MELAS syndrome with citrulline and arginine supplementation. Mol Genet Metab 2012; 105:607-14. [PMID: 22325939 PMCID: PMC4093801 DOI: 10.1016/j.ymgme.2012.01.016] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/18/2012] [Accepted: 01/18/2012] [Indexed: 10/14/2022]
Abstract
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is one of the most common mitochondrial disorders. Although the pathogenesis of stroke-like episodes remains unclear, it has been suggested that mitochondrial proliferation may result in endothelial dysfunction and decreased nitric oxide (NO) availability leading to cerebral ischemic events. This study aimed to assess NO production in subjects with MELAS syndrome and the effect of the NO precursors arginine and citrulline. Using stable isotope infusion techniques, we assessed arginine, citrulline, and NO metabolism in control subjects and subjects with MELAS syndrome before and after arginine or citrulline supplementation. The results showed that subjects with MELAS had lower NO synthesis rate associated with reduced citrulline flux, de novo arginine synthesis rate, and plasma arginine and citrulline concentrations, and higher plasma asymmetric dimethylarginine (ADMA) concentration and arginine clearance. We conclude that the observed impaired NO production is due to multiple factors including elevated ADMA, higher arginine clearance, and, most importantly, decreased de novo arginine synthesis secondary to decreased citrulline availability. Arginine and, to a greater extent, citrulline supplementation increased the de novo arginine synthesis rate, the plasma concentrations and flux of arginine and citrulline, and NO production. De novo arginine synthesis increased markedly with citrulline supplementation, explaining the superior efficacy of citrulline in increasing NO production. The improvement in NO production with arginine or citrulline supplementation supports their use in MELAS and suggests that citrulline may have a better therapeutic effect than arginine. These findings can have a broader relevance for other disorders marked by perturbations in NO metabolism.
Collapse
Affiliation(s)
- Ayman W. El-Hattab
- Division of Medical Genetics, Department of Child Health, University of Missouri Health Care, One Hospital Drive, Columbia, MO, 65212, USA
| | - Jean W. Hsu
- US Department of Agriculture/Agricultural Research Service-Children’s Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Lisa T. Emrick
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Texas Children’s Hospital, 6621 Fannin Street, Houston, TX 77030, USA
| | - Lee-Jun C. Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - William J. Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Texas Children’s Hospital, 6621 Fannin Street, Houston, TX 77030, USA
| | - Farook Jahoor
- US Department of Agriculture/Agricultural Research Service-Children’s Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Texas Children’s Hospital, 6621 Fannin Street, Houston, TX 77030, USA
- Corresponding author at: Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, 77030, USA. Fax: +1 832 825 4294. (F. Scaglia)
| |
Collapse
|
114
|
Relationships between the islets blood flow, nitric oxide, insulin, and cytosolic calcium in rat pancreatic islets: Effects of DPP-IV inhibitor vildagliptin. Eur J Pharm Sci 2012; 45:546-51. [DOI: 10.1016/j.ejps.2011.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/06/2011] [Accepted: 11/29/2011] [Indexed: 11/17/2022]
|
115
|
de Meirelles LR, Resende ADC, Matsuura C, Salgado A, Pereira NR, Cascarelli PG, Mendes-Ribeiro AC, Brunini TMC. Platelet activation, oxidative stress and overexpression of inducible nitric oxide synthase in moderate heart failure. Clin Exp Pharmacol Physiol 2012; 38:705-10. [PMID: 21806669 DOI: 10.1111/j.1440-1681.2011.05580.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
1. Chronic heart failure (CHF) is a common disabling disorder associated with thromboembolic events, the genesis of which is not yet fully understood. Nitric oxide (NO), derived from the vascular endothelium and platelets, has an important role in the physiological regulation of blood flow. It is generated from the amino acid L-arginine via NO synthase (NOS). 2. The main objective of the present study was to investigate NO production and its relationship with platelet aggregation, oxidative stress, inflammation and related amino acids in patients with moderate CHF. The expression and activity of NOS isoforms were analysed by western blotting and conversion of L-[(3)H]-arginine to L-[(3)H]-citrulline, respectively, in CHF patients (n = 12) and healthy controls (n = 15). Collagen- and ADP-induced platelet aggregation, oxidative stress (thiobarbituric acid-reactive substances (TBARS) formation and superoxide dismutase (SOD) activity) and plasma levels of amino acids and inflammatory markers (fibrinogen and C-reactive protein (CRP)) were also determined. 3. Both collagen- and ADP-induced platelet aggregation were increased in CHF patients compared with controls. Platelets from CHF patients did not show any changes in NOS activity in the presence of overexpression of inducible NOS. Systemic and intraplatelet TBARS production was elevated, whereas SOD activity was decreased in CHF patients. l-arginine plasma concentrations were lower in CHF patients than in controls. Systemic levels of CRP and fibrinogen were increased in CHF patients. 4. The results show that, in patients with moderate CHF, there is platelet activation and reduced intraplatelet NO bioavailability due to oxidative stress, which suggests a role for platelets in the prothrombotic state.
Collapse
Affiliation(s)
- Luisa R de Meirelles
- Departament of Pharmacology and Psychobiology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Restrepo B, García M, López C, Martín M, San Román L, Morán A. The Cyclooxygenase and Nitric Oxide Synthesis/Pathways Mediate the Inhibitory Serotonergic Response to the Pressor Effect Elicited by Sympathetic Stimulation in Long-Term Diabetic Pithed Rats. Pharmacology 2012; 90:169-76. [DOI: 10.1159/000341911] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/16/2012] [Indexed: 12/26/2022]
|
117
|
Lüneburg N, Xanthakis V, Schwedhelm E, Sullivan LM, Maas R, Anderssohn M, Riederer U, Glazer NL, Vasan RS, Böger RH. Reference intervals for plasma L-arginine and the L-arginine:asymmetric dimethylarginine ratio in the Framingham Offspring Cohort. J Nutr 2011; 141:2186-90. [PMID: 22031661 PMCID: PMC3223876 DOI: 10.3945/jn.111.148197] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
L-arginine, as a precursor of NO synthesis, has attracted much scientific attention in recent years. Experimental mouse models suggest that L-arginine supplementation can retard, halt, or even reverse atherogenesis. In human studies, supplementation with L-arginine improved endothelium-dependent vasodilation. However, L-arginine levels are best interpreted in the context of levels of asymmetric dimethylarginine (ADMA), a competitive inhibitor of NO synthase. Thus, reference limits for circulating L-arginine and the L-arginine:ADMA ratio may help to determine the nutritional state of individuals at high cardiovascular risk in light of increased ADMA levels. We defined reference limits for plasma L-arginine in 1141 people and for the L-arginine:ADMA ratio in 1138 relatively healthy individuals from the Framingham Offspring Cohort. Plasma L-arginine and ADMA concentrations were determined by using a stable isotope-based LC-MS/MS method. The reference limits (2.5th and 97.5th percentiles) for plasma L-arginine were 41.0 μmol/L (95% CI = 39.5-42.5 μmol/L) and 114 μmol/L (95% CI = 112-115 μmol/L), whereas corresponding reference limits (2.5th and 97.5th percentiles) for the L-arginine:ADMA ratio were 74.3 μmol/L (95% CI = 71.1-77.3 μmol/L) and 225 μmol/L (95% CI = 222-228 μmol/L). Plasma L-arginine was positively associated with the estimated glomerular filtration rate (eGFR) and blood glucose levels, whereas the L-arginine:ADMA ratio was positively associated with eGFR and diastolic blood pressure but inversely associated with homocysteine and (log)C-reactive protein. We report reference levels for plasma L-arginine and for the L-arginine:ADMA ratio that may be helpful for evaluation of the effects of L-arginine supplementation in participants with an impaired L-arginine/NO pathway.
Collapse
Affiliation(s)
- Nicole Lüneburg
- Institute of Clinical Pharmacology and Toxicology, University Medical Center, Hamburg-Eppendorf, Germany.
| | - Vanessa Xanthakis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA,Framingham Heart Study, Boston University School of Medicine, Framingham, MA; and,Preventive Medicine and Cardiology Sections, and
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center, Hamburg-Eppendorf, Germany
| | - Lisa M. Sullivan
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Renke Maas
- Institute of Clinical Pharmacology and Toxicology, Friedrich-Alexander University, Erlangen, Germany
| | - Maike Anderssohn
- Institute of Clinical Pharmacology and Toxicology, University Medical Center, Hamburg-Eppendorf, Germany
| | - Ulrich Riederer
- Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | | | - Ramachandran S. Vasan
- Framingham Heart Study, Boston University School of Medicine, Framingham, MA; and,Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Rainer H. Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center, Hamburg-Eppendorf, Germany
| |
Collapse
|
118
|
Tu YK, Kato T, Bishop AT. INVESTIGATION OF ENDOTHELIAL CONTROL OF BONE BLOOD FLOW: DEVELOPMENT OF A RABBIT TIBIA EX VIVO PERFUSION MODEL. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s0218957700000148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An ex vivo rabbit tibia perfusion model was developed to investigate the vascular reactivity and vascular endothelial function of bone tissue. The tibiae of 36 adult New Zealand rabbits were isolated and perfused through the cannulated nutrient artery at a constant flow rate in an organ chamber. The increase in perfusion pressure caused by graded doses of norepinephrine produced a dose response curve, which was first recorded under control condition, and then during perfusion with acetylcholine (ACh), N G -monomethyl-L-arginine acetate (L-NMMA), and/or L-arginine (nitric oxide precursor) infusion. The optimal flow rate for rabbit tibia was 0.3 to 0.4 ml/min, depending on the weight of the tibia. The perfusion baseline and the norepinephrine dose-response curve (NEDRC) remained stable for at least eight hours. Acetylcholine (1 × 10-5 M ) infusion attenuated the NEDRC (33 ± 5%) for 1.5 hours. Thereafter, the vasorelaxant effect of ACh diminished due to depletion of nitric oxide, and ultimately caused an increase in the NEDRC due to a vasoconstrictive action. The rebound vasoconstriction did not occur in the presence of constant L-arginine infusion, which maintained nitric oxide production, and ACh continued to attenuate the NEDRC (36 ± 4.5%) for at least eight hours. L-NMMA, which inhibits the synthesis of nitric oxide, increased the vasoconstrictive effect of norepinephrine significantly (155 ± 16%). The rabbit tibia ex vivo model seems ideal for the study of bone vascular bed activity, due to its stable baseline, reliable NEDRC and cost efficiency. We have further demonstrated that the intraosseous vascular endothelium of rabbit tibia produces nitric oxide as one method of regulating bone perfusion.
Collapse
Affiliation(s)
- Yuan-Kun Tu
- Department of Orthopedics, Chang Gung Memorial Hospital, Keelung, Taiwan, R.O.C
| | - Teiji Kato
- Department of Orthopedics, Kumamoto University, Kumamoto, Japan
| | - Allen T. Bishop
- Department of Orthopedics, Mayo Clinic and Foundation, Rochester, MN, USA
| |
Collapse
|
119
|
Chiurchiù V, Maccarrone M. Chronic inflammatory disorders and their redox control: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2011; 15:2605-41. [PMID: 21391902 DOI: 10.1089/ars.2010.3547] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A chronic inflammatory disease is a condition characterized by persistent inflammation. A number of human pathologies fall into this category, and a great deal of research has been conducted to learn more about their characteristics and underlying mechanisms. In many cases, a genetic component has been identified, but also external factors like food, smoke, or environmental pollutants can significantly contribute to worsen their symptoms. Accumulated evidence clearly shows that chronic inflammatory diseases are subjected to a redox control. Here, we shall review the identity, source, regulation, and biological activity of redox molecules, to put in a better perspective their key-role in cancer, diabetes, cardiovascular diseases, atherosclerosis, chronic obstructive pulmonary diseases, and inflammatory bowel diseases. In addition, the impact of redox species on autoimmune disorders (rheumatoid arthritis, systemic lupus erythematosus, psoriasis, and celiac disease) and neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis) will be discussed, along with their potential therapeutic implications as novel drugs to combat chronic inflammatory disorders.
Collapse
Affiliation(s)
- Valerio Chiurchiù
- European Center for Brain Research/Santa Lucia Foundation, Rome, Italy
| | | |
Collapse
|
120
|
Koc A, Ozkan T, Karabay AZ, Sunguroglu A, Aktan F. Effect of L-carnitine on the synthesis of nitric oxide in RAW 264·7 murine macrophage cell line. Cell Biochem Funct 2011; 29:679-85. [PMID: 22012571 DOI: 10.1002/cbf.1807] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/03/2011] [Accepted: 09/06/2011] [Indexed: 02/03/2023]
Abstract
L-Carnitine (β-hydroxy-γ-trimethyl aminobutyric acid) plays a critical role in inflammatory diseases by modulating inflammatory cell functions. Inducible nitric oxide synthase (iNOS), a proinflammatory enzyme responsible for the generation of nitric oxide (NO), has been implicated in the pathogenesis of inflammatory diseases. Mechanism of action of L-carnitine on inflammation via iNOS and nuclear factor κB (NF-κB) is unclear. In this study, we aimed to investigate the effect of L-carnitine on nitric oxide synthesis in lipopolysaccharide (LPS)-stimulated RAW 264·7 macrophage cells. For this purpose, cells were pretreated with various concentrations of L-carnitine and subsequently incubated with LPS (1 µg·ml(-1) ). NO levels, iNOS protein expression, and NF-κB activity were determined using colorimetric detection, Western blotting and transfection assays. Our results showed that treatment with L-carnitine suppressed nitric oxide production, iNOS protein expression and NF-κB activity. We demonstrated that inhibitory effect of L-carnitine on iNOS protein expression is at transcriptional level. This study may contribute to understanding the anti-inflammatory effect of L-carnitine.
Collapse
Affiliation(s)
- A Koc
- Department of Biochemistry, Ankara University, Turkey
| | | | | | | | | |
Collapse
|
121
|
Lehmann HI, Goette A, Martens-Lobenhoffer J, Hammwohner M, Rohl FW, Bukowska A, Ghanem A, Klein HU, Bode-Boger SM. Asymmetric dimethylarginine predicts appropriate implantable cardioverter-defibrillator intervention in patients with left ventricular dysfunction. Europace 2011; 13:1428-35. [DOI: 10.1093/europace/eur171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
122
|
Vallée N, Rissoe JJ, Blatteau JE. Effect of an hyperbaric nitrogen narcotic ambience on arginine and citrulline levels, the precursor and co-product of nitric oxide, in rat striatum. Med Gas Res 2011; 1:16. [PMID: 22146244 PMCID: PMC3231870 DOI: 10.1186/2045-9912-1-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 07/05/2011] [Indexed: 11/21/2022] Open
Abstract
Previous studies performed in the laboratory have shown that nitrogen narcosis induces a decrease in striatal glutamate and dopamine levels. Although we stimulated the N-methyl-D-aspartate (NMDA) receptor, an important glutamate receptor required for motor and locomotor activity managed by the striatum, and demonstrated that the receptor was effective when exposed to nitrogen at 3MPa, it was not possible to return the striatal glutamate level to its base values. We conclude that it was the striatopetal neurons of the glutamatergic pathways that were mainly affected in this hyperbaric syndrome, without understanding the principal reasons. Hence we sought to establish what happens in the vicinity of the plasma membrane, downstream the NMDA-Receptor, and we used the hypothesis that there could be neuronal nitric oxide synthase (nNOS) disturbances. A microdialysis study was performed in rat striatum in order to analyse levels of citrulline, the NO co-product, and arginine, the NO precursor. Those both NO metabolites were detectable with an HPLC coupled to a fluorimetric detector. Exposure to pressurized nitrogen induced a reduction in citrulline (-18.9%) and arginine (-10.4%) levels. Under the control normobaric conditions, the striatal NMDA infusion enhanced the citrulline level (+85.6%), whereas under 3 MPa of nitrogen, the same NMDA infusion did not change the citrulline level which remains equivalent to that of the baseline. The level of arginine increased (+45.7%) under normobaric conditions but a decrease occurred in pressurized nitrogen (-51.6%). Retrodialysis with Saclofen and KCl in the prefrontal cortex under normobaric conditions led to an increase in striatal levels of citrulline (+30.5%) and a decrease in arginine levels (-67.4%). There was no significant difference when nitrogen at 3MPa was added. To conclude, the synthesis of citrulline/NO is reduced in nitrogen narcosis while it seems possible to activate it artificially by infusion. We have suggested that the low glutamate levels recorded in nitrogen narcosis induced these dopamine and NO reductions in the striatum.
Collapse
Affiliation(s)
- Nicolas Vallée
- Institut de Recherches Biomédicales des Armées-Antenne Toulon. Equipe Résidente de Recherche Opérationnelle, BP 20548, 83041 Toulon Cedex 9, France
| | - Jean-Jacques Rissoe
- Institut de Recherches Biomédicales des Armées-Antenne Toulon. Equipe Résidente de Recherche Opérationnelle, BP 20548, 83041 Toulon Cedex 9, France
| | - Jean-Eric Blatteau
- Institut de Recherches Biomédicales des Armées-Antenne Toulon. Equipe Résidente de Recherche Opérationnelle, BP 20548, 83041 Toulon Cedex 9, France
| |
Collapse
|
123
|
Flitney FW, Pritchard RJ, Kennovin GD, Bisland SK, Hirst DG, Fricker SP. Antitumor Actions of Ruthenium(III)-Based Nitric Oxide Scavengers and Nitric Oxide Synthase Inhibitors. Mol Cancer Ther 2011; 10:1571-80. [DOI: 10.1158/1535-7163.mct-10-0840] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
124
|
Capelari-Oliveira P, Paula CA, Rezende SA, Campos FT, Grabe-Guimarães A, Lombardi JA, Saúde-Guimarães DA. Anti-inflammatory activity of Lychnophora passerina, Asteraceae (Brazilian "Arnica"). JOURNAL OF ETHNOPHARMACOLOGY 2011; 135:393-398. [PMID: 21420480 DOI: 10.1016/j.jep.2011.03.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 02/27/2011] [Accepted: 03/12/2011] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lychnophora passerina (Asteraceae), popularly known as "arnica," is used to treat inflammation, pain, rheumatism, contusions, bruises and insect bites in Brazilian traditional medicine. MATERIALS AND METHODS The anti-inflammatory activity of crude ethanolic extract of aerial parts of L. passerina and its ethyl acetate and methanolic fractions had their abilities to modulate the production of NO, TNF-α and IL-10 inflammatory mediators in LPS/IFN-γ-stimulated J774.A1 macrophages evaluated. Moreover, the crude ethanolic extract and derived fractions were also in vivo assayed by carrageenan-induced paw oedema in mice. RESULTS In vitro assays showed remarkable anti-inflammatory activity of L. passerina crude ethanolic extract (EE) and its ethyl acetate (A) and methanolic (M) fractions, through the inhibition of production of NO and TNF-α inflammatory mediators and induction of production of IL-10 anti-inflammatory cytokine. In vivo assays showed anti-inflammatory activity for EE 10% ointment, similar to the standard drug diclofenac gel. The A and M fraction ointments 20% presented anti-inflammatory activity. CONCLUSION The results obtained showed that possible anti-inflammatory effects of EE and its A and M fractions may be attributed to inhibition pro-inflammatory cytokines production, TNF-α and NO and to increased IL-10 production. EE, A and M ointments showed topical in vivo anti-inflammatory activity. The in vivo anti-inflammatory activity of EE of L. passerina may be related to synergistic effects of different substances in the crude extract. Therefore, traditional use of aerial parts of L. passerina in the inflammatory conditions could be beneficial to treat topical inflammatory conditions, as evidenced by the present study.
Collapse
Affiliation(s)
- P Capelari-Oliveira
- Laboratório de Plantas Medicinais, Escola de Farmácia, Universidade Federal de Ouro Preto, Minas Gerais, Brazil
| | | | | | | | | | | | | |
Collapse
|
125
|
Miller V. Endothelium-derived factors of veins: Implications in development of venous disease. Int J Angiol 2011. [DOI: 10.1007/bf01616679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
126
|
Hu X, Atzler D, Xu X, Zhang P, Guo H, Lu Z, Fassett J, Schwedhelm E, Böger RH, Bache RJ, Chen Y. Dimethylarginine dimethylaminohydrolase-1 is the critical enzyme for degrading the cardiovascular risk factor asymmetrical dimethylarginine. Arterioscler Thromb Vasc Biol 2011; 31:1540-6. [PMID: 21493890 DOI: 10.1161/atvbaha.110.222638] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The objective of this study was to identify the role of dimethylarginine dimethylaminohydrolase-1 (DDAH1) in degrading the endogenous nitric oxide synthase inhibitors asymmetrical dimethylarginine (ADMA) and N(g)-monomethyl-L-arginine (L-NMMA). METHODS AND RESULTS We generated a global-DDAH1 gene-deficient (DDAH1(-/-)) mouse strain to examine the role of DDAH1 in ADMA and l-NMMA degradation and the physiological consequences of loss of DDAH1. Plasma and tissue ADMA and L-NMMA levels in DDAH1(-/-) mice were several folds higher than in wild-type mice, but growth and development of these DDAH1(-/-) mice were similar to those of their wild-type littermates. Although the expression of DDAH2 was unaffected, DDAH activity was undetectable in all tissues tested. These findings indicate that DDAH1 is the critical enzyme for ADMA and L-NMMA degradation. Blood pressure was ≈ 20 mm Hg higher in the DDAH1(-/-) mice than in wild-type mice, but no other cardiovascular phenotype was found under unstressed conditions. Crossing DDAH1(+/-) male with DDAH1(+/-) female mice yielded DDAH1(+/+), DDAH1(+/-), and DDAH1(-/-) mice at the anticipated ratio of 1:2:1, indicating that DDAH1 is not required for embryonic development in this strain. CONCLUSIONS Our findings indicate that DDAH1 is required for metabolizing ADMA and L-NMMA in vivo, whereas DDAH2 had no detectable role for degrading ADMA and l-NMMA.
Collapse
Affiliation(s)
- Xinli Hu
- Cardiovascular Division, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Endothelial nitric oxide synthase gene polymorphism (Glu298Asp) and acute pulmonary hypertension post cardiopulmonary bypass in children with congenital cardiac diseases. Cardiol Young 2011; 21:161-9. [PMID: 21144100 DOI: 10.1017/s1047951110001630] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Intra-cardiac repair of congenital cardiac diseases in children with left-right shunt is often associated with acute elevation of pulmonary artery pressure following cardiopulmonary bypass. We studied the correlation between the Glu298Asp polymorphism of the endothelial nitric oxide synthase gene and pulmonary hypertension in children with congenital cardiac diseases. METHODS AND RESULTS A total of 80 children with congenital cardiac diseases at a median age of 3.8 years, ranged 0.1-36.2 years, and 136 controls were enrolled. Most patients presented with significant left-to-right shunt - pulmonary-to-systemic blood flow of 2.8, with a range from 0.6 to 7.5. In all, 40 out of 80 children showed pulmonary hypertension with mean pressure of 42, ranged 26-82, millimetres of mercury. Thirty-one out of 40 children underwent intra-cardiac repair and 15 out of 31 operated patients were found to have an acute elevation of pulmonary artery pressure after cardiopulmonary bypass. The Glu298Asp polymorphism was identified using polymerase chain reaction and restriction fragment length polymorphism. Both in patients and in controls, the genotype distribution corresponded to the Hardy-Weinberg equilibrium. The gene frequency for Glu298Glu, Glu298Asp and Asp298Asp was not different in the control group compared to the patients (Armitage trend test: p = 0.37). The endothelial nitric oxide synthase polymorphism was related to acute post-operative elevation of pulmonary artery pressure (genotypic frequency 53.3 versus 25%; Armitage trend test: p = 0.038). In addition, the allelic frequency of the Glu298Asp was related to post-operative pulmonary hypertension (Fischer's exact test: p = 0.048). The positive predictive value was 71.43%. CONCLUSION Patients with left-to-right shunt are more likely to develop acute elevation of pulmonary artery pressure after cardiopulmonary bypass when presenting with the Glu298Asp polymorphism of the gene endothelial nitric oxide synthase. This could be used as a genetic marker for the predisposition for the development of pulmonary hypertension after intra-cardiac repair.
Collapse
|
128
|
Xian YF, Li YC, Ip SP, Lin ZX, Lai XP, Su ZR. Anti-inflammatory effect of patchouli alcohol isolated from Pogostemonis Herba in LPS-stimulated RAW264.7 macrophages. Exp Ther Med 2011; 2:545-550. [PMID: 22977538 DOI: 10.3892/etm.2011.233] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 02/21/2011] [Indexed: 12/21/2022] Open
Abstract
Pogostemonis Herba has long been used in traditional Chinese medicine for the treatment of inflammation-related disorders. Patchouli alcohol (PA) isolated from Pogostemonis Herba is a tricyclic sesquiterpene that is known to exert a variety of pharmacological activities. The present study aimed to investigate the anti-inflammatory effect of PA on lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Pre-treatment with PA at concentrations of 10, 20 or 40 μM dose-dependently decreased the production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, nitric oxide (NO) and prostaglandin E(2) in LPS-stimulated RAW264.7 cells. In addition, PA treatment also reversed the increased mRNA expression of TNF-α, IL-1β, IL-6, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 caused by LPS in RAW264.7 cells. These results indicate that PA is an important anti-inflammatory constituent of Pogostemonis Herba and that its anti-inflammatory effect may be mediated, at least in part, by down-regulation of the mRNA expression of a panel of inflammatory mediators, such as TNF-α, IL-1β, IL-6, iNOS and COX-2.
Collapse
Affiliation(s)
- Yan-Fang Xian
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | | | | | | | | | | |
Collapse
|
129
|
Electroacupuncture improves glucose tolerance through cholinergic nerve and nitric oxide synthase effects in rats. Neurosci Lett 2011; 494:114-8. [PMID: 21376780 DOI: 10.1016/j.neulet.2011.02.071] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 02/19/2011] [Accepted: 02/25/2011] [Indexed: 11/20/2022]
Abstract
The purpose of this investigation was to evaluate the effect and mechanisms of electroacupuncture (EA) at the bilateral Zusanli acupoints (ST-36) on glucose tolerance in normal rats. Intravenous glucose tolerance test (IVGTT) was performed to examine the effects of electroacupuncture (EA) on glucose tolerance in rats. The EA group underwent EA at the ST-36, with settings of 15 Hz, 10 mA, and 60 min; the control group underwent the same treatments, but without EA. Atropine, hemicholinium-3 (HC-3) or NG-nitro-L-arginine methyl ester (L-NAME) were injected into the rats alone or simultaneously and EA was performed to investigate differences in plasma glucose levels compared to the control group. Plasma samples were obtained for assaying plasma glucose and free fatty acid (FFA) levels. Western blot was done to determine the insulin signal protein and nNOS to exam the correlation between EA and improvement in glucose tolerance. The EA group had significantly lower plasma glucose levels compared to the control group. Plasma glucose levels differed significantly between the EA and control groups after the administration of L-NAME, atropine, or HC-3 treatments alone, but there were no significant differences in plasma glucose with combined treatment of L-NAME and atropine or L-NAME and HC-3. EA decreased FFA levels and enhanced insulin signal protein (IRS1) and nNOS activities in skeletal muscle during IVGTT. In summary, EA stimulated cholinergic nerves and nitric oxide synthase for lowering plasma FFA levels to improve glucose tolerance.
Collapse
|
130
|
Cecchettini A, Rocchiccioli S, Boccardi C, Citti L. Vascular smooth-muscle-cell activation: proteomics point of view. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 288:43-99. [PMID: 21482410 DOI: 10.1016/b978-0-12-386041-5.00002-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vascular smooth-muscle cells (VSMCs) are the main component of the artery medial layer. Thanks to their great plasticity, when stimulated by external inputs, VSMCs react by changing morphology and functions and activating new signaling pathways while switching others off. In this way, they are able to increase the cell proliferation, migration, and synthetic capacity significantly in response to vascular injury assuming a more dedifferentiated state. In different states of differentiation, VSMCs are characterized by various repertories of activated pathways and differentially expressed proteins. In this context, great interest is addressed to proteomics technology, in particular to differential proteomics. In recent years, many authors have investigated proteomics in order to identify the molecular factors putatively involved in VSMC phenotypic modulation, focusing on metabolic networks linking the differentially expressed proteins. Some of the identified proteins may be markers of pathology and become useful tools of diagnosis. These proteins could also represent appropriately validated targets and be useful either for prevention, if related to early events of atherosclerosis, or for treatment, if specific of the acute, mid, and late phases of the pathology. RNA-dependent gene silencing, obtained against the putative targets with high selective and specific molecular tools, might be able to reverse a pathological drift and be suitable candidates for innovative therapeutic approaches.
Collapse
|
131
|
|
132
|
Shaw JH, Xiang L, Shah A, Yin W, Lloyd PG. Placenta growth factor expression is regulated by hydrogen peroxide in vascular smooth muscle cells. Am J Physiol Cell Physiol 2010; 300:C349-55. [PMID: 21123739 DOI: 10.1152/ajpcell.00374.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When supply arteries become occluded, blood is diverted through preexisting collateral vessels. Shear stress arising from this increase in blood flow provides the initial physiological stimulus for expansion of the collateral circulation, a process termed arteriogenesis. Endothelial cells (EC) respond to increased shear stress by releasing a variety of mediators that can act on underlying smooth muscle cells (SMC). Placenta growth factor (PLGF) is known to mediate certain aspects of arteriogenesis, such as recruitment of monocytes to the vessel wall. Therefore, we tested whether SMC PLGF expression is influenced by mediators released by EC. We used A10 SMC cultured with medium that had been conditioned by EOMA EC for 4 days as a model. We found that EC-conditioned medium is able to upregulate PLGF gene expression in A10 SMC. Further experiments identified hydrogen peroxide (H(2)O(2)) as a key mediator of this response. We confirmed the physiological relevance of this mechanism in primary human coronary artery SMCs by demonstrating that exogenous H(2)O(2) specifically upregulates PLGF gene and protein expression. We also demonstrated that the physiological stimulus of shear stress raises endogenous H(2)O(2) levels in media into the range found to increase PLGF expression. In this study, we demonstrate that EC-released H(2)O(2) acts as a positive regulator of PLGF gene and protein expression in vascular SMC. To our knowledge, this is the first study to describe H(2)O(2) as a regulator of PLGF expression and therefore an upstream mediator of PLGF-driven arteriogenesis.
Collapse
Affiliation(s)
- Jennifer H Shaw
- Dept. of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | |
Collapse
|
133
|
Harston GWJ, Sutherland BA, Kennedy J, Buchan AM. The contribution of L-arginine to the neurotoxicity of recombinant tissue plasminogen activator following cerebral ischemia: a review of rtPA neurotoxicity. J Cereb Blood Flow Metab 2010; 30:1804-16. [PMID: 20736961 PMCID: PMC3023931 DOI: 10.1038/jcbfm.2010.149] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alteplase is the only drug licensed for acute ischemic stroke, and in this formulation, the thrombolytic agent recombinant tissue plasminogen activator (rtPA) is stabilized in a solution of L-arginine. Improved functional outcomes after alteplase administration have been shown in clinical trials, along with improved histological and behavioral measures in experimental models of embolic stroke. However, in animal models of mechanically induced ischemia, alteplase can exacerbate ischemic damage. We have systematically reviewed the literature of both rtPA and L-arginine administration in mechanical focal ischemia. The rtPA worsens ischemic damage under certain conditions, whereas L-arginine can have both beneficial and deleterious effects dependent on the time of administration. The interaction between rtPA and L-arginine may be leading to the production of nitric oxide, which can cause direct neurotoxicity, altered cerebral blood flow, and disruption of the neurovascular unit. We suggest that alternative formulations of rtPA, in the absence of L-arginine, would provide new insight into rtPA neurotoxicity, and have the potential to offer more efficacious thrombolytic therapy for ischemic stroke patients.
Collapse
Affiliation(s)
- George W J Harston
- Nuffield Department of Clinical Medicine, Acute Stroke Programme, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
134
|
Kim Y, Sung J, Sung M, Choi Y, Jeong HS, Lee J. Involvement of heme oxygenase-1 in the anti-inflammatory activity of Chrysanthemum boreale Makino extracts on the expression of inducible nitric oxide synthase in RAW264.7 macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2010; 131:550-554. [PMID: 20656003 DOI: 10.1016/j.jep.2010.07.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 07/07/2010] [Accepted: 07/15/2010] [Indexed: 05/29/2023]
Abstract
AIM OF THE STUDY This study is to elucidate the involvement of anti-inflammatory heme oxygenase-1 (HO-1) in the inhibitory activity of a Chrysanthemum boreale Makino (CB) extract on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. MATERIALS AND METHODS Cell viability and NO assay were performed. In addition, iNOS expression was detected by Western blotting and real-time PCR. HO-1 expression was also evaluated by Western blotting, and blocking HO-1 activity on NO production was performed. RESULTS The CB extract at the highest concentration (100 μg/ml) significantly inhibited NO production by approximately 90% and suppressed iNOS protein expression by approximately 84.8% compared to LPS-stimulated cells. Furthermore, the CB extract (100 μg/ml) inhibited iNOS mRNA expression in a concentration-dependant manner and suppressed iNOS mRNA expression by 94.8%. The CB extract induced the expression of HO-1 in a dose-dependent manner, and blocking HO-1 activity abolished the inhibitory effects of the CB extract. Moreover, the addition of carbon monoxide such as tricarbonyl dichlororuthenium (II) dimmer (RuCO), a byproduct derived from heme degradation, mimicked the inhibitory action of low concentrations of CB extract. CONCLUSION These results suggest that a CB extract has potent anti-inflammatory activity in RAW264.7 macrophages involving the induction of HO-1.
Collapse
Affiliation(s)
- Younghwa Kim
- Department of Food Science and Technology, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | | | | | | | | | | |
Collapse
|
135
|
Alkarmi A, Thijssen DHJ, Albouaini K, Cable NT, Wright DJ, Green DJ, Dawson EA. Arterial prehabilitation: can exercise induce changes in artery size and function that decrease complications of catheterization? Sports Med 2010; 40:481-92. [PMID: 20524713 DOI: 10.2165/11531950-000000000-00000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Coronary angiography and angioplasty are common invasive procedures in cardiovascular medicine, which involve placement of a sheath inside peripheral conduit arteries. Sheath placement and catheterization can be associated with arterial thrombosis, spasm and occlusion. In this paper we review the literature pertaining to the possible benefits of arterial 'prehabilitation'--the concept that interventions aimed at enhancing arterial function and size (i.e. remodelling) should be undertaken prior to cardiac catheterization or artery harvest during bypass graft surgery. The incidence of artery spasm, occlusion and damage is lower in larger arteries with preserved endothelial function. We conclude that the beneficial effects of exercise training on both artery size and function, which are particularly evident in individuals who possess cardiovascular diseases or risk factors, infer that exercise training may reduce complication rates following catheterization and enhance the success of arteries harvested as bypass grafts. Future research efforts should focus directly on examination of the 'prehabilitation' hypothesis and the efficacy of different interventions aimed at reducing clinical complications of common interventional procedures.
Collapse
Affiliation(s)
- Amr Alkarmi
- Liverpool Heart and Chest Hospital, Liverpool, UK
| | | | | | | | | | | | | |
Collapse
|
136
|
Negrao MV, Alves CR, Alves GB, Pereira AC, Dias RG, Laterza MC, Mota GF, Oliveira EM, Bassaneze V, Krieger JE, Negrao CE, Rondon MUPB. Exercise training improves muscle vasodilatation in individuals with T786C polymorphism of endothelial nitric oxide synthase gene. Physiol Genomics 2010; 42A:71-7. [DOI: 10.1152/physiolgenomics.00145.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Allele T at promoter region of the eNOS gene has been associated with an increase in coronary disease mortality, suggesting that this allele increases susceptibility for endothelial dysfunction. In contrast, exercise training improves endothelial function. Thus, we hypothesized that: 1) Muscle vasodilatation during exercise is attenuated in individuals homozygous for allele T, and 2) Exercise training improves muscle vasodilatation in response to exercise for TT genotype individuals. From 133 preselected healthy individuals genotyped for the T786C polymorphism, 72 participated in the study: TT ( n = 37; age 27 ± 1 yr) and CT+CC ( n = 35; age 26 ± 1 yr). Forearm blood flow (venous occlusion plethysmography) and blood pressure (oscillometric automatic cuff) were evaluated at rest and during 30% handgrip exercise. Exercise training consisted of three sessions per week for 18 wk, with intensity between anaerobic threshold and respiratory compensation point. Resting forearm vascular conductance (FVC, P = 0.17) and mean blood pressure ( P = 0.70) were similar between groups. However, FVC responses during handgrip exercise were significantly lower in TT individuals compared with CT+CC individuals (0.39 ± 0.12 vs. 1.08 ± 0.27 units, P = 0.01). Exercise training significantly increased peak VO2 in both groups, but resting FVC remained unchanged. This intervention significantly increased FVC response to handgrip exercise in TT individuals ( P = 0.03), but not in CT+CC individuals ( P = 0.49), leading to an equivalent FVC response between TT and CT+CC individuals (1.05 ± 0.18 vs. 1.59 ± 0.27 units, P = 0.27). In conclusion, exercise training improves muscle vasodilatation in response to exercise in TT genotype individuals, demonstrating that genetic variants influence the effects of interventions such as exercise training.
Collapse
Affiliation(s)
- Marcelo V. Negrao
- Heart Institute (InCor), University of São Paulo Medical School; and
| | - Cleber R. Alves
- Heart Institute (InCor), University of São Paulo Medical School; and
| | | | | | - Rodrigo G. Dias
- Heart Institute (InCor), University of São Paulo Medical School; and
| | - Mateus C. Laterza
- Heart Institute (InCor), University of São Paulo Medical School; and
| | - Gloria F. Mota
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Edilamar M. Oliveira
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | - Jose E. Krieger
- Heart Institute (InCor), University of São Paulo Medical School; and
| | - Carlos E. Negrao
- Heart Institute (InCor), University of São Paulo Medical School; and
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
137
|
Ahmadie R, Santiago JJ, Walker J, Fang T, Le K, Zhao Z, Azordegan N, Bage S, Lytwyn M, Rattan S, Dixon IMC, Kardami E, Moghadasian MH, Jassal DS. A high-lipid diet potentiates left ventricular dysfunction in nitric oxide synthase 3-deficient mice after chronic pressure overload. J Nutr 2010; 140:1438-44. [PMID: 20554900 DOI: 10.3945/jn.110.123091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A high-lipid diet (HLD) may lead to adverse left ventricular (LV) remodeling and endothelial dysfunction in conditions of hemodynamic stress. Although congenital absence of nitric oxide synthase 3 (NOS3) leads to adverse LV remodeling after transverse aortic constriction (TAC), the effects of a HLD in this state remains unknown. Wild-type (WT) and NOS3 knockout mice (NOS3(-/-)) were randomized into the following 4 groups: 1) WT + low-lipid diet (LLD) (10% of energy); 2) WT + HLD (60% of energy); 3) NOS3(-/-) + LLD; and 4) NOS3(-/-) + HLD for a total of 12 wk. After 1 wk of randomization, TAC was performed on all groups. Serial echocardiography revealed a decrease in LV ejection fraction (LVEF) in WT and NOS3(-/-) mice fed the HLD compared with those fed the LLD diet at 12 wk post-TAC. Mice fed the NOS3(-/-) + HLD diet had a lower LVEF compared with mice in the other 3 groups (P < 0.05). There was greater myocyte hypertrophy, interstitial fibrosis, and percentage change in plasma cholesterol concentrations in the NOS3(-/-) + HLD group 12 wk post-TAC compared with the other 3 groups. Although high molecular weight fibroblast growth factor-2, a marker of cardiac hypertrophy, was more upregulated in the NOS3(-/-) + HLD group than in the other groups, markers of the renin-angiotensin system did not differ among them. A HLD potentiates LV dysfunction in NOS3(-/-) mice in a chronic pressure overload state.
Collapse
Affiliation(s)
- Roien Ahmadie
- Institute of Cardiovascular Sciences, St. Boniface General Hospital, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Toda N, Ayajiki K. Vascular actions of nitric oxide as affected by exposure to alcohol. Alcohol Alcohol 2010; 45:347-55. [PMID: 20522422 DOI: 10.1093/alcalc/agq028] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vasodilator substances liberated from endothelial cells, mainly nitric oxide (NO), play important roles in physiologically regulating blood flow and blood pressure and preventing pathological vascular damage. Impairment of these actions promotes the genesis of cardiovascular diseases such as hypertension, cerebral and cardiac hypoperfusion, impaired vasodilatation and atherosclerosis. Low concentrations of alcohol induce increased release of NO from the endothelium due to activation and expression of NO synthase (NOS). In contrast, administration of high concentrations of alcohol or its chronic ingestion impairs endothelial functions in association with reduced NO bioavailability. The endogenous NOS inhibitor asymmetric dimethylarginine may participate in decreased synthesis of NO. Chronic alcohol intake also impairs penile erectile function possibly by interfering with endothelial, but not nitrergic nerve, function. This review article summarizes the vascular actions of NO derived from endothelial and neuronal NOS as affected by alcohol, other than wine, and acetaldehyde in healthy individuals, human materials and various experimental animals.
Collapse
Affiliation(s)
- Noboru Toda
- Toyama Institute for Cardiovascular Pharmacology Research, 7-13, 1-Chome, Azuchi-machi, Chuo-ku, Osaka 541-0052, Japan.
| | | |
Collapse
|
139
|
Fatehi-Hassanabad Z, Chan CB, Furman BL. Reactive oxygen species and endothelial function in diabetes. Eur J Pharmacol 2010; 636:8-17. [DOI: 10.1016/j.ejphar.2010.03.048] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/27/2010] [Accepted: 03/22/2010] [Indexed: 02/07/2023]
|
140
|
Human endothelial dysfunction: EDRFs. Pflugers Arch 2010; 459:1005-13. [DOI: 10.1007/s00424-010-0822-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 03/03/2010] [Accepted: 03/04/2010] [Indexed: 02/02/2023]
|
141
|
Cutruzzolà F, Rinaldo S, Castiglione N, Giardina G, Pecht I, Brunori M. Nitrite reduction: a ubiquitous function from a pre-aerobic past. Bioessays 2010; 31:885-91. [PMID: 19554608 DOI: 10.1002/bies.200800235] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In eukaryotes, small amounts of nitrite confer cytoprotection against ischemia/reperfusion-related tissue damage in vivo, possibly via reduction to nitric oxide (NO) and inhibition of mitochondrial function. Several hemeproteins are involved in this protective mechanism, starting with deoxyhemoglobin, which is capable of reducing nitrite. In facultative aerobic bacteria, such as Pseudomonas aeruginosa, nitrite is reduced to NO by specialized heme-containing enzymes called cd(1) nitrite reductases. The details of their catalytic mechanism are summarized below, together with a hypothesis on the biological role of the unusual d(1)-heme, which, in the reduced state, shows unique properties (very high affinity for nitrite and exceptionally fast dissociation of NO). Our results support the idea that the nitrite-based reactions of contemporary eukaryotes are a vestige of earlier bacterial biochemical pathways. The evidence that nitrite reductase activities of enzymes with different cellular roles and biochemical features still exist today highlights the importance of nitrite in cellular homeostasis.
Collapse
Affiliation(s)
- Francesca Cutruzzolà
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza-Università di Roma, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
142
|
|
143
|
Mancuso C, Navarra P, Preziosi P. Roles of nitric oxide, carbon monoxide, and hydrogen sulfide in the regulation of the hypothalamic-pituitary-adrenal axis. J Neurochem 2010; 113:563-75. [PMID: 20089135 DOI: 10.1111/j.1471-4159.2010.06606.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The importance of stress in modifying human behavior and lifestyle is no longer a matter of debate. Although mild stress enhances the immune response and prevents infections, prolonged stress seems to play pathogenic roles in depression and neurodegenerative disorders. The body has developed an adaptive stress response consisting of cardiovascular, metabolic, and psychological changes, which act in concert to eliminate stressors. One of the major components of this response is the hypothalamic-pituitary-adrenal axis, also known as the stress axis. Over the last 30 years, many studies have documented the integrated stress-axis regulation by neurotransmitters. They have also demonstrated that gaseous neuromodulators, such as NO, CO, and H(2)S, regulate the hypothalamic release of neuropeptides. The specific effects (stimulatory vs. inhibitory) of these gases on the stress axis varies, depending on the type of stress (neurogenic or immuno-inflammatory), its intensity (low or high), and the species studied (rodents or humans). This review examines the complex roles of NO, CO, and H(2)S in modulation of stress-axis activity, with particular emphasis on the regulatory effects they exert at the hypothalamic level.
Collapse
Affiliation(s)
- Cesare Mancuso
- Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy.
| | | | | |
Collapse
|
144
|
Rodrigues Pereira N, Bandeira Moss M, Assumpção CR, Cardoso CB, Mann GE, Brunini TMC, Mendes-Ribeiro AC. Oxidative stress, l-arginine-nitric oxide and arginase pathways in platelets from adolescents with anorexia nervosa. Blood Cells Mol Dis 2010; 44:164-8. [PMID: 20071203 DOI: 10.1016/j.bcmd.2009.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 11/25/2009] [Accepted: 11/25/2009] [Indexed: 10/20/2022]
Abstract
Anorexia nervosa (AN) is associated with high cardiovascular mortality. Nitric oxide (NO) inhibits platelet function and regulates the cardiovascular homeostasis. The aim of this study was to investigate the l-arginine-NO-GMPc and arginase pathways and oxidative stress in platelets from patients with AN. Intraplatelet l-arginine transport, NOS expression and activity, cGMP levels, platelet aggregation, arginase expression and oxidative stress were measured in adolescent patients with AN (n=11) and healthy controls (n=12). Plasma l-arginine levels were significantly reduced in AN. l-arginine transport, NOS activity and cGMP basal levels were reduced in platelets associated with unchanged platelet aggregability. The expression of NOS isoforms was not affected. TBARS production was diminished, while the activity of superoxide dismutase was elevated in AN patients. There was an overexpression of arginase II in AN. Alterations of l-arginine-NO-GMPc and arginase pathways in platelets can be early predictors of the incidence of cardiovascular disease into adult life in AN.
Collapse
|
145
|
Pimenta E, Oparil S. Impact of olmesartan on blood pressure, endothelial function, and cardiovascular outcomes. Integr Blood Press Control 2010; 3:113-23. [PMID: 21949627 PMCID: PMC3172062 DOI: 10.2147/ibpc.s11717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Indexed: 11/23/2022] Open
Abstract
The vascular endothelium, the largest "organ" in the body, synthesizes and releases a wide spectrum of vasoactive substances into the circulation. Endothelial dysfunction links hypertension and other cardiovascular (CV) risk factors that promote the development of atherosclerotic plaque, CV disease, and fatal and nonfatal CV events. Blood pressure (BP) reduction is the most effective way to reduce CV risk in patients with hypertension, but it is unknown whether endothelial dysfunction is a cause or consequence of hypertension. Renin-angiotensin-aldosterone system blockers improve endothelial function and have favorable vascular, metabolic, cardiac, and renoprotective effects that are independent of BP reduction. Olmesartan effectively reduces BP and also has vasoprotective properties, including reductions in endothelial dysfunction and inflammation, prevention of microalbuminuria, and reversal of vascular remodeling. Large-scale, long-term studies are needed to confirm that olmesartan has vasoprotective effects that are independent of BP control and to determine whether these pleiotropic effects translate into improved CV disease outcomes.
Collapse
Affiliation(s)
- Eduardo Pimenta
- Endocrine Hypertension Research Centre and Clinical Centre of Research Excellence in Cardiovascular Disease and Metabolic Disorders, University of Queensland School of Medicine, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | | |
Collapse
|
146
|
Lau F, Joseph J, Shukitt-Hale B. Age-Related Neuronal and Behavioral Deficits are Improved by Polyphenol-Rich Blueberry Supplementation. ACTA ACUST UNITED AC 2009. [DOI: 10.1201/9781420026559.ch22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
147
|
Nitric oxide dysfunction in vascular endothelium and platelets: role in essential hypertension. J Hypertens 2009; 27:2310-20. [DOI: 10.1097/hjh.0b013e328330e89a] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
148
|
Interactions between morphine and nitric oxide in various organs. J Anesth 2009; 23:554-68. [DOI: 10.1007/s00540-009-0793-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 05/11/2009] [Indexed: 02/02/2023]
|
149
|
Di Francescomarino S, Sciartilli A, Di Valerio V, Di Baldassarre A, Gallina S. The effect of physical exercise on endothelial function. Sports Med 2009; 39:797-812. [PMID: 19757859 DOI: 10.2165/11317750-000000000-00000] [Citation(s) in RCA: 276] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Endothelium is essential for maintenance of health of the vessel wall and for the local regulation of vascular tone and structure and haemostasis. Regular physical exercise, which is known to promote a favourable cardiovascular state, may improve endothelial function via several mechanisms. Indeed, it augments blood flow and laminar shear stress, resulting in increased nitric oxide production and bioavailability. In this regard, the beneficial effects of training on endothelial function can be mediated in a number of ways, including synthesis of molecular mediators, changes in neurohormonal release and oxidant/antioxidant balance. On the other hand, physical exercise can also elicit systemic molecular pathways connected with angiogenesis and chronic anti-inflammatory action with consequent modification of the endothelial function. However, its benefit depends on the type and intensity of training performed. While strenuous exercise increases oxidative metabolism and produces a pro-oxidant environment, only regular moderate physical activity promotes an antioxidant state and preserves endothelial function. Thus, exercise may have a beneficial effect on the development of cardiovascular disease through preserving endothelial function.
Collapse
|
150
|
Terpolilli NA, Zweckberger K, Trabold R, Schilling L, Schinzel R, Tegtmeier F, Plesnila N. The novel nitric oxide synthase inhibitor 4-amino-tetrahydro-L-biopterine prevents brain edema formation and intracranial hypertension following traumatic brain injury in mice. J Neurotrauma 2009; 26:1963-75. [PMID: 19514849 DOI: 10.1089/neu.2008.0853] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Brain edema formation, resulting in increased intracranial pressure (ICP), is one of the most deleterious consequences of traumatic brain injury (TBI). Nitric oxide (NO) has previously been shown to be involved in the damage of the blood-brain barrier (BBB) and, thus, in the formation of post-traumatic brain edema; however, this knowledge never resulted in a clinically relevant therapeutic option because available NO synthase inhibitors have serious side effects in man. The aim of the current study was to investigate the therapeutic efficacy of VAS203, a novel tetrahydrobiopterine (BH3)-based NOS inhibitor, in experimental TBI. When added to isolated vessels rings obtained from rat basilar and middle cerebral arteries (n = 32-35) VAS203 showed the same vasoconstrictive effect as the classical NO synthase inhibitor L-(G)-nitro-arginine-methylester (L-NAME). VAS203 passed the BBB both in healthy and traumatized mouse brain (C57/BL6, n = 5 per group) and did not show any systemic side effects at therapeutic concentrations. When administered 30 min after experimental TBI (controlled cortical impact, 2.2 mg/kg/min i.v., n = 7 per group), VAS203 prevented any further increase in ICP or deterioration of cerebral blood flow. This effect was dose-dependent and long-lasting (i.e., 24 h after trauma, brain edema formation was still significantly reduced [-40%, p < 0.008; n = 7 per group] and functional improvements were present up to 7 days after TBI [p < 0.02 on post-trauma day 6; n = 8 per group]). Therefore, VAS203 may represent a promising candidate for the treatment of acute intracranial hypertension following TBI.
Collapse
Affiliation(s)
- Nicole A Terpolilli
- Department of Neurosurgery and Institute for Surgical Research, University of Munich Medical Center-Grosshadern, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|