101
|
Duan C, Hu D, Tang X, Suo J, Wang S, Zhang S, Tao G, Li C, Wang C, Gu X, Tang X, Huang G, Xiang B, Wu S, Mamoun CB, Suo X, Liu X. Stable transfection of Eimeria necatrix through nucleofection of second generation merozoites. Mol Biochem Parasitol 2019; 228:1-5. [PMID: 30658178 DOI: 10.1016/j.molbiopara.2019.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/16/2018] [Accepted: 01/10/2019] [Indexed: 11/19/2022]
Abstract
Eimeria spp., the causative agents of coccidiosis, are the most common protozoan pathogens of chickens. Infection with these parasites can result in poor development or death of animals leading to a devastating economic impact on poultry production. The establishment of transfection protocols for genetic manipulation of Eimeria species and stable expression of genes would help advance the biology of these parasites as well as establish these organisms as novel vaccine delivery vehicles. Here, we report the selection of the first stable transgenic E. necatrix population, EnHA1, consitutively expressing the EYFP reporter following transfection of the 2nd generation merozoites with a linear DNA fragment harboring the EYFP reporter gene, the HA1 gene from the avian influenza virus H9N2 and the TgDHFR-TS selectable marker, which confers resistance to pyrimethamine. Transfected merozoites were inoculated into chickens via the cloacal route, and feces from 18 h to 72 h post inoculation were collected and subjected to subsequent serial passages, FACS sorting and pyrimethamine selection. A gradual increase in the number of EYFP-expressing sporulated oocysts was noticed with more than 90% EYFP + oocysts obtained after five passages. Immunofluorescence assay confirmed successful expression of the HA1 antigen in the EnHA1 population. The ability to genetically manipulate E. necatrix merozoites and express heterologous genes in this parasite will pave the way for possible use of this organism as a vaccine-delivery vehicle.
Collapse
Affiliation(s)
- Chunhui Duan
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Dandan Hu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xinming Tang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jingxia Suo
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Si Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Sixin Zhang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Geru Tao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chao Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chaoyue Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiaolong Gu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiaoli Tang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Guangping Huang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Biqi Xiang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Shaoqiang Wu
- Chinese Academy of Inspection and Quarantine, Yizhuang, Beijing, China
| | - Choukri Ben Mamoun
- Department of Medicine / Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Xun Suo
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xianyong Liu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
102
|
Differential gene response to coccidiosis in modern fast growing and slow growing broiler genotypes. Vet Parasitol 2018; 268:1-8. [PMID: 30981300 DOI: 10.1016/j.vetpar.2018.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 01/04/2023]
Abstract
We analysed intestinal tissues from groups of fast growing (Ross 308) broilers with natural or experimental coccidiosis, by genomic microarray. We identified genes that were differentially expressed (DE) in all groups and analysed expression of a panel of these, by qPCR, in Ross 308 and slow growing (Ranger classic) broilers, infected with 2500 or 7000 oocysts of Eimeria maxima for 6 or 13 days post-infection (dpi). Four genes (ADD3, MLLT10, NAV2 and PLXNA2) were upregulated (P <0.05) in Ross 308 but were not DE in Ranger Classic at 6 dpi with 2500 oocysts. Six genes (PTPRF, NCOR1, CSF3, SGK1, CROR and CD1B) were upregulated (P <0.05) in both Ross 308 and Ranger Classic infected with 2500 oocysts at 6 dpi but were not DE at 6 dpi with 7000 oocysts. At 13 dpi with 7000 oocysts, NAV2 and NCOR1 were upregulated in Ross 308 (P <0.05) and PTPRF was upregulated in both genotypes (P <0.05). DE of immune genes within the biomarker panel also occurred, with CSF3 upregulated in both genotypes infected with 2500 oocysts at 6 dpi and in Ranger Classic infected with 7000 oocysts, at 6 and 13 dpi (P <0.05). IL-22 was down-regulated in Ranger Classic infected with 2500 or 7000 oocysts at 6 dpi (P <0.05) but upregulated in both genotypes at 13 dpi (P <0.05). CD72 was down-regulated in Ranger Classic infected with 2500 oocysts at 6 dpi and with 7000 oocysts at 6 and 13 dpi (P <0.05). CD72 was upregulated in Ross 308 infected with 2500 oocysts at 6 dpi but was down-regulated following infection with 7000 oocysts at 13 dpi (P <0.05). In conclusion, differential gene expression occurs in fast and slow growing broiler genotypes with coccidiosis. In addition, we highlight a potential genetic biomarker panel for early diagnosis of coccidiosis.
Collapse
|
103
|
Fatoba AJ, Adeleke MA. Diagnosis and control of chicken coccidiosis: a recent update. J Parasit Dis 2018; 42:483-493. [PMID: 30538344 PMCID: PMC6261147 DOI: 10.1007/s12639-018-1048-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 10/24/2018] [Indexed: 11/25/2022] Open
Abstract
Coccidiosis is a deadly disease that hampers chicken's productivity and welfare. Thus, the disease is a major menace to the global poultry industry. Coccidiosis which is caused by the apicomplexan parasite of the genus Eimeria has seven known species which affect the different parts of the intestinal tract of chickens. The disease which occurs by ingestion of sporulated oocyst has been associated with poor poultry management system. Mixed infection among the species of this parasite contributes to both pathogenicity and misdiagnosis of the disease. A progress in identification and diagnosis approach which cuts across pathological, morphological and molecular has been reported for this parasite. Control measures which include anticoccidial drugs, vaccines and natural products have dominated literature for this disease. However, the emergence of genetic and antigenic diversity with implication on resistance to anticoccidials among different strains of Eimeria parasite has generated concerns on the effectiveness of the current anticoccidial vaccines. A new look on the control strategy therefore becomes imperative. This study reviews the current trends on the identification and control of chicken coccidiosis with focus on (1) Avian coccidiosis (2) Epidemiology of chicken coccidiosis (3) Eimeria parasite and distribution in poultry (4) Diagnosis of Eimeria parasite (5) Control measures of coccidiosis (6) Threats posed by genetic and antigenic diversity of Eimeria parasite on coccidiosis control. Genomic study on diversity of Eimeria parasite becomes imperative for effective vaccine design against coccidiosis.
Collapse
Affiliation(s)
- Abiodun Joseph Fatoba
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban, 4000 South Africa
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban, 4000 South Africa
| |
Collapse
|
104
|
Cross-sectional study of Eimeria species of poultry in Kwara State, North-Central Nigeria. J Parasit Dis 2018; 43:87-95. [PMID: 30956451 DOI: 10.1007/s12639-018-1062-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/24/2018] [Indexed: 10/27/2022] Open
Abstract
Coccidiosis is one of the biggest challenges faced by the global poultry industry as the protozoan is found anywhere poultry are reared. Before now, there have been no documents on the intensity and diversity of Eimeria species of poultry in Kwara State. This study aimed to determine the prevalence and intensity of Eimeria species and its species diversity among poultry in Kwara Central, North-Central Nigeria. Five hundred and two fecal samples (from four hundred and seventy two chickens and thirty turkeys) were collected from chickens and turkeys from 15 farms from December 2017 to May 2018. The samples were subjected to floatation technique. Positive samples were further subjected to the McMaster counting technique for determining the intensity of infection. Sporulation of unsporulated oocysts was carried out using 2.5% potassium dichromate (K2Cr2O7), for the purpose of identifying the different Eimeria species. Ninety five (18.9%) of the sampled population, 10 (66.7%) of the 15 sampled farms were positive for Eimeria species. The total mean oocyst per gram was 6325.0. Eight Eimeria species were detected in the study: 7 in chickens and 1 in turkeys. Eimeria tenella was the most predominant among chickens, E. meleagrimitis was the only species detected in turkeys. Age, sex, bird type, physiological status, farm age, farm size (acres), management system, frequency of anthelmintic use, frequency of anticoccidial use, distance to dumping site (meters), level of biosecurity and frequency of cleaning the pen were significantly associated (P < 0.05) with the occurrence of Eimeria infection. It is envisaged that the information obtained in this study will contribute to a clearer understanding of the epidemiology of poultry coccidiosis, for better management protocol which will improve the productivity of the sector in Kwara State and Nigeria.
Collapse
|
105
|
Boulton K, Nolan MJ, Wu Z, Riggio V, Matika O, Harman K, Hocking PM, Bumstead N, Hesketh P, Archer A, Bishop SC, Kaiser P, Tomley FM, Hume DA, Smith AL, Blake DP, Psifidi A. Dissecting the Genomic Architecture of Resistance to Eimeria maxima Parasitism in the Chicken. Front Genet 2018; 9:528. [PMID: 30534137 PMCID: PMC6275401 DOI: 10.3389/fgene.2018.00528] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/22/2018] [Indexed: 01/16/2023] Open
Abstract
Coccidiosis in poultry, caused by protozoan parasites of the genus Eimeria, is an intestinal disease with substantial economic impact. With the use of anticoccidial drugs under public and political pressure, and the comparatively higher cost of live-attenuated vaccines, an attractive complementary strategy for control is to breed chickens with increased resistance to Eimeria parasitism. Prior infection with Eimeria maxima leads to complete immunity against challenge with homologous strains, but only partial resistance to challenge with antigenically diverse heterologous strains. We investigate the genetic architecture of avian resistance to E. maxima primary infection and heterologous strain secondary challenge using White Leghorn populations of derived inbred lines, C.B12 and 15I, known to differ in susceptibility to the parasite. An intercross population was infected with E. maxima Houghton (H) strain, followed 3 weeks later by E. maxima Weybridge (W) strain challenge, while a backcross population received a single E. maxima W infection. The phenotypes measured were parasite replication (counting fecal oocyst output or qPCR for parasite numbers in intestinal tissue), intestinal lesion score (gross pathology, scale 0-4), and for the backcross only, serum interleukin-10 (IL-10) levels. Birds were genotyped using a high density genome-wide DNA array (600K, Affymetrix). Genome-wide association study located associations on chromosomes 1, 2, 3, and 5 following primary infection in the backcross population, and a suggestive association on chromosome 1 following heterologous E. maxima W challenge in the intercross population. This mapped several megabases away from the quantitative trait locus (QTL) linked to the backcross primary W strain infection, suggesting different underlying mechanisms for the primary- and heterologous secondary- responses. Underlying pathways for those genes located in the respective QTL for resistance to primary infection and protection against heterologous challenge were related mainly to immune response, with IL-10 signaling in the backcross primary infection being the most significant. Additionally, the identified markers associated with IL-10 levels exhibited significant additive genetic variance. We suggest this is a phenotype of interest to the outcome of challenge, being scalable in live birds and negating the requirement for single-bird cages, fecal oocyst counts, or slaughter for sampling (qPCR).
Collapse
Affiliation(s)
- Kay Boulton
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew J Nolan
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Zhiguang Wu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Valentina Riggio
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Oswald Matika
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Kimberley Harman
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Paul M Hocking
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Nat Bumstead
- Enteric Immunology Group and Genetics and Genomics Group, Pirbright Institute, Woking, United Kingdom
| | - Pat Hesketh
- Enteric Immunology Group and Genetics and Genomics Group, Pirbright Institute, Woking, United Kingdom
| | - Andrew Archer
- Enteric Immunology Group and Genetics and Genomics Group, Pirbright Institute, Woking, United Kingdom
| | - Stephen C Bishop
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Pete Kaiser
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Fiona M Tomley
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom.,Mater Research Institute, The University of Queensland, Brisbane, St. Lucia, QLD, Australia
| | - Adrian L Smith
- Enteric Immunology Group and Genetics and Genomics Group, Pirbright Institute, Woking, United Kingdom.,Department of Zoology, Sir Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Damer P Blake
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Androniki Psifidi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom.,Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom.,Department of Clinical Sciences and Services, Royal Veterinary College, University of London, Hatfield, United Kingdom
| |
Collapse
|
106
|
Boulton K, Nolan MJ, Wu Z, Psifidi A, Riggio V, Harman K, Bishop SC, Kaiser P, Abrahamsen MS, Hawken R, Watson KA, Tomley FM, Blake DP, Hume DA. Phenotypic and genetic variation in the response of chickens to Eimeria tenella induced coccidiosis. Genet Sel Evol 2018; 50:63. [PMID: 30463512 PMCID: PMC6249784 DOI: 10.1186/s12711-018-0433-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 11/14/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Coccidiosis is a major contributor to losses in poultry production. With emerging constraints on the use of in-feed prophylactic anticoccidial drugs and the relatively high costs of effective vaccines, there are commercial incentives to breed chickens with greater resistance to this important production disease. To identify phenotypic biomarkers that are associated with the production impacts of coccidiosis, and to assess their covariance and heritability, 942 Cobb500 commercial broilers were subjected to a defined challenge with Eimeria tenella (Houghton). Three traits were measured: weight gain (WG) during the period of infection, caecal lesion score (CLS) post mortem, and the level of a serum biomarker of intestinal inflammation, i.e. circulating interleukin 10 (IL-10), measured at the height of the infection. RESULTS Phenotypic analysis of the challenged chicken cohort revealed a significant positive correlation between CLS and IL-10, with significant negative correlations of both these traits with WG. Eigenanalysis of phenotypic covariances between measured traits revealed three distinct eigenvectors. Trait weightings of the first eigenvector, (EV1, eigenvalue = 59%), were biologically interpreted as representing a response of birds that were susceptible to infection, with low WG, high CLS and high IL-10. Similarly, the second eigenvector represented infection resilience/resistance (EV2, 22%; high WG, low CLS and high IL-10), and the third eigenvector tolerance (EV3, 19%; high WG, high CLS and low IL-10), respectively. Genome-wide association studies (GWAS) identified two SNPs that were associated with WG at the suggestive level. CONCLUSIONS Eigenanalysis separated the phenotypic impact of a defined challenge with E. tenella on WG, caecal inflammation/pathology, and production of IL-10 into three major eigenvectors, indicating that the susceptibility-resistance axis is not a single continuous quantitative trait. The SNPs identified by the GWAS for body weight were located in close proximity to two genes that are involved in innate immunity (FAM96B and RRAD).
Collapse
Affiliation(s)
- Kay Boulton
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Matthew J. Nolan
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, UK
| | - Zhiguang Wu
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Androniki Psifidi
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
- Department of Clinical Sciences and Services, Royal Veterinary College, University of London, Hatfield, UK
| | - Valentina Riggio
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Kimberley Harman
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, UK
| | - Stephen C. Bishop
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Pete Kaiser
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | | | - Rachel Hawken
- Cobb-Vantress Inc., PO Box 1030, Siloam Springs, AR USA
| | - Kellie A. Watson
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Fiona M. Tomley
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, UK
| | - Damer P. Blake
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, UK
| | - David A. Hume
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
- Mater Research Institute, University of Queensland, Brisbane, St. Lucia, QLD, Brisbane, Australia
| |
Collapse
|
107
|
Liu J, Liu L, Li L, Tian D, Li W, Xu L, Yan R, Li X, Song X. Protective immunity induced by Eimeria common antigen 14-3-3 against Eimeria tenella, Eimeria acervulina and Eimeria maxima. BMC Vet Res 2018; 14:337. [PMID: 30419898 PMCID: PMC6233286 DOI: 10.1186/s12917-018-1665-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 10/23/2018] [Indexed: 12/01/2022] Open
Abstract
Background Avian coccidiosis is often caused by co-infection with several species of Eimeria worldwide. Developing a multivalent vaccine with an antigen common to multiple Eimeria species is a promising strategy for controlling clinical common co-infection of Eimeria. In the previous study, 14–3-3 was identified as one of the immunogenic common antigen in E. tenella, E. acervulina and E. maxima. The aim of the present study was to evaluate the immunogenicity and protective efficacy of Ea14–3-3 in the form of DNA vaccine against infection with three species of Eimeria both individually and simultaneously. Results After vaccination with pVAX-Ea14–3-3, the Ea14–3-3 gene was transcribed and expressed in the injected muscles. Vaccination with pVAX-Ea14–3-3 significantly increased the proportion of CD4+ and CD8+ T lymphocytes and produced a strong IgY response in immunized chickens. Similarly, pVAX-Ea14–3-3 stimulated the chicken’s splenocytes to produce high levels of Th1-type (IFN-γ, IL-2) and Th2-type (IL-4) cytokines. The vaccine-induced immune response was responsible to increase weight gain, decreased the oocyst output, and alleviated enteric lesions significantly in immunized chickens as compared to control group, in addition to induce moderate anti-coccidial index (ACI). Conclusion These results indicate that Ea14–3-3 is highly immunogenic and capable to induce significant immune responses. Furthermore, Ea14–3-3 antigen can provide effective protection against infection with Eimeria tenella, Eimeria acervulina, Eimeria maxima both individually and in combination with three Eimeria species. Significant outcomes of our study provide an effective candidate antigen for developing a multivalent Eimeria vaccine against mixed infection with various Eimeria species under natural conditions. Electronic supplementary material The online version of this article (10.1186/s12917-018-1665-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianhua Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Lianrui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Lingjuan Li
- Henan Muxiang Veterinary Pharmaceutical Co., ltd, Zhengzhou, 450000, People's Republic of China
| | - Di Tian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Wenyu Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
108
|
Zepeda Mendoza ML, Roggenbuck M, Manzano Vargas K, Hansen LH, Brunak S, Gilbert MTP, Sicheritz-Pontén T. Protective role of the vulture facial skin and gut microbiomes aid adaptation to scavenging. Acta Vet Scand 2018; 60:61. [PMID: 30309375 PMCID: PMC6182802 DOI: 10.1186/s13028-018-0415-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022] Open
Abstract
Background Vultures have adapted the remarkable ability to feed on carcasses that may contain microorganisms that would be pathogenic to most other animals. The holobiont concept suggests that the genetic basis of such adaptation may not only lie within their genomes, but additionally in their associated microbes. To explore this, we generated shotgun DNA sequencing datasets of the facial skin and large intestine microbiomes of the black vulture (Coragyps atratus) and the turkey vulture (Cathartes aura). We characterized the functional potential and taxonomic diversity of their microbiomes, the potential pathogenic challenges confronted by vultures, and the microbial taxa and genes that could play a protective role on the facial skin and in the gut. Results We found microbial taxa and genes involved in diseases, such as dermatitis and pneumonia (more abundant on the facial skin), and gas gangrene and food poisoning (more abundant in the gut). Interestingly, we found taxa and functions with potential for playing beneficial roles, such as antilisterial bacteria in the gut, and genes for the production of antiparasitics and insecticides on the facial skin. Based on the identified phages, we suggest that phages aid in the control and possibly elimination, as in phage therapy, of microbes reported as pathogenic to a variety of species. Interestingly, we identified Adineta vaga in the gut, an invertebrate that feeds on dead bacteria and protozoans, suggesting a defensive predatory mechanism. Finally, we suggest a colonization resistance role through biofilm formation played by Fusobacteria and Clostridia in the gut. Conclusions Our results highlight the importance of complementing genomic analyses with metagenomics in order to obtain a clearer understanding of the host-microbial alliance and show the importance of microbiome-mediated health protection for adaptation to extreme diets, such as scavenging. Electronic supplementary material The online version of this article (10.1186/s13028-018-0415-3) contains supplementary material, which is available to authorized users.
Collapse
|
109
|
Debbou-Iouknane N, Benbarek H, Ayad A. Prevalence and aetiology of coccidiosis in broiler chickens in Bejaia province, Algeria. ACTA ACUST UNITED AC 2018; 85:e1-e6. [PMID: 30326718 PMCID: PMC6324084 DOI: 10.4102/ojvr.v85i1.1590] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 11/21/2022]
Abstract
The prevalence of coccidiosis was determined and Eimeria species were identified in farms at different locations in the Bejaia region, Algeria. The study was conducted from February to December 2016. Unvaccinated birds were selected randomly. Samples from litter and faeces were collected randomly (147 and 109, respectively). Necropsy and parasitological examinations were carried out using standard methods. Of the samples examined, 93 out of the 147 litter samples and 78 out of the 109 intestinal content samples were infected with Eimeria oocysts (63.26% and 71.55%, respectively). Mixed infections with Eimeria spp. were observed in some of the positive farms, with an overall prevalence of 54.28%. Five species of Eimeria (viz. E. acervulina, E. tenella, E. maxima, E. brunetti and E. mitis) were identified with different indices. Eimeria acervulina followed by E. tenella were the predominant species infecting chickens at the farms visited (32.05% and 26.92%, respectively). Statistically, the most prevalent Eimeria spp. was E. Acervulina (p < 0.05). This study demonstrated that coccidiosis is an omnipresent parasitic intestinal disease. It could strongly decrease production performance in broiler chickens.
Collapse
|
110
|
Albanese GA, Tensa LR, Aston EJ, Hilt DA, Jordan BJ. Evaluation of a coccidia vaccine using spray and gel applications. Poult Sci 2018; 97:1544-1553. [PMID: 29462420 PMCID: PMC7107172 DOI: 10.3382/ps/pey011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/13/2018] [Indexed: 12/04/2022] Open
Abstract
Coccidiosis is an economically significant disease of poultry caused by species of Eimeria, a parasitic protozoan. Disease can result in poor feed conversion, reduced weight gain, and can lead to the development of necrotic enteritis. For prevention of coccidiosis, poultry are commonly vaccinated with a live, sporulated oocysts mass applied with a vaccination cabinet in the hatchery. Traditionally, coccidia vaccines have been applied by coarse spray in a water based diluent, however, new technology using gel diluents has entered the US market. Gel diluents can have variable viscosities and are “dropped” onto chicks with an applicator bar. It is thought that gel droplets remain intact on the birds for longer than water based droplets, allowing more time for preening and ingestion of oocysts. In this experiment, the efficacy of a commercial coccidia vaccine applied with a water based diluent, a more viscous gel diluent, and a less viscous gel diluent was compared. Fecal samples were collected at multiple time points post-vaccination to quantify vaccine oocyst shedding. Shedding in the first cycle (days 5 to 8 post-vaccination) was related to the number of oocysts received from each application method, where the groups receiving higher doses shed more oocysts. However, a decrease in shedding was seen for the more viscous gel group in the second cycle (days 12 to 15 post-vaccination). Chickens were challenged with Eimeria maxima oocysts and 7 days post-challenge body weight gains and gross and microscopic lesions were recorded to evaluate protection levels for the different vaccine applications. All vaccinated groups appeared to be protected based on body weight gain and lesion scoring. The results of this project indicate that all vaccine applications are effective at protecting against Eimeria maxima challenge when using a proper dose of vaccine that allows for repeated oocyst cycling in the litter post-vaccination.
Collapse
Affiliation(s)
- Grace A Albanese
- Department of Poultry Science, College of Agricultural and Environmental Sciences
| | - Laura R Tensa
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens GA 30602, USA
| | - Emily J Aston
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens GA 30602, USA
| | - Deborah A Hilt
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens GA 30602, USA
| | - Brian J Jordan
- Department of Poultry Science, College of Agricultural and Environmental Sciences.,Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens GA 30602, USA
| |
Collapse
|
111
|
Transgenic Eimeria tenella Expressing Profilin of Eimeria maxima Elicits Enhanced Protective Immunity and Alters Gut Microbiome of Chickens. Infect Immun 2018; 86:IAI.00888-17. [PMID: 29967093 DOI: 10.1128/iai.00888-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 06/22/2018] [Indexed: 01/12/2023] Open
Abstract
Coccidiosis is one of the most serious diseases of livestock and birds in the world. Vaccination with live-parasite anticoccidial vaccines with genetic manipulation improving the immunogenicity of vaccine strains would be the best means for controlling coccidiosis in breeder and layer stocks, even in fast-growing broilers. Profilin from apicomplexan parasites is the first molecularly defined ligand for Toll-like receptor 11 (TLR11) and TLR12 in mice and is a potential molecular adjuvant. Here, we constructed a transgenic Eimeria tenella line (Et-EmPro) expressing the profilin of Eimeria maxima, the most immunogenic species of chicken coccidia, and evaluated the adjuvant effects of EmPro on the immunogenicity of E. tenella We found that immunization with the transgenic Eimeria parasites, compared with the wild type, elicited greater parasite antigen-specific cell-mediated immunity, characterized by increased numbers of interferon gamma (IFN-γ)-secreting lymphocytes. The transgenic parasite also induced better protective immunity against E. tenella challenge than the wild type. In addition, the diversity of the fecal microbiome of the birds immunized with the transgenic parasite differed from that of the microbiome of the wild-type-immunized birds, indicating interactions of Eimeria with the gut microbiome of chickens. Our results showing enhanced immunogenicity of E. tenella by use of EmPro as a molecular adjuvant derived from the most immunogenic affinis species represent a large step forward in the development of the next generation of coccidiosis vaccines using Eimeria as a vaccine platform expressing molecular adjuvants and potentially other pathogen antigens against not only coccidiosis but also other infectious diseases.
Collapse
|
112
|
Mutual interactions of the apicomplexan parasites Toxoplasma gondii and Eimeria tenella with cultured poultry macrophages. Parasit Vectors 2018; 11:453. [PMID: 30081942 PMCID: PMC6080511 DOI: 10.1186/s13071-018-3040-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/27/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Toxoplasma gondii and Eimeria tenella are two common parasites in poultry. Mixed infections are likely to occur frequently in chickens due to the high prevalence of both pathogens. In this study, we investigate the co-occurrence of the two pathogens in the same immunocompetent host cell population towards potential parasite-parasite as well as altered patterns of parasite-host interactions. METHODS Primary macrophages from chicken blood were co-infected in vitro with T. gondii tachyzoites (RH strain) and E. tenella sporozoites (Houghton strain) for 72 h. Morphological observations by light microscopy and assessments of parasite replication by quantitative real-time PCR (qPCR) were performed at 24, 48 and 72 h post-infection (hpi). Six host cell immune factors previously linked to T. gondii or E. tenella infection were selected for gene expression analysis in this study. RESULTS Distinct morphological changes of macrophages were observed during mixed infection at 24 hpi and immunological activation of host cells was obvious. Macrophage mRNA expression for iNOS at 48 hpi and for TNF-α at 72 hpi were significantly elevated after mixed infection. Distinct upregulation of IL-10 was also present during co-infection compared to Eimeria mono-infection at 48 and 72 hpi. At 72 hpi, the total number of macrophages as well as the number of both parasites decreased markedly. As measured by qPCR, E. tenella population tended to increase during T. gondii co-infection, while T. gondii replication was not distinctly altered. CONCLUSIONS Mutual interactions of T. gondii and E. tenella were observed in the selected co-infection model. The interactions are supposed to be indirect considering the observed changes in host cell metabolism. This study would thus help understanding the course of co-infection in chickens that may be relevant in terms of veterinary and zoonotic considerations.
Collapse
|
113
|
Hoelzer K, Bielke L, Blake DP, Cox E, Cutting SM, Devriendt B, Erlacher-Vindel E, Goossens E, Karaca K, Lemiere S, Metzner M, Raicek M, Collell Suriñach M, Wong NM, Gay C, Van Immerseel F. Vaccines as alternatives to antibiotics for food producing animals. Part 2: new approaches and potential solutions. Vet Res 2018; 49:70. [PMID: 30060759 PMCID: PMC6066917 DOI: 10.1186/s13567-018-0561-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022] Open
Abstract
Vaccines and other alternative products are central to the future success of animal agriculture because they can help minimize the need for antibiotics by preventing and controlling infectious diseases in animal populations. To assess scientific advancements related to alternatives to antibiotics and provide actionable strategies to support their development, the United States Department of Agriculture, with support from the World Organisation for Animal Health, organized the second International Symposium on Alternatives to Antibiotics. It focused on six key areas: vaccines; microbial-derived products; non-nutritive phytochemicals; immune-related products; chemicals, enzymes, and innovative drugs; and regulatory pathways to enable the development and licensure of alternatives to antibiotics. This article, the second part in a two-part series, highlights new approaches and potential solutions for the development of vaccines as alternatives to antibiotics in food producing animals; opportunities, challenges and needs for the development of such vaccines are discussed in the first part of this series. As discussed in part 1 of this manuscript, many current vaccines fall short of ideal vaccines in one or more respects. Promising breakthroughs to overcome these limitations include new biotechnology techniques, new oral vaccine approaches, novel adjuvants, new delivery strategies based on bacterial spores, and live recombinant vectors; they also include new vaccination strategies in-ovo, and strategies that simultaneously protect against multiple pathogens. However, translating this research into commercial vaccines that effectively reduce the need for antibiotics will require close collaboration among stakeholders, for instance through public–private partnerships. Targeted research and development investments and concerted efforts by all affected are needed to realize the potential of vaccines to improve animal health, safeguard agricultural productivity, and reduce antibiotic consumption and resulting resistance risks.
Collapse
Affiliation(s)
- Karin Hoelzer
- The Pew Charitable Trusts, 901 E Street NW, Washington, DC, 20004, USA.
| | - Lisa Bielke
- Ohio Agriculture and Research Development Center, Animal Sciences, Ohio State University, 202 Gerlaugh Hall, 1680 Madison Ave., Wooster, OH, 44691, USA
| | - Damer P Blake
- Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hertfordshire, AL9 7TA, UK
| | - Eric Cox
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salsiburylaan 133, 9820, Merelbeke, Belgium
| | - Simon M Cutting
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Bert Devriendt
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salsiburylaan 133, 9820, Merelbeke, Belgium
| | - Elisabeth Erlacher-Vindel
- Science and New Technologies Department, World Organisation for Animal Health (OIE), 12 Rue de Prony, 75017, Paris, France
| | - Evy Goossens
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salsiburylaan 133, 9820, Merelbeke, Belgium
| | - Kemal Karaca
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN, USA
| | | | - Martin Metzner
- RIPAC-LABOR GmbH, Am Mühlenberg 11, 14476, Potsdam, Germany
| | - Margot Raicek
- Science and New Technologies Department, World Organisation for Animal Health (OIE), 12 Rue de Prony, 75017, Paris, France
| | | | - Nora M Wong
- The Pew Charitable Trusts, 901 E Street NW, Washington, DC, 20004, USA
| | - Cyril Gay
- Office of National Programs, Agricultural Research Service, USDA, Sunnyside Ave, 5601, Beltsville, MD, USA
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salsiburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|
114
|
Ojimelukwe AE, Emedhem DE, Agu GO, Nduka FO, Abah AE. Populations of Eimeria tenella express resistance to commonly used anticoccidial drugs in southern Nigeria. Int J Vet Sci Med 2018; 6:192-200. [PMID: 30564595 PMCID: PMC6286400 DOI: 10.1016/j.ijvsm.2018.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/30/2018] [Accepted: 06/30/2018] [Indexed: 01/29/2023] Open
Abstract
Coccidiosis is one of the most economically important diseases of poultry. This study determined the preponderance of chicken Eimeria in southern Nigeria and assessed the parasite's resistance to three anticoccidial drugs: Amprolium hydrochloride; Amprolium hydrochloride + Sulfaquinoxaline-Sodium; and Toltrazuril. Multiplex PCR amplification of the SCAR region was used to confirm Eimeria preponderance. Resistance was assessed following the inoculation of 2.32 × 105 infective oocysts into broilers. Data on weight gain, feed intake, feed conversion and fecal oocyst shed were recorded. At 7 days post inoculation 9 birds per treatment were sacrificed and assessed for macroscopic lesions in four intestinal regions. Percent optimum anticoccidial activity (POAA), Anticoccidial index (ACI) and Anticoccidial sensitivity test (AST) were used to access resistance. The preponderance of Eimeria spp. were E. tenella (77%), E. necatrix (55%), E. acervulina (44%) and E. mitis (11%), with multi-species infection occurring in 55% of samples assessed. Fecal oocyst shedding was low (P < 0.05) in the medicated groups. Lesions in the cecal region were present in all infected groups regardless of treatment and accounted for 27.8% of lesion scores by severity and 37.5% of lesion scores by frequency. Overall, lesion scores were less (P < 0.05) in birds of the medicated groups compared with the infected-unmedicated group. The high preponderance of E. tenella in the field, and the occurrence of cecal lesions - caused mainly by E. tenella- despite drug administration, indicate resistance in populations of this species in our isolate. Based-on the POAA, ACI and AST values, the Eimeria isolate showed reduced sensitivity to toltrazuril.
Collapse
|
115
|
Development of cross-protective Eimeria-vectored vaccines based on apical membrane antigens. Int J Parasitol 2018. [DOI: 10.1016/j.ijpara.2018.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
116
|
Mathis GF, Newman LJ, Fitz-Coy S, Lumpkins B, Charette R. Comparison of breeder/layer coccidiosis vaccines: Part 2: Onset of immunity – attenuated vaccines. J APPL POULTRY RES 2018. [DOI: 10.3382/japr/pfx042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
117
|
Mathis GF, Newman LJ, Fitz-Coy S, Lumpkins B, Charette R, Fuller L. Comparison of breeder/layer coccidiosis vaccines: Part 1 -precocity and pathogenicity. J APPL POULTRY RES 2018. [DOI: 10.3382/japr/pfx037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
118
|
Arafat N, Abbas I. Coccidia of Japanese Quail: From Identification, Prevalence, Infection, and Immunization. J Parasitol 2018; 104:23-30. [DOI: 10.1645/17-109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Nagah Arafat
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ibrahim Abbas
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
119
|
Tang X, Liu X, Yin G, Suo J, Tao G, Zhang S, Suo X. A Novel Vaccine Delivery Model of the Apicomplexan Eimeria tenella Expressing Eimeria maxima Antigen Protects Chickens against Infection of the Two Parasites. Front Immunol 2018; 8:1982. [PMID: 29375584 PMCID: PMC5767589 DOI: 10.3389/fimmu.2017.01982] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/20/2017] [Indexed: 12/05/2022] Open
Abstract
Vaccine delivery is critical in antigen discovery and vaccine efficacy and safety. The diversity of infectious diseases in humans and livestock has required the development of varied delivery vehicles to target different pathogens. In livestock animals, previous strategies for the development of coccidiosis vaccines have encountered several hurdles, limiting the development of multiple species vaccine formulations. Here, we describe a novel vaccine delivery system using transgenic Eimeria tenella expressing immunodominant antigens of Eimeria maxima. In this delivery system, the immune mapped protein 1 of E. maxima (EmIMP1) was delivered by the closely related species of E. tenella to the host immune system during the whole endogenous life cycle. The overexpression of the exogenous antigen did not interfere with the reproduction and immunogenicity of transgenic Eimeria. After immunization with the transgenic parasite, we detected EmIMP1’s and E. maxima oocyst antigens’ specific humoral and cellular immune responses. In particular, we observed partial protection of chickens immunized with transgenic E. tenella against subsequent E. maxima infections. Our results demonstrate that the transgenic Eimeria parasite is an ideal coccidia antigen delivery vehicle and represents a new type of coccidiosis vaccines. In addition, this model could potentially be used in the development of malaria live sporozoite vaccines, in which antigens from different strains can be expressed in the vaccine strain.
Collapse
Affiliation(s)
- Xinming Tang
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xianyong Liu
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guangwen Yin
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jingxia Suo
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Geru Tao
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sixin Zhang
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xun Suo
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
120
|
Gadelhaq SM, Arafa WM, Abolhadid SM. In vitro activity of natural and chemical products on sporulation of Eimeria species oocysts of chickens. Vet Parasitol 2017; 251:12-16. [PMID: 29426468 DOI: 10.1016/j.vetpar.2017.12.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 12/23/2022]
Abstract
This study was designed to investigate the ability of two herbal extracts and different chemical substances to inhibit or disrupt sporulation of Eimeria species oocysts of the chickens. The two herbal extracts were Allium sativum (garlic) and Moringa olifiera while the chemical substances included commercial disinfectants and diclazuril. Field isolates of Eimeria oocysts were propagated in chickens to obtain a continuous source of oocysts. The collected unsporulated oocysts (105oocysts/5 ml) were dispensed into 5 cm Petri dish. Three replicates were used for each treatment. The treated oocysts were incubated for 48 h at 25-29 °C and 80% relative humidity. The results showed that herbal extracts, the commercial recommended dose of Dettol, TH4, Phenol, Virkon®S, and Diclazuril 20% have no effect on the sporulation. While Sodium hypochlorite showed a significant degree of sporulation inhibition reached to 49.67%. Moreover, 70% ethanol, and 10% formalin showed 100% sporulation inhibition. It was concluded that 70% ethanol and 10% formalin are the most effective methods to inhibit Eimeria species sporulation.
Collapse
Affiliation(s)
- Sahar M Gadelhaq
- Department of Parasitology, Faculty of Veterinary Medicine, Minia University, El-Minia, Egypt
| | - Waleed M Arafa
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Shawky M Abolhadid
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
121
|
Zhang Z, Wang S, Li C, Liu L. Immunoproteomic analysis of the protein repertoire of unsporulated Eimeria tenella oocysts. ACTA ACUST UNITED AC 2017; 24:48. [PMID: 29194033 PMCID: PMC5711376 DOI: 10.1051/parasite/2017047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 11/06/2017] [Indexed: 11/14/2022]
Abstract
The apicomplexan protozoans Eimeria spp. cause coccidioses, the most common intestinal diseases in chickens. Coccidiosis is associated with significant animal welfare issues and has a high economic impact on the poultry industry. Lack of a full understanding of immunogenic molecules and their precise functions involved in the Eimeria life cycles may limit development of effective vaccines and drug therapies. In this study, immunoproteomic approaches were used to define the antigenic protein repertoire from the total proteins of unsporulated Eimeria tenella oocysts. Approximately 101 protein spots were recognized in sera from chickens infected experimentally with E. tenella. Forty-six spots of unsporulated oocysts were excised from preparative gels and identified by matrix-assisted laser desorption ionization time-of-flight MS (MALDI-TOF-MS) and MALDI-TOF/TOF-MS. For unsporulated oocysts, 13 known proteins of E. tenella and 17 homologous proteins to other apicomplexan or protozoan parasites were identified using the 'Mascot' server. The remaining proteins were searched against the E. tenella protein sequence database using the 'Mascot in-house' search engine (version 2.1) in automated mode, and 12 unknown proteins were identified. The amino acid sequences of the unknown proteins were searched using BLAST against non-redundant sequence databases (NCBI), and 9 homologous proteins in unsporulated oocyst were found homologous to proteins of other apicomplexan parasites. These findings may provide useful evidence for understanding parasite biology, pathogenesis, immunogenicity and immune evasion mechanisms of E. tenella.
Collapse
Affiliation(s)
- Zhenchao Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Shuai Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Charles Li
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Liheng Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, No.1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| |
Collapse
|
122
|
Recombinant anticoccidial vaccines - a cup half full? INFECTION GENETICS AND EVOLUTION 2017; 55:358-365. [DOI: 10.1016/j.meegid.2017.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/06/2017] [Accepted: 10/07/2017] [Indexed: 12/27/2022]
|
123
|
Macdonald SE, Nolan MJ, Harman K, Boulton K, Hume DA, Tomley FM, Stabler RA, Blake DP. Effects of Eimeria tenella infection on chicken caecal microbiome diversity, exploring variation associated with severity of pathology. PLoS One 2017; 12:e0184890. [PMID: 28934262 PMCID: PMC5608234 DOI: 10.1371/journal.pone.0184890] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/01/2017] [Indexed: 12/21/2022] Open
Abstract
Eimeria species cause the intestinal disease coccidiosis, most notably in poultry. While the direct impact of coccidiosis on animal health and welfare is clear, its influence on the enteric microbiota and by-stander effects on chicken health and production remains largely unknown, with the possible exception of Clostridium perfringens (necrotic enteritis). This study evaluated the composition and structure of the caecal microbiome in the presence or absence of a defined Eimeria tenella challenge infection in Cobb500 broiler chickens using 16S rRNA amplicon sequencing. The severity of clinical coccidiosis in individual chickens was quantified by caecal lesion scoring and microbial changes associated with different lesion scores identified. Following E. tenella infection the diversity of taxa within the caecal microbiome remained largely stable. However, infection induced significant changes in the abundance of some microbial taxa. The greatest changes were detected in birds displaying severe caecal pathology; taxa belonging to the order Enterobacteriaceae were increased, while taxa from Bacillales and Lactobacillales were decreased with the changes correlated with lesion severity. Significantly different profiles were also detected in infected birds which remained asymptomatic (lesion score 0), with taxa belonging to the genera Bacteroides decreased and Lactobacillus increased. Many differential taxa from the order Clostridiales were identified, with some increasing and others decreasing in abundance in Eimeria-infected animals. The results support the view that caecal microbiome dysbiosis associated with Eimeria infection contributes to disease pathology, and could be a target for intervention to mitigate the impact of coccidiosis on poultry productivity and welfare. This work highlights that E. tenella infection has a significant impact on the abundance of some caecal bacteria with notable differences detected between lesion score categories emphasising the importance of accounting for differences in caecal lesions when investigating the relationship between E. tenella and the poultry intestinal microbiome.
Collapse
Affiliation(s)
- Sarah E. Macdonald
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, United Kingdom
- * E-mail: (SEM); (DPB)
| | - Matthew J. Nolan
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, United Kingdom
| | - Kimberley Harman
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, United Kingdom
| | - Kay Boulton
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - David A. Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Fiona M. Tomley
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, United Kingdom
| | - Richard A. Stabler
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Damer P. Blake
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, United Kingdom
- * E-mail: (SEM); (DPB)
| |
Collapse
|
124
|
Investigations on the Occurrence and Associated Risk Factors of Avian Coccidiosis in Osun State, Southwestern Nigeria. J Parasitol Res 2017; 2017:9264191. [PMID: 29138693 PMCID: PMC5613681 DOI: 10.1155/2017/9264191] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/29/2017] [Accepted: 07/18/2017] [Indexed: 11/18/2022] Open
Abstract
Avian coccidiosis is one of the most important diseases of poultry and it is responsible for a large number of poultry mortalities worldwide. This study was carried out to investigate the occurrence and associated risk factors of avian coccidiosis in Osun State, Nigeria. Fecal samples were collected and examined from 5,544 avian species that were brought for treatment at the state veterinary hospitals over a 10-year period. Parameters such as age, sex, season, and species of birds were determined. Also, the months of the year were taken into consideration. Overall prevalence of 41.3% was recorded. The year specific rate for avian coccidiosis was highest in 2007 (97.9%) and lowest in 2006 (0.4%), while the month-specific rate was highest in November (85.7%) and lowest in July 2006 (13.3%). There was a significantly (P < 0.05) higher prevalence in young birds compared to adults, in males compared to females, and during the wet season compared to the dry season. Broilers (99.8%) and cockerels (81.0%) were the bird types with the highest prevalence rate. The high prevalence of avian coccidiosis in the study area shows that the disease is endemic and there is need to embark on a radical preventive measure to curtail the disease.
Collapse
|
125
|
Peek HW, ter Veen C, Dijkman R, Landman WJM. Validation of a quantitative Eimeria spp. PCR for fresh droppings of broiler chickens. Avian Pathol 2017; 46:615-622. [DOI: 10.1080/03079457.2017.1337269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- H. W. Peek
- GD – Animal Health, Deventer, the Netherlands
| | - C. ter Veen
- GD – Animal Health, Deventer, the Netherlands
| | - R. Dijkman
- GD – Animal Health, Deventer, the Netherlands
| | | |
Collapse
|
126
|
The effect of increased crude protein level and/or dietary supplementation with herbal extract blend on the performance of chickens vaccinated against coccidiosis. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
127
|
Yang G, Yao J, Yang W, Jiang Y, Du J, Huang H, Gu W, Hu J, Ye L, Shi C, Shan B, Wang C. Construction and immunological evaluation of recombinant Lactobacillus plantarum expressing SO7 of Eimeria tenella fusion DC-targeting peptide. Vet Parasitol 2017; 236:7-13. [DOI: 10.1016/j.vetpar.2017.01.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/21/2017] [Accepted: 01/23/2017] [Indexed: 01/06/2023]
|
128
|
Electrical cream separator coupled with vacuum filtration for the purification of eimerian oocysts and trichostrongylid eggs. Sci Rep 2017; 7:43346. [PMID: 28233853 PMCID: PMC5324129 DOI: 10.1038/srep43346] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/30/2017] [Indexed: 11/09/2022] Open
Abstract
Several methods have been proposed for separation of eimerian oocysts and trichostrongylid eggs from extraneous debris; however, these methods have been considered to be still inconvenient in terms of time and wide-ranging applications. We describe herein an alternative way using the combination of electrical cream separator and vacuum filtration for harvesting and purifying eimerian oocysts and haemonchine eggs on large-scale applications with approximately 81% and 92% recovery rates for oocysts and nematode eggs obtained from avian and ovine faeces, correspondingly. The sporulation percentages as a measure of viability in the harvested oocysts and eggs from dry faecal materials are nearly 68% and 74%, respectively, and 12 liters of faecal suspension can be processed in approximately 7.5 min. The mode of separation in terms of costs (i.e. simple laboratory equipments and comparably cheap reagents) and benefits renders the reported procedure an appropriate pursuit to harvest and purify parasite oocysts and eggs on a large scale in the shortest duration from diverse volumes of environmental samples compared to the modified traditional sucrose gradient, which can be employed on a small scale.
Collapse
|
129
|
Song X, Zhao X, Xu L, Yan R, Li X. Immune protection duration and efficacy stability of DNA vaccine encoding Eimeria tenella TA4 and chicken IL-2 against coccidiosis. Res Vet Sci 2016; 111:31-35. [PMID: 27914219 DOI: 10.1016/j.rvsc.2016.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/01/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022]
Abstract
In our previous study, an effective DNA vaccine encoding Eimeria tenella TA4 and chicken IL-2 was constructed. In the present study, the immunization dose of the DNA vaccine pVAX1.0-TA4-IL-2 was further optimized. With the optimized dose, the dynamics of antibodies induced by the DNA vaccine was determined using indirect ELISA. To evaluate the immune protection duration of the DNA vaccine, two-week-old chickens were intramuscularly immunized twice and the induced efficacy was evaluated by challenging with E. tenella at 5, 9, 13, 17 and 21weeks post the last immunization (PLI) separately. To evaluate the efficacy stability of the DNA vaccine, two-week-old chickens were immunized with 3 batches of the DNA vaccine, and the induced efficacy was evaluated by challenging with E. tenella. The results showed that the optimal dose was 25μg. The induced antibody level persisted until 10weeks PPI. For the challenge time of 5 and 9weeks PLI, the immunization resulted in ACIs of 182.28 and 162.23 beyond 160, showing effective protection. However, for the challenge time of 13, 17 and 21weeks PLI, the immunization resulted in ACIs below 160 which means poor protection. Therefore, the immune protection duration of the DNA vaccination was at least 9weeks PLI. DNA immunization with three batches DNA vaccine resulted in ACIs of 187.52, 191.57 and 185.22, which demonstrated that efficacies of the three batches DNA vaccine were effective and stable. Overall, our results indicate that DNA vaccine pVAX1.0-TA4-IL-2 has the potential to be developed as effective vaccine against coccidiosis.
Collapse
Affiliation(s)
- Xiaokai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaofang Zhao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
130
|
Pegg E, Doyle K, Clark EL, Jatau ID, Tomley FM, Blake DP. Application of a new PCR-RFLP panel suggests a restricted population structure for Eimeria tenella in UK and Irish chickens. Vet Parasitol 2016; 229:60-67. [PMID: 27809980 PMCID: PMC5108357 DOI: 10.1016/j.vetpar.2016.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/18/2016] [Accepted: 09/24/2016] [Indexed: 12/03/2022]
Abstract
Eimeria tenella populations differ in genetic diversity between regions. PCR-RFLP provides a robust tool to assess genetic diversity for Eimeria tenella. Cost-effective genotyping can support expansion of population genetics for Eimeria.
Eimeria species cause coccidiosis, most notably in chickens where the global cost exceeds US$3 billion every year. Understanding variation in Eimeria population structure and genetic diversity contributes valuable information that can be used to minimise the impact of drug resistance and develop new, cost-effective anticoccidial vaccines. Little knowledge is currently available on the epidemiology of Eimeria species and strains in different regions, or under different chicken production systems. Recently, 244 Eimeria tenella isolates collected from countries in Africa and Asia were genotyped using a Sequenom single nucleotide polymorphism (SNP) tool, revealing significant variation in haplotype diversity and population structure, with a marked North/South regional divide. To expand studies on genetic polymorphism to larger numbers of E. tenella populations in other geographic regions a cheaper and more accessible technique, such as polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), is desirable. We have converted a subset of SNP markers for use as PCR-RFLPs and re-analysed the original 244 isolates with the PCR-RFLPs to assess their utility. In addition, application of the PCR-RFLP to E. tenella samples collected from UK and Irish broiler chickens revealed a tightly restricted haplotype diversity. Just two of the PCR-RFLPs accounted for all of the polymorphism detected in the UK and Irish parasite populations, but analysis of the full dataset revealed different informative markers in different regions, supporting validity of the PCR-RFLP panel. The tools described here provide an accessible and cost-effective method that can be used to enhance understanding of E. tenella genetic diversity and population structure.
Collapse
Affiliation(s)
- Elaine Pegg
- Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Kate Doyle
- Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Emily L Clark
- Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Isa D Jatau
- Department of Parasitology and Entomology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Fiona M Tomley
- Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Damer P Blake
- Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK.
| |
Collapse
|
131
|
Clark EL, Tomley FM, Blake DP. Are Eimeria Genetically Diverse, and Does It Matter? Trends Parasitol 2016; 33:231-241. [PMID: 27593338 DOI: 10.1016/j.pt.2016.08.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
Abstract
Eimeria pose a risk to all livestock species as a cause of coccidiosis, reducing productivity and compromising animal welfare. Pressure to reduce drug use in the food chain makes the development of cost-effective vaccines against Eimeria essential. For novel vaccines to be successful, understanding genetic and antigenic diversity in field populations is key. Eimeria species that infect chickens are most significant, with Eimeria tenella among the best studied and most economically important. Genome-wide single nucleotide polymorphism (SNP)-based haplotyping has been used to determine population structure, genotype distribution, and potential for cross-fertilization between E. tenella strains. Here, we discuss recent developments in our understanding of diversity for Eimeria in relation to its specialized life cycle, distribution across the globe, and the challenges posed to vaccine development.
Collapse
Affiliation(s)
- Emily L Clark
- Department of Pathology and Pathogen Biology, Royal Veterinary College, North Mymms, Hertfordshire, UK; Current address: The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, UK
| | - Fiona M Tomley
- Department of Pathology and Pathogen Biology, Royal Veterinary College, North Mymms, Hertfordshire, UK
| | - Damer P Blake
- Department of Pathology and Pathogen Biology, Royal Veterinary College, North Mymms, Hertfordshire, UK.
| |
Collapse
|
132
|
Xu ZY, Zheng MX, Zhang Y, Cui XZ, Yang SS, Liu RL, Li S, Lv QH, Zhao WL, Bai R. The effect of the mitochondrial permeability transition pore on apoptosis in Eimeria tenella host cells. Poult Sci 2016; 95:2405-13. [PMID: 27444446 DOI: 10.3382/ps/pew198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/03/2016] [Indexed: 11/20/2022] Open
Abstract
Although the mitochondrial permeability transition pore (MPTP) is associated with cellular apoptosis and necrosis, its effect in host response to Eimeria infections is not well understood. In an effort to better understand the effect of MPTP on apoptosis in Eimeria tenella host cells, an MPTP inhibitor (cyclosporin A) was used to inhibit MPTP opening in vitro. Cecal epithelial cells from chick embryos, which were either treated or non-treated with cyclosporin A, were used as Eimeria tenella host cells. In addition, primary chick embryo cecum epithelial cell culture techniques and flow cytometry were used to detect the dynamic changes in MPTP opening, mitochondrial transmembrane potential, and cell apoptosis rate of Eimeria tenella host cells. Compared with the control group, cytometric techniques showed that untreated host cells exhibited a significantly higher (P < 0.01) degree of MPTP opening but lower (P < 0.01 or P < 0.05) mitochondrial transmembrane potential. Moreover, untreated group cells had less apoptosis (P < 0.01) at 4 h and more apoptosis (P < 0.05 or P < 0.01) at 24 to 120 h as compared with control group cells. After the application of cyclosporin A, the degree of MPTP opening in the treated group was significantly lower (P < 0.01) at 4 to 120 h compared to the untreated group, whereas the treated group had higher (P < 0.05 or P < 0.01) mitochondrial transmembrane potentials at 24 to 120 h. Flow cytometry assays also showed that there was less (P < 0.05 or P < 0.01) apoptosis after 24 h in the treated group than in the untreated group. Taken together, these observations indicate that MPTP is a key node that plays a predominant role in the mitochondrial apoptosis pathway in the host cell induced by Eimeria tenella.
Collapse
Affiliation(s)
- Zhi-Yong Xu
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801, China College of Animal Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Ming-Xue Zheng
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801, China
| | - Yan Zhang
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiao-Zhen Cui
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801, China
| | - Sha-Sha Yang
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801, China
| | - Rui-Li Liu
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801, China
| | - Shan Li
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801, China
| | - Qiang-Hua Lv
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801, China
| | - Wen-Long Zhao
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801, China
| | - Rui Bai
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801, China
| |
Collapse
|
133
|
Tang X, Yin G, Qin M, Tao G, Suo J, Liu X, Suo X. Transgenic Eimeria tenella as a vaccine vehicle: expressing TgSAG1 elicits protective immunity against Toxoplasma gondii infections in chickens and mice. Sci Rep 2016; 6:29379. [PMID: 27387302 PMCID: PMC4937369 DOI: 10.1038/srep29379] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/17/2016] [Indexed: 02/02/2023] Open
Abstract
The surface antigen 1 of Toxoplasma gondii (TgSAG1) is a major immunodominant antigen and is widely considered an ideal candidate for the development of an effective recombinant vaccine against toxoplasmosis. Eimeria tenella, an affinis apicomplexan parasite with T. gondii, is a potential vaccine vector carrying exogenous antigens that stimulates specific immune responses. Here, we engineered TgSAG1 into E. tenella and obtained a stably transfected E. tenella line (Et-TgSAG1). We found TgSAG1 localized on the cell surface of Et-TgSAG1, which is similar to its native distribution in T. gondii tachyzoites. We immunized the chickens with Et-TgSAG1 orally and detected TgSAG1-specific immune responses, which partly reduced T. gondii infection. In the mouse model, we immunized the mice with Et-TgSAG1 sporozoites intraperitoneally and challenged them with T. gondii tachyzoites RH strain. We found that the mice immunized with Et-TgSAG1 showed a TgSAG1 specific Th 1-dominant immune response and a prolonged survival time compared with wild-type E. tenella and non-immunized mice. Collectively, our results demonstrated that Et-TgSAG1, utilized as a recombinant vaccine against toxoplasmosis, could be applied in both chickens and mice. Our findings also provide a promising persuasion for the development of transgenic Eimeria as vaccine vectors for use in birds and mammals.
Collapse
Affiliation(s)
- Xinming Tang
- State Key Laboratory of Agrobiotechnology &Key Laboratory of Zoonosis of Ministry of Agriculture &National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Guangwen Yin
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Mei Qin
- State Key Laboratory of Agrobiotechnology &Key Laboratory of Zoonosis of Ministry of Agriculture &National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Geru Tao
- State Key Laboratory of Agrobiotechnology &Key Laboratory of Zoonosis of Ministry of Agriculture &National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jingxia Suo
- State Key Laboratory of Agrobiotechnology &Key Laboratory of Zoonosis of Ministry of Agriculture &National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xianyong Liu
- State Key Laboratory of Agrobiotechnology &Key Laboratory of Zoonosis of Ministry of Agriculture &National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xun Suo
- State Key Laboratory of Agrobiotechnology &Key Laboratory of Zoonosis of Ministry of Agriculture &National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
134
|
Clark EL, Macdonald SE, Thenmozhi V, Kundu K, Garg R, Kumar S, Ayoade S, Fornace KM, Jatau ID, Moftah A, Nolan MJ, Sudhakar NR, Adebambo AO, Lawal IA, Álvarez Zapata R, Awuni JA, Chapman HD, Karimuribo E, Mugasa CM, Namangala B, Rushton J, Suo X, Thangaraj K, Srinivasa Rao ASR, Tewari AK, Banerjee PS, Dhinakar Raj G, Raman M, Tomley FM, Blake DP. Cryptic Eimeria genotypes are common across the southern but not northern hemisphere. Int J Parasitol 2016; 46:537-44. [PMID: 27368611 PMCID: PMC4978698 DOI: 10.1016/j.ijpara.2016.05.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 01/09/2023]
Abstract
The seven Eimeria spp. recognised to infect chickens are present globally. Cryptic Eimeria operational taxonomic units (OTUs) are common in the southern but not northern hemisphere. Parasite population structure appears to vary between Eimeria spp.
The phylum Apicomplexa includes parasites of medical, zoonotic and veterinary significance. Understanding the global distribution and genetic diversity of these protozoa is of fundamental importance for efficient, robust and long-lasting methods of control. Eimeria spp. cause intestinal coccidiosis in all major livestock animals and are the most important parasites of domestic chickens in terms of both economic impact and animal welfare. Despite having significant negative impacts on the efficiency of food production, many fundamental questions relating to the global distribution and genetic variation of Eimeria spp. remain largely unanswered. Here, we provide the broadest map yet of Eimeria occurrence for domestic chickens, confirming that all the known species (Eimeria acervulina, Eimeria brunetti, Eimeria maxima, Eimeria mitis, Eimeria necatrix, Eimeria praecox, Eimeria tenella) are present in all six continents where chickens are found (including 21 countries). Analysis of 248 internal transcribed spacer sequences derived from 17 countries provided evidence of possible allopatric diversity for species such as E. tenella (FST values ⩽0.34) but not E. acervulina and E. mitis, and highlighted a trend towards widespread genetic variance. We found that three genetic variants described previously only in Australia and southern Africa (operational taxonomic units x, y and z) have a wide distribution across the southern, but not the northern hemisphere. While the drivers for such a polarised distribution of these operational taxonomic unit genotypes remains unclear, the occurrence of genetically variant Eimeria may pose a risk to food security and animal welfare in Europe and North America should these parasites spread to the northern hemisphere.
Collapse
Affiliation(s)
- Emily L Clark
- Department of Pathology and Pathogen Biology, Royal Veterinary College, North Mymms, Hertfordshire, UK
| | - Sarah E Macdonald
- Department of Pathology and Pathogen Biology, Royal Veterinary College, North Mymms, Hertfordshire, UK
| | - V Thenmozhi
- Department of Veterinary Parasitology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Krishnendu Kundu
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Rajat Garg
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Saroj Kumar
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Simeon Ayoade
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Kimberly M Fornace
- Department of Pathology and Pathogen Biology, Royal Veterinary College, North Mymms, Hertfordshire, UK
| | - Isa Danladi Jatau
- Department of Parasitology and Entomology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Abdalgader Moftah
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew J Nolan
- Department of Pathology and Pathogen Biology, Royal Veterinary College, North Mymms, Hertfordshire, UK
| | - N R Sudhakar
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - A O Adebambo
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - I A Lawal
- Department of Parasitology and Entomology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Ramón Álvarez Zapata
- Universidad Central de Venezuela, Facultad de Agronomía Instituto de Producción Animal, Av. Universidad via El Limón, Maracay, Venezuela
| | | | - H David Chapman
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Esron Karimuribo
- Southern African Centre for Infectious Disease Surveillance, Morogoro, Tanzania
| | - Claire M Mugasa
- Department of Biotechnical and Diagnostic sciences College of Veterinary Medicine, Animal resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Boniface Namangala
- Department of Paraclinical Studies, University of Zambia, Faculty of Veterinary Medicine, Lusaka, Zambia
| | - Jonathan Rushton
- Production and Population Health, Royal Veterinary College, North Mymms, Hertfordshire, UK
| | - Xun Suo
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | | | | | - Anup K Tewari
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Partha S Banerjee
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - G Dhinakar Raj
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - M Raman
- Department of Veterinary Parasitology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Fiona M Tomley
- Department of Pathology and Pathogen Biology, Royal Veterinary College, North Mymms, Hertfordshire, UK
| | - Damer P Blake
- Department of Pathology and Pathogen Biology, Royal Veterinary College, North Mymms, Hertfordshire, UK.
| |
Collapse
|
135
|
Use of fluorescent nanoparticles to investigate nutrient acquisition by developing Eimeria maxima macrogametocytes. Sci Rep 2016; 6:29030. [PMID: 27352801 PMCID: PMC4926162 DOI: 10.1038/srep29030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/14/2016] [Indexed: 01/01/2023] Open
Abstract
The enteric disease coccidiosis, caused by the unicellular parasite Eimeria, is a major and reoccurring problem for the poultry industry. While the molecular machinery driving host cell invasion and oocyst wall formation has been well documented in Eimeria, relatively little is known about the host cell modifications which lead to acquisition of nutrients and parasite growth. In order to understand the mechanism(s) by which nutrients are acquired by developing intracellular gametocytes and oocysts, we have performed uptake experiments using polystyrene nanoparticles (NPs) of 40 nm and 100 nm in size, as model NPs typical of organic macromolecules. Cytochalasin D and nocodazole were used to inhibit, respectively, the polymerization of the actin and microtubules. The results indicated that NPs entered the parasite at all stages of macrogametocyte development and early oocyst maturation via an active energy dependent process. Interestingly, the smaller NPs were found throughout the parasite cytoplasm, while the larger NPs were mainly localised to the lumen of large type 1 wall forming body organelles. NP uptake was reduced after microfilament disruption and treatment with nocodazole. These observations suggest that E. maxima parasites utilize at least 2 or more uptake pathways to internalize exogenous material during the sexual stages of development.
Collapse
|
136
|
Zhai Q, Huang B, Dong H, Zhao Q, Zhu S, Liang S, Li S, Yang S, Han H. Molecular Characterization and Immune Protection of a New Conserved Hypothetical Protein of Eimeria tenella. PLoS One 2016; 11:e0157678. [PMID: 27309852 PMCID: PMC4910997 DOI: 10.1371/journal.pone.0157678] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/02/2016] [Indexed: 12/28/2022] Open
Abstract
The genome sequences of Eimeria tenella have been sequenced, but >70% of these genes are currently categorized as having an unknown function or annotated as conserved hypothetical proteins, and few of them have been studied. In the present study, a conserved hypothetical protein gene of E. tenella, designated EtCHP559, was cloned using rapid amplification of cDNA 5'-ends (5'RACE) based on the expressed sequence tag (EST). The 1746-bp full-length cDNA of EtCHP559 contained a 1224-bp open reading frame (ORF) that encoded a 407-amino acid polypeptide with the predicted molecular weight of 46.04 kDa. Real-time quantitative PCR analysis revealed that EtCHP559 was expressed at higher levels in sporozoites than in the other developmental stages (unsporulated oocysts, sporulated oocysts and second generation merozoites). The ORF was inserted into pCold-TF to produce recombinant EtCHP559. Using western blotting, the recombinant protein was successfully recognized by rabbit serum against E. tenella sporozoites. Immunolocalization by using EtCHP559 antibody showed that EtCHP559 was mainly distributed on the parasite surface in free sporozoites and became concentrated in the anterior region after sporozoites were incubated in complete medium. The EtCHP559 became uniformly dispersed in immature and mature schizonts. Inhibition of EtCHP559 function using anti-rEtCHP559 polyclonal antibody reduced the ability of E. tenella sporozoites to invade host cells by >70%. Animal challenge experiments demonstrated that the recombinant EtCHP559 significantly increased the average body weight gain, reduced the oocyst outputs, alleviated cecal lesions of the infected chickens, and resulted in anticoccidial index >160 against E. tenella. These results suggest that EtCHP559 plays an important role in sporozoite invasion and could be an effective candidate for the development of a new vaccine against E. tenella.
Collapse
Affiliation(s)
- Qi Zhai
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, PR China
| | - Bing Huang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, PR China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China
| | - Hui Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, PR China
| | - Qiping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, PR China
| | - Shunhai Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, PR China
| | - Siting Liang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, PR China
| | - Sha Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, PR China
| | - Sihan Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, PR China
| | - Hongyu Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, PR China
| |
Collapse
|
137
|
Jatau ID, Lawal IA, Kwaga JKP, Tomley FM, Blake DP, Nok AJ. Three operational taxonomic units of Eimeria are common in Nigerian chickens and may undermine effective molecular diagnosis of coccidiosis. BMC Vet Res 2016; 12:86. [PMID: 27259544 PMCID: PMC4893269 DOI: 10.1186/s12917-016-0713-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 05/30/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chicken is fast becoming the world's most consumed meat. As a consequence poultry health is more important now than ever before, with pathogens of chickens recognised as serious threats to food security. One such threat are Eimeria species parasites, protozoa which can cause the disease coccidiosis. Eimeria can compromise economic poultry production and chicken welfare, and have serious consequences for poor livestock keepers. Seven Eimeria species that infect chickens are recognised with a global enzootic distribution. More recently three cryptic Operational Taxonomic Units (OTUx, y and z) have been described in populations of Eimeria recovered from chickens in Australia. Two of the three OTUs have also been detected in sub-Saharan Africa, but their occurrence, pathology and the risk they pose is largely unknown. RESULTS Nigeria has witnessed a dramatic expansion in poultry production and is now the largest poultry producer in Africa. Here, faecal samples collected from nine of 12 commercial chicken farms sampled in Kaduna state, Nigeria, were found to contain eimerian oocysts. After amplification by in vivo propagation all three cryptic OTU genotypes were detected using polymerase chain reaction (PCR), including OTUy for the first time outside of Australia. Comparison with a widely used, established Eimeria species-specific PCR assay revealed failure to detect the OTU genotypes. CONCLUSIONS All three of the Eimeria OTU genotypes appear to be common in north-western Nigeria. The failure of a leading species-specific molecular assay to detect these genotypes indicates a risk of false negative Eimeria diagnosis when using molecular tools and suggests that the spatial occurrence of each OTU may be far wider than has been recognised. The risk posed by these novel genotypes is unknown, but it is clear that a better understanding of Eimeria occurrence is required together with the validation of effective diagnostics.
Collapse
Affiliation(s)
- Isa D Jatau
- Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria.
| | - Idris A Lawal
- Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Jacob K P Kwaga
- Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Fiona M Tomley
- Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Damer P Blake
- Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK.
| | - Andrew J Nok
- Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
138
|
Matsubayashi M, Kawahara F, Hatta T, Yamagishi J, Miyoshi T, Anisuzzaman, Sasai K, Isobe T, Kita K, Tsuji N. Transcriptional profiles of virulent and precocious strains of Eimeria tenella at sporozoite stage; novel biological insight into attenuated asexual development. INFECTION GENETICS AND EVOLUTION 2016; 40:54-62. [DOI: 10.1016/j.meegid.2016.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 10/22/2022]
|
139
|
Kaboudi K, Umar S, Munir MT. Prevalence of Coccidiosis in Free-Range Chicken in Sidi Thabet, Tunisia. SCIENTIFICA 2016; 2016:7075195. [PMID: 27213084 PMCID: PMC4860226 DOI: 10.1155/2016/7075195] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/27/2016] [Accepted: 04/10/2016] [Indexed: 06/05/2023]
Abstract
Background. Enteric diseases are an important concern to the poultry industry and coccidiosis is imposing a significant economic burden worldwide. Objectives. The main goal of the present study was to investigate the prevalence of coccidiosis in free-range chicken in Sidi Thabet, northeast Tunisia. Methods. Six hundred and thirty free-range chickens along with fecal samples were collected from 15 flocks in this region and two hundred chickens were found positive for oocysts of Eimeria spp. Intestines were dissected and examined for macroscopic lesions. The mucosa of small intestine and the caeca were examined for the presence and identification of parasitic forms using parasitology methods. The mean lesion scores were usually low (<2+) in different intestinal portions of different types of chicken and high scores (>2+) were attributed mainly to the caeca. Results. The overall rate of coccidiosis was 31.8%: E. tenella (61.5%), E. maxima (12%), and E. acervulina (1.5%). Mixed Eimeria species infection was observed with overall prevalence 26.5%. There was a statistically significant difference (P < 0.05) among infection rates, age groups, season, diarrhea, and type of chicken. Conclusion. This is the first report of coccidiosis rate in free-range chicken in this region. Further additional studies are needed to develop better preventive measures against coccidiosis in the country.
Collapse
Affiliation(s)
- Khaled Kaboudi
- Department of Poultry Farming and Pathology, National School of Veterinary Medicine, Tunisia
| | - Sajid Umar
- National Veterinary School of Toulouse, 31300 Toulouse, France
- Department of Pathobiology, PMAS, Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Tanveer Munir
- Nantes Atlantic National College of Veterinary Medicine, Food Science and Engineering (ONIRIS), Nantes, France
| |
Collapse
|
140
|
Qin M, Tang X, Yin G, Liu X, Suo J, Tao G, Ei-Ashram S, Li Y, Suo X. Chicken IgY Fc expressed by Eimeria mitis enhances the immunogenicity of E. mitis. Parasit Vectors 2016; 9:164. [PMID: 27000834 PMCID: PMC4802925 DOI: 10.1186/s13071-016-1451-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 03/14/2016] [Indexed: 11/17/2022] Open
Abstract
Background Eimeria species are obligate intracellular apicomplexan parasites, causing great economic losses in the poultry industry. Currently wild-and attenuated- type anticoccidial vaccines are used to control coccidiosis. However, their use in fast growing broilers is limited by vaccination side effects caused by medium and/or low immunogenic Eimeria spp. There is, therefore, a need for a vaccine with high immunogenicity for broilers. Methods The avian yolk sac IgY Fc is the avian counterpart of the mammalian IgG Fc, which enhances immunogenicity of Fc-fusion proteins. Here, we developed a stable transgenic Eimeria mitis expressing IgY Fc (Emi.chFc) and investigated whether the avian IgY Fc fragment enhances the immunogenicity of E. mitis. Two-week-old broilers were immunized with either Emi.chFc or wild type Eimeria and challenged with wild type E. mitis to analyze the protective properties of transgenic Emi.chFc. Results Chickens immunized with Emi.chFc had significantly lower oocyst output, in comparison with PBS, mock control (transgenic E. mitis expressing HA1 from H9N2 avian influenza virus) and wildtype E. mitis immunized groups after challenge, indicating that IgY Fc enhanced the immunogenicity of E. mitis. Conclusions Our findings suggest that IgY Fc-expressing Eimeria may be a better coccidiosis vaccine, and transgenic Eimeria expressing Fc-fused exogenous antigens may be used as a novel vaccine-delivery vehicle against a wide variety of pathogens.
Collapse
Affiliation(s)
- Mei Qin
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xinming Tang
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Guangwen Yin
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, China
| | - Xianyong Liu
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Jingxia Suo
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Geru Tao
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Saeed Ei-Ashram
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yuan Li
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xun Suo
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China. .,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China. .,Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
141
|
Walker RA, Niepceron A, Ramakrishnan C, Sedano L, Hehl AB, Brossier F, Smith NC. Discovery of a tyrosine-rich sporocyst wall protein in Eimeria tenella. Parasit Vectors 2016; 9:124. [PMID: 26935317 PMCID: PMC4776368 DOI: 10.1186/s13071-016-1410-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/24/2016] [Indexed: 11/10/2022] Open
|
142
|
Chen RA, Wang WL, Lin RQ, Liu LD, Liao GC, Tang JH, Wu SM, Tan ZJ, Weng YB. Observation of the excretion pattern of a precocious line of Eimeria necatrix and the strengthening of immune homogeneity. Exp Parasitol 2016; 164:79-83. [PMID: 26921717 DOI: 10.1016/j.exppara.2016.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/29/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
Abstract
The excretion frequencies of cecal and intestinal droppings of Chinese Lingnan yellow chickens were observed for 10 consecutive days. The chickens were then orally inoculated with a precocious line of Eimeria necatrix, and the oocysts present in the cecal and intestinal droppings were separately collected and monitored using the McMaster method. The results showed that the excretion frequency of cecal droppings was significantly lower than that of intestinal droppings, and the oocysts of E. necatrix were distributed primarily in the cecal droppings. This distribution affects the homogeneity of the second and third generation of oocysts ingested by the chickens and therefore affects the immune effect observed during E. necatrix immunization. To artificially strengthen the immunologic homogeneity against E. necatrix, a method of artificially strengthening the second immunization was applied, and the immune effect was evaluated based on oocyst excretion, body weight gain, fecal scores, intestinal lesion scores and survival percentages. The results showed that no significant intestinal damage was caused by immunization reactions in the chickens. In addition, the number of excreted oocysts in the immunized chicken groups could be significantly increased, and the immunologic homogeneity of the immunized chickens could be improved by artificially strengthening the second immunization, which could in turn improve the immune protective effect.
Collapse
Affiliation(s)
- Rui-Ai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China; Foshan Standard Bio-Tech Co., Ltd., Foshan, 528138, PR China; Key Laboratory of Zoonosis Prevention and Control of Guangdong, Guangzhou, 510642, PR China
| | - Wen-Li Wang
- Foshan Standard Bio-Tech Co., Ltd., Foshan, 528138, PR China
| | - Rui-Qing Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China; Key Laboratory of Zoonosis Prevention and Control of Guangdong, Guangzhou, 510642, PR China
| | - Li-Dan Liu
- Foshan Standard Bio-Tech Co., Ltd., Foshan, 528138, PR China
| | - Gui-Cheng Liao
- Foshan Standard Bio-Tech Co., Ltd., Foshan, 528138, PR China
| | - Jian-Hong Tang
- Foshan Standard Bio-Tech Co., Ltd., Foshan, 528138, PR China
| | - Song-Ming Wu
- Foshan Standard Bio-Tech Co., Ltd., Foshan, 528138, PR China
| | - Zhi-Jian Tan
- Foshan Standard Bio-Tech Co., Ltd., Foshan, 528138, PR China
| | - Ya-Biao Weng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China; Key Laboratory of Zoonosis Prevention and Control of Guangdong, Guangzhou, 510642, PR China.
| |
Collapse
|
143
|
Malik TA, Kamili AN, Chishti MZ, Tanveer S, Ahad S, Johri RK. Synergistic approach for treatment of chicken coccidiosis using berberine--A plant natural product. Microb Pathog 2016; 93:56-62. [PMID: 26802524 DOI: 10.1016/j.micpath.2016.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
Despite the advent of anticoccidial drugs and vaccines, coccidiosis continues to result in substantial economic losses to the poultry industry. Berberine, a natural alkaloid is well known in studies involving synergistic approaches, thereby reducing the dosage of principal drugs. Therefore, a study was designed to see whether a synergistic anticoccidial effect could be obtained between amprolium and berberine, in vivo using broiler chicken. Anticoccidial activity was measured in comparison to the reference drug amprolium on the basis of oocyst output reduction, mean weight gain and feed conversion ratio. Oocyst output was measured using Mc-Masters counting technique. Different combinations of berberine and amprolium were tested and out of which 1:1 ratio was the most effective for controlling these parasites. Oral gavaging of 100(50 + 50) mg/kg body weight of 1:1 ratio of amprolium and berberine caused the equivalent reduction in number of oocysts (38.85 ± 9.61) one day prior to that of standard drug amprolium (49.95 ± 16.65) as well as pure berberine (44.4 ± 9.61) used in the study. Weight gain of birds was also highest in the synergistic group (1547.43 ± 12.86) among all the infected groups. Besides feed conversion ratio in the synergistic group was also better (1.387 ± 0.026). The results of this study proved the effectiveness of both amprolium and berberine and revealed synergism between amprolium and berberine against coccidian oocysts, confirmed by significant reduction in the number of coccidian oocysts shed in the feces, leading to better weight gain and improved feed conversion ratio. The study deep-rooted the synergistic potential of berberine, a natural bioactive compound for controlling a protozoan parasite and the results of this study corroborate with its use for treatment of severe diarrhoea, amoebiasis and intestinal infections.
Collapse
Affiliation(s)
- Tauseef Ahmad Malik
- Centre of Research for Development, University of Kashmir, Srinagar 190006, J&K, India.
| | - Azra N Kamili
- Centre of Research for Development, University of Kashmir, Srinagar 190006, J&K, India
| | - M Z Chishti
- Centre of Research for Development, University of Kashmir, Srinagar 190006, J&K, India
| | - Syed Tanveer
- Department of Zoology, University of Kashmir, Srinagar 190006, J&K, India
| | - Shazia Ahad
- Department of Zoology, University of Kashmir, Srinagar 190006, J&K, India
| | - R K Johri
- PK-PD Toxicology Division, Indian Institute of Integrative Medicine (CSIR), Jammu-Tawi, J&K, India
| |
Collapse
|
144
|
Abstract
In approaching the development of a veterinary vaccine, researchers must choose from a bewildering array of options that can be combined to enhance benefit. The choice and combination of options is not just driven by efficacy, but also consideration of the cost, practicality, and challenges faced in licensing the product. In this review we set out the different choices faced by veterinary vaccine developers, highlight some issues, and propose some pressing needs to be addressed.
Collapse
Affiliation(s)
- Mark A Chambers
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, UK.
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK.
| | - Simon P Graham
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, UK
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Roberto M La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, UK
| |
Collapse
|
145
|
|
146
|
Barbour EK, Ayyash DB, Iyer A, Harakeh S, Kumosani T. A Review of Approaches Targeting the Replacement of Coccidiostat Application in Poultry Production. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2015. [DOI: 10.1590/1516-635x1704405-418] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - DB Ayyash
- American University of Beirut, Lebanon
| | - A Iyer
- King Abdulaziz University, Saudi Arabia
| | - S Harakeh
- King Abdulaziz University, Saudi Arabia
| | | |
Collapse
|
147
|
Zhang Y, Zheng MX, Xu ZY, Xu HC, Cui XZ, Yang SS, Zhao WL, Li S, Lv QH, Bai R. Relationship between Eimeria tenella development and host cell apoptosis in chickens. Poult Sci 2015; 94:2970-9. [PMID: 26467006 DOI: 10.3382/ps/pev293] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 08/19/2015] [Indexed: 01/18/2023] Open
Abstract
Coccidiosis causes considerable economic losses in the poultry industry. At present, the pathology of coccidiosis is preventable with anticoccidials and vaccination, although at considerable cost to the international poultry industry. The purpose of the present study was to elucidate the relationship between Eimeria tenella development and host cell apoptosis in chickens, which provides a theoretical basis for further study of the injury mechanism of E. tenella and the prevention and treatment of coccidiosis. Cecal epithelial cells from chick embryo were used as host cells in vitro. In addition, flow cytometry, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick-end labeling, and histopathological assays were used to detect the dynamic changes in E. tenella infection rates, DNA injury rates, and apoptosis rates in groups treated with and without the caspase-9 inhibitor Z-LEHD-FMK. Following E. tenella infection, we demonstrated that untreated cells had less apoptosis at 4 h and, inversely, more apoptosis at 24 to 120 h compared with control cells. Furthermore, after the application of Z-LEHD-FMK, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assays, and translation of phosphatidyl serines to the host cell plasma membrane surface, the treated group chick embryo cecal epithelial cells exhibited decreased apoptosis and DNA injuries (P<0.01) at 24 to 120 h. However, light microscopy showed that E. tenella infection rates of treated cells were higher (P<0.01) than untreated cells during the whole experimental period. Together, these observations suggest that E. tenella can protect host cells from apoptosis at early stages of development but can promote apoptosis during the middle to late stages. In addition, the inhibition of host cell apoptosis can be beneficial to the intracellular growth and development of E. tenella.
Collapse
Affiliation(s)
- Yan Zhang
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801, China
| | - Ming-xue Zheng
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801, China
| | - Zhi-yong Xu
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801, China College of Animal Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Huan-cheng Xu
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiao-zhen Cui
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801, China
| | - Sha-sha Yang
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801, China
| | - Wen-long Zhao
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801, China
| | - Shan Li
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801, China
| | - Qiang-hua Lv
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801, China
| | - Rui Bai
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801, China
| |
Collapse
|
148
|
Kumar S, Garg R, Banerjee PS, Ram H, Kundu K, Kumar S, Mandal M. Genetic diversity within ITS-1 region of Eimeria species infecting chickens of north India. INFECTION GENETICS AND EVOLUTION 2015; 36:262-267. [PMID: 26423669 DOI: 10.1016/j.meegid.2015.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 09/22/2015] [Accepted: 09/25/2015] [Indexed: 10/23/2022]
Abstract
Coccidiosis, caused by apicomplexan parasites of the genus Eimeria, inflicts severe economic losses to the poultry industry around the globe. In the present study, ITS-1 based species specific nested PCR revealed prevalence of E. acervulina, E. brunetti, E. maxima, E. mitis, E. praecox, E. necatrix and E. tenella in 79.2%, 12.5%, 64.6%, 89.6%, 60.4%, 64.6% and 97.9% poultry farms of north India, respectively. The ITS-1 sequences of different Eimeria spp. from north India were generated and analyzed to establish their phylogenetic relationship. The sequence identity with available sequences ranged from 80 to 100% in E. tenella, 95 to 100% in E. acervulina, 64 to 97% in E. necatrix, 96 to 99% in E. brunetti and 97 to 98% in E. mitis. Only long ITS-1 sequences of E. maxima could be generated in the present study and it had 80-100% identity with published sequences. Two out of the four ITS-1 sequences of E. maxima had mismatches in the published nested primer sequences from Australia, while one sequence of E. necatrix had a mismatch near 3' end of both forward and reverse published nested primer sequences, warranting for the need of designing new set of degenerate primers for these two species of Eimeria. In the phylogenetic tree, all isolates of E. acervulina, E. brunetti, E. mitis, E. tenella and E. necatrix clustered in separate clades with high bootstrap value. E. maxima sequences of north Indian isolates grouped in a long form of E. maxima clade. Complete ITS-1 sequences of E. necatrix and E. mitis are reported for the first time from India. Further studies are required with more number of isolates to verify whether these differences are unique to geographical locations.
Collapse
Affiliation(s)
- Saroj Kumar
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Uttar Pradesh, India
| | - Rajat Garg
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Uttar Pradesh, India.
| | - P S Banerjee
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Uttar Pradesh, India
| | - Hira Ram
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Uttar Pradesh, India
| | - K Kundu
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Uttar Pradesh, India
| | - Sunil Kumar
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Uttar Pradesh, India
| | - M Mandal
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Uttar Pradesh, India
| |
Collapse
|
149
|
Population, genetic, and antigenic diversity of the apicomplexan Eimeria tenella and their relevance to vaccine development. Proc Natl Acad Sci U S A 2015; 112:E5343-50. [PMID: 26354122 DOI: 10.1073/pnas.1506468112] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The phylum Apicomplexa includes serious pathogens of humans and animals. Understanding the distribution and population structure of these protozoan parasites is of fundamental importance to explain disease epidemiology and develop sustainable controls. Predicting the likely efficacy and longevity of subunit vaccines in field populations relies on knowledge of relevant preexisting antigenic diversity, population structure, the likelihood of coinfection by genetically distinct strains, and the efficiency of cross-fertilization. All four of these factors have been investigated for Plasmodium species parasites, revealing both clonal and panmictic population structures with exceptional polymorphism associated with immunoprotective antigens such as apical membrane antigen 1 (AMA1). For the coccidian Toxoplasma gondii only genomic diversity and population structure have been defined in depth so far; for the closely related Eimeria species, all four variables are currently unknown. Using Eimeria tenella, a major cause of the enteric disease coccidiosis, which exerts a profound effect on chicken productivity and welfare, we determined population structure, genotype distribution, and likelihood of cross-fertilization during coinfection and also investigated the extent of naturally occurring antigenic diversity for the E. tenella AMA1 homolog. Using genome-wide Sequenom SNP-based haplotyping, targeted sequencing, and single-cell genotyping, we show that in this coccidian the functionality of EtAMA1 appears to outweigh immune evasion. This result is in direct contrast to the situation in Plasmodium and most likely is underpinned by the biology of the direct and acute coccidian life cycle in the definitive host.
Collapse
|
150
|
Fetterer RH, Barfield RC, Jenkins MC. Protection of Broiler Chicks Housed with Immunized Cohorts Against Infection with Eimeria maxima and E. acervulina. Avian Dis 2015; 59:98-105. [PMID: 26292542 DOI: 10.1637/10958-101014-reg] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The use of live oocyst vaccines is becoming increasingly important in the control of avian coccidiosis in broilers. Knowledge of the mechanisms employed when chicks uptake oocysts and become immune is important for optimizing delivery of live vaccines. The current study tests the hypothesis that chicks not initially immunized may ingest oocysts by contact with litter containing oocysts shed by immunized cohorts. In Experiment 1, day-old broiler chicks were housed in pens containing clean litter. In Trial 1, 100% of chicks in some pens were immunized with 2.5 X 10(3) Eimeria acervulina oocysts while in other pens only 75% of chicks were immunized and remaining cohorts within the pens were not immunized. Other pens contained chicks that served as nonimmunized nonchallenged controls or nonimmunized challenged controls (NIC). On day 21, birds were given a homologous challenge of 6 X 10(5) oocysts. A second identical trial was conducted, except birds were immunized with 500 Eimeria maxima oocysts and were challenged with 3 X 10(3) E. maxima oocysts. In Experiment 2, 100% of chicks in some pens were immunized with 500 E. acervulina oocysts while in other pens either 75% or 50% of the birds were immunized. On day 14, birds were challenged with 1 X 10(6) oocysts. Trial 2 was identical to Trial 1 except that birds were immunized with 100 E. maxima oocysts and challenged with 1 X 10(6) oocysts. For all experiments weight gain, feed conversion ratio (FCR), plasma carotenoids, and litter oocyst counts were measured. In Experiment 1, the level of protection in groups containing 25% nonimmunized cohorts, as measured by weight gain, carotenoid level, FCR, and oocyst litter counts, was identical to groups containing 100% immunized chicks. In Experiment 2, pens where 50% or 75% of birds were immunized with either E. maxima or E. acervulina were not well protected from decreases in weight gain and plasma carotenoids nor from increases in litter oocyst counts following a challenge infection administered on day 14 relative to NIC. In addition, pens of birds where 100% of chicks were immunized were not well protected compared to NIC, and resistance to coccidiosis infection in immunized chicks was less than resistance in chicks challenged at 21 days. These results in total suggest that, when birds are challenged after 21 days, cohorts are protected from detrimental effects of challenge infection. However, when challenge infection is given at 14 days, cohorts are not well protected. The results support a conclusion that protection to coccidiosis is conveyed to cohorts by contact with oocysts shed into the litter by immunized chicks, but this resistance may take 14 days to develop.
Collapse
|