101
|
Chari DM, Blakemore WF. Efficient recolonisation of progenitor-depleted areas of the CNS by adult oligodendrocyte progenitor cells. Glia 2002. [DOI: 10.1002/glia.10038] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
102
|
Shirabe T. A 63-year-old man presenting with a chronic progressive course of spinal cord and brainstem symptoms. Neuropathology 2001; 21:336-8. [PMID: 11837542 DOI: 10.1046/j.1440-1789.2001.00412.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- T Shirabe
- Division of Neuropathology, Kawasaki Medical School, Kurashiki, Japan.
| |
Collapse
|
103
|
Liu MT, Keirstead HS, Lane TE. Neutralization of the chemokine CXCL10 reduces inflammatory cell invasion and demyelination and improves neurological function in a viral model of multiple sclerosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4091-7. [PMID: 11564831 DOI: 10.4049/jimmunol.167.7.4091] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intracerebral infection of mice with mouse hepatitis virus (MHV) results in an acute encephalomyelitis followed by a chronic demyelinating disease with clinical and histological similarities with the human demyelinating disease multiple sclerosis (MS). Following MHV infection, chemokines including CXC chemokine ligand (CXCL)10 (IFN inducible protein 10 kDa), CXCL9 (monokine induced by IFN-gamma), and CC chemokine ligand 5 (RANTES) are expressed during both acute and chronic stages of disease suggesting a role for these molecules in disease exacerbation. Previous studies have shown that during the acute phase of infection, T lymphocytes are recruited into the CNS by the chemokines CXCL10 and CXCL9. In the present study, MHV-infected mice with established demyelination were treated with antisera against these two chemokines, and disease severity was assessed. Treatment with anti-CXCL10 reduced CD4+ T lymphocyte and macrophage invasion, diminished expression of IFN-gamma and CC chemokine ligand 5, inhibited progression of demyelination, and increased remyelination. Anti-CXCL10 treatment also resulted in an impediment of clinical disease progression that was characterized by a dramatic improvement in neurological function. Treatment with antisera against CXCL9 was without effect, demonstrating a critical role for CXCL10 in inflammatory demyelination in this model. These findings document a novel therapeutic strategy using Ab-mediated neutralization of a key chemokine as a possible treatment for chronic human inflammatory demyelinating diseases such as MS.
Collapse
Affiliation(s)
- M T Liu
- Departments of Molecular Biology and Biochemistry, University of California Irvine, 3205 Biological Sciences II, Irvine, CA 92612, USA
| | | | | |
Collapse
|
104
|
Affiliation(s)
- A van der Goes
- Department of Cell Biology and Immunology, Faculty of Medicine, Vrije Universiteit, Van den Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | |
Collapse
|
105
|
Solanky M, Maeda Y, Ming X, Husar W, Li W, Cook S, Dowling P. Proliferating oligodendrocytes are present in both active and chronic inactive multiple sclerosis plaques. J Neurosci Res 2001; 65:308-17. [PMID: 11494366 DOI: 10.1002/jnr.1155] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The proliferation marker Ki-67 labels cell nuclei in the G(1), S, M, and G(2) phases of the cell cycle. We used Ki-67 immunohistochemistry to quantify proliferating glial cells in brain tissue sections from twenty-four patients, comprised of multiple sclerosis, normal brains, and other neurological disease controls. Glial proliferation was greatly increased in MS lesions when compared with control brain white matter. Both actively demyelinating/early remyelinating plaques and chronic inactive plaques of long standing often displayed large numbers of glial cells in the proliferative cycle. The bulk of these proliferating cells were of oligodendroglial lineage in the MS plaques. Ki-67 positive macrophage/microglial lineage cells were largely restricted to acute lesions. The finding of increased numbers of proliferating oligodendroglia in most MS plaques, regardless of disease duration or activity state, indicates that the MS brain is capable of recruiting unexpectedly large numbers of new oligodendrocytes over long periods of time. The factors within the MS plaque microenvironment that provoke new oligodendrocyte generation and their subsequent loss still need to be identified.
Collapse
Affiliation(s)
- M Solanky
- Neurology Service, Department of Veterans Affairs, New Jersey Health Care System, 385 Tremont Avenue, East Orange, NJ 07019, USA
| | | | | | | | | | | | | |
Collapse
|
106
|
Ruffini F, Furlan R, Poliani PL, Brambilla E, Marconi PC, Bergami A, Desina G, Glorioso JC, Comi G, Martino G. Fibroblast growth factor-II gene therapy reverts the clinical course and the pathological signs of chronic experimental autoimmune encephalomyelitis in C57BL/6 mice. Gene Ther 2001; 8:1207-13. [PMID: 11509953 DOI: 10.1038/sj.gt.3301523] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2000] [Accepted: 06/06/2001] [Indexed: 11/08/2022]
Abstract
The development of therapies aimed to promote remyelination is a major issue in chronic inflammatory demyelinating disorders of the central nervous system (CNS) such as multiple sclerosis (MS), where the permanent neurological impairment is due to the axonal loss resulting from recurrent episodes of immune-mediated demyelination. Here, we show that the intrathecal injection of a herpes simplex virus (HSV) type-1 replication-defective multigene vector, engineered with the human fibroblast growth factor (FGF)-II gene (TH:bFGF vector), was able to significantly revert in C57BL/6 mice the clinicopathological signs of chronic experimental autoimmune encephalomyelitis (EAE), the animal model of MS. The treatment with the TH:bFGF vector was initiated within 1 week after the clinical onset of EAE and was effective throughout the whole follow-up period (ie 60 days). The disease-ameliorating effect in FGF-II-treated mice was associated with: (1) CNS production of FGF-II from vector-infected cells which were exclusively located around the CSF space (ependymal, choroidal and leptomeningeal cells); (2) significant decrease (P < 0.01) of the number of myelinotoxic cells (T cells and macrophages) both in the CNS parenchyma and in the leptomeningeal space; and (3) significant increase (P < 0.01) of the number of oligodendrocyte precursors and of myelin-forming oligodendrocytes in areas of demyelination and axonal loss. Our results indicate that CNS gene therapy using HSV-1-derived vector coding for neurotrophic factors (ie FGF-II) is a safe and non-toxic approach that might represent a potential useful 'alternative' tool for the future treatment of immune-mediated demyelinating diseases.
Collapse
Affiliation(s)
- F Ruffini
- Neuroimmunology Unit, Department of Neuroscience, DIBIT-San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Maeda Y, Solanky M, Menonna J, Chapin J, Li W, Dowling P. Platelet-derived growth factor-alpha receptor-positive oligodendroglia are frequent in multiple sclerosis lesions. Ann Neurol 2001; 49:776-85. [PMID: 11409430 DOI: 10.1002/ana.1015] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Platelet-derived growth factor (PDGF) ligand is a potent glial cell mitogen. When its cognate receptor (PDGF-alphaR) is expressed on oligodendroglial lineage cells, such cells are considered capable of division, and the receptor thus serves as a phenotypic marker for oligodendrocyte precursor cells. Here we identify using immunohistochemistry a considerably enlarged, PDGF-alphaR-expressing oligodendrocyte cell population within multiple sclerosis (MS) white matter lesions compared to control brains. Numerous PDGF-alphaR-positive oligodendroglia also colabel heavily with the nuclear cell proliferation marker antibody Ki-67. Our finding of large numbers of proliferating oligodendroglia in MS brains expressing up-regulated PDGF-alphaR suggests that these progenitor-like cells represent an important source of regenerating cells for the healing MS lesion.
Collapse
Affiliation(s)
- Y Maeda
- Department of Veterans Affairs, New Jersey Health Care System, East Orange 07019, USA
| | | | | | | | | | | |
Collapse
|
108
|
Niehaus A, Shi J, Grzenkowski M, Diers-Fenger M, Archelos J, Hartung HP, Toyka K, Brück W, Trotter J. Patients with active relapsing-remitting multiple sclerosis synthesize antibodies recognizing oligodendrocyte progenitor cell surface protein: Implications for remyelination. Ann Neurol 2001. [DOI: 10.1002/1531-8249(200009)48:3<362::aid-ana11>3.0.co;2-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
109
|
Gard AL, Solodushko VG, Waeg G, Majic T. 4-Hydroxynonenal, a lipid peroxidation byproduct of spinal cord injury, is cytotoxic for oligodendrocyte progenitors and inhibits their responsiveness to PDGF. Microsc Res Tech 2001; 52:709-18. [PMID: 11276123 DOI: 10.1002/jemt.1055] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Oligodendroglial reactions to compression injury of spinal cord include apoptosis, secondary demyelination, and remyelination failure. Within hours after contusion, the membrane lipid peroxidation (MLP) byproduct, 4-hydroxynonenal (HNE), increases rapidly in gray matter and thereafter in white matter tracts beyond the initial lesion level. Considering that HNE is a mediator and marker of neuronal MLP toxicity in various neurodegenerative conditions, the present study examined its effect on the regeneration potential of oligodendrocyte progenitors, as defined by their capacity to survive, proliferate and migrate in primary culture. Treatment of oligodendroblasts with HNE evoked a time- and dose-dependent cytotoxicity resembling apoptosis at aldehyde concentrations known to be produced by neurons and achieved in tissue undergoing peroxidative injury. In addition, sublethal concentrations of HNE inhibited the mitogenic and chemotactic responses of more immature progenitors to platelet-derived growth factor. These effects appear to be mediated in part by the formation of HNE adducts with progenitor proteins located within the plasma membrane and cytoplasmic compartments. Our data are the first to show that HNE can have direct, deleterious effects on oligodendrocyte precursors. The present study also suggests a mechanism by which the striking accumulation of HNE in white matter tracts surrounding the site of spinal cord compression injury and in other ischemic-hypoxic insults associated with MLP could suppress the potential regenerative response of endogenous oligodendrocyte progenitor cells.
Collapse
Affiliation(s)
- A L Gard
- Department of Cell Biology and Neuroscience, 2038 Medical Sciences Building, College of Medicine, University of South Alabama, Mobile, AL 36688-0002, USA.
| | | | | | | |
Collapse
|
110
|
Vanderluit JL, Bourque JA, Peterson AC, Tetzlaff W. Model for focal demyelination of the spinal dorsal columns of transgenic MBP-LacZ mice by phototargeted ablation of oligodendrocytes. J Neurosci Res 2000; 62:28-39. [PMID: 11002285 DOI: 10.1002/1097-4547(20001001)62:1<28::aid-jnr4>3.0.co;2-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Focal demyelination models provide powerful tools to study demyelination and remyelination in the central nervous system. In this report, we present a novel technique, which selectively targets oligodendrocytes within the spinal cord of transgenic mice to produce focal demyelination. Transgenic mice expressing the E. coli LacZ (beta-galactosidase) gene from the myelin basic protein promotor allowed for oligodendrocyte-specific cleavage of topically applied fluorescein-di-beta-galactopyranoside liberating photoactivatable fluorescein. Subsequent fluorescence illumination generated oxygen radicals that oxidized a second exogenous substrate, 3-amino-9-ethyl carbazole, to form a toxic precipitate within oligodendrocytes. Histochemical staining of the spinal cord dorsal columns 8 days following phototargeting revealed that the treated region no longer contained beta-galactosidase-positive cells. Focal demyelination of the dorsal columns was observed to a depth of 150 microm in transverse semithin plastic sections. Numerous bundles of naked axons interspersed with myelin, debris-laden macrophages, and reactive astrocytes were evident by electron microscopy. Remyelination of axons by both oligodendrocytes and invading Schwann cells was observed within the treated region 14 days after phototargeting. Newly generated oligodendrocytes were identified within the demyelinated region by their incorporation of bromodeoxyuridine. Thus, this novel focal demyelination protocol provides: (1) a method for selective targeted ablation of oligodendrocytes in vivo, (2) control over the extent of the demyelinated region, with (3) an environment that maintains its remyelination capacity. Phototargeted ablation of oligodendrocytes may therefore be a useful model for studying axon-glia interactions, axon regeneration within a demyelinated zone, and remyelination of axons.
Collapse
Affiliation(s)
- J L Vanderluit
- CORD (Collaboration on Repair Discoveries), Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
111
|
Abstract
Antibodies against the chondroitin sulphate proteoglycan, NG2, are increasingly being used to identify the widespread population of oligodendrocyte progenitor cells in the adult mammalian CNS. However, the specificity of this marker and the role of NG2-expressing cells in CNS function are still open to question. In this review we consider the evidence that NG2(+) cells in the CNS are part of the oligodendrocyte lineage and whether they can give rise to new oligodendrocytes following demyelination. In both the developing and mature rodent CNS, NG2(+) cells express the established oligodendrocyte lineage marker PDGF-alphaR and from P7, the late progenitor antigen O4, which persists in immature oligodendrocytes. They do not express markers of other CNS populations, such as OX42 or GFAP, at any developmental age. NG2(+) cells represent the major cycling cell population in the normal adult rat CNS, suggesting they have stem cell-like properties. NG2 immunoreactivity is upregulated as a result of physical, viral, excitotoxic and inflammatory insults to the CNS. Following demyelination NG2(+) cell number increases in the immediate vicinity of the lesion and rapid remyelination ensues. NG2 expression has also been investigated in human tissue. Multi-process bearing cells, which morphologically resemble those identified with antibodies against O4, persist in chronically demyelinated multiple sclerosis lesions.
Collapse
Affiliation(s)
- M R Dawson
- Department of Neuroinflammation, Division of Neuroscience, Imperial College School of Medicine, Charing Cross Campus, London, United Kingdom
| | | | | |
Collapse
|
112
|
Abstract
Multipotential neuroepithelial stem cells are thought to give rise to all the differentiated cells of the central nervous system (CNS). The developmental potential of these multipotent stem cells becomes more restricted as they differentiate into progressively more committed cells and ultimately into mature neurons and glia. In studying gliogenesis, the optic nerve and spinal cord have become invaluable models and the progressive stages of differentiation are being clarified. Multiple classes of glial precursors termed glial restricted precursors (GRP), oligospheres, oligodendrocyte-type2 astrocyte (O-2A) and astrocyte precursor cells (APC) have been identified. Similar classes of precursor cells can be isolated from human neural stem cell cultures and from embryonic stem (ES) cell cultures providing a non-fetal source of such cells. In this review, we discuss gliogenesis, glial stem cells, putative relationships of these cells to each other, factors implicated in gliogenesis, and therapeutic applications of glial precursors.
Collapse
Affiliation(s)
- J C Lee
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | |
Collapse
|
113
|
Abstract
Multiple sclerosis has been recognized as a clinical pathologic entity for more than a century. The pioneering microscopic anatomic studies of Charcot illustrate the power of careful observations taking maximal advantage of available technology. Using carmine as 'a precious agent' to stain spinal cord hardened with dilute chromic acid, he described the characteristic myelin loss with relative but not absolute axonal preservation. This presentation summarizes how following the principle of careful application of emerging technologies to MS patients and their tissues, as described in this symposium, as the foundation for our continuing advances regarding the etiology and pathogenesis of MS.
Collapse
Affiliation(s)
- J Antel
- Montreal Neurological Institute and Hospital, QC, Canada.
| |
Collapse
|