101
|
Feick J, Pham M, März AG, Vogt ML, Strinitz M, Stoll G, Schuhmann MK, Kollikowski AM. Distinct Alterations in Oxygenation, Ion Composition and Acid-Base Balance in Cerebral Collaterals During Large-Vessel Occlusion Stroke. Clin Neuroradiol 2023; 33:973-984. [PMID: 37284875 PMCID: PMC10654170 DOI: 10.1007/s00062-023-01296-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/24/2023] [Indexed: 06/08/2023]
Abstract
PURPOSE Disturbances of blood gas and ion homeostasis including regional hypoxia and massive sodium (Na+)/potassium (K+) shifts are a hallmark of experimental cerebral ischemia but have not been sufficiently investigated for their relevance in stroke patients. METHODS We report a prospective observational study on 366 stroke patients who underwent endovascular thrombectomy (EVT) for large-vessel occlusion (LVO) of the anterior circulation (18 December 2018-31 August 2020). Intraprocedural blood gas samples (1 ml) from within cerebral collateral arteries (ischemic) and matched systemic control samples were obtained according to a prespecified protocol in 51 patients. RESULTS We observed a significant reduction in cerebral oxygen partial pressure (-4.29%, paO2ischemic = 185.3 mm Hg vs. paO2systemic = 193.6 mm Hg; p = 0.035) and K+ concentrations (-5.49%, K+ischemic = 3.44 mmol/L vs. K+systemic = 3.64 mmol/L; p = 0.0083). The cerebral Na+:K+ ratio was significantly increased and negatively correlated with baseline tissue integrity (r = -0.32, p = 0.031). Correspondingly, cerebral Na+ concentrations were most strongly correlated with infarct progression after recanalization (r = 0.42, p = 0.0033). We found more alkaline cerebral pH values (+0.14%, pHischemic = 7.38 vs. pHsystemic = 7.37; p = 0.0019), with a time-dependent shift towards more acidotic conditions (r = -0.36, p = 0.055). CONCLUSION These findings suggest that stroke-induced changes in oxygen supply, ion composition and acid-base balance occur and dynamically progress within penumbral areas during human cerebral ischemia and are related to acute tissue damage.
Collapse
Affiliation(s)
- Jörn Feick
- Department of Neuroradiology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Mirko Pham
- Department of Neuroradiology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Alexander G März
- Department of Neuroradiology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Marius L Vogt
- Department of Neuroradiology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Marc Strinitz
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Guido Stoll
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | | | - Alexander M Kollikowski
- Department of Neuroradiology, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany.
| |
Collapse
|
102
|
Oh JS, Choo YJ, Chang MC. Effect of Selective Serotonin Reuptake Inhibitors on Motor Recovery After Stroke: A Systematic Meta-analysis. Am J Phys Med Rehabil 2023; 102:1097-1101. [PMID: 37205743 DOI: 10.1097/phm.0000000000002289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
OBJECTIVE We conducted a meta-analysis to determine the effectiveness of selective serotonin reuptake inhibitors in improving motor outcomes after stroke. For accuracy, we only included studies in which selective serotonin reuptake inhibitors were administered to patients in the recovery phase after stroke (<6 mos after stroke). DESIGN Meta-analyses were conducted according to the tools used to measure motor function. We searched the SCOPUS, PubMed, Embase, and Cochrane Library databases for studies, which compared motor recovery in patients who receive selective serotonin reuptake inhibitor medication in the recovery phase after stroke with a control group that did not receive any selective serotonin reuptake inhibitor. RESULTS A total of 3715 publications were assessed, and nine studies met the study criteria. The group, which received selective serotonin reuptake inhibitors, showed improved Fugl-Meyer Motor Scale and Barthel index scores compared with the control group. However, there was no significant difference in the modified Rankin Scale scores between the selective serotonin reuptake inhibitor and control groups. The incidence of adverse effects after the administration of selective serotonin reuptake inhibitors did not differ from that in the control group. CONCLUSIONS Our study showed that the use of selective serotonin reuptake inhibitor in the recovery phase of stroke improved motor function without significant increase in adverse effects.
Collapse
Affiliation(s)
- Ju Sun Oh
- From the Department of Physical Medicine and Rehabilitation, Seoul Medical Center, Seoul, Republic of Korea (JSO); and Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, Republic of Korea (YJC, MCC)
| | | | | |
Collapse
|
103
|
Wang J, Zhu M, Sun J, Feng L, Yang M, Sun B, Mao L. Gene therapy of adeno-associated virus (AAV) vectors in preclinical models of ischemic stroke. CNS Neurosci Ther 2023; 29:3725-3740. [PMID: 37551863 PMCID: PMC10651967 DOI: 10.1111/cns.14392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/15/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
Stroke has been associated with devastating clinical outcomes, with current treatment strategies proving largely ineffective. Therefore, there is a need to explore alternative treatment options for addressing post-stroke functional deficits. Gene therapy utilizing adeno-associated viruses (AAVs) as a critical gene vector delivering genes to the central nervous system (CNS) gene delivery has emerged as a promising approach for treating various CNS diseases. This review aims to provide an overview of the biological characteristics of AAV vectors and the therapeutic advancements observed in preclinical models of ischemic stroke. The study further investigates the potential of manipulating AAV vectors in preclinical applications, emphasizing the challenges and prospects in the selection of viral vectors, drug delivery strategies, immune reactions, and clinical translation.
Collapse
Affiliation(s)
- Jing Wang
- Medical College of Qingdao UniversityQingdaoChina
- Institute for Neurological Research, The Second Affiliated HospitalSchool of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical SciencesTaianChina
| | - Mengna Zhu
- Institute for Neurological Research, The Second Affiliated HospitalSchool of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical SciencesTaianChina
| | - Jingyi Sun
- Department of Spinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Lina Feng
- Institute for Neurological Research, The Second Affiliated HospitalSchool of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical SciencesTaianChina
| | - Mingfeng Yang
- Institute for Neurological Research, The Second Affiliated HospitalSchool of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical SciencesTaianChina
| | - Baoliang Sun
- Medical College of Qingdao UniversityQingdaoChina
- Institute for Neurological Research, The Second Affiliated HospitalSchool of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical SciencesTaianChina
| | - Leilei Mao
- Institute for Neurological Research, The Second Affiliated HospitalSchool of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical SciencesTaianChina
| |
Collapse
|
104
|
Everaerts K, Thapaliya P, Pape N, Durry S, Eitelmann S, Roussa E, Ullah G, Rose CR. Inward Operation of Sodium-Bicarbonate Cotransporter 1 Promotes Astrocytic Na + Loading and Loss of ATP in Mouse Neocortex during Brief Chemical Ischemia. Cells 2023; 12:2675. [PMID: 38067105 PMCID: PMC10705779 DOI: 10.3390/cells12232675] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Ischemic conditions cause an increase in the sodium concentration of astrocytes, driving the breakdown of ionic homeostasis and exacerbating cellular damage. Astrocytes express high levels of the electrogenic sodium-bicarbonate cotransporter1 (NBCe1), which couples intracellular Na+ homeostasis to regulation of pH and operates close to its reversal potential under physiological conditions. Here, we analyzed its mode of operation during transient energy deprivation via imaging astrocytic pH, Na+, and ATP in organotypic slice cultures of the mouse neocortex, complemented with patch-clamp and ion-selective microelectrode recordings and computational modeling. We found that a 2 min period of metabolic failure resulted in a transient acidosis accompanied by a Na+ increase in astrocytes. Inhibition of NBCe1 increased the acidosis while decreasing the Na+ load. Similar results were obtained when comparing ion changes in wild-type and Nbce1-deficient mice. Mathematical modeling replicated these findings and further predicted that NBCe1 activation contributes to the loss of cellular ATP under ischemic conditions, a result confirmed experimentally using FRET-based imaging of ATP. Altogether, our data demonstrate that transient energy failure stimulates the inward operation of NBCe1 in astrocytes. This causes a significant amelioration of ischemia-induced astrocytic acidification, albeit at the expense of increased Na+ influx and a decline in cellular ATP.
Collapse
Affiliation(s)
- Katharina Everaerts
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany; (K.E.); (N.P.); (S.D.); (S.E.)
| | - Pawan Thapaliya
- Department of Physics, University of South Florida, Tampa, FL 33620, USA; (P.T.); (G.U.)
| | - Nils Pape
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany; (K.E.); (N.P.); (S.D.); (S.E.)
| | - Simone Durry
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany; (K.E.); (N.P.); (S.D.); (S.E.)
| | - Sara Eitelmann
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany; (K.E.); (N.P.); (S.D.); (S.E.)
| | - Eleni Roussa
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Albertstrasse 17, D-79104 Freiburg, Germany;
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, FL 33620, USA; (P.T.); (G.U.)
| | - Christine R. Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany; (K.E.); (N.P.); (S.D.); (S.E.)
| |
Collapse
|
105
|
Czuba-Pakuła E, Pelikant-Małecka I, Lietzau G, Wójcik S, Smoleński RT, Kowiański P. Accelerated Extracellular Nucleotide Metabolism in Brain Microvascular Endothelial Cells in Experimental Hypercholesterolemia. Cell Mol Neurobiol 2023; 43:4245-4259. [PMID: 37801200 PMCID: PMC10661815 DOI: 10.1007/s10571-023-01415-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023]
Abstract
Hypercholesterolemia affects the neurovascular unit, including the cerebral blood vessel endothelium. Operation of this system, especially in the context of energy metabolism, is controlled by extracellular concentration of purines, regulated by ecto-enzymes, such as e-NTPDase-1/CD39, ecto-5'-NT/CD73, and eADA. We hypothesize that hypercholesterolemia, via modulation of the activity of nucleotide metabolism-regulating ecto-enzymes, deteriorates glycolytic efficiency and energy metabolism of endothelial cells, which may potentially contribute to development of neurodegenerative processes. We aimed to determine the effect of hypercholesterolemia on the concentration of purine nucleotides, glycolytic activity, and activity of ecto-enzymes in the murine brain microvascular endothelial cells (mBMECs). We used 3-month-old male LDLR-/-/Apo E-/- double knockout mice to model hypercholesterolemia and atherosclerosis. The age-matched wild-type C57/BL6 mice were a control group. The intracellular concentration of ATP and NAD and extracellular activity of the ecto-enzymes were measured by HPLC. The glycolytic function of mBMECs was assessed by means of the extracellular acidification rate (ECAR) using the glycolysis stress test. The results showed an increased activity of ecto-5'-NT and eADA in mBMECs of the hypercholesterolemic mice, but no differences in intracellular concentration of ATP, NAD, and ECAR between the hypercholesterolemic and control groups. The changed activity of ecto-5'-NT and eADA leads to increased purine nucleotides turnover and a shift in their concentration balance towards adenosine and inosine in the extracellular space. However, no changes in the energetic metabolism of the mBMECs are reported. Our results confirm the influence of hypercholesterolemia on regulation of purine nucleotides metabolism, which may impair the function of the cerebral vascular endothelium. The effect of hypercholesterolemia on the murine brain microvascular endothelial cells (mBMECs). An increased activity of ecto-5'-NT and eADA in mBMECs of the LDLR-/-/Apo E-/- mice leads to a shift in the concentration balance towards adenosine and inosine in the extracellular space with no differences in intracellular concentration of ATP. Figure was created with Biorender.com.
Collapse
Affiliation(s)
- Ewelina Czuba-Pakuła
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland.
| | - Iwona Pelikant-Małecka
- Division of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Grażyna Lietzau
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Sławomir Wójcik
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Ryszard T Smoleński
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Przemysław Kowiański
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland.
- Institute of Health Sciences, Pomeranian University in Słupsk, Bohaterów Westerplatte 64, 76-200, Słupsk, Poland.
| |
Collapse
|
106
|
Shi X, Feng L, Li Y, Qin M, Li T, Cheng Z, Zhang X, Zhou C, Cheng S, Zhang C, Gao Y. Efficacy and safety of Panax notoginseng saponins (Xuesaitong) for patients with acute ischemic stroke: a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 2023; 14:1280559. [PMID: 37908976 PMCID: PMC10614024 DOI: 10.3389/fphar.2023.1280559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023] Open
Abstract
Background: Stroke is the major cause of mortality and permanent disability and is associated with an astonishing economic burden worldwide. In the past few decades, accumulated evidence has indicated that Xuesaitong (XST) has therapeutic benefits in cases of acute ischemic stroke (AIS). Our study aimed to provide the best current body of evidence of the efficacy and safety of XST for patients with AIS. Methods: This is a systematic review and meta-analysis of randomized controlled trials (RCTs). We searched eight electronic databases from inception to 17 July 2023 for relevant RCTs. The investigators independently screened trials, extracted data, and assessed the risk of bias. A meta-analysis was conducted using RevMan 5.3 and STATA 16.0 software. Results: In total, 46 RCTs involving 7,957 patients were included. The results showed that XST improved the long-term functional outcomes with lower modified Rankin Scale (mRS) scores (MD = -0.67; 95% CI [-0.92 to -0.42]; p < 0.00001) and a higher proportion of functional independence (mRS ≤2) (RR = 1.08; 95% CI [1.05 to 1.12]; p < 0.00001). Low-quality evidence indicated that XST improved the activities of daily living (MD = 10.17; 95% CI [7.28 to 13.06]; p < 0.00001), improved the neurological impairment (MD = -3.39; 95% CI [-3.94 to -2.84]; p < 0.00001), and enhanced the total efficiency rate (RR = 1.19; 95% CI [1.15 to 1.23]; p < 0.00001). No significant difference was found in the all-cause mortality or incidence of adverse events between the XST and control groups. The certainty of evidence was estimated as moderate to very low. Conclusion: Presently, the administration of XST within 14 days of AIS is associated with favorable long-term functional outcomes. In addition, XST can improve activities of daily living, alleviate neurological deficits, and has shown good tolerability. However, the current evidence is too weak, and the confidence of evidence synthesis was restricted by the high risk of bias. Given the insufficient evidence, appropriately sized and powered RCTs investigating the efficacy and safety of XST for patients with AIS are warranted. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=446208, CRD42023446208.
Collapse
Affiliation(s)
- Xinyi Shi
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Luda Feng
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yixuan Li
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mingzhen Qin
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Li
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Zixin Cheng
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xuebin Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Congren Zhou
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Sisong Cheng
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chi Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Gao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
107
|
Eitelmann S, Everaerts K, Petersilie L, Rose CR, Stephan J. Ca 2+-dependent rapid uncoupling of astrocytes upon brief metabolic stress. Front Cell Neurosci 2023; 17:1151608. [PMID: 37886111 PMCID: PMC10598858 DOI: 10.3389/fncel.2023.1151608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/23/2023] [Indexed: 10/28/2023] Open
Abstract
Astrocytic gap junctional coupling is a major element in neuron-glia interaction. There is strong evidence that impaired coupling is involved in neurological disorders. Reduced coupling was, e.g., demonstrated for core regions of ischemic stroke that suffer from massive cell death. In the surrounding penumbra, cells may recover, but recovery is hampered by spreading depolarizations, which impose additional metabolic stress onto the tissue. Spreading depolarizations are characterized by transient breakdown of cellular ion homeostasis, including pH and Ca2+, which might directly affect gap junctional coupling. Here, we exposed acute mouse neocortical tissue slices to brief metabolic stress and examined its effects on the coupling strength between astrocytes. Changes in gap junctional coupling were assessed by recordings of the syncytial isopotentiality. Moreover, quantitative ion imaging was performed in astrocytes to analyze the mechanisms triggering the observed changes. Our experiments show that a 2-minute perfusion of tissue slices with blockers of glycolysis and oxidative phosphorylation causes a rapid uncoupling in half of the recorded cells. They further indicate that uncoupling is not mediated by the accompanying (moderate) intracellular acidification. Dampening large astrocytic Ca2+ loads by removal of extracellular Ca2+ or blocking Ca2+ influx pathways as well as a pharmacological inhibition of calmodulin, however, prevent the uncoupling. Taken together, we conclude that astrocytes exposed to brief episodes of metabolic stress can undergo a rapid, Ca2+/calmodulin-dependent uncoupling. Such uncoupling may help to confine and reduce cellular damage in the ischemic penumbra in vivo.
Collapse
Affiliation(s)
| | | | | | - Christine R. Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jonathan Stephan
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
108
|
Carretero VJ, Ramos E, Segura-Chama P, Hernández A, Baraibar AM, Álvarez-Merz I, Muñoz FL, Egea J, Solís JM, Romero A, Hernández-Guijo JM. Non-Excitatory Amino Acids, Melatonin, and Free Radicals: Examining the Role in Stroke and Aging. Antioxidants (Basel) 2023; 12:1844. [PMID: 37891922 PMCID: PMC10603966 DOI: 10.3390/antiox12101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this review is to explore the relationship between melatonin, free radicals, and non-excitatory amino acids, and their role in stroke and aging. Melatonin has garnered significant attention in recent years due to its diverse physiological functions and potential therapeutic benefits by reducing oxidative stress, inflammation, and apoptosis. Melatonin has been found to mitigate ischemic brain damage caused by stroke. By scavenging free radicals and reducing oxidative damage, melatonin may help slow down the aging process and protect against age-related cognitive decline. Additionally, non-excitatory amino acids have been shown to possess neuroprotective properties, including antioxidant and anti-inflammatory in stroke and aging-related conditions. They can attenuate oxidative stress, modulate calcium homeostasis, and inhibit apoptosis, thereby safeguarding neurons against damage induced by stroke and aging processes. The intracellular accumulation of certain non-excitatory amino acids could promote harmful effects during hypoxia-ischemia episodes and thus, the blockade of the amino acid transporters involved in the process could be an alternative therapeutic strategy to reduce ischemic damage. On the other hand, the accumulation of free radicals, specifically mitochondrial reactive oxygen and nitrogen species, accelerates cellular senescence and contributes to age-related decline. Recent research suggests a complex interplay between melatonin, free radicals, and non-excitatory amino acids in stroke and aging. The neuroprotective actions of melatonin and non-excitatory amino acids converge on multiple pathways, including the regulation of calcium homeostasis, modulation of apoptosis, and reduction of inflammation. These mechanisms collectively contribute to the preservation of neuronal integrity and functions, making them promising targets for therapeutic interventions in stroke and age-related disorders.
Collapse
Affiliation(s)
- Victoria Jiménez Carretero
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Pedro Segura-Chama
- Investigador por México-CONAHCYT, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Huipulco, Tlalpan, Mexico City 14370, Mexico
| | - Adan Hernández
- Institute of Neurobiology, Universidad Nacional Autónoma of México, Juriquilla, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Andrés M Baraibar
- Department of Neurosciences, Universidad del País Vasco UPV/EHU, Achucarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Iris Álvarez-Merz
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Francisco López Muñoz
- Faculty of Health Sciences, University Camilo José Cela, C/Castillo de Alarcón 49, Villanueva de la Cañada, 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i + 12), Avda. Córdoba, s/n, 28041 Madrid, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - José M Solís
- Neurobiology-Research Service, Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| |
Collapse
|
109
|
Walther J, Kirsch EM, Hellwig L, Schmerbeck SS, Holloway PM, Buchan AM, Mergenthaler P. Reinventing the Penumbra - the Emerging Clockwork of a Multi-modal Mechanistic Paradigm. Transl Stroke Res 2023; 14:643-666. [PMID: 36219377 PMCID: PMC10444697 DOI: 10.1007/s12975-022-01090-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
The concept of the ischemic penumbra was originally defined as the area around a necrotic stroke core and seen as the tissue at imminent risk of further damage. Today, the penumbra is generally considered as time-sensitive hypoperfused brain tissue with decreased oxygen and glucose availability, salvageable tissue as treated by intervention, and the potential target for neuroprotection in focal stroke. The original concept entailed electrical failure and potassium release but one short of neuronal cell death and was based on experimental stroke models, later confirmed in clinical imaging studies. However, even though the basic mechanisms have translated well, conferring brain protection, and improving neurological outcome after stroke based on the pathophysiological mechanisms in the penumbra has yet to be achieved. Recent findings shape the modern understanding of the penumbra revealing a plethora of molecular and cellular pathophysiological mechanisms. We now propose a new model of the penumbra, one which we hope will lay the foundation for future translational success. We focus on the availability of glucose, the brain's central source of energy, and bioenergetic failure as core pathophysiological concepts. We discuss the relation of mitochondrial function in different cell types to bioenergetics and apoptotic cell death mechanisms, autophagy, and neuroinflammation, to glucose metabolism in what is a dynamic ischemic penumbra.
Collapse
Affiliation(s)
- Jakob Walther
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Elena Marie Kirsch
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Lina Hellwig
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sarah S Schmerbeck
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Paul M Holloway
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Alastair M Buchan
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| | - Philipp Mergenthaler
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, NeuroCure Clinical Research Center, Charitéplatz 1, 10117, Berlin, Germany.
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| |
Collapse
|
110
|
Sarode LP, Ghatage T, Mardhekar V, Verma B, Prakash A, Ugale RR. Cerebrolysin reduces excitotoxicity by modulation of cell-death proteins in delayed hours of ischemic reperfusion injury. Metab Brain Dis 2023; 38:2401-2416. [PMID: 37273080 DOI: 10.1007/s11011-023-01240-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/21/2023] [Indexed: 06/06/2023]
Abstract
Recent preclinical and clinical reports suggest that cerebrolysin shows neuroprotective properties similar to endogenous neurotrophic factors in neurodegenerative disorders including ischemic stroke. However, little is known about its underlying antiexcitotoxic action. Adult male Wistar rats were intraperitoneally treated with cerebrolysin (0.15 or 0.30 mg/kg) or vehicle at 3, 6 and 12 h after ischemic reperfusion and were assessed 24 h after reperfusion in ischemic rats. We added cerebrolysin (2.5 or 5 mg/ml) or vehicle in primary cortical culture cells at 3, 6 and 12 h of post-glutamate exposure and performed cell viability assays at 24 h. Our in-vivo and in-vitro findings showed that cerebrolysin substantially reduced neuronal cell death in delayed hours of post ischemic- and glutamate-insult conditions respectively. Further, we have assessed the influence of NR-2 A/-2B receptor antagonism on neuroprotective action of cerebrolysin at 6 h in in-vivo as well as in-vitro conditions. Neuroprotective effect of cerebrolysin at 6 h of reperfusion was enhanced by pretreatment of NR2B antagonist RO25-6981.We found that cerebrolysin restrained upregulation of extrasynaptic NR2B responsible for triggering apoptotic pathways. Cerebrolysin reduced expression of important cell death proteins such as, JNK, PTEN, Calpain and Caspase-3 components. Importantly, we also found that cerebrolysin reduced SREBP1 expression, which gets activated only after 6 h of ischemia. These results demonstrate that cerebrolysin reduces excitotoxicity and protect neuronal cells in delayed hours of ischemic reperfusion injuries by decreasing cell death proteins.
Collapse
Affiliation(s)
- Lopmudra P Sarode
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Amravati Road, Nagpur, Maharashtra, 440033, India
| | - Trupti Ghatage
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Amravati Road, Nagpur, Maharashtra, 440033, India
| | - Vishal Mardhekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Amravati Road, Nagpur, Maharashtra, 440033, India
| | - Bhavesh Verma
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Amravati Road, Nagpur, Maharashtra, 440033, India
| | - Anand Prakash
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, District- East Champaran, Bihar, 845401, India
| | - Rajesh R Ugale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Amravati Road, Nagpur, Maharashtra, 440033, India.
| |
Collapse
|
111
|
Li Q, Zhao L, Chan CL, Zhang Y, Tong SW, Zhang X, Ho JWK, Jiao Y, Rainer TH. Multi-Level Biomarkers for Early Diagnosis of Ischaemic Stroke: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:13821. [PMID: 37762122 PMCID: PMC10530879 DOI: 10.3390/ijms241813821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Blood biomarkers hold potential for the early diagnosis of ischaemic stroke (IS). We aimed to evaluate the current weight of evidence and identify potential biomarkers and biological pathways for further investigation. We searched PubMed, EMBASE, the Cochrane Library and Web of Science, used R package meta4diag for diagnostic meta-analysis and applied Gene Ontology (GO) analysis to identify vital biological processes (BPs). Among 8544 studies, we included 182 articles with a total of 30,446 participants: 15675 IS, 2317 haemorrhagic stroke (HS), 1798 stroke mimics, 846 transient ischaemic attack and 9810 control subjects. There were 518 pooled biomarkers including 203 proteins, 114 genes, 108 metabolites and 88 transcripts. Our study generated two shortlists of biomarkers for future research: one with optimal diagnostic performance and another with low selection bias. Glial fibrillary acidic protein was eligible for diagnostic meta-analysis, with summary sensitivities and specificities for differentiating HS from IS between 3 h and 24 h after stroke onset ranging from 73% to 80% and 77% to 97%, respectively. GO analysis revealed the top five BPs associated with IS. This study provides a holistic view of early diagnostic biomarkers in IS. Two shortlists of biomarkers and five BPs warrant future investigation.
Collapse
Affiliation(s)
- Qianyun Li
- Department of Emergency Medicine, University of Hong Kong, Hong Kong, China; (Q.L.)
| | - Lingyun Zhao
- Department of Emergency Medicine, University of Hong Kong, Hong Kong, China; (Q.L.)
| | - Ching Long Chan
- Department of Emergency Medicine, University of Hong Kong, Hong Kong, China; (Q.L.)
| | - Yilin Zhang
- Department of Emergency Medicine, University of Hong Kong, Hong Kong, China; (Q.L.)
| | - See Wai Tong
- Department of Emergency Medicine, University of Hong Kong, Hong Kong, China; (Q.L.)
| | - Xiaodan Zhang
- Department of Emergency Medicine, University of Hong Kong, Hong Kong, China; (Q.L.)
| | - Joshua Wing Kei Ho
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Yaqing Jiao
- Department of Emergency Medicine, University of Hong Kong, Hong Kong, China; (Q.L.)
| | | |
Collapse
|
112
|
Xie Q, Lu D, Yuan J, Ren M, Li Y, Wang J, Ma R, Wang J. l-borneol promotes neurovascular unit protection in the subacute phase of transient middle cerebral artery occlusion rats: p38-MAPK pathway activation, anti-inflammatory, and anti-apoptotic effect. Phytother Res 2023; 37:4166-4184. [PMID: 37310024 DOI: 10.1002/ptr.7878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/14/2023]
Abstract
Our previous study showed l-borneol reduced cerebral infarction in the acute stage after cerebral ischemia, but there is little about the study of subacute phase. We herein investigated the cerebral protective effects of l-borneol on neurovascular units (NVU) in the subacute phase after transient middle cerebral artery occlusion (t-MCAO). The t-MCAO model was prepared by the line embolus method. Zea Longa, mNss, HE, and TTC staining were used to evaluate the effect of l-borneol. We evaluated the mechanisms of l-borneol on inflammation, p38 MAPK pathway, and apoptosis, etc. through various technologies. l-borneol 0.2, 0.1, 0.05 g·kg-1 could significantly reduce cerebral infarction rate, alleviate the pathological injury, and inhibit inflammation reaction. l-borneol could also significantly increase brain blood supply, Nissl bodies, and the expression of GFAP. Additionally, l-borneol activated the p38 MAPK signaling pathway, inhibited cell apoptosis, and maintained BBB integrity. l-borneol had a neuroprotective effect, which was related to activating the p38 MAPK signaling pathway, inhibiting inflammatory response and apoptosis, and improving cerebral blood supply to protect BBB and stabilize and remodel NVU. The study will provide a reference for the use of l-borneol in the treatment of ischemic stroke in the subacute phase.
Collapse
Affiliation(s)
- Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Foshan University, Foshan, China
| | - Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Foshan University, Foshan, China
- South China University of Technology, Guangzhou, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
113
|
Seo HW, Ha TY, Ko G, Jang A, Choi JW, Lee DH, Chang KA. Scutellaria baicalensis Attenuated Neurological Impairment by Regulating Programmed Cell Death Pathway in Ischemic Stroke Mice. Cells 2023; 12:2133. [PMID: 37681864 PMCID: PMC10486384 DOI: 10.3390/cells12172133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
Stroke is a major global health problem that causes significant mortality and long-term disability. Post-stroke neurological impairment is a complication that is often underestimated with the risk of persistent neurological deficits. Although traditional Chinese medicines have a long history of being used for stroke, their scientific efficacy remains unclear. Scutellaria baicalensis, an herbal component known for its anti-inflammatory and antioxidant properties, has traditionally been used to treat brain disorders. This study investigated the therapeutic effects of the Scutellaria baicalensis extraction (SB) during the acute stage of ischemic stroke using photothrombotic (PTB)-induced and transient middle cerebral artery occlusion (tMCAO) model mice. We found that SB mitigated ischemic brain injury, as evidenced by a significant reduction in the modified neurological severity score in the acute stage of PTB and both the acute and chronic stages of tMCAO. Furthermore, we elucidated the regulatory role of SB in the necroptosis and pyroptosis pathways during the acute stage of stroke, underscoring its protective effects. Behavioral assessments demonstrated the effectiveness of SB in ameliorating motor dysfunction and cognitive impairment compared to the group receiving the vehicle. Our findings highlight the potential of SB as a promising therapeutic candidate for stroke. SB was found to help modulate the programmed cell death pathways, promote neuroprotection, and facilitate functional recovery.
Collapse
Affiliation(s)
- Ho-won Seo
- Department of Health Science and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea; (H.-w.S.); (G.K.)
| | - Tae-Young Ha
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea;
| | - Geon Ko
- Department of Health Science and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea; (H.-w.S.); (G.K.)
| | - Aram Jang
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Ji-Woong Choi
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea;
| | - Dong-hun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Keun-A Chang
- Department of Health Science and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea; (H.-w.S.); (G.K.)
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea;
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
114
|
Alattar A, Alshaman R, Althobaiti YS, Soliman GM, Ali HS, Khubrni WS, Koh PO, Rehman NU, Shah FA. Quercetin Alleviated Inflammasome-Mediated Pyroptosis and Modulated the mTOR/P70S6/P6/eIF4E/4EBP1 Pathway in Ischemic Stroke. Pharmaceuticals (Basel) 2023; 16:1182. [PMID: 37631097 PMCID: PMC10459024 DOI: 10.3390/ph16081182] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Stroke ranks as the world's second most prevalent cause of mortality, and it represents a major public health concern with profound economic and social implications. In the present study, we elucidated the neuroprotective role of quercetin on NLRP3-associated pyroptosis, Nrf2-coupled anti-inflammatory, and mTOR-dependent downstream pathways. Male Sprague Dawley rats were subjected to 72 h of transient middle cerebral artery ischemia, followed by the administration of 10 mg/kg of quercetin. Our findings demonstrated that MCAO induced elevated ROS which were coupled to inflammasome-mediated pyroptosis and altered mTOR-related signaling proteins. We performed ELISA, immunohistochemistry, and Western blotting to unveil the underlying role of the Nrf2/HO-1 and PDK/AKT/mTOR pathways in the ischemic cortex and striatum. Our results showed that quercetin post-treatment activated the Nrf2/HO-1 cascade, reversed pyroptosis, and modulated the autophagy-related pathway PDK/AKT/mTOR/P70S6/P6/eIF4E/4EBP1. Further, quercetin enhances the sequestering effect of 14-3-3 and reversed the decrease in interaction between p-Bad and 14-3-3 and p-FKHR and 14-3-3. Our findings showed that quercetin exerts its protective benefits and rescues neuronal damage by several mechanisms, and it might be a viable neuroprotective drug for ischemic stroke therapy.
Collapse
Affiliation(s)
- Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 47713, Saudi Arabia; (R.A.); (W.S.K.)
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 47713, Saudi Arabia; (R.A.); (W.S.K.)
| | - Yusuf S. Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 21944, Taif 21944, Saudi Arabia;
- Addiction and Neuroscience Research Unit, Taif University, Taif 21944, Saudi Arabia
| | - Ghareb M. Soliman
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 47713, Saudi Arabia;
| | - Howaida S. Ali
- Department of Pharmacology, Faculty of Medicine, Assuit University, Assuit 71515, Egypt;
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Waleed Salman Khubrni
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 47713, Saudi Arabia; (R.A.); (W.S.K.)
| | - Phil Ok Koh
- Department of Anatomy and Histology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Najeeb Ur Rehman
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sttam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia;
| | - Fawad Ali Shah
- Department of Anatomy and Histology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea;
| |
Collapse
|
115
|
Fuhs T, Flachmeyer B, Krueger M, Blietz A, Härtig W, Michalski D. Combining atomic force microscopy and fluorescence-based techniques to explore mechanical properties of naive and ischemia-affected brain regions in mice. Sci Rep 2023; 13:12774. [PMID: 37550347 PMCID: PMC10406906 DOI: 10.1038/s41598-023-39277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/22/2023] [Indexed: 08/09/2023] Open
Abstract
Knowledge of the brain's structure and function is essential for understanding processes in health and disease. Histochemical and fluorescence-based techniques have proven beneficial in characterizing brain regions and cellular compositions in pre-clinical research. Atomic force microscopy (AFM) has been introduced for mechanical tissue characterization, which may also help investigate pathophysiological aspects in disease-related models such as stroke. While combining AFM and fluorescence-based techniques, this study explored the mechanical properties of naive and ischemic brain regions in mice. Ischemia-affected regions were identified by the green signal of fluorescein isothiocyanate-conjugated albumin. A semi-automated protocol based on a brain atlas allowed regional allocations to the neocortex, striatum, thalamus, hypothalamus, hippocampus, and fiber tracts. Although AFM led to varying measurements, intra-individual analyses indicated a gradually increased tissue stiffness in the neocortex compared to subcortical areas, i.e., the striatum and fiber tracts. Regions affected by ischemia predominantly exhibited an increased tissue stiffness compared to those of the contra-lateral hemisphere, which might be related to cellular swelling. This study indicated intra-individual differences in mechanical properties among naive and ischemia-affected brain regions. The combination of AFM, semi-automated regional allocations, and fluorescence-based techniques thus qualifies for mechanical characterizations of the healthy and disease-affected brain in pre-clinical research.
Collapse
Affiliation(s)
- Thomas Fuhs
- Section of Soft Matter Physics, Faculty of Physics and Geosciences, University of Leipzig, Linnéstr. 5, 04103, Leipzig, Germany
- Institute for Physical Chemistry, Faculty of Chemistry and Physics, Technical University Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Bianca Flachmeyer
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr. 13, 04103, Leipzig, Germany
| | - Martin Krueger
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr. 13, 04103, Leipzig, Germany
| | - Alexandra Blietz
- Department of Neurology, Medical Faculty, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, Medical Faculty, University of Leipzig, Liebigstr. 19, 04103, Leipzig, Germany
| | - Dominik Michalski
- Department of Neurology, Medical Faculty, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany.
| |
Collapse
|
116
|
Ramírez-Carreto RJ, Rodríguez-Cortés YM, Torres-Guerrero H, Chavarría A. Possible Implications of Obesity-Primed Microglia that Could Contribute to Stroke-Associated Damage. Cell Mol Neurobiol 2023; 43:2473-2490. [PMID: 36935429 PMCID: PMC10025068 DOI: 10.1007/s10571-023-01329-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/14/2023] [Indexed: 03/21/2023]
Abstract
Microglia, the resident macrophages of the central nervous system, are essential players during physiological and pathological processes. Although they participate in synaptic pruning and maintenance of neuronal circuits, microglia are mainly studied by their activity modulating inflammatory environment and adapting their phenotype and mechanisms to insults detected in the brain parenchyma. Changes in microglial phenotypes are reflected in their morphology, membrane markers, and secreted substances, stimulating neighbor glia and leading their responses to control stimuli. Understanding how microglia react in various microenvironments, such as chronic inflammation, made it possible to establish therapeutic windows and identify synergic interactions with acute damage events like stroke. Obesity is a low-grade chronic inflammatory state that gradually affects the central nervous system, promoting neuroinflammation development. Obese patients have the worst prognosis when they suffer a cerebral infarction due to basal neuroinflammation, then obesity-induced neuroinflammation could promote the priming of microglial cells and favor its neurotoxic response, potentially worsening patients' prognosis. This review discusses the main microglia findings in the obesity context during the course and resolution of cerebral infarction, involving the temporality of the phenotype changes and balance of pro- and anti-inflammatory responses, which is lost in the swollen brain of an obese subject. Obesity enhances proinflammatory responses during a stroke. Obesity-induced systemic inflammation promotes microglial M1 polarization and priming, which enhances stroke-associated damage, increasing M1 and decreasing M2 responses.
Collapse
Affiliation(s)
- Ricardo Jair Ramírez-Carreto
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yesica María Rodríguez-Cortés
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Haydee Torres-Guerrero
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Anahí Chavarría
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
117
|
Liu Y, Wang L, Yang G, Chi X, Liang X, Zhang Y. Sirtuins: Promising Therapeutic Targets to Treat Ischemic Stroke. Biomolecules 2023; 13:1210. [PMID: 37627275 PMCID: PMC10452362 DOI: 10.3390/biom13081210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Stroke is a major cause of mortality and disability globally, with ischemic stroke (IS) accounting for over 80% of all stroke cases. The pathological process of IS involves numerous signal molecules, among which are the highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent enzymes known as sirtuins (SIRTs). SIRTs modulate various biological processes, including cell differentiation, energy metabolism, DNA repair, inflammation, and oxidative stress. Importantly, several studies have reported a correlation between SIRTs and IS. This review introduces the general aspects of SIRTs, including their distribution, subcellular location, enzyme activity, and substrate. We also discuss their regulatory roles and potential mechanisms in IS. Finally, we describe the current therapeutic methods based on SIRTs, such as pharmacotherapy, non-pharmacological therapeutic/rehabilitative interventions, epigenetic regulators, potential molecules, and stem cell-derived exosome therapy. The data collected in this study will potentially contribute to both clinical and fundamental research on SIRTs, geared towards developing effective therapeutic candidates for future treatment of IS.
Collapse
Affiliation(s)
- Yue Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Y.L.); (L.W.); (X.C.)
| | - Liuding Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Y.L.); (L.W.); (X.C.)
| | - Guang Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China;
| | - Xiansu Chi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Y.L.); (L.W.); (X.C.)
| | - Xiao Liang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Y.L.); (L.W.); (X.C.)
| | - Yunling Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Y.L.); (L.W.); (X.C.)
| |
Collapse
|
118
|
Maliougina M, El Hiani Y. TRPM2: bridging calcium and ROS signaling pathways-implications for human diseases. Front Physiol 2023; 14:1217828. [PMID: 37576339 PMCID: PMC10412822 DOI: 10.3389/fphys.2023.1217828] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
TRPM2 is a versatile and essential signaling molecule that plays diverse roles in Ca2+ homeostasis and oxidative stress signaling, with implications in various diseases. Research evidence has shown that TRPM2 is a promising therapeutic target. However, the decision of whether to activate or inhibit TRPM2 function depends on the context and specific disease. A deeper understanding of the molecular mechanisms governing TRPM2 activation and regulation could pave the way for the development of innovative therapeutics targeting TRPM2 to treat a broad range of diseases. In this review, we examine the structural and biophysical details of TRPM2, its involvement in neurological and cardiovascular diseases, and its role in inflammation and immune system function. In addition, we provide a comprehensive overview of the current knowledge of TRPM2 signaling pathways in cancer, including its functions in bioenergetics, oxidant defense, autophagy, and response to anticancer drugs.
Collapse
Affiliation(s)
| | - Yassine El Hiani
- Department of Physiology and Biophysics, Dalhousie University Faculty of Medicine, Halifax, NS, Canada
| |
Collapse
|
119
|
Höfling C, Roßner S, Flachmeyer B, Krueger M, Härtig W, Michalski D. Tricellulin, α-Catenin and Microfibrillar-Associated Protein 5 Exhibit Concomitantly Altered Immunosignals along with Vascular, Extracellular and Cytoskeletal Elements after Experimental Focal Cerebral Ischemia. Int J Mol Sci 2023; 24:11893. [PMID: 37569268 PMCID: PMC10418498 DOI: 10.3390/ijms241511893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Along with initiatives to understand the pathophysiology of stroke in detail and to identify neuroprotective targets, cell-stabilizing elements have gained increasing attention. Although cell culture experiments have indicated that tricellulin, α-catenin and microfibrillar-associated protein 5 (MFAP5) contribute to cellular integrity, these elements have not yet been investigated in the ischemic brain. Applying immunofluorescence labeling, this study explored tricellulin, MFAP5 and α-catenin in non-ischemic and ischemic brain areas of mice (24, 4 h of ischemia) and rats (4 h of ischemia), along with collagen IV and fibronectin as vascular and extracellular matrix constituents and microtubule-associated protein 2 (MAP2) and neurofilament light chain (NF-L) as cytoskeletal elements. Immunosignals of tricellulin and notably MFAP5 partially appeared in a fiber-like pattern, and α-catenin appeared more in a dotted pattern. Regional associations with vascular and extracellular constituents were found for tricellulin and α-catenin, particularly in ischemic areas. Due to ischemia, signals of tricellulin, MFAP5 and α-catenin decreased concomitantly with MAP2 and NF-L, whereby MFAP5 provided the most sensitive reaction. For the first time, this study demonstrated ischemia-related alterations in tricellulin, MFAP5 and α-catenin along with the vasculature, extracellular matrix and cytoskeleton. Confirmatory studies are needed, also exploring their role in cellular integrity and the potential for neuroprotective approaches in stroke.
Collapse
Affiliation(s)
- Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; (C.H.); (S.R.); (W.H.)
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; (C.H.); (S.R.); (W.H.)
| | - Bianca Flachmeyer
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany; (B.F.); (M.K.)
| | - Martin Krueger
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany; (B.F.); (M.K.)
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; (C.H.); (S.R.); (W.H.)
| | - Dominik Michalski
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| |
Collapse
|
120
|
Nong J, Glassman PM, Myerson JW, Zuluaga-Ramirez V, Rodriguez-Garcia A, Mukalel A, Omo-Lamai S, Walsh LR, Zamora ME, Gong X, Wang Z, Bhamidipati K, Kiseleva RY, Villa CH, Greineder CF, Kasner SE, Weissman D, Mitchell MJ, Muro S, Persidsky Y, Brenner JS, Muzykantov VR, Marcos-Contreras OA. Targeted Nanocarriers Co-Opting Pulmonary Intravascular Leukocytes for Drug Delivery to the Injured Brain. ACS NANO 2023; 17:13121-13136. [PMID: 37432926 PMCID: PMC10373654 DOI: 10.1021/acsnano.2c08275] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 06/08/2023] [Indexed: 07/13/2023]
Abstract
Ex vivo-loaded white blood cells (WBC) can transfer cargo to pathological foci in the central nervous system (CNS). Here we tested affinity ligand driven in vivo loading of WBC in order to bypass the need for ex vivo WBC manipulation. We used a mouse model of acute brain inflammation caused by local injection of tumor necrosis factor alpha (TNF-α). We intravenously injected nanoparticles targeted to intercellular adhesion molecule 1 (anti-ICAM/NP). We found that (A) at 2 h, >20% of anti-ICAM/NP were localized to the lungs; (B) of the anti-ICAM/NP in the lungs >90% were associated with leukocytes; (C) at 6 and 22 h, anti-ICAM/NP pulmonary uptake decreased; (D) anti-ICAM/NP uptake in brain increased up to 5-fold in this time interval, concomitantly with migration of WBCs into the injured brain. Intravital microscopy confirmed transport of anti-ICAM/NP beyond the blood-brain barrier and flow cytometry demonstrated complete association of NP with WBC in the brain (98%). Dexamethasone-loaded anti-ICAM/liposomes abrogated brain edema in this model and promoted anti-inflammatory M2 polarization of macrophages in the brain. In vivo targeted loading of WBC in the intravascular pool may provide advantages of coopting WBC predisposed to natural rapid mobilization from the lungs to the brain, connected directly via conduit vessels.
Collapse
Affiliation(s)
- Jia Nong
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Patrick M. Glassman
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Pharmaceutical Sciences, Temple University
School of Pharmacy, Philadelphia, Pennsylvania 19140, United States
| | - Jacob W. Myerson
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Viviana Zuluaga-Ramirez
- Department
of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Alba Rodriguez-Garcia
- Department
of Pathology and Laboratory Medicine, Ovarian Cancer Research Center,
Perelman School of Medicine, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center
for Cellular Immunotherapies, Abramson Cancer Center, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alvin Mukalel
- Department
of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Serena Omo-Lamai
- Division
of Pulmonary Allergy, and Critical Care, Department of Medicine, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Landis R. Walsh
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marco E. Zamora
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- School
of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Xijing Gong
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Division
of Pulmonary Allergy, and Critical Care, Department of Medicine, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zhicheng Wang
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kartik Bhamidipati
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Raisa Y. Kiseleva
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Carlos H. Villa
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Colin Fred Greineder
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Scott E. Kasner
- Department
of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Drew Weissman
- Division
of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael J. Mitchell
- Department
of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson
Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute
for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular
Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute
for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, 08028, Spain
- Institute of Catalonia for Research and
Advanced Studies (ICREA), Barcelona, 08010, Spain
- Institute
for Bioscience and Biotechnology (IBBR), College Park, Maryland 20850, United States
| | - Yuri Persidsky
- Department
of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
- Center
for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Jacob Samuel Brenner
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Division
of Pulmonary Allergy, and Critical Care, Department of Medicine, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Vladimir R. Muzykantov
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Oscar A. Marcos-Contreras
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
121
|
Fontaine J, Leboube S, Bochaton T, Thibault H, Amaz C, Cho TH, Paccalet A, Crola Da Silva C, Duhamel S, Buisson M, Rascle L, Bidaux G, Ovize M, Nighoghossian N, Mechtouff L. Specific inflammatory profile of acute ischemic stroke patients with left atrial enlargement. Front Cardiovasc Med 2023; 10:1190857. [PMID: 37539088 PMCID: PMC10394294 DOI: 10.3389/fcvm.2023.1190857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/22/2023] [Indexed: 08/05/2023] Open
Abstract
Background The inflammatory process underlying atrial myopathy may affect the inflammatory response activated in acute ischemic stroke (AIS). Objectives We aimed to assess whether left atrial enlargement (LAE) as a marker of atrial myopathy is associated with a different profile of circulating inflammatory markers in AIS patients. Methods HIBISCUS-STROKE is a cohort study including anterior circulation AIS patients treated with mechanical thrombectomy following MRI. Ten circulating inflammatory markers were measured at admission and 6, 24, and 48 h after admission. LAE was defined as a left atrial volume index (LAVi) ≥34 ml/m2. A multiple logistic regression model was performed to detect an independent association between the area under the curve (AUC) of these markers and LAE. Results We included 143 patients. Of them, 85 (59.4%) had LAE. On univariable analysis, we found that patients with LAE had higher soluble form suppression of tumorigenicity 2 (sST2), soluble tumor necrosis factor receptor I (sTNFR1), and vascular cellular adhesion molecule-1 (VCAM-1) AUC, were older, mostly female, had a higher National Institutes of Health Stroke Scale (NIHSS) score and blood glucose level at admission, had more often hypertension, and a cardioembolic source of AIS, such as atrial fibrillation, while they were less frequently current smokers and had a lower rate of tandem occlusion than patients without LAE. On multivariable analysis, we found that among circulating inflammatory markers, only high VCAM-1 (OR: 9.13, 95% CI: 3.21-25.9) and sST2 (OR: 3.40, 95% CI: 1.68-6.86) AUC remained associated with LAE. Conclusions High VCAM-1 and sST2 levels within the first 48 h are associated with LAE in AIS patients.
Collapse
Affiliation(s)
- Julia Fontaine
- Stroke Department, Hospices Civils de Lyon, Bron, France
| | - Simon Leboube
- Univ-Lyon, CarMeN Laboratory, Inserm U1060/INRA U1397, Université Claude Bernard Lyon 1, Lyon, France
- Cardiac Intensive Care Unit, Hospices Civils de Lyon, Lyon, France
| | - Thomas Bochaton
- Univ-Lyon, CarMeN Laboratory, Inserm U1060/INRA U1397, Université Claude Bernard Lyon 1, Lyon, France
- Cardiac Intensive Care Unit, Hospices Civils de Lyon, Lyon, France
| | - Hélène Thibault
- Univ-Lyon, CarMeN Laboratory, Inserm U1060/INRA U1397, Université Claude Bernard Lyon 1, Lyon, France
- Department of Cardiovascular Functional Exploration, Hospices Civils de Lyon, Lyon, France
| | - Camille Amaz
- Clinical Investigation Center-INSERM 1407, Hospices Civils de Lyon, Lyon, France
| | - Tae-Hee Cho
- Stroke Department, Hospices Civils de Lyon, Bron, France
- Univ-Lyon, CarMeN Laboratory, Inserm U1060/INRA U1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Alexandre Paccalet
- Univ-Lyon, CarMeN Laboratory, Inserm U1060/INRA U1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Claire Crola Da Silva
- Univ-Lyon, CarMeN Laboratory, Inserm U1060/INRA U1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Suzanne Duhamel
- Department of Cardiovascular Functional Exploration, Hospices Civils de Lyon, Lyon, France
| | - Marielle Buisson
- Clinical Investigation Center-INSERM 1407, Hospices Civils de Lyon, Lyon, France
| | - Lucie Rascle
- Stroke Department, Hospices Civils de Lyon, Bron, France
| | - Gabriel Bidaux
- Univ-Lyon, CarMeN Laboratory, Inserm U1060/INRA U1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Michel Ovize
- Univ-Lyon, CarMeN Laboratory, Inserm U1060/INRA U1397, Université Claude Bernard Lyon 1, Lyon, France
- Clinical Investigation Center-INSERM 1407, Hospices Civils de Lyon, Lyon, France
| | - Norbert Nighoghossian
- Stroke Department, Hospices Civils de Lyon, Bron, France
- Univ-Lyon, CarMeN Laboratory, Inserm U1060/INRA U1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Laura Mechtouff
- Stroke Department, Hospices Civils de Lyon, Bron, France
- Univ-Lyon, CarMeN Laboratory, Inserm U1060/INRA U1397, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
122
|
Han PP, Han Y, Shen XY, Gao ZK, Bi X. Enriched environment-induced neuroplasticity in ischemic stroke and its underlying mechanisms. Front Cell Neurosci 2023; 17:1210361. [PMID: 37484824 PMCID: PMC10360187 DOI: 10.3389/fncel.2023.1210361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Stroke is a common cerebrovascular disease that can interrupt local blood flow in the brain, causing neuronal damage or even death, resulting in varying degrees of neurological dysfunction. Neuroplasticity is an important neurological function that helps neurons reorganize and regain function after injury. After cerebral ischemia, neuroplasticity changes are critical factors for restoring brain function. An enriched environment promotes increased neuroplasticity, thereby aiding stroke recovery. In this review, we discuss the positive effects of the enriched environment on neuroplasticity after cerebral ischemia, including synaptic plasticity, neurogenesis, and angiogenesis. In addition, we also introduce some studies on the clinical application of enriched environments in the rehabilitation of post-stroke patients, hoping that they can provide some inspiration for doctors and therapists looking for new approaches to stroke rehabilitation.
Collapse
Affiliation(s)
- Ping-Ping Han
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yu Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xin-Ya Shen
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Kun Gao
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
123
|
Yu SP, Jiang MQ, Shim SS, Pourkhodadad S, Wei L. Extrasynaptic NMDA receptors in acute and chronic excitotoxicity: implications for preventive treatments of ischemic stroke and late-onset Alzheimer's disease. Mol Neurodegener 2023; 18:43. [PMID: 37400870 DOI: 10.1186/s13024-023-00636-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
Stroke and late-onset Alzheimer's disease (AD) are risk factors for each other; the comorbidity of these brain disorders in aging individuals represents a significant challenge in basic research and clinical practice. The similarities and differences between stroke and AD in terms of pathogenesis and pathophysiology, however, have rarely been comparably reviewed. Here, we discuss the research background and recent progresses that are important and informative for the comorbidity of stroke and late-onset AD and related dementia (ADRD). Glutamatergic NMDA receptor (NMDAR) activity and NMDAR-mediated Ca2+ influx are essential for neuronal function and cell survival. An ischemic insult, however, can cause rapid increases in glutamate concentration and excessive activation of NMDARs, leading to swift Ca2+ overload in neuronal cells and acute excitotoxicity within hours and days. On the other hand, mild upregulation of NMDAR activity, commonly seen in AD animal models and patients, is not immediately cytotoxic. Sustained NMDAR hyperactivity and Ca2+ dysregulation lasting from months to years, nevertheless, can be pathogenic for slowly evolving events, i.e. degenerative excitotoxicity, in the development of AD/ADRD. Specifically, Ca2+ influx mediated by extrasynaptic NMDARs (eNMDARs) and a downstream pathway mediated by transient receptor potential cation channel subfamily M member (TRPM) are primarily responsible for excitotoxicity. On the other hand, the NMDAR subunit GluN3A plays a "gatekeeper" role in NMDAR activity and a neuroprotective role against both acute and chronic excitotoxicity. Thus, ischemic stroke and AD share an NMDAR- and Ca2+-mediated pathogenic mechanism that provides a common receptor target for preventive and possibly disease-modifying therapies. Memantine (MEM) preferentially blocks eNMDARs and was approved by the Federal Drug Administration (FDA) for symptomatic treatment of moderate-to-severe AD with variable efficacy. According to the pathogenic role of eNMDARs, it is conceivable that MEM and other eNMDAR antagonists should be administered much earlier, preferably during the presymptomatic phases of AD/ADRD. This anti-AD treatment could simultaneously serve as a preconditioning strategy against stroke that attacks ≥ 50% of AD patients. Future research on the regulation of NMDARs, enduring control of eNMDARs, Ca2+ homeostasis, and downstream events will provide a promising opportunity to understand and treat the comorbidity of AD/ADRD and stroke.
Collapse
Affiliation(s)
- Shan P Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA.
| | - Michael Q Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Seong S Shim
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Soheila Pourkhodadad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
124
|
Zaczek R, Traynelis SF, Dingledine R, Koszalka GW, Laskowitz DT. Phase 1 Clinical Results for NP10679, a pH-sensitive GluN2B-selective N-methyl-d-aspartate Receptor Inhibitor. Clin Pharmacol Drug Dev 2023; 12:706-717. [PMID: 36642931 PMCID: PMC10329973 DOI: 10.1002/cpdd.1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023]
Abstract
NP10679 is a context-dependent and subunit-selective negative allosteric modulator of N-methyl-d-aspartate (NMDA) receptors. It is a more potent inhibitor of GluN2B-containing NMDA receptors at the acidic levels of extracellular pH (eg, 6.9) found in the penumbral regions associated with cerebral ischemia than at physiological pH. This property allows NP10679 to act selectively in ischemic tissue while minimizing the nonselective blockade of NMDA receptors in healthy brain, thereby reducing on-target adverse effects. We report the results of a first-in-human pharmacokinetic and safety phase 1 clinical trial in healthy volunteers receiving single or multiple doses of NP10679 (NCT04007263). We found that NP10679 was well-tolerated and with a half-life of 20 hours, which is amenable to once per day dosing. The only notable side effect in this clinical trial was modest somnolence at higher doses, atypical in that the subject could easily be aroused. The overall results suggest that NP10679 is a candidate for further development for use in acute brain injury, such as ischemic stroke or aneurysmal subarachnoid hemorrhage, as well as for use in neuropsychiatric indications.
Collapse
Affiliation(s)
| | - Stephen F. Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, Atlanta GA 30322
| | - Ray Dingledine
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, Atlanta GA 30322
| | | | - Daniel T. Laskowitz
- Department of Neurology, Duke University, Bryan Research Building, Durham, NC 27701
| |
Collapse
|
125
|
Chamorro B, Izquierdo-Bermejo S, Martín-de-Saavedra MD, López-Muñoz F, Chioua M, Marco-Contelles J, Oset-Gasque MJ. Neuroprotective and Antioxidant Properties of CholesteroNitrone ChN2 and QuinolylNitrone QN23 in an Experimental Model of Cerebral Ischemia: Involvement of Necrotic and Apoptotic Cell Death. Antioxidants (Basel) 2023; 12:1364. [PMID: 37507904 PMCID: PMC10376237 DOI: 10.3390/antiox12071364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Ischemic stroke is the leading cause of disability and the second leading cause of death worldwide. However, current therapeutic strategies are scarce and of limited efficacy. The abundance of information available on the molecular pathophysiology of ischemic stroke has sparked considerable interest in developing new neuroprotective agents that can target different events of the ischemic cascade and may be used in combination with existing treatments. In this regard, nitrones represent a very promising alternative due to their renowned antioxidant and anti-inflammatory effects. In this study, we aimed to further investigate the neuroprotective effects of two nitrones, cholesteronitrone 2 (ChN2) and quinolylnitrone 23 (QN23), which have previously shown great potential for the treatment of stroke. Using an experimental in vitro model of cerebral ischemia, we compared their anti-necrotic, anti-apoptotic, and antioxidant properties with those of three reference compounds. Both ChN2 and QN23 demonstrated significant neuroprotective effects (EC50 = 0.66 ± 0.23 μM and EC50 = 2.13 ± 0.47 μM, respectively) comparable to those of homo-bis-nitrone 6 (HBN6) and N-acetylcysteine (NAC) and superior to those of α-phenyl-N-tert-butylnitrone (PBN). While primarily derived from the nitrones' anti-necrotic capacities, their anti-apoptotic effects at high concentrations and antioxidant powers-especially in the case of QN23-also contribute to their neuroprotective effects.
Collapse
Affiliation(s)
- Beatriz Chamorro
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
- Faculty of Health, Camilo José Cela University, Villanueva de la Cañada, 28692 Madrid, Spain
| | - Sara Izquierdo-Bermejo
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | - María Dolores Martín-de-Saavedra
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela University, Villanueva de la Cañada, 28692 Madrid, Spain
- Neuropsychopharmacology Unit, "Hospital 12 de Octubre" Research Institute, 28041 Madrid, Spain
| | - Mourad Chioua
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - María Jesús Oset-Gasque
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
126
|
Yang K, Zhang Z, Liu X, Wang T, Jia Z, Li X, Liu W. Identification of hypoxia-related genes and exploration of their relationship with immune cells in ischemic stroke. Sci Rep 2023; 13:10570. [PMID: 37386280 PMCID: PMC10310769 DOI: 10.1038/s41598-023-37753-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023] Open
Abstract
Ischemic stroke (IS) is a major threat to human health, and it is the second leading cause of long-term disability and death in the world. Impaired cerebral perfusion leads to acute hypoxia and glucose deficiency, which in turn induces a stroke cascade response that ultimately leads to cell death. Screening and identifying hypoxia-related genes (HRGs) and therapeutic targets is important for neuroprotection before and during brain recanalization to protect against injury and extend the time window to further improve functional outcomes before pharmacological and mechanical thrombolysis. First, we downloaded the GSE16561 and GSE58294 datasets from the NCBI GEO database. Bioinformatics analysis of the GSE16561 dataset using the limma package identified differentially expressed genes (DEGs) in ischemic stroke using adj. p. values < 0.05 and a fold change of 0.5 as thresholds. The Molecular Signature database and Genecards database were pooled to obtain hypoxia-related genes. 19 HRGs associated with ischemic stroke were obtained after taking the intersection. LASSO regression and multivariate logistic regression were applied to identify critical biomarkers with independent diagnostic values. ROC curves were constructed to validate their diagnostic efficacy. We used CIBERSORT to analyze the differences in the immune microenvironment between IS patients and controls. Finally, we investigated the correlation between HRGs and infiltrating immune cells to understand molecular immune mechanisms better. Our study analyzed the role of HRGs in ischemic stroke. Nineteen hypoxia-related genes were obtained. Enrichment analysis showed that 19 HRGs were involved in response to hypoxia, HIF-1 signaling pathway, autophagy, autophagy of mitochondrion, and AMPK signaling pathway. Because of the good diagnostic properties of SLC2A3, we further investigated the function of SLC2A3 and found that it is closely related to immunity. We have also explored the relevance of other critical genes to immune cells. Our findings suggest that hypoxia-related genes play a crucial role in the diversity and complexity of the IS immune microenvironment. Exploring the association between hypoxia-related critical genes and immune cells provides innovative insights into the therapeutic targets for ischemic stroke.
Collapse
Affiliation(s)
- Kai Yang
- Acupuncture and Moxibustion and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaoqi Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoju Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhicheng Jia
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin Li
- Department of Neurology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Wei Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China.
- Department of Cerebral Disease, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
127
|
Deán-Ben XL, Robin J, Nozdriukhin D, Ni R, Zhao J, Glück C, Droux J, Sendón-Lago J, Chen Z, Zhou Q, Weber B, Wegener S, Vidal A, Arand M, El Amki M, Razansky D. Deep optoacoustic localization microangiography of ischemic stroke in mice. Nat Commun 2023; 14:3584. [PMID: 37328490 PMCID: PMC10275987 DOI: 10.1038/s41467-023-39069-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/24/2023] [Indexed: 06/18/2023] Open
Abstract
Super-resolution optoacoustic imaging of microvascular structures deep in mammalian tissues has so far been impeded by strong absorption from densely-packed red blood cells. Here we devised 5 µm biocompatible dichloromethane-based microdroplets exhibiting several orders of magnitude higher optical absorption than red blood cells at near-infrared wavelengths, thus enabling single-particle detection in vivo. We demonstrate non-invasive three-dimensional microangiography of the mouse brain beyond the acoustic diffraction limit (<20 µm resolution). Blood flow velocity quantification in microvascular networks and light fluence mapping was also accomplished. In mice affected by acute ischemic stroke, the multi-parametric multi-scale observations enabled by super-resolution and spectroscopic optoacoustic imaging revealed significant differences in microvascular density, flow and oxygen saturation in ipsi- and contra-lateral brain hemispheres. Given the sensitivity of optoacoustics to functional, metabolic and molecular events in living tissues, the new approach paves the way for non-invasive microscopic observations with unrivaled resolution, contrast and speed.
Collapse
Affiliation(s)
- Xosé Luís Deán-Ben
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland.
| | - Justine Robin
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Daniil Nozdriukhin
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Ruiqing Ni
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
- Zurich Neuroscience Center, Zurich, Switzerland
| | - Jim Zhao
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Chaim Glück
- Experimental Imaging and Neuroenergetics, Institute of Pharmacology and Toxicology, University of Zurich, and Zurich Neuroscience Center, Zurich, Switzerland
| | - Jeanne Droux
- Zurich Neuroscience Center, Zurich, Switzerland
- Department of Neurology, University Hospital and University of Zurich and University of Zurich, Zurich, Switzerland
| | - Juan Sendón-Lago
- Experimental Biomedicine Centre (CEBEGA), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Zhenyue Chen
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Quanyu Zhou
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Bruno Weber
- Experimental Imaging and Neuroenergetics, Institute of Pharmacology and Toxicology, University of Zurich, and Zurich Neuroscience Center, Zurich, Switzerland
| | - Susanne Wegener
- Zurich Neuroscience Center, Zurich, Switzerland
- Department of Neurology, University Hospital and University of Zurich and University of Zurich, Zurich, Switzerland
| | - Anxo Vidal
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Michael Arand
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Mohamad El Amki
- Zurich Neuroscience Center, Zurich, Switzerland
- Department of Neurology, University Hospital and University of Zurich and University of Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland.
- Zurich Neuroscience Center, Zurich, Switzerland.
| |
Collapse
|
128
|
Chen B, Jin W. A comprehensive review of stroke-related signaling pathways and treatment in western medicine and traditional Chinese medicine. Front Neurosci 2023; 17:1200061. [PMID: 37351420 PMCID: PMC10282194 DOI: 10.3389/fnins.2023.1200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
This review provides insight into the complex network of signaling pathways and mechanisms involved in stroke pathophysiology. It summarizes the historical progress of stroke-related signaling pathways, identifying potential interactions between them and emphasizing that stroke is a complex network disease. Of particular interest are the Hippo signaling pathway and ferroptosis signaling pathway, which remain understudied areas of research, and are therefore a focus of the review. The involvement of multiple signaling pathways, including Sonic Hedgehog (SHH), nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE), hypoxia-inducible factor-1α (HIF-1α), PI3K/AKT, JAK/STAT, and AMPK in pathophysiological mechanisms such as oxidative stress and apoptosis, highlights the complexity of stroke. The review also delves into the details of traditional Chinese medicine (TCM) therapies such as Rehmanniae and Astragalus, providing an analysis of the recent status of western medicine in the treatment of stroke and the advantages and disadvantages of TCM and western medicine in stroke treatment. The review proposes that since stroke is a network disease, TCM has the potential and advantages of a multi-target and multi-pathway mechanism of action in the treatment of stroke. Therefore, it is suggested that future research should explore more treasures of TCM and develop new therapies from the perspective of stroke as a network disease.
Collapse
Affiliation(s)
- Binhao Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weifeng Jin
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
129
|
Monroy-Gonzalez AG, Erba PA, Slart RHJA. 68Ga-DOTATATE PET/CT for assessment of cardiac sarcoidosis: hidden opportunities? J Nucl Cardiol 2023; 30:1088-1090. [PMID: 36565430 DOI: 10.1007/s12350-022-03168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Andrea G Monroy-Gonzalez
- Departments of Radiology and Nuclear Medicine & Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Paola A Erba
- Departments of Radiology and Nuclear Medicine & Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Nuclear Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
- Department of Medicine and Surgery, Bicocca University Milan, Milan, Italy
| | - Riemer H J A Slart
- Departments of Radiology and Nuclear Medicine & Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- Biomedical Photonic Imaging Group, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
130
|
Pawletko K, Jędrzejowska-Szypułka H, Bogus K, Pascale A, Fahmideh F, Marchesi N, Grajoszek A, Gendosz de Carrillo D, Barski JJ. After Ischemic Stroke, Minocycline Promotes a Protective Response in Neurons via the RNA-Binding Protein HuR, with a Positive Impact on Motor Performance. Int J Mol Sci 2023; 24:ijms24119446. [PMID: 37298395 DOI: 10.3390/ijms24119446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Ischemic stroke is the most common cause of adult disability and one of the leading causes of death worldwide, with a serious socio-economic impact. In the present work, we used a new thromboembolic model, recently developed in our lab, to induce focal cerebral ischemic (FCI) stroke in rats without reperfusion. We analyzed selected proteins implicated in the inflammatory response (such as the RNA-binding protein HuR, TNFα, and HSP70) via immunohistochemistry and western blotting techniques. The main goal of the study was to evaluate the beneficial effects of a single administration of minocycline at a low dose (1 mg/kg intravenously administered 10 min after FCI) on the neurons localized in the penumbra area after an ischemic stroke. Furthermore, given the importance of understanding the crosstalk between molecular parameters and motor functions following FCI, motor tests were also performed, such as the Horizontal Runway Elevated test, CatWalk™ XT, and Grip Strength test. Our results indicate that a single administration of a low dose of minocycline increased the viability of neurons and reduced the neurodegeneration caused by ischemia, resulting in a significant reduction in the infarct volume. At the molecular level, minocycline resulted in a reduction in TNFα content coupled with an increase in the levels of both HSP70 and HuR proteins in the penumbra area. Considering that both HSP70 and TNF-α transcripts are targeted by HuR, the obtained results suggest that, following FCI, this RNA-binding protein promotes a protective response by shifting its binding towards HSP70 instead of TNF-α. Most importantly, motor tests showed that reduced inflammation in the brain damaged area after minocycline treatment directly translated into a better motor performance, which is a fundamental outcome when searching for new therapeutic options for clinical practice.
Collapse
Affiliation(s)
- Katarzyna Pawletko
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department for Experimental Medicine, Medical University of Silesia, Medyków 4, 40-752 Katowice, Poland
| | - Halina Jędrzejowska-Szypułka
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Katarzyna Bogus
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Foroogh Fahmideh
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Nicoletta Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Aniela Grajoszek
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department for Experimental Medicine, Medical University of Silesia, Medyków 4, 40-752 Katowice, Poland
| | - Daria Gendosz de Carrillo
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland
| | - Jarosław Jerzy Barski
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department for Experimental Medicine, Medical University of Silesia, Medyków 4, 40-752 Katowice, Poland
| |
Collapse
|
131
|
Venturini M, Cherchi F, Santalmasi C, Frulloni L, Dettori I, Catarzi D, Pedata F, Colotta V, Varano F, Coppi E, Pugliese AM. Pharmacological Characterization of P626, a Novel Dual Adenosine A 2A/A 2B Receptor Antagonist, on Synaptic Plasticity and during an Ischemic-like Insult in CA1 Rat Hippocampus. Biomolecules 2023; 13:894. [PMID: 37371474 DOI: 10.3390/biom13060894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, the use of multi-target compounds has become an increasingly pursued strategy to treat complex pathologies, including cerebral ischemia. Adenosine and its receptors (A1AR, A2AAR, A2BAR, A3AR) are known to play a crucial role in synaptic transmission either in normoxic or ischemic-like conditions. Previous data demonstrate that the selective antagonism of A2AAR or A2BAR delays anoxic depolarization (AD) appearance, an unequivocal sign of neuronal injury induced by a severe oxygen-glucose deprivation (OGD) insult in the hippocampus. Furthermore, the stimulation of A2AARs or A2BARs by respective selective agonists, CGS21680 and BAY60-6583, increases pre-synaptic neurotransmitter release, as shown by the decrease in paired-pulse facilitation (PPF) at Schaffer collateral-CA1 synapses. In the present research, we investigated the effect/s of the newly synthesized dual A2AAR/A2BAR antagonist, P626, in preventing A2AAR- and/or A2BAR-mediated effects by extracellular recordings of synaptic potentials in the CA1 rat hippocampal slices. We demonstrated that P626 prevented PPF reduction induced by CGS21680 or BAY60-6583 and delayed, in a concentration-dependent manner, AD appearance during a severe OGD. In conclusion, P626 may represent a putative neuroprotective compound for stroke treatment with the possible translational advantage of reducing side effects and bypassing differences in pharmacokinetics due to combined treatment.
Collapse
Affiliation(s)
- Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Clara Santalmasi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Lucia Frulloni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Daniela Catarzi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Vittoria Colotta
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Flavia Varano
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| |
Collapse
|
132
|
D'Anna L, Searle G, Harvey K, Matthews PM, Veltkamp R. Time course of neuroinflammation after human stroke - a pilot study using co-registered PET and MRI. BMC Neurol 2023; 23:193. [PMID: 37193998 DOI: 10.1186/s12883-023-03178-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/22/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Microglial activation contributes to both inflammatory damage and repair in experimental ischemic stroke. However, because of the logistical challenges, there have been few clinical imaging studies directly describing inflammatory activation and its resolution after stroke. The purpose of our pilot study was to describe the spatio-temporal profile of brain inflammation after stroke using 18kD translocator protein (TSPO) positron emission tomography (PET) with magnetic resonance (MR) co-registration in the subacute and chronic stage after stroke. METHODS Three patients underwent magnetic resonance imaging (MRI) and PET scans with TSPO ligand [11C]PBR28 15 ± 3 and 90 ± 7 days after an ischaemic stroke. Regions of interest (ROI) were defined on MRI images and applied to the dynamic PET data to derive regional time-activity curves. Regional uptake was quantified as standardised uptake values (SUV) over 60 to 90 min post-injection. ROI analysis was applied to identify binding in the infarct, and in frontal, temporal, parietal, and occipital lobes and cerebellum excluding the infarcted area. RESULTS The mean age of participants was 56 ± 20.4 years and mean infarct volume was 17.9 ± 18.1 ml. [11C]PBR28 showed increased tracer signal in the infarcted area compared to non-infarcted areas of the brain in the subacute phase of stroke (Patient 1 SUV 1.81; Patient 2 SUV 1.15; Patient 3 SUV 1.64). [11C]PBR28 uptake returned to the level of non-infarcted areas at 90 days Patient 1 SUV 0.99; Patient 3 SUV 0.80). No additional upregulation was detected elsewhere at either time point. CONCLUSIONS The neuroinflammatory reaction after ischaemic stroke is limited in time and circumscribed in space suggesting that post-ischaemic inflammation is tightly controlled but regulatory mechanisms.
Collapse
Affiliation(s)
- Lucio D'Anna
- Department of Stroke and Neuroscience, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | | | - Kirsten Harvey
- Department of Brain Sciences, Imperial College London, London, UK
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, London, UK
- Dementia Research Institute at Imperial College London, London, UK
| | - Roland Veltkamp
- Department of Brain Sciences, Imperial College London, London, UK.
- Department of Neurology, Alfried-Krupp Krankenhaus Essen, Essen, Germany.
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
133
|
Das TK, Ganesh BP, Fatima-Shad K. Common Signaling Pathways Involved in Alzheimer's Disease and Stroke: Two Faces of the Same Coin. J Alzheimers Dis Rep 2023; 7:381-398. [PMID: 37220617 PMCID: PMC10200243 DOI: 10.3233/adr-220108] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/03/2023] [Indexed: 05/25/2023] Open
Abstract
Alzheimer's disease (AD) and stroke are two interrelated neurodegenerative disorders which are the leading cause of death and affect the neurons in the brain and central nervous system. Although amyloid-β aggregation, tau hyperphosphorylation, and inflammation are the hallmarks of AD, the exact cause and origin of AD are still undefined. Recent enormous fundamental discoveries suggest that the amyloid hypothesis of AD has not been proven and anti-amyloid therapies that remove amyloid deposition have not yet slowed cognitive decline. However, stroke, mainly ischemic stroke (IS), is caused by an interruption in the cerebral blood flow. Significant features of both disorders are the disruption of neuronal circuitry at different levels of cellular signaling, leading to the death of neurons and glial cells in the brain. Therefore, it is necessary to find out the common molecular mechanisms of these two diseases to understand their etiological connections. Here, we summarized the most common signaling cascades including autotoxicity, ApoE4, insulin signaling, inflammation, mTOR-autophagy, notch signaling, and microbiota-gut-brain axis, present in both AD and IS. These targeted signaling pathways reveal a better understanding of AD and IS and could provide a distinguished platform to develop improved therapeutics for these diseases.
Collapse
Affiliation(s)
- Tushar Kanti Das
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bhanu Priya Ganesh
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kaneez Fatima-Shad
- School of Life Sciences, University of Technology Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- School of Behavioral and Health Sciences, Faculty of Health Sciences, Australian Catholic University, NSW, Australia
| |
Collapse
|
134
|
Kumar Nambi P, Kanna Sathyamoorthy Y, Kaliyappan K, Kumar Radhakrishnan R. Fucoidan (A sulfated polysaccharide) and Cerebroprotein in combination alleviate the neuroinflammation-mediated neural damage and functional deficits in the focal cerebral ischemia model of rat. Neuroscience 2023:S0306-4522(23)00207-5. [PMID: 37182836 DOI: 10.1016/j.neuroscience.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Cerebral ischemic reperfusion injury could emanate a cascade of events ensuing in neural death and severe neurobehavioural deficits. The currently available interventions have failed to target the multimodal, interlinked mechanisms that operate cerebral ischemia-induced damage and functional loss. So an integrative intervention has become a mandate to overcome the deleterious mechanisms involved in cerebral ischemic pathophysiology. In this study, adult male Sprague dawley rats were exposed to 2 hours of right middle cerebral artery occlusion (rMCAo) followed by reperfusion, and the intervention group received Fucoidan alone at a dose of 50mg/kg, i.p (intraperitoneal), Cerebrolysin alone at a dose of 2.5mg/kg body weight and the combination of both. The sham rats were exposed to surgical procedures, except for the rMCAo. The assessments of the groups were made 24 hours after the rMCAo. The stand-alone treatment with Fucoidan, Cerebrolysin has shown a better outcome in the neurobehavioral and, histopathological assessments and the combination has made a significant reduction in the neurological deficits and the infarct volume when compared to the standalone groups. The BBB integrity was well preserved in the combination group when compared with the lesion and standalone groups. Moreover, the combined intervention reduced the level of pro-inflammatory cytokines TNFα, NFkB, IL1α, IL1-β, IL-6, CD68, COX-2, and mRNA expression of inflammatory genes IL1α, IL1-β, IL-6, IBA-1, and COX-2 effectively. In conclusion, the present study suggests that rMCAo induced neuroinflammation and neurobehavioural alterations were attenuated by intervention with a combination of Fucoidan and cerebrolysin; Further, Fucoidan and Cerebrolysin combination improved the ischemic tolerance level by promoting the proteins and genes that regulate the inflammatory cytokines and in aiding better recovery after ischemic reperfusion injury.
Collapse
Affiliation(s)
- Pradeep Kumar Nambi
- Department of Anatomy, Dr. Arcot Lakshmanaswamy Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani campus Chennai 600 113, Tamil Nadu, India
| | - Yogesh Kanna Sathyamoorthy
- Department of Anatomy, Dr. Arcot Lakshmanaswamy Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani campus Chennai 600 113, Tamil Nadu, India
| | - Kathiravan Kaliyappan
- Department of Anatomy, Dr. Arcot Lakshmanaswamy Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani campus Chennai 600 113, Tamil Nadu, India
| | - Ramesh Kumar Radhakrishnan
- Department of Anatomy, Dr. Arcot Lakshmanaswamy Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani campus Chennai 600 113, Tamil Nadu, India.
| |
Collapse
|
135
|
Li J, Qiu Y, Zhang C, Wang H, Bi R, Wei Y, Li Y, Hu B. The role of protein glycosylation in the occurrence and outcome of acute ischemic stroke. Pharmacol Res 2023; 191:106726. [PMID: 36907285 DOI: 10.1016/j.phrs.2023.106726] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
Acute ischemic stroke (AIS) is a serious and life-threatening disease worldwide. Despite thrombolysis or endovascular thrombectomy, a sizeable fraction of patients with AIS have adverse clinical outcomes. In addition, existing secondary prevention strategies with antiplatelet and anticoagulant drugs therapy are not able to adequately decrease the risk of ischemic stroke recurrence. Thus, exploring novel mechanisms for doing so represents an urgent need for the prevention and treatment of AIS. Recent studies have discovered that protein glycosylation plays a critical role in the occurrence and outcome of AIS. As a common co- and post-translational modification, protein glycosylation participates in a wide variety of physiological and pathological processes by regulating the activity and function of proteins or enzymes. Protein glycosylation is involved in two causes of cerebral emboli in ischemic stroke: atherosclerosis and atrial fibrillation. Following ischemic stroke, the level of brain protein glycosylation becomes dynamically regulated, which significantly affects stroke outcome through influencing inflammatory response, excitotoxicity, neuronal apoptosis, and blood-brain barrier disruption. Drugs targeting glycosylation in the occurrence and progression of stroke may represent a novel therapeutic idea. In this review, we focus on possible perspectives about how glycosylation affects the occurrence and outcome of AIS. We then propose the potential of glycosylation as a therapeutic drug target and prognostic marker for AIS patients in the future.
Collapse
Affiliation(s)
- Jianzhuang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanmei Qiu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunlin Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hailing Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanhao Wei
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
136
|
Kalra P, Khan H, Singh TG, Grewal AK. Mechanistic insights on impact of Adenosine monophosphate-activated protein kinase (AMPK) mediated signalling pathways on cerebral ischemic injury. Neurosci Res 2023; 190:17-28. [PMID: 36403790 DOI: 10.1016/j.neures.2022.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/23/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Cerebral ischemia is the primary cause of morbidity and mortality worldwide due to the perturbations in the blood supply to the brain. The brain triggers a cascade of complex metabolic and cellular defects in response to ischemic stress. However, due to the disease heterogeneity and complexity, ischemic injury's metabolic and cellular pathologies remain elusive, and the link between various pathological mechanisms is difficult to determine. Efforts to develop effective treatments for these disorders have yielded limited efficacy, with no proper cure available to date. Recent clinical and experimental research indicates that several neuronal diseases commonly coexist with metabolic dysfunction, which may aggravate neurological symptoms. As a result, it stands to a reason that metabolic hormones could be a potential therapeutic target for major NDDs. Moreover, fasting signals also influence the circadian clock, as AMPK phosphorylates and promotes the degradation of the photo-sensing receptor (cryptochrome). Here, the interplay of AMPK signaling between metabolic regulation and neuronal death and its role for pathogenesis and therapeutics has been studied. We have also highlighted a significant signaling pathway, i.e., the adenosine monophosphate-activated protein kinase (AMPK) involved in the relationship between the metabolism and ischemia, which could be used as a target for future studies therapeutics, and review some of the clinical progress in this area.
Collapse
Affiliation(s)
- Palak Kalra
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India.
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| |
Collapse
|
137
|
He Q, Xiao L, Shi Y, Li W, Xin X. Natural products: protective effects against ischemia-induced retinal injury. Front Pharmacol 2023; 14:1149708. [PMID: 37180697 PMCID: PMC10169696 DOI: 10.3389/fphar.2023.1149708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
Ischemic retinal damage, a common condition associated with retinal vascular occlusion, glaucoma, diabetic retinopathy, and other eye diseases, threatens the vision of millions of people worldwide. It triggers excessive inflammation, oxidative stress, apoptosis, and vascular dysfunction, leading to the loss and death of retinal ganglion cells. Unfortunately, minority drugs are available for treating retinal ischemic injury diseases, and their safety are limited. Therefore, there is an urgent need to develop more effective treatments for ischemic retinal damage. Natural compounds have been reported to have antioxidant, anti-inflammatory, and antiapoptotic properties that can be used to treat ischemic retinal damage. In addition, many natural compounds have been shown to exhibit biological functions and pharmacological properties relevant to the treatment of cellular and tissue damage. This article reviews the neuroprotective mechanisms of natural compounds involve treating ischemic retinal injury. These natural compounds may serve as treatments for ischemia-induced retinal diseases.
Collapse
Affiliation(s)
- Qianxiong He
- Department of Ophthalmology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Liuyi Xiao
- Department of Ophthalmology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuanjiang Shi
- Department of Ophthalmology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Medicine School of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
| | - Wanrong Li
- Department of Ophthalmology, People's Hospital of Golog Tibetan Autonomous Prefecture, Golog, Qinghai, China
| | - Xiaorong Xin
- Department of Ophthalmology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
138
|
Zhang P, Xu J, Cui Q, Lin G, Wang F, Ding X, You S, Sang N, Tan J, Xu W, Zhan C, Zhu Y, Zhang J. Multi-pathway neuroprotective effects of a novel salidroside derivative SHPL-49 against acute cerebral ischemic injury. Eur J Pharmacol 2023; 949:175716. [PMID: 37059375 DOI: 10.1016/j.ejphar.2023.175716] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
SHPL-49 ((2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-(4-(4-methoxyphenyl) butoxy) tetrahydro-2H-pyran-3,4,5-triol) is a novel glycoside derivative obtained from structural modification of salidroside, which is isolated from the medicinal plant Rhodiola rosea L. SHPL-49 was administered to rats with permanent middle cerebral artery occlusion (pMCAO) for 5 days, and it was found that SHPL-49 could alleviate the cerebral infarct volume and reduce the neurological deficit score. Moreover, the effective time window of SHPL-49 in the pMCAO model was from 0.5 to 8 h after embolization. In addition, the result of immunohistochemistry showed that SHPL-49 could increase the number of neurons in the brain tissue and reduce the occurrence of apoptosis. Morris water maze and Rota-rod experiments showed that SHPL-49 could improve neurological deficits, repair neurocognitive and motor dysfunction, and enhance learning and memory ability in the pMCAO model after 14 days of SHPL-49 treatment. Further in vitro experiments showed that SHPL-49 significantly reduced the calcium overload of PC-12 cells and the production of reactive oxygen species (ROS) induced by oxygen and glucose deprivation (OGD), and increased the levels of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), decreased the production of malondialdehyde (MDA). Furthermore, SHPL-49 could reduce cell apoptosis by increasing protein expression ratio of anti-apoptotic factor Bcl-2 to pro-apoptotic factor Bax in vitro. SHPL-49 also regulated the expression of Bcl-2 and Bax in ischemic brain tissue, and even inhibited the caspase cascade of pro-apoptotic proteins Cleaved-caspase 9 and Cleaved-caspase 3. Taken together, SHPL-49 exhibited neuroprotective effects against cerebral ischemic injury through multiple pathways, such as alleviating calcium overload, reducing oxidative stress damage, and inhibiting apoptosis.
Collapse
Affiliation(s)
- Pei Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiazhen Xu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qianfei Cui
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guoqiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Feiyun Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinyue Ding
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Suxin You
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Nina Sang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Junchao Tan
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenwen Xu
- Shanghai Hutchison Pharmaceuticals Limited, Shanghai Engineering Research Center for Innovation of Solid Preparation of TCM, Shanghai, China
| | - Changsen Zhan
- Shanghai Hutchison Pharmaceuticals Limited, Shanghai Engineering Research Center for Innovation of Solid Preparation of TCM, Shanghai, China
| | - Yuying Zhu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
139
|
Becker G, Debatisse J, Rivière M, Crola Da Silva C, Beaudoin-Gobert M, Eker O, Wateau O, Cho TH, Wiart M, Tremblay L, Costes N, Mérida I, Redouté J, Léon C, Langlois JB, Le Bars D, Lancelot S, Nighoghossian N, Mechtouff L, Canet-Soulas E. Spatio-Temporal Characterization of Brain Inflammation in a Non-human Primate Stroke Model Mimicking Endovascular Thrombectomy. Neurotherapeutics 2023; 20:789-802. [PMID: 36976495 PMCID: PMC10275847 DOI: 10.1007/s13311-023-01368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Reperfusion therapies in acute ischemic stroke have demonstrated their efficacy in promoting clinical recovery. However, ischemia/reperfusion injury and related inflammation remain a major challenge in patient clinical management. We evaluated the spatio-temporal evolution of inflammation using sequential clinical [11C]PK11195 PET-MRI in a non-human primate (NHP) stroke model mimicking endovascular thrombectomy (EVT) with a neuroprotective cyclosporine A (CsA) treatment. The NHP underwent a 110-min transient endovascular middle cerebral artery occlusion. We acquired [11C]PK11195 dynamic PET-MR imaging at baseline, 7 and 30 days after intervention. Individual voxel-wise analysis was performed thanks to a baseline scan database. We quantified [11C]PK11195 in anatomical regions and in lesioned areas defined on per-occlusion MR diffusion-weighted imaging and perfusion [15O2]H2OPET imaging. [11C]PK11195 parametric maps showed a clear uptake overlapping the lesion core at D7, which further increased at D30. Voxel-wise analysis identified individuals with significant inflammation at D30, with voxels located within the most severe diffusion reduction area during occlusion, mainly in the putamen. The quantitative analysis revealed that thalamic inflammation lasted until D30 and was significantly reduced in the CsA-treated group compared to the placebo. In conclusion, we showed that chronic inflammation matched ADC decrease at occlusion time, a region exposed to an initial burst of damage-associated molecular patterns, in an NHP stroke model mimicking EVT. We described secondary thalamic inflammation and the protective effect of CsA in this region. We propose that major ADC drop in the putamen during occlusion may identify individuals who could benefit from early personalized treatment targeting inflammation.
Collapse
Affiliation(s)
- Guillaume Becker
- CarMeN Laboratory, INRAE U1397, INSERM U1060, Groupement Hospitalier Est, University Claude Bernard Lyon 1, 59 Boulevard Pinel, 69500, Lyon, Bron, France.
| | - Justine Debatisse
- CarMeN Laboratory, INRAE U1397, INSERM U1060, Groupement Hospitalier Est, University Claude Bernard Lyon 1, 59 Boulevard Pinel, 69500, Lyon, Bron, France
| | - Margaux Rivière
- CarMeN Laboratory, INRAE U1397, INSERM U1060, Groupement Hospitalier Est, University Claude Bernard Lyon 1, 59 Boulevard Pinel, 69500, Lyon, Bron, France
| | - Claire Crola Da Silva
- CarMeN Laboratory, INRAE U1397, INSERM U1060, Groupement Hospitalier Est, University Claude Bernard Lyon 1, 59 Boulevard Pinel, 69500, Lyon, Bron, France
| | - Maude Beaudoin-Gobert
- Lyon Neuroscience Research Center, UMR5295, INSERM U1028, CNRS, Université Claude Bernard Lyon 1, Lyon, France
| | - Omer Eker
- UMR-5220, CREATIS, CNRS, INSERM U1206, Université Lyon 1, INSA Lyon, Villeurbanne, France
- , Hospices Civils de Lyon, Lyon, France
| | | | - Tae Hee Cho
- CarMeN Laboratory, INRAE U1397, INSERM U1060, Groupement Hospitalier Est, University Claude Bernard Lyon 1, 59 Boulevard Pinel, 69500, Lyon, Bron, France
- , Hospices Civils de Lyon, Lyon, France
| | - Marlène Wiart
- CarMeN Laboratory, INRAE U1397, INSERM U1060, Groupement Hospitalier Est, University Claude Bernard Lyon 1, 59 Boulevard Pinel, 69500, Lyon, Bron, France
| | - Léon Tremblay
- Cognitive Neuroscience Center, CNRS UMR5229, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | | | - Christelle Léon
- CarMeN Laboratory, INRAE U1397, INSERM U1060, Groupement Hospitalier Est, University Claude Bernard Lyon 1, 59 Boulevard Pinel, 69500, Lyon, Bron, France
| | | | - Didier Le Bars
- , Hospices Civils de Lyon, Lyon, France
- CERMEP, Lyon, France
| | | | - Norbert Nighoghossian
- CarMeN Laboratory, INRAE U1397, INSERM U1060, Groupement Hospitalier Est, University Claude Bernard Lyon 1, 59 Boulevard Pinel, 69500, Lyon, Bron, France
- , Hospices Civils de Lyon, Lyon, France
| | - Laura Mechtouff
- CarMeN Laboratory, INRAE U1397, INSERM U1060, Groupement Hospitalier Est, University Claude Bernard Lyon 1, 59 Boulevard Pinel, 69500, Lyon, Bron, France
- , Hospices Civils de Lyon, Lyon, France
| | - Emmanuelle Canet-Soulas
- CarMeN Laboratory, INRAE U1397, INSERM U1060, Groupement Hospitalier Est, University Claude Bernard Lyon 1, 59 Boulevard Pinel, 69500, Lyon, Bron, France
| |
Collapse
|
140
|
Geribaldi-Doldán N, Carrascal L, Pérez-García P, Oliva-Montero JM, Pardillo-Díaz R, Domínguez-García S, Bernal-Utrera C, Gómez-Oliva R, Martínez-Ortega S, Verástegui C, Nunez-Abades P, Castro C. Migratory Response of Cells in Neurogenic Niches to Neuronal Death: The Onset of Harmonic Repair? Int J Mol Sci 2023; 24:6587. [PMID: 37047560 PMCID: PMC10095545 DOI: 10.3390/ijms24076587] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Harmonic mechanisms orchestrate neurogenesis in the healthy brain within specific neurogenic niches, which generate neurons from neural stem cells as a homeostatic mechanism. These newly generated neurons integrate into existing neuronal circuits to participate in different brain tasks. Despite the mechanisms that protect the mammalian brain, this organ is susceptible to many different types of damage that result in the loss of neuronal tissue and therefore in alterations in the functionality of the affected regions. Nevertheless, the mammalian brain has developed mechanisms to respond to these injuries, potentiating its capacity to generate new neurons from neural stem cells and altering the homeostatic processes that occur in neurogenic niches. These alterations may lead to the generation of new neurons within the damaged brain regions. Notwithstanding, the activation of these repair mechanisms, regeneration of neuronal tissue within brain injuries does not naturally occur. In this review, we discuss how the different neurogenic niches respond to different types of brain injuries, focusing on the capacity of the progenitors generated in these niches to migrate to the injured regions and activate repair mechanisms. We conclude that the search for pharmacological drugs that stimulate the migration of newly generated neurons to brain injuries may result in the development of therapies to repair the damaged brain tissue.
Collapse
Affiliation(s)
- Noelia Geribaldi-Doldán
- Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Livia Carrascal
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Patricia Pérez-García
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - José M. Oliva-Montero
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Ricardo Pardillo-Díaz
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Samuel Domínguez-García
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
- Department of Neuroscience, Karolinska Institutet, Biomedicum, 17177 Stockholm, Sweden
| | - Carlos Bernal-Utrera
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Fisioterapia, Facultad de Enfermería, Fisioterapia y Podología, Universidad de Sevilla, 41009 Sevilla, Spain
| | - Ricardo Gómez-Oliva
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Sergio Martínez-Ortega
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Cristina Verástegui
- Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Pedro Nunez-Abades
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Carmen Castro
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| |
Collapse
|
141
|
Ning K, Gao R. Icariin protects cerebral neural cells from ischemia‑reperfusion injury in an in vitro model by lowering ROS production and intracellular calcium concentration. Exp Ther Med 2023; 25:151. [PMID: 36911386 PMCID: PMC9995791 DOI: 10.3892/etm.2023.11849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Ischemia is one of the major causes of stroke. The present study investigated the protection of cultured neural cells by icariin (ICA) against ischemia-reperfusion (I/R) injury and possible mechanisms underlying the protection. Neural cells were isolated from neonatal rats and cultured in vitro. The cells were subjected to oxygen-glucose deprivation and reoxygenation (OGD-R) as an I/R mimic to generate I/R injury, and were post-OGD-R treated with ICA. Following the treatments, cell viability, apoptosis, reactive oxygen species (ROS), lactate dehydrogenase (LDH), superoxide dismutase (SOD) and Ca2+ concentration were assessed using Cell Counting Kit-8 assay, flow cytometry, CyQUANT™ LDH Cytotoxicity Assay, H2DCFDA and SOD colorimetric activity kit. After OGD-R, considerable I/R injury was observed in the neural cells, as indicated by reduced cell viability, increased apoptosis and increased production of ROS and LDH (P<0.05). Cellular Ca2+ concentration was also increased, while SOD activity remained unchanged. Post-OGD-R ICA treatments increased cell viability up to 87.1% (P<0.05) and reduced apoptosis as low as 6.6% (P<0.05) in a concentration-dependent manner. The treatments also resulted in fewer ROS (P<0.05), lower extracellular LDH content (440.5 vs. 230.3 U/l; P<0.05) and reduced Ca2+ increase (P<0.05). These data suggest that ICA protects the neural cells from I/R injury in an in vitro model through antioxidation activity and maintaining cellular Ca2+ homeostasis. This function may be explored as a potential therapeutic strategy for ischemia-related diseases after further in vivo studies.
Collapse
Affiliation(s)
- Ke Ning
- Department of International Medicine, Affiliated Zhongshan Hospital, Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Rong Gao
- Surgical Intensive Care Unit, Affiliated Zhongshan Hospital, Dalian University, Dalian, Liaoning 116001, P.R. China
| |
Collapse
|
142
|
Lu H, Wang Y, Fan H, Wang Y, Fan S, Hu S, Shen H, Li H, Xue Q, Ni J, Fang Q, Chen G. GluA1 Degradation by Autophagy Contributes to Circadian Rhythm Effects on Cerebral Ischemia Injury. J Neurosci 2023; 43:2381-2397. [PMID: 36813576 PMCID: PMC10072305 DOI: 10.1523/jneurosci.1914-22.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
The mechanisms of many diseases, including central nervous system disorders, are regulated by circadian rhythms. The development of brain disorders such as depression, autism, and stroke is strongly associated with circadian cycles. Previous studies have shown that cerebral infarct volume is smaller at night (active phase) than during the day (inactive phase) in ischemic stroke rodent models. However, the underlying mechanisms remain unclear. Increasing evidence suggests that glutamate systems and autophagy play important roles in the pathogenesis of stroke. Here, we report that GluA1 expression was decreased and autophagic activity was increased in active-phase male mouse models of stroke compared with the inactive-phase models. In the active-phase model, induction of autophagy decreased the infarct volume, whereas inhibition of autophagy increased the infarct volume. Meanwhile, GluA1 expression was decreased following activation of autophagy and increased following inhibition of autophagy. We used Tat-GluA1 to uncouple p62, an autophagic adapter, from GluA1 and found that this blocked the degradation of GluA1, an effect similar to that of inhibition of autophagy in the active-phase model. We also demonstrated that knock-out of the circadian rhythm gene Per1 abolished the circadian rhythmicity of the volume of infarction and also abolished GluA1 expression and autophagic activity in wild-type (WT) mice. Our results suggest an underlying mechanism by which the circadian rhythm participates in the autophagy-dependent regulation of GluA1 expression, which influences the volume of infarction in stroke.SIGNIFICANCE STATEMENT Circadian rhythms affect the pathophysiological mechanisms of disease. Previous studies suggested that circadian rhythms affect the infarct volume in stroke, but the underlying mechanisms remain largely unknown. Here, we demonstrate that the smaller infarct volume after middle cerebral artery occlusion/reperfusion (MCAO/R) during the active phase is related to lower GluA1 expression and activation of autophagy. The decrease in GluA1 expression during the active phase is mediated by the p62-GluA1 interaction, followed by direct autophagic degradation. In short, GluA1 is the substrate of autophagic degradation, which mainly occurs after MCAO/R during the active phase but not the inactive phase.
Collapse
Affiliation(s)
- Haifeng Lu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Yugang Wang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Hua Fan
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province 471000, China
| | - Yiqing Wang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Shenghao Fan
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Shimin Hu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Haitao Shen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Haiying Li
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Jianqiang Ni
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province 215006, China
| |
Collapse
|
143
|
Ko G, Kim J, Jeon YJ, Lee D, Baek HM, Chang KA. Salvia miltiorrhiza Alleviates Memory Deficit Induced by Ischemic Brain Injury in a Transient MCAO Mouse Model by Inhibiting Ferroptosis. Antioxidants (Basel) 2023; 12:antiox12040785. [PMID: 37107160 PMCID: PMC10135292 DOI: 10.3390/antiox12040785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Salvia miltiorrhiza (SM) has been used in oriental medicine for its neuroprotective effects against cardiovascular diseases and ischemic stroke. In this study, we investigated the therapeutic mechanism underlying the effects of SM on stroke using a transient middle cerebral artery occlusion (tMCAO) mouse model. Our results showed that SM administration significantly attenuated acute brain injury, including brain infarction and neurological deficits, 3 days after tMCAO. This was confirmed by our magnetic resonance imaging (MRI) study, which revealed a reduction in brain infarction with SM administration, as well as our magnetic resonance spectroscopy (MRS) study, which demonstrated the restoration of brain metabolites, including taurine, total creatine, and glutamate. The neuroprotective effects of SM were associated with the reduction in gliosis and upregulation of inflammatory cytokines, such as interleukin-6 (IL-6) and Tumor necrosis factor-α (TNF-α), along with the upregulation of phosphorylated STAT3 in post-ischemic brains. SM also reduced the levels of 4-Hydroxynonenal (4-HNE) and malondialdehyde (MDA), which are markers of lipid peroxidation, induced by oxidative stress upregulation in the penumbra of the tMCAO mouse brain. SM administration attenuated ischemic neuronal injury by inhibiting ferroptosis. Additionally, post-ischemic brain synaptic loss and neuronal loss were alleviated by SM administration, as demonstrated by Western blot and Nissl staining. Moreover, daily administration of SM for 28 days after tMCAO significantly reduced neurological deficits and improved survival rates in tMCAO mice. SM administration also resulted in improvement in post-stroke cognitive impairment, as measured by the novel object recognition and passive avoidance tests in tMCAO mice. Our findings suggest that SM provides neuroprotection against ischemic stroke and has potential as a therapeutic agent.
Collapse
Affiliation(s)
- Geon Ko
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Jinho Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Yeong-Jae Jeon
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Hyeon-Man Baek
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Keun-A Chang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Department of Basic Neuroscience, Neuroscience Research Institute, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
144
|
Sun X, Wang Y, Zhao Y, Xu X, Lu W, Li Y, Bian F, Xiang L, Zhou L. Activation of the Epac/Rap1 signaling pathway alleviates blood-brain barrier disruption and brain damage following cerebral ischemia/reperfusion injury. Int Immunopharmacol 2023; 117:110014. [PMID: 36931001 DOI: 10.1016/j.intimp.2023.110014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
Blood brain barrier (BBB) destruction plays a key role in ischemia stroke, including promoting BBB leakage and brain edema, and leads to unfavorable patient prognosis. Epac/Rap1 signaling pathway is important in mediating endothelial cell barrier function. This study will investigate the regulatory role of Epac/Rap1 signaling pathway in BBB disruption after cerebral ischemia/reperfusion (CI/R) injury. CI/R model was induced by 90 min of transient middle cerebral artery occlusion (MCAO) in male C57BL/6J mice. Injection of Epac/Rap1 signaling pathway agonist was performed half an hour before the MCAO operation. The results showed that CI/R injured the tight connection of BBB and evoked the suppression of the Epac/Rap1 signaling pathway. Based on Epac activation with a cAMP analogue, 8-CPT could improve BBB disfunction by increasing the expression of tight junction protein and reducing the formation of stress fibers. In addition, 8-CPT could ameliorate neurobehavioral disorders, cerebral edema, and cerebral infarction volume in MCAO mice. Moreover, inhibition of Epac pathway with Rap1 inhibitor GGTI298 and Rac1 inhibitor NSC23766 could aggravate the damage of BBB and cerebral injury accordingly. Our results indicate that, the activation of Epac/Rap1 signaling pathway has neuroprotective effects on CI/R damaged brain, through the recovery of BBB.
Collapse
Affiliation(s)
- Xuemei Sun
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China; The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, 213000, China
| | - Yingnan Wang
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Yuchen Zhao
- Department of Mathematics, University of California, Los Angeles, CA 90095, USA
| | - Xinyi Xu
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Wenjie Lu
- Department of Pharmacology, School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Yuying Li
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Fei Bian
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Lan Xiang
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Lanlan Zhou
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China.
| |
Collapse
|
145
|
Genovese G, Diaz-Fernandez B, Lejeune FX, Ronen I, Marjańska M, Yahia-Cherif L, Lehéricy S, Branzoli F, Rosso C. Longitudinal Monitoring of Microstructural Alterations in Cerebral Ischemia with in Vivo Diffusion-weighted MR Spectroscopy. Radiology 2023; 306:e220430. [PMID: 36318030 PMCID: PMC9968771 DOI: 10.1148/radiol.220430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 02/22/2023]
Abstract
Background The time course of cellular damage after acute ischemic stroke (IS) is currently not well known, and specific noninvasive markers of microstructural alterations linked to inflammation are lacking, which hinders the monitoring of anti-inflammatory treatment. Purpose To evaluate the temporal pattern of neuronal and glial microstructural changes after stroke using in vivo single-voxel diffusion-weighted MR spectroscopy. Materials and Methods In this prospective longitudinal study, participants with IS and healthy volunteers (HVs) underwent MRI at 3.0 T. In participants with IS, apparent diffusion coefficients (ADCs) and concentrations of total N-acetyl-aspartate (tNAA), total creatine (tCr), and total choline (tCho) were measured in volumes of interest (VOIs), including the lesion VOI (VOIles) and the contralateral VOI (VOIcl) at 2 weeks, 1 month, and 3 months after IS. HVs were examined once, with VOIs located in the same brain regions as participants with IS. Within- and between-group differences and longitudinal changes were examined using linear mixed-effects models. Results Twenty participants with IS (mean age, 61 years ± 13 [SD]; 12 women) and 20 HVs (mean age, 59 years ± 13; 12 women) were evaluated. No differences in ADCs or concentrations were observed in VOIcl between HVs and participants with IS. In participants with IS, the ADC of tCr was higher in VOIles than in VOIcl at 1 month (+14.4%, P = .004) and 3 months after IS (+19.0%, P < .001), while the ADC of tCho was higher only at 1 month (+16.7%, P = .001). No difference in the ADC of tNAA was observed between the two VOIs at any time point. tNAA and tCr concentrations were lower in VOIles than in VOIcl and were stable over time (approximately -50% and -30%, respectively; P < .001). Conclusion High diffusivity of choline-containing compounds and total creatine (tCr) in the ischemic lesion 1 month after ischemic stroke (IS) indicates glial morphologic changes, suggesting that active inflammation is still ongoing at this time point. High tCr diffusivity up to 3 months after IS likely reflects the presence of astrogliosis at the chronic stage of cerebral ischemia. Clinical trial registration no. NCT02833961 © RSNA, 2022 Online supplemental material is available for this article.
Collapse
Affiliation(s)
| | | | - François-Xavier Lejeune
- From the Paris Brain Institute (Institut du Cerveau–ICM),
Center for Neuroimaging Research–CENIR, Hôpital
Pitié-Salpêtrière, 47 Boulevard de l’Hôpital,
CS 21414, 75646 Paris Cedex 13, France (G.G., L.Y.C., S.L., F.B.); Hopital
Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm
U 1127, CNRS UMR 7225, Paris, France (G.G., F.X.L., L.Y.C., S.L., F.B., C.R.);
APHP-Urgences Cérébro-Vasculaires, Hôpital
Pitié-Salpêtrière, Paris, France (B.D.F., C.R.); Center for
Magnetic Resonance Research, Department of Radiology, University of Minnesota,
Minneapolis, Minn (G.G., M.M.); Paris Brain Institute’s Data Analysis
Core, Paris, France (F.X.L.); Clinical Imaging Sciences Centre, Brighton and
Sussex Medical School, Falmer, United Kingdom (I.R.); and STARE Team, iCRIN,
Institut du Cerveau et de la Moelle Épinière, ICM, Paris, France
(C.R.)
| | - Itamar Ronen
- From the Paris Brain Institute (Institut du Cerveau–ICM),
Center for Neuroimaging Research–CENIR, Hôpital
Pitié-Salpêtrière, 47 Boulevard de l’Hôpital,
CS 21414, 75646 Paris Cedex 13, France (G.G., L.Y.C., S.L., F.B.); Hopital
Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm
U 1127, CNRS UMR 7225, Paris, France (G.G., F.X.L., L.Y.C., S.L., F.B., C.R.);
APHP-Urgences Cérébro-Vasculaires, Hôpital
Pitié-Salpêtrière, Paris, France (B.D.F., C.R.); Center for
Magnetic Resonance Research, Department of Radiology, University of Minnesota,
Minneapolis, Minn (G.G., M.M.); Paris Brain Institute’s Data Analysis
Core, Paris, France (F.X.L.); Clinical Imaging Sciences Centre, Brighton and
Sussex Medical School, Falmer, United Kingdom (I.R.); and STARE Team, iCRIN,
Institut du Cerveau et de la Moelle Épinière, ICM, Paris, France
(C.R.)
| | - Małgorzata Marjańska
- From the Paris Brain Institute (Institut du Cerveau–ICM),
Center for Neuroimaging Research–CENIR, Hôpital
Pitié-Salpêtrière, 47 Boulevard de l’Hôpital,
CS 21414, 75646 Paris Cedex 13, France (G.G., L.Y.C., S.L., F.B.); Hopital
Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm
U 1127, CNRS UMR 7225, Paris, France (G.G., F.X.L., L.Y.C., S.L., F.B., C.R.);
APHP-Urgences Cérébro-Vasculaires, Hôpital
Pitié-Salpêtrière, Paris, France (B.D.F., C.R.); Center for
Magnetic Resonance Research, Department of Radiology, University of Minnesota,
Minneapolis, Minn (G.G., M.M.); Paris Brain Institute’s Data Analysis
Core, Paris, France (F.X.L.); Clinical Imaging Sciences Centre, Brighton and
Sussex Medical School, Falmer, United Kingdom (I.R.); and STARE Team, iCRIN,
Institut du Cerveau et de la Moelle Épinière, ICM, Paris, France
(C.R.)
| | - Lydia Yahia-Cherif
- From the Paris Brain Institute (Institut du Cerveau–ICM),
Center for Neuroimaging Research–CENIR, Hôpital
Pitié-Salpêtrière, 47 Boulevard de l’Hôpital,
CS 21414, 75646 Paris Cedex 13, France (G.G., L.Y.C., S.L., F.B.); Hopital
Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm
U 1127, CNRS UMR 7225, Paris, France (G.G., F.X.L., L.Y.C., S.L., F.B., C.R.);
APHP-Urgences Cérébro-Vasculaires, Hôpital
Pitié-Salpêtrière, Paris, France (B.D.F., C.R.); Center for
Magnetic Resonance Research, Department of Radiology, University of Minnesota,
Minneapolis, Minn (G.G., M.M.); Paris Brain Institute’s Data Analysis
Core, Paris, France (F.X.L.); Clinical Imaging Sciences Centre, Brighton and
Sussex Medical School, Falmer, United Kingdom (I.R.); and STARE Team, iCRIN,
Institut du Cerveau et de la Moelle Épinière, ICM, Paris, France
(C.R.)
| | - Stéphane Lehéricy
- From the Paris Brain Institute (Institut du Cerveau–ICM),
Center for Neuroimaging Research–CENIR, Hôpital
Pitié-Salpêtrière, 47 Boulevard de l’Hôpital,
CS 21414, 75646 Paris Cedex 13, France (G.G., L.Y.C., S.L., F.B.); Hopital
Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm
U 1127, CNRS UMR 7225, Paris, France (G.G., F.X.L., L.Y.C., S.L., F.B., C.R.);
APHP-Urgences Cérébro-Vasculaires, Hôpital
Pitié-Salpêtrière, Paris, France (B.D.F., C.R.); Center for
Magnetic Resonance Research, Department of Radiology, University of Minnesota,
Minneapolis, Minn (G.G., M.M.); Paris Brain Institute’s Data Analysis
Core, Paris, France (F.X.L.); Clinical Imaging Sciences Centre, Brighton and
Sussex Medical School, Falmer, United Kingdom (I.R.); and STARE Team, iCRIN,
Institut du Cerveau et de la Moelle Épinière, ICM, Paris, France
(C.R.)
| | | | | |
Collapse
|
146
|
Kalinichenko SG, Pushchin II, Matveeva NY. Neurotoxic and cytoprotective mechanisms in the ischemic neocortex. J Chem Neuroanat 2023; 128:102230. [PMID: 36603664 DOI: 10.1016/j.jchemneu.2022.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Neuronal damage in ischemic stroke occurs due to permanent imbalance between the metabolic needs of the brain and the ability of the blood-vascular system to maintain glucose delivery and adequate gas exchange. Oxidative stress and excitotoxicity trigger complex processes of neuroinflammation, necrosis, and apoptosis of both neurons and glial cells. This review summarizes data on the structural and chemical changes in the neocortex and main cytoprotective effects induced by focal ischemic stroke. We focus on the expression of neurotrophins (NT) and molecular and cellular changes in neurovascular units in ischemic brain. We also discuss how these factors affect the apoptosis of cortical cells. Ischemic damage involves close interaction of a wide range of signaling molecules, each acting as an efficient marker of cell state in both the ischemic core and penumbra. NTs play the main regulatory role in brain tissue recovery after ischemic injury. Heterogeneous distribution of the BDNF, NT-3, and GDNF immunoreactivity is concordant with the selective response of different types of cortical neurons and glia to ischemic injury and allows mapping the position of viable neurons. Astrocytes are the central link in neurovascular coupling in ischemic brain by providing other cells with a wide range of vasotropic factors. The NT expression coincides with the distribution of reactive astrocytes, marking the boundaries of the penumbra. The development of ischemic stroke is accompanied by a dramatic change in the distribution of GDNF reactivity. In early ischemic period, it is mainly observed in cortical neurons, while in late one, the bulk of GDNF-positive cells are various types of glia, in particular, astrocytes. The proportion of GDNF-positive astrocytes increases gradually throughout the ischemic period. Some factors that exert cytoprotective effects in early ischemic period may display neurotoxic and pro-apoptotic effects later on. The number of apoptotic cells in the ischemic brain tissue correlates with the BDNF levels, corroborating its protective effects. Cytoprotection and neuroplasticity are two lines of brain protection and recovery after ischemic stroke. NTs can be considered an important link in these processes. To develop efficient pharmacological therapy for ischemic brain injury, we have to deepen our understanding of neurochemical adaptation of brain tissue to acute stroke.
Collapse
Affiliation(s)
- Sergei G Kalinichenko
- Department of Histology, Cytology, and Embryology, Pacific State Medical University, Vladivostok 690950, Russia
| | - Igor I Pushchin
- Laboratory of Physiology, A.V. Zhirmusky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia.
| | - Natalya Yu Matveeva
- Department of Histology, Cytology, and Embryology, Pacific State Medical University, Vladivostok 690950, Russia
| |
Collapse
|
147
|
Ziqing Z, Yunpeng L, Yiqi L, Yang W. Friends or foes: The mononuclear phagocyte system in ischemic stroke. Brain Pathol 2023; 33:e13151. [PMID: 36755470 PMCID: PMC10041168 DOI: 10.1111/bpa.13151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 01/09/2023] [Indexed: 02/10/2023] Open
Abstract
Ischemic stroke (IS) is a major cause of disability and death in adults, and the immune response plays an indispensable role in its pathological process. After the onset of IS, an inflammatory storm, with the infiltration and mobilization of the mononuclear phagocyte system (MPS), is triggered in the brain. Microglia are rapidly activated in situ, followed by waves of circulating monocytes into the ischemic area. Activated microglia and monocytes/macrophages are mainly distributed in the peri-infarct area. These cells have similar morphology and functions, such as secreting cytokines and phagocytosis. Previously, the presence of the MPS was considered a marker of an exacerbated inflammatory response that contributes to brain damage. However, recent studies have suggested a rather complicated role of the MPS in IS. Here, we reviewed articles focusing on various functions of the MPS among different phases of IS, including recruitment, polarization, phagocytosis, angiogenesis, and interaction with other types of cells. Moreover, due to the characteristics of the MPS, we also noted clinical research addressing alterations in the MPS as potential biomarkers for IS patients for the purposes of predicting prognosis and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Zhang Ziqing
- Department of NeurosurgeryBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| | - Liu Yunpeng
- Department of NeurosurgeryBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| | - Liu Yiqi
- Department of NeurosurgeryBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| | - Wang Yang
- Department of NeurosurgeryBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
148
|
Su QS, Zhuang DL, Nasser MI, Sai X, Deng G, Li G, Zhu P. Stem Cell Therapies for Restorative Treatments of Central Nervous System Ischemia-Reperfusion Injury. Cell Mol Neurobiol 2023; 43:491-510. [PMID: 35129759 PMCID: PMC11415191 DOI: 10.1007/s10571-022-01204-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/01/2022] [Indexed: 11/27/2022]
Abstract
Ischemic damage to the central nervous system (CNS) is a catastrophic postoperative complication of aortic occlusion subsequent to cardiovascular surgery that can cause brain impairment and sometimes even paraplegia. Over recent years, numerous studies have investigated techniques for protecting and revascularizing the nervous system during intraoperative ischemia; however, owing to a lack of knowledge of the physiological distinctions between the brain and spinal cord, as well as the limited availability of testing techniques and treatments for ischemia-reperfusion injury, the cause of brain and spinal cord ischemia-reperfusion injury remains poorly understood, and no adequate response steps are currently available in the clinic. Given the limited ability of the CNS to repair itself, it is of great clinical value to make full use of the proliferative and differentiation potential of stem cells to repair nerves in degenerated and necrotic regions by stem cell transplantation or mobilization, thereby introducing a novel concept for the treatment of severe CNS ischemia-reperfusion injury. This review summarizes the most recent advances in stem cell therapy for ischemia-reperfusion injury in the brain and spinal cord, aiming to advance basic research and the clinical use of stem cell therapy as a promising treatment for this condition.
Collapse
Affiliation(s)
- Qi-Song Su
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510080, Guangdong, China
| | - Dong-Lin Zhuang
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China
- College of Medicine, Shantou University, Shantou, 515063, Guangdong, China
| | - Moussa Ide Nasser
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China
| | - Xiyalatu Sai
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao City, 028000, Inner Mongolia, China
| | - Gang Deng
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ge Li
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China.
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510080, Guangdong, China.
| | - Ping Zhu
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China.
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510080, Guangdong, China.
- College of Medicine, Shantou University, Shantou, 515063, Guangdong, China.
- Guangdong Provincial Key Laboratory of Structural Heart Disease, Guangzhou, 510100, Guangdong, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao City, 028000, Inner Mongolia, China.
| |
Collapse
|
149
|
McFarland D, Merchant D, Khandai A, Mojtahedzadeh M, Ghosn O, Hirst J, Amonoo H, Chopra D, Niazi S, Brandstetter J, Gleason A, Key G, di Ciccone BL. Selective Serotonin Reuptake Inhibitor (SSRI) Bleeding Risk: Considerations for the Consult-Liaison Psychiatrist. Curr Psychiatry Rep 2023; 25:113-124. [PMID: 36708455 DOI: 10.1007/s11920-023-01411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/30/2022] [Indexed: 01/29/2023]
Abstract
PURPOSE OF REVIEW To present a clinically oriented review of selective serotonin reuptake inhibitor (SSRI)-related bleeding issues commonly addressed by consult-liaison psychiatrists. RECENT FINDINGS Concomitant medical, surgical, or hospital-based conditions exacerbate the risk of SSRI-related bleeding even though a review of the literature suggests it is only marginally elevated. Psychiatrists and other clinicians need to consider these conditions along with antidepressant benefits when answering the question: to start, hold, continue, or change the antidepressant? Where an evidence base is limited, mechanistic understanding may help consult-liaison psychiatrists navigate this terrain and collaborate with other medical specialties on responsible antidepressant management. Most often, the risk is cumulative; data are not directly applicable to complex clinical situations. This review incorporates a hematologic perspective and approach to bleeding risk assessment along with extant data on SSRI-induced bleeding risk ad specific medical conditions.
Collapse
Affiliation(s)
- Daniel McFarland
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA. .,Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA.
| | - Dale Merchant
- Department of Psychiatry, Westmead Hospital, Westmead, NSW, Australia.,Department of Consultation-Liaison Psychiatry, Concord Repatriation General Hospital, Sydney, NSW, Australia
| | - Abhisek Khandai
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mona Mojtahedzadeh
- Department of Psychiatry, University of California Los Angeles, Los Angeles, CA, USA.,Simms-Mann Center for Integrative Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Omar Ghosn
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Jeremy Hirst
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Hermioni Amonoo
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA.,Department of Psychosocial Oncology, Dana-Farber Cancer Center, Boston, MA, USA
| | - Depti Chopra
- Department of Psychiatry, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Shehzad Niazi
- Department of Psychiatry, Mayo Clinic, Jacksonville, FL, USA
| | - Jennifer Brandstetter
- Department of Psychiatry, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Andrew Gleason
- Department of Consultation-Liaison Psychiatry, Concord Repatriation General Hospital, Sydney, NSW, Australia.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Garrett Key
- Department of Psychiatry, Ascension Seton Medical Center, Austin, TX, USA
| | | |
Collapse
|
150
|
Zorina II, Avrova NF, Zakharova IO, Shpakov AO. Prospects for the Use of Intranasally Administered Insulin and Insulin-Like Growth Factor-1 in Cerebral Ischemia. BIOCHEMISTRY (MOSCOW) 2023; 88:374-391. [PMID: 37076284 DOI: 10.1134/s0006297923030070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Current approaches to the treatment of stroke have significant limitations, and neuroprotective therapy is ineffective. In view of this, searching for effective neuroprotectors and developing new neuroprotective strategies remain a pressing topic in research of cerebral ischemia. Insulin and insulin-like growth factor-1 (IGF-1) play a key role in the brain functioning by regulating the growth, differentiation, and survival of neurons, neuronal plasticity, food intake, peripheral metabolism, and endocrine functions. Insulin and IGF-1 produce multiple effects in the brain, including neuroprotective action in cerebral ischemia and stroke. Experiments in animals and cell cultures have shown that under hypoxic conditions, insulin and IGF-1 improve energy metabolism in neurons and glial cells, promote blood microcirculation in the brain, restore nerve cell functions and neurotransmission, and produce the anti-inflammatory and antiapoptotic effects on brain cells. The intranasal route of insulin and IGF-1 administration is of particular interest in the clinical practice, since it allows controlled delivery of these hormones directly to the brain, bypassing the blood-brain barrier. Intranasally administered insulin alleviated cognitive impairments in elderly people with neurodegenerative and metabolic disorders; intranasally administered insulin and IGF-1 promoted survival of animals with ischemic stroke. The review discusses the published data and results of our own studies on the mechanisms of neuroprotective action of intranasally administered insulin and IGF-1 in cerebral ischemia, as well as the prospects of using these hormones for normalization of CNS functions and reduction of neurodegenerative changes in this pathology.
Collapse
Affiliation(s)
- Inna I Zorina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, 194223, Russia.
| | - Natalia F Avrova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, 194223, Russia
| | - Irina O Zakharova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, 194223, Russia
| | - Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, 194223, Russia
| |
Collapse
|