101
|
New antibiotics from Nature’s chemical inventory. Bioorg Med Chem 2016; 24:6227-6252. [DOI: 10.1016/j.bmc.2016.09.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/07/2016] [Indexed: 01/07/2023]
|
102
|
Mauve C, Giraud N, Boex-Fontvieille ERA, Antheaume I, Tea I, Tcherkez G. Kinetic commitment in the catalysis of glutamine synthesis by GS1 from Arabidopsis using 14N/ 15N and solvent isotope effects. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:203-211. [PMID: 27448794 DOI: 10.1016/j.plaphy.2016.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/12/2016] [Indexed: 05/26/2023]
Abstract
Glutamine synthetase (GS, EC 6.3.1.2) catalyzes the production of glutamine from glutamate, ammonium and ATP. Although being essential in plants for N assimilation and recycling, kinetic commitments and transition states of the reaction have not been clearly established yet. Here, we examined 12C/13C, 14N/15N and H2O/D2O isotope effects in Arabidopsis GS1 catalysis and compared to the prokaryotic (Escherichia coli) enzyme. A14N/15N isotope effect (15V/K ≈ 1.015, with respect to substrate NH4+) was observed in the prokaryotic enzyme, indicating that ammonium utilization (deprotonation and/or amidation) was partially rate-limiting. In the plant enzyme, the isotope effect was inverse (15V/K = 0.965), suggesting that the reaction intermediate is involved in an amidation-deamidation equilibrium favoring 15N. There was no 12C/13C kinetic isotope effect (13V/K = 1.000), suggesting that the amidation step of the catalytic cycle involves a transition state with minimal alteration of overall force constants at the C-5 carbon. Surprisingly, the solvent isotope effect was found to be inverse, that is, with a higher turn-over rate in heavy water (DV ≈ 0.5), showing that restructuration of the active site due to displacement of H2O by D2O facilitates the processing of intermediates.
Collapse
Affiliation(s)
- Caroline Mauve
- Plateforme Métabolisme-Métabolome, Institute of Plant Science of Saclay (IPS2), Université Paris-Sud, 91405, Orsay Cedex, France
| | - Nicolas Giraud
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182, Université Paris-Sud, 91405, Orsay Cedex, France
| | - Edouard R A Boex-Fontvieille
- Laboratoire de Biotechnologies végétales appliquées aux Plantes aromatiques et médicinales, Université Jean Monnet, 42023, Saint Etienne Cedex 2, France
| | - Ingrid Antheaume
- Laboratoire de Géologie de Lyon Terre, Planètes, Environnement. UMR 5276, Université de Lyon, 69361, Lyon Cedex 07, France
| | - Illa Tea
- Chimie Et Interdisciplinarité: Synthèse, Analyse, Modélisation, UMR 6230, Université de Nantes, Nantes Cedex 3, 44322, France; John Curtin School of Medical Research, ANU College of Medicine, Biology and Environment, Australian National University, Canberra ACT, 2601, Australia
| | - Guillaume Tcherkez
- Research School of Biology, ANU College of Medicine, Biology and Environment, Australian National University, Canberra ACT, 2601, Australia.
| |
Collapse
|
103
|
Abstract
Organophosphonic acids are unique as natural products in terms of stability and mimicry. The C-P bond that defines these compounds resists hydrolytic cleavage, while the phosphonyl group is a versatile mimic of transition-states, intermediates, and primary metabolites. This versatility may explain why a variety of organisms have extensively explored the use organophosphonic acids as bioactive secondary metabolites. Several of these compounds, such as fosfomycin and bialaphos, figure prominently in human health and agriculture. The enzyme reactions that create these molecules are an interesting mix of chemistry that has been adopted from primary metabolism as well as those with no chemical precedent. Additionally, the phosphonate moiety represents a source of inorganic phosphate to microorganisms that live in environments that lack this nutrient; thus, unusual enzyme reactions have also evolved to cleave the C-P bond. This review is a comprehensive summary of the occurrence and function of organophosphonic acids natural products along with the mechanisms of the enzymes that synthesize and catabolize these molecules.
Collapse
Affiliation(s)
- Geoff P Horsman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University , Waterloo, Ontario N2L 3C5, Canada
| | - David L Zechel
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
104
|
Minireview on Glutamine Synthetase Deficiency, an Ultra-Rare Inborn Error of Amino Acid Biosynthesis. BIOLOGY 2016; 5:biology5040040. [PMID: 27775558 PMCID: PMC5192420 DOI: 10.3390/biology5040040] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/03/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022]
Abstract
Glutamine synthetase (GS) is a cytosolic enzyme that produces glutamine, the most abundant free amino acid in the human body. Glutamine is a major substrate for various metabolic pathways, and is thus an important factor for the functioning of many organs; therefore, deficiency of glutamine due to a defect in GS is incompatible with normal life. Mutations in the human GLUL gene (encoding for GS) can cause an ultra-rare recessive inborn error of metabolism—congenital glutamine synthetase deficiency. This disease was reported until now in only three unrelated patients, all of whom suffered from neonatal onset severe epileptic encephalopathy. The hallmark of GS deficiency in these patients was decreased levels of glutamine in body fluids, associated with chronic hyperammonemia. This review aims at recapitulating the clinical history of the three known patients with congenital GS deficiency and summarizes the findings from studies done along with the work-up of these patients. It is the aim of this paper to convince the reader that (i) this disorder is possibly underdiagnosed, since decreased concentrations of metabolites do not receive the attention they deserve; and (ii) early detection of GS deficiency may help to improve the outcome of patients who could be treated early with metabolites that are lacking in this condition.
Collapse
|
105
|
Issoglio FM, Campolo N, Zeida A, Grune T, Radi R, Estrin DA, Bartesaghi S. Exploring the Catalytic Mechanism of Human Glutamine Synthetase by Computer Simulations. Biochemistry 2016; 55:5907-5916. [DOI: 10.1021/acs.biochem.6b00822] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Federico M. Issoglio
- Departamento
de Química Inorgánica, Analítica y Química-Física
and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Ari Zeida
- Departamento
de Química Inorgánica, Analítica y Química-Física
and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tilman Grune
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | | | - Dario A. Estrin
- Departamento
de Química Inorgánica, Analítica y Química-Física
and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvina Bartesaghi
- Departamento
de Educación Médica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
106
|
Rodrigues M, Ostermann T, Kremeser L, Lindner H, Beisel C, Berezikov E, Hobmayer B, Ladurner P. Profiling of adhesive-related genes in the freshwater cnidarian Hydra magnipapillata by transcriptomics and proteomics. BIOFOULING 2016; 32:1115-1129. [PMID: 27661452 PMCID: PMC5080974 DOI: 10.1080/08927014.2016.1233325] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
The differentiated ectodermal basal disc cells of the freshwater cnidarian Hydra secrete proteinaceous glue to temporarily attach themselves to underwater surfaces. Using transcriptome sequencing and a basal disc-specific RNA-seq combined with in situ hybridisation a highly specific set of candidate adhesive genes was identified. A de novo transcriptome assembly of 55,849 transcripts (>200 bp) was generated using paired-end and single reads from Illumina libraries constructed from different polyp conditions. Differential transcriptomics and spatial gene expression analysis by in situ hybridisation allowed the identification of 40 transcripts exclusively expressed in the ectodermal basal disc cells. Comparisons after mass spectrometry analysis of the adhesive secretion showed a total of 21 transcripts to be basal disc specific and eventually secreted through basal disc cells. This is the first study to survey adhesion-related genes in Hydra. The candidate list presented in this study provides a platform for unravelling the molecular mechanism of underwater adhesion of Hydra.
Collapse
Affiliation(s)
- Marcelo Rodrigues
- Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Thomas Ostermann
- Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Leopold Kremeser
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | - Eugene Berezikov
- ERIBA, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bert Hobmayer
- Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Peter Ladurner
- Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
107
|
Coscia F, Estrozi LF, Hans F, Malet H, Noirclerc-Savoye M, Schoehn G, Petosa C. Fusion to a homo-oligomeric scaffold allows cryo-EM analysis of a small protein. Sci Rep 2016; 6:30909. [PMID: 27485862 PMCID: PMC4971460 DOI: 10.1038/srep30909] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/10/2016] [Indexed: 12/30/2022] Open
Abstract
Recent technical advances have revolutionized the field of cryo-electron microscopy (cryo-EM). However, most monomeric proteins remain too small (<100 kDa) for cryo-EM analysis. To overcome this limitation, we explored a strategy whereby a monomeric target protein is genetically fused to a homo-oligomeric scaffold protein and the junction optimized to allow the target to adopt the scaffold symmetry, thereby generating a chimeric particle suitable for cryo-EM. To demonstrate the concept, we fused maltose-binding protein (MBP), a 40 kDa monomer, to glutamine synthetase, a dodecamer formed by two hexameric rings. Chimeric constructs with different junction lengths were screened by biophysical analysis and negative-stain EM. The optimal construct yielded a cryo-EM reconstruction that revealed the MBP structure at sub-nanometre resolution. These findings illustrate the feasibility of using homo-oligomeric scaffolds to enable cryo-EM analysis of monomeric proteins, paving the way for applying this strategy to challenging structures resistant to crystallographic and NMR analysis.
Collapse
Affiliation(s)
- Francesca Coscia
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Leandro F Estrozi
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Fabienne Hans
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Hélène Malet
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | | | - Guy Schoehn
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Carlo Petosa
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| |
Collapse
|
108
|
An Extended Loop of the Pup Ligase, PafA, Mediates Interaction with Protein Targets. J Mol Biol 2016; 428:4143-4153. [PMID: 27497689 DOI: 10.1016/j.jmb.2016.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 07/08/2016] [Accepted: 07/26/2016] [Indexed: 11/23/2022]
Abstract
Pupylation, the bacterial equivalent of ubiquitylation, involves the conjugation of a prokaryotic ubiquitin-like protein (Pup) to protein targets. In contrast to the ubiquitin system, where many ubiquitin ligases exist, a single bacterial ligase, PafA, catalyzes the conjugation of Pup to a wide array of protein targets. As mediators of target recognition by PafA have not been identified, it would appear that PafA alone determines pupylation target selection. Previous studies indicated that broad specificity and promiscuity are indeed inherent PafA characteristics that probably dictate which proteins are selected for degradation by the Pup-proteasome system. Nonetheless, despite the canonical role played by PafA in the Pup-proteasome system, the molecular mechanism that dictates target binding by PafA remains uncharacterized since the discovery of this enzyme about a decade ago. In this study, we report the identification of PafA residues involved in the binding of protein targets. Initially, docking analysis predicted the residues on PafA with high potential for target binding. Mutational and biochemical approaches subsequently confirmed these predictions and identified a series of additional residues located on an extended loop at the edge of the PafA active site. Mutating residues in this loop rendered PafA defective in the pupylation of a wide variety of protein targets but not in its catalytic mechanism, suggesting an important role for this extended loop in the binding of protein targets. As such, these findings pave the way toward an understanding of the molecular determinants that dictate the broad substrate specificity of PafA.
Collapse
|
109
|
Regulatory principles in metabolism–then and now. Biochem J 2016; 473:1845-57. [DOI: 10.1042/bcj20160103] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/21/2016] [Indexed: 12/22/2022]
Abstract
The importance of metabolic pathways for life and the nature of participating reactions have challenged physiologists and biochemists for over a hundred years. Eric Arthur Newsholme contributed many original hypotheses and concepts to the field of metabolic regulation, demonstrating that metabolic pathways have a fundamental thermodynamic structure and that near identical regulatory mechanisms exist in multiple species across the animal kingdom. His work at Oxford University from the 1970s to 1990s was groundbreaking and led to better understanding of development and demise across the lifespan as well as the basis of metabolic disruption responsible for the development of obesity, diabetes and many other conditions. In the present review we describe some of the original work of Eric Newsholme, its relevance to metabolic homoeostasis and disease and application to present state-of-the-art studies, which generate substantial amounts of data that are extremely difficult to interpret without a fundamental understanding of regulatory principles. Eric's work is a classical example of how one can unravel very complex problems by considering regulation from a cell, tissue and whole body perspective, thus bringing together metabolic biochemistry, physiology and pathophysiology, opening new avenues that now drive discovery decades thereafter.
Collapse
|
110
|
Moreira C, Ramos MJ, Fernandes PA. Reaction Mechanism ofMycobacterium TuberculosisGlutamine Synthetase Using Quantum Mechanics/Molecular Mechanics Calculations. Chemistry 2016; 22:9218-25. [DOI: 10.1002/chem.201600305] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Cátia Moreira
- UCIBIO, REQUIMTE; Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; 4169-007 Porto Portugal
| | - Maria J. Ramos
- UCIBIO, REQUIMTE; Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; 4169-007 Porto Portugal
| | - Pedro Alexandrino Fernandes
- UCIBIO, REQUIMTE; Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; 4169-007 Porto Portugal
| |
Collapse
|
111
|
Abusneina A, Gauthier ER. Ammonium ions improve the survival of glutamine-starved hybridoma cells. Cell Biosci 2016; 6:23. [PMID: 27087916 PMCID: PMC4832542 DOI: 10.1186/s13578-016-0092-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/04/2016] [Indexed: 12/17/2022] Open
Abstract
Background As a consequence of a reprogrammed metabolism, cancer cells are dependent on the amino acid l-glutamine for their survival, a phenomenon that currently forms the basis for the generation of new, cancer-specific therapies. In this paper, we report on the role which ammonium ions, a product of glutaminolysis, play on the survival of l-glutamine-deprived Sp2/0-Ag14 mouse hybridoma cells. Results The supplementation of l-glutamine-starved Sp2/0-Ag14 cell cultures with either ammonium acetate or ammonium chloride resulted in a significant increase in viability. This effect did not depend on the ability of cells to synthesize l-glutamine, and was not affected by the co-supplementation with α-ketoglutarate. When we examined the effect of ammonium acetate and ammonium chloride on the induction of apoptosis by glutamine deprivation, we found that ammonium salts did not prevent caspase-3 activation or cytochrome c leakage, indicating that they did not act by modulating core apoptotic processes. However, both ammonium acetate and ammonium chloride caused a significant reduction in the number of l-glutamine-starved cells exhibiting apoptotic nuclear fragmentation and/or condensation. Conclusion All together, our results show that ammonium ions promote the survival of l-glutamine-deprived Sp2/0-Ag14 cells and modulate late-apoptotic events. These findings highlight the complexity of the modulation of cell survival by l-glutamine, and suggest that targeting survival-signaling pathways modulated by ammonium ions should be examined as a potential anti-cancer strategy.
Collapse
Affiliation(s)
| | - Eric R Gauthier
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E 2C6 Canada ; Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6 Canada ; Department of Biology, Laurentian University, Sudbury, ON P3E 2C6 Canada
| |
Collapse
|
112
|
Frieg B, Görg B, Homeyer N, Keitel V, Häussinger D, Gohlke H. Molecular Mechanisms of Glutamine Synthetase Mutations that Lead to Clinically Relevant Pathologies. PLoS Comput Biol 2016; 12:e1004693. [PMID: 26836257 PMCID: PMC4737493 DOI: 10.1371/journal.pcbi.1004693] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 12/03/2015] [Indexed: 12/15/2022] Open
Abstract
Glutamine synthetase (GS) catalyzes ATP-dependent ligation of ammonia and glutamate to glutamine. Two mutations of human GS (R324C and R341C) were connected to congenital glutamine deficiency with severe brain malformations resulting in neonatal death. Another GS mutation (R324S) was identified in a neurologically compromised patient. However, the molecular mechanisms underlying the impairment of GS activity by these mutations have remained elusive. Molecular dynamics simulations, free energy calculations, and rigidity analyses suggest that all three mutations influence the first step of GS catalytic cycle. The R324S and R324C mutations deteriorate GS catalytic activity due to loss of direct interactions with ATP. As to R324S, indirect, water-mediated interactions reduce this effect, which may explain the suggested higher GS residual activity. The R341C mutation weakens ATP binding by destabilizing the interacting residue R340 in the apo state of GS. Additionally, the mutation is predicted to result in a significant destabilization of helix H8, which should negatively affect glutamate binding. This prediction was tested in HEK293 cells overexpressing GS by dot-blot analysis: Structural stability of H8 was impaired through mutation of amino acids interacting with R341, as indicated by a loss of masking of an epitope in the glutamate binding pocket for a monoclonal anti-GS antibody by L-methionine-S-sulfoximine; in contrast, cells transfected with wild type GS showed the masking. Our analyses reveal complex molecular effects underlying impaired GS catalytic activity in three clinically relevant mutants. Our findings could stimulate the development of ATP binding-enhancing molecules by which the R324S mutant can be repaired extrinsically. Glutamine synthetase (GS) catalyzes the ATP-dependent ligation of ammonia and glutamate to glutamine, which makes the enzyme essential for human nitrogen metabolism. Three mutations in human GS, R324C, R324S, and R341C, had been identified previously that lead to a glutamine deficiency, resulting in neonatal death in the case of R324C and R341C. However, the molecular mechanisms underlying this impairment of GS activity have remained elusive. Our results from computational biophysics approaches suggest that all three mutants influence the first step of GS’ catalytic cycle, namely ATP or glutamate binding. The analyses reveal a complex set of effects including the loss of direct interactions to substrates, the involvement of water-mediated interactions that alleviate part of the mutation effect, and long-range effects between the catalytic site and structural parts distant from it. As to the latter, experimental validation is in line with our prediction of a significant destabilization of helix H8 in the R341C mutant, which should negatively affect glutamate binding. Finally, our findings could stimulate the development of ATP-binding enhancing molecules for the R324S mutant, which has been suggested to have residual activity, that way extrinsically “repairing” the mutant.
Collapse
Affiliation(s)
- Benedikt Frieg
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, Düsseldorf, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Nadine Homeyer
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, Düsseldorf, Germany
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail: (DH); (HG)
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail: (DH); (HG)
| |
Collapse
|
113
|
Hart KM, Reck M, Bowman GR, Wencewicz TA. Tabtoxinine-β-lactam is a “stealth” β-lactam antibiotic that evades β-lactamase-mediated antibiotic resistance. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00325c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tabtoxinine-β-lactam (TβL) is a phytotoxin produced by plant pathogenic strains of Pseudomonas syringae.
Collapse
Affiliation(s)
- Kathryn M. Hart
- Department of Biochemistry and Molecular Biophysics
- Washington University School of Medicine
- St. Louis
- USA
| | - Margaret Reck
- Department of Chemistry
- Washington University in St. Louis
- St. Louis
- USA
| | - Gregory R. Bowman
- Department of Biochemistry and Molecular Biophysics
- Washington University School of Medicine
- St. Louis
- USA
| | | |
Collapse
|
114
|
Pathogenic Mechanisms of Actin Cross-Linking Toxins: Peeling Away the Layers. Curr Top Microbiol Immunol 2016; 399:87-112. [PMID: 27858184 DOI: 10.1007/82_2016_22] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Actin cross-linking toxins are produced by Gram-negative bacteria from Vibrio and Aeromonas genera. The toxins were named actin cross-linking domains (ACD), since the first and most of the subsequently discovered ACDs were found as effector domains in larger MARTX and VgrG toxins. Among recognized human pathogens, ACD is produced by Vibrio cholerae, Vibrio vulnificus, and Aeromonas hydrophila. Upon delivery to the cytoplasm of a host cell, ACD covalently cross-links actin monomers into non-polymerizable actin oligomers of various lengths. Provided sufficient doses of toxin are delivered, most or all actin can be promptly cross-linked into non-functional oligomers, leading to cell rounding, detachment from the substrate and, in many cases, cell death. Recently, a deeper layer of ACD toxicity with a less obvious but more potent mechanism was discovered. According to this finding, low doses of the ACD-produced actin oligomers can actively disrupt the actin cytoskeleton by potently inhibiting essential actin assembly proteins, formins. The first layer of toxicity is direct (as actin is the immediate and the only target), passive (since ACD-cross-linked actin oligomers are toxic only because they are non-functional), and less potent (as bulk quantities of one of the most abundant cytoplasmic proteins, actin, have to be modified). The second mechanism is indirect (as major targets, formins, are not affected by ACD directly), active (because actin oligomers act as "secondary" toxins), and highly potent [as it affects scarce and essential actin-binding proteins (ABPs)].
Collapse
|
115
|
Hauf K, Kayumov A, Gloge F, Forchhammer K. The Molecular Basis of TnrA Control by Glutamine Synthetase in Bacillus subtilis. J Biol Chem 2015; 291:3483-95. [PMID: 26635369 DOI: 10.1074/jbc.m115.680991] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 12/16/2022] Open
Abstract
TnrA is a master regulator of nitrogen assimilation in Bacillus subtilis. This study focuses on the mechanism of how glutamine synthetase (GS) inhibits TnrA function in response to key metabolites ATP, AMP, glutamine, and glutamate. We suggest a model of two mutually exclusive GS conformations governing the interaction with TnrA. In the ATP-bound state (A-state), GS is catalytically active but unable to interact with TnrA. This conformation was stabilized by phosphorylated L-methionine sulfoximine (MSX), fixing the enzyme in the transition state. When occupied by glutamine (or its analogue MSX), GS resides in a conformation that has high affinity for TnrA (Q-state). The A- and Q-state are mutually exclusive, and in agreement, ATP and glutamine bind to GS in a competitive manner. At elevated concentrations of glutamine, ATP is no longer able to bind GS and to bring it into the A-state. AMP efficiently competes with ATP and prevents formation of the A-state, thereby favoring GS-TnrA interaction. Surface plasmon resonance analysis shows that TnrA bound to a positively regulated promoter fragment binds GS in the Q-state, whereas it rapidly dissociates from a negatively regulated promoter fragment. These data imply that GS controls TnrA activity at positively controlled promoters by shielding the transcription factor in the DNA-bound state. According to size exclusion and multiangle light scattering analysis, the dodecameric GS can bind three TnrA dimers. The highly interdependent ligand binding properties of GS reveal this enzyme as a sophisticated sensor of the nitrogen and energy state of the cell to control the activity of DNA-bound TnrA.
Collapse
Affiliation(s)
- Ksenia Hauf
- From the Interfaculty Institute for Microbiology and Infection Medicine, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Airat Kayumov
- the Department of Genetics, Kazan Federal University, Kremlevskaya 18, 420008, Kazan, Russia, and
| | - Felix Gloge
- Wyatt Technology Europe, Hochstrasse 12a, 56307 Dernbach, Germany
| | - Karl Forchhammer
- From the Interfaculty Institute for Microbiology and Infection Medicine, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany,
| |
Collapse
|
116
|
Jezek M, Geilfus CM, Mühling KH. Glutamine synthetase activity in leaves of Zea mays L. as influenced by magnesium status. PLANTA 2015. [PMID: 26202737 DOI: 10.1007/s00425-015-2371-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The total capacity of the GS-mediated ligation of free ammonium and glutamate to form glutamine in the leaves of maize plants is not impaired upon severe magnesium starvation. Magnesium deficiency does not obligatorily lead to the decreased total protein concentrations in the leaves. Magnesium (Mg) is an integral component of the enzyme glutamine synthetase (GS), having both a structural and a catalytic role. Moreover, Mg is relevant for the post-translational regulation of the GS. Glutamine synthetase is one of the key enzymes in nitrogen assimilation, ligating-free ammonium (NH4 (+)) to glutamate to form glutamine and it is therefore crucial for plant growth and productivity. This study was conducted in order to test whether a severe Mg-deficiency impairs the total capacity of the GS-catalyzed synthesis of glutamine in maize leaves. Maize was grown hydroponically and the GS activity was analyzed dependent on different leaf developmental stages. Glutamine synthetase activity in vitro assays in combination with immune-dot blot analysis revealed that both the total activity and the abundance of glutamine synthetase was not impaired in the leaves of maize plants upon 54 days of severe Mg starvation. Additionally, it was shown that Mg deficiency does not obligatorily lead to decreased total protein concentrations in the leaves, as assayed by Bradford protein quantification. Moreover, Mg resupply to the roots or the leaves of Mg-deficient plants reversed the Mg-deficiency-induced accumulation of free amino acids in older leaves, which indicates impaired phloem loading. The results of our study reveal that the total GS-mediated primary or secondary assimilation of free NH4 (+) is not a limiting enzymatic reaction under Mg deficiency and thus cannot be accountable for the observed restriction of plant growth and productivity in Mg-deficient maize.
Collapse
Affiliation(s)
- Mareike Jezek
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118, Kiel, Germany
| | - Christoph-Martin Geilfus
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118, Kiel, Germany
| | - Karl-Hermann Mühling
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118, Kiel, Germany.
| |
Collapse
|
117
|
Fialho MB, de Andrade A, Bonatto JMC, Salvato F, Labate CA, Pascholati SF. Proteomic response of the phytopathogen Phyllosticta citricarpa to antimicrobial volatile organic compounds from Saccharomyces cerevisiae. Microbiol Res 2015; 183:1-7. [PMID: 26805613 DOI: 10.1016/j.micres.2015.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/07/2015] [Accepted: 11/11/2015] [Indexed: 11/26/2022]
Abstract
Volatile organic compounds (VOCs) released by Saccharomyces cerevisiae inhibit plant pathogens, including the filamentous fungus Phyllosticta citricarpa, causal agent of citrus black spot. VOCs mediate relevant interactions between organisms in nature, and antimicrobial VOCs are promising, environmentally safer fumigants to control phytopathogens. As the mechanisms by which VOCs inhibit microorganisms are not well characterized, we evaluated the proteomic response in P. citricarpa after exposure for 12h to a reconstituted mixture of VOCs (alcohols and esters) originally identified in S. cerevisiae. Total protein was extracted and separated by 2D-PAGE, and differentially expressed proteins were identified by LC-MS/MS. About 600 proteins were detected, of which 29 were downregulated and 11 were upregulated. These proteins are involved in metabolism, genetic information processing, cellular processes, and transport. Enzymes related to energy-generating pathways, particularly glycolysis and the tricarboxylic acid cycle, were the most strongly affected. Thus, the data indicate that antimicrobial VOCs interfere with essential metabolic pathways in P. citricarpa to prevent fungal growth.
Collapse
Affiliation(s)
- Mauricio Batista Fialho
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP), Avenida Pádua Dias, 11, CP 09, CEP 13418-900 Piracicaba, SP, Brazil
| | - Alexander de Andrade
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP), Avenida Pádua Dias, 11, CP 09, CEP 13418-900 Piracicaba, SP, Brazil
| | - José Matheus Camargo Bonatto
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP), Avenida Pádua Dias, 11, CP 09, CEP 13418-900 Piracicaba, SP, Brazil
| | - Fernanda Salvato
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP), Avenida Pádua Dias, 11, CP 09, CEP 13418-900 Piracicaba, SP, Brazil
| | - Carlos Alberto Labate
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP), Avenida Pádua Dias, 11, CP 09, CEP 13418-900 Piracicaba, SP, Brazil
| | - Sérgio Florentino Pascholati
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP), Avenida Pádua Dias, 11, CP 09, CEP 13418-900 Piracicaba, SP, Brazil.
| |
Collapse
|
118
|
Wang X, Wei Y, Shi L, Ma X, Theg SM. New isoforms and assembly of glutamine synthetase in the leaf of wheat (Triticum aestivum L.). JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6827-34. [PMID: 26307137 PMCID: PMC4623691 DOI: 10.1093/jxb/erv388] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Glutamine synthetase (GS; EC 6.3.1.2) plays a crucial role in the assimilation and re-assimilation of ammonia derived from a wide variety of metabolic processes during plant growth and development. Here, three developmentally regulated isoforms of GS holoenzyme in the leaf of wheat (Triticum aestivum L.) seedlings are described using native-PAGE with a transferase activity assay. The isoforms showed different mobilities in gels, with GSII>GSIII>GSI. The cytosolic GSI was composed of three subunits, GS1, GSr1, and GSr2, with the same molecular weight (39.2kDa), but different pI values. GSI appeared at leaf emergence and was active throughout the leaf lifespan. GSII and GSIII, both located in the chloroplast, were each composed of a single 42.1kDa subunit with different pI values. GSII was active mainly in green leaves, while GSIII showed brief but higher activity in green leaves grown under field conditions. LC-MS/MS experiments revealed that GSII and GSIII have the same amino acid sequence, but GSII has more modification sites. With a modified blue native electrophoresis (BNE) technique and in-gel catalytic activity analysis, only two GS isoforms were observed: one cytosolic and one chloroplastic. Mass calibrations on BNE gels showed that the cytosolic GS1 holoenzyme was ~490kDa and likely a dodecamer, and the chloroplastic GS2 holoenzyme was ~240kDa and likely a hexamer. Our experimental data suggest that the activity of GS isoforms in wheat is regulated by subcellular localization, assembly, and modification to achieve their roles during plant development.
Collapse
Affiliation(s)
- Xiaochun Wang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agriculture University, Zhengzhou 450002, China State Key Laboratory of Wheat and Maize Crop Science in China, Henan Agriculture University, Zhengzhou 450002, China Department of Biochemistry, College of Life Science, Henan Agriculture University, Zhengzhou 450002, China
| | - Yihao Wei
- Department of Biochemistry, College of Life Science, Henan Agriculture University, Zhengzhou 450002, China
| | - Lanxin Shi
- Department of Plant Biology, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Xinming Ma
- Collaborative Innovation Center of Henan Grain Crops, Henan Agriculture University, Zhengzhou 450002, China
| | - Steven M Theg
- Department of Plant Biology, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
119
|
Silva LS, Seabra AR, Leitão JN, Carvalho HG. Possible role of glutamine synthetase of the prokaryotic type (GSI-like) in nitrogen signaling in Medicago truncatula. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 240:98-108. [PMID: 26475191 DOI: 10.1016/j.plantsci.2015.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
Genes containing domains related to glutamine synthetase of the prokaryotic type (GSI-like) are widespread in higher plants, but their function is currently unknown. To gain insights into the possible role of GSI-like proteins, we characterized the GSI-like gene family of Medicago truncatula and investigated the functionality of the encoded proteins. M. truncatula contains two-expressed GSI-like genes, MtGSIa and MtGSIb, encoding polypeptides of 454 and 453 amino acids, respectively. Heterologous complementation assays of a bacterial glnA mutant indicate that the proteins are not catalytically functional for glutamine synthesis. Gene expression was investigated by qRT-PCR and western blot analysis in different organs of the plant and under different nitrogen (N) regimes, revealing that both genes are preferentially expressed in roots and root nodules, and that their expression is influenced by the N-status of the plant. Analysis of transgenic plants expressing MtGSI-like-promoter-gusA fusion, indicate that the two genes are strongly expressed in the root pericycle, and interestingly, the expression is enhanced at the sites of nodule emergence being particularly strong in specific cells located in front of the protoxylem poles. Taken together, the results presented here support a role of GSI-like proteins in N sensing and/or signaling, probably operating at the interface between perception of the N-status and the developmental processes underlying both root nodule and lateral root formation. This study indicates that GSI-like genes may represent a novel class of molecular players of the N-mediated signaling events.
Collapse
Affiliation(s)
- Liliana S Silva
- Instituto de Biologia Molecular e Celular da Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Portugal
| | - Ana R Seabra
- Instituto de Biologia Molecular e Celular da Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - José N Leitão
- Instituto de Biologia Molecular e Celular da Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Helena G Carvalho
- Instituto de Biologia Molecular e Celular da Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal.
| |
Collapse
|
120
|
Hu L, Ibrahim K, Stucki M, Frapolli M, Shahbeck N, Chaudhry FA, Görg B, Häussinger D, Penberthy WT, Ben-Omran T, Häberle J. Secondary NAD+ deficiency in the inherited defect of glutamine synthetase. J Inherit Metab Dis 2015; 38:1075-83. [PMID: 25896882 DOI: 10.1007/s10545-015-9846-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/03/2015] [Accepted: 03/20/2015] [Indexed: 01/05/2023]
Abstract
Glutamine synthetase (GS) deficiency is an ultra-rare inborn error of amino acid metabolism that has been described in only three patients so far. The disease is characterized by neonatal onset of severe encephalopathy, low levels of glutamine in blood and cerebrospinal fluid, chronic moderate hyperammonemia, and an overall poor prognosis in the absence of an effective treatment. Recently, enteral glutamine supplementation was shown to be a safe and effective therapy for this disease but there are no data available on the long-term effects of this intervention. The amino acid glutamine, severely lacking in this disorder, is central to many metabolic pathways in the human organism and is involved in the synthesis of nicotinamide adenine dinucleotide (NAD(+)) starting from tryptophan or niacin as nicotinate, but not nicotinamide. Using fibroblasts, leukocytes, and immortalized peripheral blood stem cells (PBSC) from a patient carrying a GLUL gene point mutation associated with impaired GS activity, we tested whether glutamine deficiency in this patient results in NAD(+) depletion and whether it can be rescued by supplementation with glutamine, nicotinamide or nicotinate. The present study shows that congenital GS deficiency is associated with NAD(+) depletion in fibroblasts, leukocytes and PBSC, which may contribute to the severe clinical phenotype of the disease. Furthermore, it shows that NAD(+) depletion can be rescued by nicotinamide supplementation in fibroblasts and leukocytes, which may open up potential therapeutic options for the treatment of this disorder.
Collapse
Affiliation(s)
- Liyan Hu
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, 8032, Switzerland
- Center for Neuroscience Zurich, Zurich, Switzerland
| | - Khalid Ibrahim
- Section of Pediatric Neurology, Hamad Medical Corporation, Doha, Qatar
| | - Martin Stucki
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Michele Frapolli
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Noora Shahbeck
- Section of Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | - Farrukh A Chaudhry
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Boris Görg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Tawfeg Ben-Omran
- Section of Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
- Department of Pediatrics, Weil-Cornell Medical College, New York, USA
- Department of Genetic Medicine, Weil-Cornell Medical College, Doha, Qatar
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, 8032, Switzerland.
- Center for Neuroscience Zurich, Zurich, Switzerland.
| |
Collapse
|
121
|
Liu Y, Chen T, Li MH, Xu HD, Jia AQ, Zhang JF, Wang JS. (1)H NMR based metabolomics approach to study the toxic effects of dichlorvos on goldfish (Carassius auratus). CHEMOSPHERE 2015; 138:537-545. [PMID: 26210017 DOI: 10.1016/j.chemosphere.2015.07.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/06/2015] [Accepted: 07/15/2015] [Indexed: 05/24/2023]
Abstract
Dichlorvos (DDVP), one of the most widely used organophosphorus pesticides (OPs), has caused serious pollution in environment. In this study, (1)H nuclear magnetic resonance (NMR) based metabolomics approach combined with histopathological and immunohistochemical examination, and biochemical assays were used to investigate toxicities of DDVP on goldfish (Carassius auratus). After 10 days' exposure of DDVP at three dosages of 5.18, 2.59 and 1.73 mg/L, goldfish tissues (gill, brain, liver and kidney) and serum were collected. Histopathology revealed severe impairment of gills, livers and kidneys, and immunohistochemistry disclosed glial fibrillary acidic protein (GFAP) positive reactive astrocytes in brains. Orthogonal signal correction-partial least squares-discriminant analysis (OSC-PLS-DA) of NMR profiles disclosed that DDVP influenced many metabolites (glutamate, aspartate, acetylcholine, 4-aminobutyrate, glutathione, AMP and lactate in brain; glutathione, glucose, histamine in liver; BCAAs, AMP, aspartate, glutamate, riboflavin in kidney) dose-dependently, involved with imbalance of neurotransmitters, oxidative stress, and disorders of energy and amino acid metabolism. Several self-protection mechanisms concerning glutamate degradation and glutathione (GSH) redox system were found in DDVP intoxicated goldfish.
Collapse
Affiliation(s)
- Yan Liu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Ting Chen
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Ming-Hui Li
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Hua-Dong Xu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Ai-Qun Jia
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jian-Fa Zhang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jun-Song Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
122
|
Abstract
Detailed studies of the glutamine synthetase (GS) in Escherichia coli and other bacteria have shown that the activity of this enzyme is regulated by at least five different mechanisms: (i) cumulative feedback inhibition by multiple end products of glutamine metabolism, (ii) interconversion between taut and relaxed protein configurations in response to binding and dissociation of divalent cations at one of its two metal binding sites, (iii) dynamic interconversion of the enzyme between covalently modified (adenylylated) and unmodified forms by a novel bicyclic cascade system, (iv) repression and derepression of glutamine synthetase formation by cyclic phosphorylation and dephosphorylation of an RNA factor that governs transcription activities, and (v) regulation of glutamine synthetase turnover by the coupling of site specific metal ion-catalyzed oxidation with proteolytic degradation of the enzyme. Glutamine synthetase activity in E. coli is subject to inhibition by seven different end products of glutamine metabolism, namely, by tryptophan, histidine, carbamyl-phosphate, CTP, AMP, glucose-6-phosphate, and NAD+, and also by serine, alanine, and glycine. The cascade theory predicts that the steady-state level of glutamine synthetase adenylylation and therefore its catalytic activity is determined by the combined effects of all metabolites that affect the kinetic parameters of one or more of the enzymes in the cascade. Furthermore, under conditions where the supplies of ATP and glutamate are not limiting and the production of glutamine exceeds the demand, GS is no longer needed, then it will be converted to the catalytically inactive adenylylated form that is not under protection of ATP and glutamate.
Collapse
|
123
|
Kosikowska P, Bochno M, Macegoniuk K, Forlani G, Kafarski P, Berlicki Ł. Bisphosphonic acids as effective inhibitors of Mycobacterium tuberculosis glutamine synthetase. J Enzyme Inhib Med Chem 2015; 31:931-8. [DOI: 10.3109/14756366.2015.1070846] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Paulina Kosikowska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland and
| | - Marta Bochno
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland and
| | - Katarzyna Macegoniuk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland and
| | - Giuseppe Forlani
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Paweł Kafarski
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland and
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland and
| |
Collapse
|
124
|
Jeitner TM, Battaile K, Cooper AJL. Critical Evaluation of the Changes in Glutamine Synthetase Activity in Models of Cerebral Stroke. Neurochem Res 2015; 40:2544-56. [DOI: 10.1007/s11064-015-1667-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/14/2015] [Accepted: 05/20/2015] [Indexed: 01/04/2023]
|
125
|
Nepal KK, Lee RP, Rezenom YH, Watanabe CMH. Probing the Role of N-Acetyl-glutamyl 5-Phosphate, an Acyl Phosphate, in the Construction of the Azabicycle Moiety of the Azinomycins. Biochemistry 2015; 54:4415-8. [DOI: 10.1021/acs.biochem.5b00711] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Keshav K. Nepal
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Rachel P. Lee
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yohannes H. Rezenom
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Coran M. H. Watanabe
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
126
|
Efficient production of indigoidine in Escherichia coli. J Ind Microbiol Biotechnol 2015; 42:1149-55. [PMID: 26109508 DOI: 10.1007/s10295-015-1642-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
Abstract
Indigoidine is a bacterial natural product with antioxidant and antimicrobial activities. Its bright blue color resembles the industrial dye indigo, thus representing a new natural blue dye that may find uses in industry. In our previous study, an indigoidine synthetase Sc-IndC and an associated helper protein Sc-IndB were identified from Streptomyces chromofuscus ATCC 49982 and successfully expressed in Escherichia coli BAP1 to produce the blue pigment at 3.93 g/l. To further improve the production of indigoidine, in this work, the direct biosynthetic precursor L-glutamine was fed into the fermentation broth of the engineered E. coli strain harboring Sc-IndC and Sc-IndB. The highest titer of indigoidine reached 8.81 ± 0.21 g/l at 1.46 g/l L-glutamine. Given the relatively high price of L-glutamine, a metabolic engineering technique was used to directly enhance the in situ supply of this precursor. A glutamine synthetase gene (glnA) was amplified from E. coli and co-expressed with Sc-indC and Sc-indB in E. coli BAP1, leading to the production of indigoidine at 5.75 ± 0.09 g/l. Because a nitrogen source is required for amino acid biosynthesis, we then tested the effect of different nitrogen-containing salts on the supply of L-glutamine and subsequent indigoidine production. Among the four tested salts including (NH4)2SO4, NH4Cl, (NH4)2HPO4 and KNO3, (NH4)2HPO4 showed the best effect on improving the titer of indigoidine. Different concentrations of (NH4)2HPO4 were added to the fermentation broths of E. coli BAP1/Sc-IndC+Sc-IndB+GlnA, and the titer reached the highest (7.08 ± 0.11 g/l) at 2.5 mM (NH4)2HPO4. This work provides two efficient methods for the production of this promising blue pigment in E. coli.
Collapse
|
127
|
Chen C, Song Y, Zhuang K, Li L, Xia Y, Shen Z. Proteomic Analysis of Copper-Binding Proteins in Excess Copper-Stressed Roots of Two Rice (Oryza sativa L.) Varieties with Different Cu Tolerances. PLoS One 2015; 10:e0125367. [PMID: 25919452 PMCID: PMC4412397 DOI: 10.1371/journal.pone.0125367] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 03/12/2015] [Indexed: 12/30/2022] Open
Abstract
To better understand the mechanisms involved in the heavy metal stress response and tolerance in plants, a proteomic approach was used to investigate the differences in Cu-binding protein expression in Cu-tolerant and Cu-sensitive rice varieties. Cu-binding proteins from Cu-treated rice roots were separated using a new IMAC method in which an IDA-sepharose column was applied prior to the Cu-IMAC column to remove metal ions from protein samples. More than 300 protein spots were reproducibly detected in the 2D gel. Thirty-five protein spots exhibited changes greater than 1.5-fold in intensity compared to the control. Twenty-four proteins contained one or more of nine putative metal-binding motifs reported by Smith et al., and 19 proteins (spots) contained one to three of the top six motifs reported by Kung et al. The intensities of seven protein spots were increased in the Cu-tolerant variety B1139 compared to the Cu-sensitive variety B1195 (p<0.05) and six protein spots were markedly up-regulated in B1139, but not detectable in B1195. Four protein spots were significantly up-regulated in B1139, but unchanged in B1195 under Cu stress. In contrast, two protein spots were significantly down-regulated in B1195, but unchanged in B1139. These Cu-responsive proteins included those involved in antioxidant defense and detoxification (spots 5, 16, 21, 22, 28, 29 and 33), pathogenesis (spots 5, 16, 21, 22, 28, 29 and 33), regulation of gene transcription (spots 8 and 34), amino acid synthesis (spots 8 and 34), protein synthesis, modification, transport and degradation (spots 1, 2, 4, 10, 15, 19, 30, 31, 32 and 35), cell wall synthesis (spot 14), molecular signaling (spot 3), and salt stress (spots 7, 9 and 27); together with other proteins, such as a putative glyoxylate induced protein, proteins containing dimeric alpha-beta barrel domains, and adenosine kinase-like proteins. Our results suggest that these proteins, together with related physiological processes, play an important role in the detoxification of excess Cu and in maintaining cellular homeostasis.
Collapse
Affiliation(s)
- Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yufeng Song
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Kai Zhuang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Lu Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| |
Collapse
|
128
|
Schumacher MA, Chinnam NB, Cuthbert B, Tonthat NK, Whitfill T. Structures of regulatory machinery reveal novel molecular mechanisms controlling B. subtilis nitrogen homeostasis. Genes Dev 2015; 29:451-64. [PMID: 25691471 PMCID: PMC4335299 DOI: 10.1101/gad.254714.114] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In Bacillus subtilis, nitrogen homeostasis is controlled by a unique circuitry composed of the regulator TnrA and the repressor GlnR. Here, Schumacher et al. describe a comprehensive molecular dissection of this network that reveals novel mechanisms, including oligomeric transformations, by which their inducible signal transduction domains are employed to provide a readout of nitrogen levels. All cells must sense and adapt to changing nutrient availability. However, detailed molecular mechanisms coordinating such regulatory pathways remain poorly understood. In Bacillus subtilis, nitrogen homeostasis is controlled by a unique circuitry composed of the regulator TnrA, which is deactivated by feedback-inhibited glutamine synthetase (GS) during nitrogen excess and stabilized by GlnK upon nitrogen depletion, and the repressor GlnR. Here we describe a complete molecular dissection of this network. TnrA and GlnR, the global nitrogen homeostatic transcription regulators, are revealed as founders of a new structural family of dimeric DNA-binding proteins with C-terminal, flexible, effector-binding sensors that modulate their dimerization. Remarkably, the TnrA sensor domains insert into GS intersubunit catalytic pores, destabilizing the TnrA dimer and causing an unprecedented GS dodecamer-to-tetradecamer conversion, which concomitantly deactivates GS. In contrast, each subunit of the GlnK trimer “templates” active TnrA dimers. Unlike TnrA, GlnR sensors mediate an autoinhibitory dimer-destabilizing interaction alleviated by GS, which acts as a GlnR chaperone. Thus, these studies unveil heretofore unseen mechanisms by which inducible sensor domains drive metabolic reprograming in the model Gram-positive bacterium B. subtilis.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Naga Babu Chinnam
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Bonnie Cuthbert
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Nam K Tonthat
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Travis Whitfill
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
129
|
Zambuzzi-Carvalho PF, Fernandes AG, Valadares MC, Tavares PDM, Nosanchuk JD, de Almeida Soares CM, Pereira M. Transcriptional profile of the human pathogenic fungus Paracoccidioides lutzii in response to sulfamethoxazole. Med Mycol 2015; 53:477-92. [DOI: 10.1093/mmy/myv011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/27/2015] [Indexed: 01/04/2023] Open
|
130
|
Saelices L, Robles-Rengel R, Florencio FJ, Muro-Pastor MI. A core of three amino acids at the carboxyl-terminal region of glutamine synthetase defines its regulation in cyanobacteria. Mol Microbiol 2015; 96:483-96. [PMID: 25626767 DOI: 10.1111/mmi.12950] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2015] [Indexed: 11/28/2022]
Abstract
Glutamine synthetase (GS) type I is a key enzyme in nitrogen metabolism, and its activity is finely controlled by cellular carbon/nitrogen balance. In cyanobacteria, a reversible process that involves protein-protein interaction with two proteins, the inactivating factors IF7 and IF17, regulates GS. Previously, we showed that three arginine residues of IFs are critical for binding and inhibition of GS. In this work, taking advantage of the specificity of GS/IFs interaction in the model cyanobacteria Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120, we have constructed a different chimeric GSs from these two cyanobacteria. Analysis of these proteins, together with a site-directed mutagenesis approach, indicates that a core of three residues (E419, N456 and R459) is essential for the inactivation process. The three residues belong to the last 56 amino acids of the C-terminus of Synechocystis GS. A protein-protein docking modeling of Synechocystis GS in complex with IF7 supports the role of the identified core for GS/IF interaction.
Collapse
Affiliation(s)
- Lorena Saelices
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Seville, 41092, Spain
| | | | | | | |
Collapse
|
131
|
Jung ME, Metzger DB. Aberrant histone acetylation promotes mitochondrial respiratory suppression in the brain of alcoholic rats. J Pharmacol Exp Ther 2015; 352:258-66. [PMID: 25406171 PMCID: PMC4293440 DOI: 10.1124/jpet.114.219311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/17/2014] [Indexed: 11/22/2022] Open
Abstract
The acetylation of histone proteins in the core of DNA regulates gene expression, including those affecting mitochondria. Both histone acetylation and mitochondrial deficit have been implicated in neuronal damage associated with drinking problems. Many alcoholics will repeat unsuccessful attempts at abstaining, developing a pattern of repeated drinking and withdrawal. We investigated whether aberrant histone acetylation contributes to mitochondrial and cellular damage induced by repeated ethanol withdrawal (EW). We also investigated whether this effect of histone acetylation involves let-7f, a small noncoding RNA (microRNA). Male rats received two cycles of an ethanol/control diet (7.5%, 4 weeks) and withdrawal. Their prefrontal cortex was collected to measure the mitochondrial respiration and histone acetylation using extracellular flux (XF) real-time respirometry and gold immunostaining, respectively. Separately, HT22 (mouse hippocampal) cells received two cycles of ethanol exposure (100 mM, 20 hours) and withdrawal. Trichostatin A (TSA) as a histone acetylation promoter and let-7f antagomir were applied during withdrawal. The mitochondrial respiration, let-7f level, and cell viability were assessed using XF respirometry, quantitative polymerase chain reaction, TaqMan let-7f primers, and a calcein-acetoxymethyl assay, respectively. Repeated ethanol withdrawn rats showed a more than 2-fold increase in histone acetylation, accompanied by mitochondrial respiratory suppression. EW-induced mitochondrial respiratory suppression was exacerbated by TSA treatment in a manner that was attenuated by let-7f antagomir cotreatment. TSA treatment did not alter the increasing effect of EW on the let-7f level but dramatically exacerbated the cell death induced by EW. These data suggest that the multiple episodes of withdrawal from chronic ethanol impede mitochondrial and cellular integrity through upregulating histone acetylation, independent of or additively with let-7f.
Collapse
Affiliation(s)
- Marianna E Jung
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas
| | - Daniel B Metzger
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
132
|
Yang S, Hao D, Cong Y, Jin M, Su Y. The rice OsAMT1;1 is a proton-independent feedback regulated ammonium transporter. PLANT CELL REPORTS 2015; 34:321-30. [PMID: 25433856 DOI: 10.1007/s00299-014-1709-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 10/20/2014] [Accepted: 11/19/2014] [Indexed: 05/22/2023]
Abstract
Functional identification of a relatively lower affinity ammonium transporter, OsAMT1;1, which is a proton-independent feedback regulated ammonium transporter in rice. Rice genome contains at least 12 ammonium transporters, though their functionality has not been clearly resolved. Here, we demonstrate the functional properties of OsAMT1;1 applying functional complementation and (15)NH4 (+) uptake determination in yeast cells in combination with electrophysiological measurements in Xenopus oocytes. Our results show that OsAMT1;1 is a NH4 (+) transporter with relatively lower affinity to NH4 (+) (110-129 μM in oocytes and yeast cells, respectively). Under our experimental conditions, OsAMT1;1-mediated NH4 (+) uptake or current is not significantly modulated by extra- or intracellular pH gradient, suggesting that this transporter probably functions as a NH4 (+) uniporter. Inhibition of yeast growth or currents elicited from oocytes by ammonium assimilation inhibitor L-methionine sulfoximine indicates that NH4 (+) transport by OsAMT1;1 is likely feedback regulated by accumulation of the substrate. In addition, effects of phosphorylation inhibitors imply that NH4 (+) uptake by OsAMT1;1 is also modulated by tyrosine-specific protein kinase or calcium-regulated serine/threonine-specific protein phosphatase involved phosphorylation processes.
Collapse
Affiliation(s)
- Shunying Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71, East Beijing Road, Nanjing, 210008, China
| | | | | | | | | |
Collapse
|
133
|
Seabra AR, Carvalho HG. Glutamine synthetase in Medicago truncatula, unveiling new secrets of a very old enzyme. FRONTIERS IN PLANT SCIENCE 2015; 6:578. [PMID: 26284094 PMCID: PMC4515544 DOI: 10.3389/fpls.2015.00578] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/13/2015] [Indexed: 05/03/2023]
Abstract
Glutamine synthetase (GS) catalyzes the first step at which nitrogen is brought into cellular metabolism and is also involved in the reassimilation of ammonium released by a number of metabolic pathways. Due to its unique position in plant nitrogen metabolism, GS plays essential roles in all aspects of plant development, from germination to senescence, and is a key component of nitrogen use efficiency (NUE) and plant yield. Understanding the mechanisms regulating GS activity is therefore of utmost importance and a great effort has been dedicated to understand how GS is regulated in different plant species. The present review summarizes exciting recent developments concerning the structure and regulation of GS isoenzymes, using the model legume Medicago truncatula. These include the understanding of the structural determinants of both the cytosolic and plastid located isoenzymes, the existence of a seed-specific GS gene unique to M. truncatula and closely related species and the discovery that GS isoenzymes are regulated by nitric oxide at the post-translational level. The data is discussed and integrated with the potential roles of the distinct GS isoenzymes within the whole plant context.
Collapse
Affiliation(s)
| | - Helena G. Carvalho
- *Correspondence: Helena G. Carvalho, Laboratory of Molecular Biology of Nitrogen Assimilation, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal,
| |
Collapse
|
134
|
Jeitner TM, Cooper AJL. Inhibition of human glutamine synthetase by L-methionine-S,R-sulfoximine-relevance to the treatment of neurological diseases. Metab Brain Dis 2014; 29:983-9. [PMID: 24136581 PMCID: PMC4180818 DOI: 10.1007/s11011-013-9439-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/18/2013] [Indexed: 01/22/2023]
Abstract
At high concentrations, the glutamine synthetase inhibitor L-methionine-S,R-sulfoximine (MSO) is a convulsant, especially in dogs. Nevertheless, sub-convulsive doses of MSO are neuroprotective in rodent models of hyperammonemia, acute liver disease, and amyotrophic lateral sclerosis and suggest MSO may be clinically useful. Previous work has also shown that much lower doses of MSO are required to produce convulsions in dogs than in primates. Evidence from the mid-20th century suggests that humans are also less sensitive. In the present work, the inhibition of recombinant human glutamine synthetase by MSO is shown to be biphasic-an initial reversible competitive inhibition (K i 1.19 mM) is followed by rapid irreversible inactivation. This K i value for the human enzyme accounts, in part, for relative insensitivity of primates to MSO and suggests that this inhibitor could be used to safely inhibit glutamine synthetase activity in humans.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Neurosciences, Biomedical Research Core, Winthrop University Hospital, 222 Station Plaza North, Mineola, NY, 11501, USA,
| | | |
Collapse
|
135
|
Ehrlichia chaffeensis proliferation begins with NtrY/NtrX and PutA/GlnA upregulation and CtrA degradation induced by proline and glutamine uptake. mBio 2014; 5:e02141. [PMID: 25425236 PMCID: PMC4251998 DOI: 10.1128/mbio.02141-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
How the obligatory intracellular bacterium Ehrlichia chaffeensis begins to replicate upon entry into human monocytes is poorly understood. Here, we examined the potential role of amino acids in initiating intracellular replication. PutA converts proline to glutamate, and GlnA converts glutamate to glutamine. E. chaffeensis PutA and GlnA complemented Escherichia coli putA and glnA mutants. Methionine sulfoximine, a glutamine synthetase inhibitor, inhibited E. chaffeensis GlnA activity and E. chaffeensis infection of human cells. Incubation of E. chaffeensis with human cells rapidly induced putA and glnA expression that peaked at 24 h postincubation. E. chaffeensis took up proline and glutamine but not glutamate. Pretreatment of E. chaffeensis with a proline transporter inhibitor (protamine), a glutamine transporter inhibitor (histidine), or proline analogs inhibited E. chaffeensis infection, whereas pretreatment with proline or glutamine enhanced infection and upregulated putA and glnA faster than no treatment or glutamate pretreatment. The temporal response of putA and glnA expression was similar to that of NtrY and NtrX, a two-component system, and electrophoretic mobility shift assays showed specific binding of recombinant E. chaffeensis NtrX (rNtrX) to the promoter regions of E. chaffeensis putA and glnA. Furthermore, rNtrX transactivated E. chaffeensis putA and glnA promoter-lacZ fusions in E. coli. Growth-promoting activities of proline and glutamine were also accompanied by rapid degradation of the DNA-binding protein CtrA. Our results suggest that proline and glutamine uptake regulates putA and glnA expression through NtrY/NtrX and facilitates degradation of CtrA to initiate a new cycle of E. chaffeensis growth. Human monocytic ehrlichiosis (HME) is one of the most prevalent, life-threatening emerging infectious zoonoses in the United States. HME is caused by infection with E. chaffeensis, an obligatory intracellular bacterium in the order Rickettsiales, which includes several category B/C pathogens, such as those causing Rocky Mountain spotted fever and epidemic typhus. The limited understanding of the mechanisms that control bacterial growth within eukaryotic cells continues to impede the identification of new therapeutic targets against rickettsial diseases. Extracellular rickettsia cannot replicate, but rickettsial replication ensues upon entry into eukaryotic host cells. Our findings will provide insights into a novel mechanism of the two-component system that regulates E. chaffeensis growth initiation in human monocytes. The result is also important because little is known about the NtrY/NtrX two-component system in any bacteria, let alone obligatory intracellular bacteria. Our findings will advance the field’s current conceptual paradigm on regulation of obligatory intracellular nutrition, metabolism, and growth.
Collapse
|
136
|
Palmieri EM, Spera I, Menga A, Infantino V, Iacobazzi V, Castegna A. Glutamine synthetase desensitizes differentiated adipocytes to proinflammatory stimuli by raising intracellular glutamine levels. FEBS Lett 2014; 588:4807-14. [PMID: 25451225 DOI: 10.1016/j.febslet.2014.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/09/2014] [Accepted: 11/11/2014] [Indexed: 01/16/2023]
Abstract
The role of glutamine synthetase (GS) during adipocyte differentiation is unclear. Here, we assess the impact of GS on the adipocytic response to a proinflammatory challenge at different differentiation stages. GS expression at the late stages of differentiation desensitized mature adipocytes to bacterial lipopolysaccharide (LPS) by increasing intracellular glutamine levels. Furthermore, LPS-activated mature adipocytes were unable to produce inflammatory mediators; LPS sensitivity was rescued following GS inhibition and the associated drop in intracellular glutamine levels. The ability of adipocytes to differentially respond to LPS during differentiation negatively correlates to GS expression and intracellular glutamine levels. Hence, modulation of intracellular glutamine levels by GS expression represents an endogenous mechanism through which mature adipocytes control the inflammatory response.
Collapse
Affiliation(s)
- Erika Mariana Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Iolanda Spera
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Alessio Menga
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | - Vito Iacobazzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy; CNR Institute of Biomembranes and Bioenergetics, Bari, Italy
| | - Alessandra Castegna
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.
| |
Collapse
|
137
|
Orsel M, Moison M, Clouet V, Thomas J, Leprince F, Canoy AS, Just J, Chalhoub B, Masclaux-Daubresse C. Sixteen cytosolic glutamine synthetase genes identified in the Brassica napus L. genome are differentially regulated depending on nitrogen regimes and leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3927-47. [PMID: 24567494 PMCID: PMC4106436 DOI: 10.1093/jxb/eru041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A total of 16 BnaGLN1 genes coding for cytosolic glutamine synthetase isoforms (EC 6.3.1.2.) were found in the Brassica napus genome. The total number of BnaGLN1 genes, their phylogenetic relationships, and genetic locations are in agreement with the evolutionary history of Brassica species. Two BnaGLN1.1, two BnaGLN1.2, six BnaGLN1.3, four BnaGLN1.4, and two BnaGLN1.5 genes were found and named according to the standardized nomenclature for the Brassica genus. Gene expression showed conserved responses to nitrogen availability and leaf senescence among the Brassiceae tribe. The BnaGLN1.1 and BnaGLN1.4 families are overexpressed during leaf senescence and in response to nitrogen limitation. The BnaGLN1.2 family is up-regulated under high nitrogen regimes. The members of the BnaGLN1.3 family are not affected by nitrogen availability and are more expressed in stems than in leaves. Expression of the two BnaGLN1.5 genes is almost undetectable in vegetative tissues. Regulations arising from plant interactions with their environment (such as nitrogen resources), final architecture, and therefore sink-source relations in planta, seem to be globally conserved between Arabidopsis and B. napus. Similarities of the coding sequence (CDS) and protein sequences, expression profiles, response to nitrogen availability, and ageing suggest that the roles of the different GLN1 families have been conserved among the Brassiceae tribe. These findings are encouraging the transfer of knowledge from the Arabidopsis model plant to the B. napus crop plant. They are of special interest when considering the role of glutamine synthetase in crop yield and grain quality in maize and wheat.
Collapse
Affiliation(s)
- Mathilde Orsel
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, F-35653 Le Rheu, France INRA, UMR 1345 Institut de Recherche en Horticulture et Semences, F-49071 Beaucouzé, France Université d'Angers, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAV, PRES L'UNAM, F-49045 Angers, France AgroCampus-Ouest, UMR 1345 Institut de Recherche en Horticulture et Semences, F-49045 Angers, France
| | - Michaël Moison
- UMR1318, INRA, Institut Jean-Pierre Bourgin, RD10, 78026 Versailles cedex, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, 78026 Versailles cedex, France
| | - Vanessa Clouet
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, F-35653 Le Rheu, France
| | - Justine Thomas
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, F-35653 Le Rheu, France
| | - Françoise Leprince
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, F-35653 Le Rheu, France
| | - Anne-Sophie Canoy
- Biogemma, Groupe de Recherche Génomique Amont, F-63028 Clermont-Ferrand, France
| | - Jérémy Just
- INRA-CNRS, Unité de Recherche en Génomique Végétale, 2 rue Gaston Crémieux, CP 5708, 91057 Evry Cedex, France
| | - Boulos Chalhoub
- INRA-CNRS, Unité de Recherche en Génomique Végétale, 2 rue Gaston Crémieux, CP 5708, 91057 Evry Cedex, France
| | - Céline Masclaux-Daubresse
- UMR1318, INRA, Institut Jean-Pierre Bourgin, RD10, 78026 Versailles cedex, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, 78026 Versailles cedex, France
| |
Collapse
|
138
|
Frieg B, Homeyer N, Häussinger D, Gohlke H. Glutamine synthetase mutations that cause glutamine deficiency: mechanistic insights from molecular dynamics simulations. Eur J Med Res 2014. [PMCID: PMC4118431 DOI: 10.1186/2047-783x-19-s1-s15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
139
|
Torreira E, Seabra AR, Marriott H, Zhou M, Llorca Ó, Robinson CV, Carvalho HG, Fernández-Tornero C, Pereira PJB. The structures of cytosolic and plastid-located glutamine synthetases from Medicago truncatula reveal a common and dynamic architecture. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:981-93. [PMID: 24699643 PMCID: PMC3975887 DOI: 10.1107/s1399004713034718] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/27/2013] [Indexed: 11/21/2022]
Abstract
The first step of nitrogen assimilation in higher plants, the energy-driven incorporation of ammonia into glutamate, is catalyzed by glutamine synthetase. This central process yields the readily metabolizable glutamine, which in turn is at the basis of all subsequent biosynthesis of nitrogenous compounds. The essential role performed by glutamine synthetase makes it a prime target for herbicidal compounds, but also a suitable intervention point for the improvement of crop yields. Although the majority of crop plants are dicotyledonous, little is known about the structural organization of glutamine synthetase in these organisms and about the functional differences between the different isoforms. Here, the structural characterization of two glutamine synthetase isoforms from the model legume Medicago truncatula is reported: the crystallographic structure of cytoplasmic GSII-1a and an electron cryomicroscopy reconstruction of plastid-located GSII-2a. Together, these structural models unveil a decameric organization of dicotyledonous glutamine synthetase, with two pentameric rings weakly connected by inter-ring loops. Moreover, rearrangement of these dynamic loops changes the relative orientation of the rings, suggesting a zipper-like mechanism for their assembly into a decameric enzyme. Finally, the atomic structure of M. truncatula GSII-1a provides important insights into the structural determinants of herbicide resistance in this family of enzymes, opening new avenues for the development of herbicide-resistant plants.
Collapse
Affiliation(s)
- Eva Torreira
- Chemical and Physical Biology, Centro de Investigaciones Biológicas – CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Rita Seabra
- Molecular Biology of Nitrogen Assimilation, IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Hazel Marriott
- Chemistry Research Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, England
| | - Min Zhou
- Chemistry Research Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, England
| | - Óscar Llorca
- Chemical and Physical Biology, Centro de Investigaciones Biológicas – CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carol V. Robinson
- Chemistry Research Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, England
| | - Helena G. Carvalho
- Molecular Biology of Nitrogen Assimilation, IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Carlos Fernández-Tornero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas – CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Pedro José Barbosa Pereira
- Biomolecular Structure Group, IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| |
Collapse
|
140
|
Lai T, Chen Y, Li B, Qin G, Tian S. Mechanism of Penicillium expansum in response to exogenous nitric oxide based on proteomics analysis. J Proteomics 2014; 103:47-56. [PMID: 24675182 DOI: 10.1016/j.jprot.2014.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/18/2014] [Accepted: 03/12/2014] [Indexed: 12/18/2022]
Abstract
UNLABELLED Penicillium expansum is an important fungal pathogen, which causes blue mold rot in various fruits and produces a mycotoxin (patulin) with potential damage to public health. Here, we found that nitric oxide (NO) donor could significantly inhibit germinability of P. expansum spores, resulting in lower virulence to apple fruit. Based on two dimension electrophoresis (2-DE) and mass spectrometry (MS) analysis, we identified ten differentially expressed proteins in response to exogenous NO in P. expansum. Among of them, five proteins, such as glutamine synthetase (GS), amidohydrolase, nitrilases, nitric oxide dioxygenase (NOD) and heat shock protein 70, were up-regulated. Others including tetratricopeptide repeat domain, UDP-N-acetylglucosamine pyrophosphorylase, enolase (Eno), heat shock protein 60 and K homology RNA-binding domain were down-regulated. The expression of three genes associated with the identified proteins (GS, NOD, and Eno) was evaluated at the mRNA level by RT-PCR. Our results provide the novel evidence for understanding the mechanism, by which NO regulates growth of P. expansum and its virulence. BIOLOGICAL SIGNIFICANCE Crop diseases caused by fungal pathogens lead to huge economic losses every year in the world. Application of chemical fungicides to control diseases brings the concern about food and environmental safety. Screening new antimicrobial compounds and exploring involved mechanisms have great significance to development of new disease management strategies. Nitric oxide (NO), as an important intracellular signaling molecule, has been proved to be involved in many physiological processes and defense responses during plant-pathogen interactions. In this study, we firstly found that NO at high concentration could distinctly delay spore germination and significantly reduce virulence of P. expansum to fruit host, identified some important proteins in response to NO stress and characterized the functions of these proteins. These results provide novel evidence for understanding the mechanism of NO regulating virulence of the fungal pathogen, but are beneficial for screening new targets of antifungal compounds.
Collapse
Affiliation(s)
- Tongfei Lai
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Xiangshan Nanxincun 20, Haidian District, Beijing 100093, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Xiangshan Nanxincun 20, Haidian District, Beijing 100093, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Xiangshan Nanxincun 20, Haidian District, Beijing 100093, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Xiangshan Nanxincun 20, Haidian District, Beijing 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Xiangshan Nanxincun 20, Haidian District, Beijing 100093, China.
| |
Collapse
|
141
|
Farmer RM, Laguna R, Panescu J, McCoy A, Logsdon B, Zianni M, Moskvin OV, Gomelsky M, Tabita FR. Altered residues in key proteins influence the expression and activity of the nitrogenase complex in an adaptive CO2 fixation-deficient mutant strain of Rhodobacter sphaeroides. Microbiology (Reading) 2014; 160:198-208. [PMID: 24126349 DOI: 10.1099/mic.0.073031-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previously, the RubisCO-compromised spontaneous adaptive Rhodobacter sphaeroides mutant, strain 16PHC, was shown to derepress the expression of genes that encode the nitrogenase complex under normal repressive conditions. As a result of this adaptation, the active nitrogenase complex restored redox balance, thus allowing strain 16PHC to grow under photoheterotrophic conditions in the absence of an exogenous electron acceptor. A combination of whole genome pyrosequencing and whole genome microarray analyses was employed to identify possible loci responsible for the observed phenotype. Mutations were found in two genes, glnA and nifA, whose products are involved in the regulatory cascade that controls nitrogenase complex gene expression. In addition, a nucleotide reversion within the nifK gene, which encodes a subunit of the nitrogenase complex, was also identified. Subsequent genetic, physiological and biochemical studies revealed alterations that led to derepression of the synthesis of an active nitrogenase complex in strain 16PHC.
Collapse
Affiliation(s)
- Ryan M. Farmer
- Department of Microbiology, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Rick Laguna
- Department of Microbiology, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Jenny Panescu
- Plant-Microbe Genomics Facility, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Anthony McCoy
- Plant-Microbe Genomics Facility, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Beth Logsdon
- Plant-Microbe Genomics Facility, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Mike Zianni
- Plant-Microbe Genomics Facility, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Oleg V. Moskvin
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - F. Robert Tabita
- Plant-Microbe Genomics Facility, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
- Department of Microbiology, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
142
|
The use of glutamine synthetase as a selection marker: recent advances in Chinese hamster ovary cell line generation processes. ACTA ACUST UNITED AC 2013. [DOI: 10.4155/pbp.13.56] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
143
|
Murray DS, Chinnam N, Tonthat NK, Whitfill T, Wray LV, Fisher SH, Schumacher MA. Structures of the Bacillus subtilis glutamine synthetase dodecamer reveal large intersubunit catalytic conformational changes linked to a unique feedback inhibition mechanism. J Biol Chem 2013; 288:35801-11. [PMID: 24158439 DOI: 10.1074/jbc.m113.519496] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutamine synthetase (GS), which catalyzes the production of glutamine, plays essential roles in nitrogen metabolism. There are two main bacterial GS isoenzymes, GSI-α and GSI-β. GSI-α enzymes, which have not been structurally characterized, are uniquely feedback-inhibited by Gln. To gain insight into GSI-α function, we performed biochemical and cellular studies and obtained structures for all GSI-α catalytic and regulatory states. GSI-α forms a massive 600-kDa dodecameric machine. Unlike other characterized GS, the Bacillus subtilis enzyme undergoes dramatic intersubunit conformational alterations during formation of the transition state. Remarkably, these changes are required for active site construction. Feedback inhibition arises from a hydrogen bond network between Gln, the catalytic glutamate, and the GSI-α-specific residue, Arg(62), from an adjacent subunit. Notably, Arg(62) must be ejected for proper active site reorganization. Consistent with these findings, an R62A mutation abrogates Gln feedback inhibition but does not affect catalysis. Thus, these data reveal a heretofore unseen restructuring of an enzyme active site that is coupled with an isoenzyme-specific regulatory mechanism. This GSI-α-specific regulatory network could be exploited for inhibitor design against Gram-positive pathogens.
Collapse
Affiliation(s)
- David S Murray
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | | | | | | | | | | | | |
Collapse
|
144
|
Chen S, Zhang X, Zhao X, Wang D, Xu C, Ji C, Zhang X. Response of rice nitrogen physiology to high nighttime temperature during vegetative stage. ScientificWorldJournal 2013; 2013:649326. [PMID: 24068885 PMCID: PMC3771426 DOI: 10.1155/2013/649326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/13/2013] [Indexed: 11/30/2022] Open
Abstract
The effects of night temperature on plant morphology and nitrogen accumulation were examined in rice (Oryza sativa L.) during vegetative growth. The results showed that the shoot biomass of the plants was greater at 27°C (high nighttime temperature, HNT) than at 22°C (CK). However, the increase in both shoot and root biomasses was not significant under 10 mg N/L. The shoot nitrogen concentrations were 16.1% and 16.7% higher in HNT than in CK under 160 and 40 mg N/L. These results suggest that plant N uptake was enhanced under HNT; however, the positive effect might be limited by the N status of the plants. In addition, leaf area, plant height, root maximum length, root and shoot nitrogen concentrations, soluble leaf protein content, and soluble leaf carbohydrate content were greater in HNT than in CK under 40 and 160 mg N/L, while fresh root volume, root number, and the content of free amino acid in leaf were not significantly different between HNT and CK regardless of nitrogen levels. Moreover, leaf GS activity under HNT was increased at 160 mg N/L compared with that under CK, which might partly explain the positive effect of HNT on soluble protein and carbohydrate content.
Collapse
Affiliation(s)
- Song Chen
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310006, China
| | - Xiaoguo Zhang
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310006, China
| | - Xia Zhao
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310006, China
| | - Danying Wang
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310006, China
| | - Chunmei Xu
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310006, China
| | - Chenglin Ji
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310006, China
| | - Xiufu Zhang
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
145
|
The genome of Spraguea lophii and the basis of host-microsporidian interactions. PLoS Genet 2013; 9:e1003676. [PMID: 23990793 PMCID: PMC3749934 DOI: 10.1371/journal.pgen.1003676] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022] Open
Abstract
Microsporidia are obligate intracellular parasites with the smallest known eukaryotic genomes. Although they are increasingly recognized as economically and medically important parasites, the molecular basis of microsporidian pathogenicity is almost completely unknown and no genetic manipulation system is currently available. The fish-infecting microsporidian Spraguea lophii shows one of the most striking host cell manipulations known for these parasites, converting host nervous tissue into swollen spore factories known as xenomas. In order to investigate the basis of these interactions between microsporidian and host, we sequenced and analyzed the S. lophii genome. Although, like other microsporidia, S. lophii has lost many of the protein families typical of model eukaryotes, we identified a number of gene family expansions including a family of leucine-rich repeat proteins that may represent pathogenicity factors. Building on our comparative genomic analyses, we exploited the large numbers of spores that can be obtained from xenomas to identify potential effector proteins experimentally. We used complex-mix proteomics to identify proteins released by the parasite upon germination, resulting in the first experimental isolation of putative secreted effector proteins in a microsporidian. Many of these proteins are not related to characterized pathogenicity factors or indeed any other sequences from outside the Microsporidia. However, two of the secreted proteins are members of a family of RICIN B-lectin-like proteins broadly conserved across the phylum. These proteins form syntenic clusters arising from tandem duplications in several microsporidian genomes and may represent a novel family of conserved effector proteins. These computational and experimental analyses establish S. lophii as an attractive model system for understanding the evolution of host-parasite interactions in microsporidia and suggest an important role for lineage-specific innovations and fast evolving proteins in the evolution of the parasitic microsporidian lifecycle. Microsporidia are unusual intracellular parasites that infect a broad range of animal cells. In comparison to their fungal relatives, microsporidian genomes have shrunk during evolution, encoding as few as 2000 proteins. This minimal molecular repertoire makes them a reduced model system for understanding host-parasite interactions. A number of microsporidian genomes have now been sequenced, but the lack of a system for genetic manipulation makes it difficult to translate these data into a better understanding of microsporidian biology. Here we present a deep sequencing project of Spraguea lophii, a fish-infecting microsporidian that is abundantly available from environmental samples. We use our sequence data combined with germination protocols and complex-mix proteomics to identify proteins released by the cell at the earliest stage of germination, representing potential pathogenicity factors. We profile the RNA expression pattern of germinating cells and identify a set of highly transcribed hypothetical genes. Our study provides new insight into the importance of uncharacterized, lineage-specific and/or fast evolving proteins in microsporidia and provides new leads for the investigation of virulence factors in these enigmatic parasites.
Collapse
|
146
|
Verlander JW, Chu D, Lee HW, Handlogten ME, Weiner ID. Expression of glutamine synthetase in the mouse kidney: localization in multiple epithelial cell types and differential regulation by hypokalemia. Am J Physiol Renal Physiol 2013; 305:F701-13. [PMID: 23804452 DOI: 10.1152/ajprenal.00030.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal glutamine synthetase catalyzes the reaction of NH4+ with glutamate, forming glutamine and decreasing the ammonia available for net acid excretion. The purpose of the present study was to determine glutamine synthetase's specific cellular expression in the mouse kidney and its regulation by hypokalemia, a common cause of altered renal ammonia metabolism. Glutamine synthetase mRNA and protein were present in the renal cortex and in both the outer and inner stripes of the outer medulla. Immunohistochemistry showed glutamine synthetase expression throughout the entire proximal tubule and in nonproximal tubule cells. Double immunolabel with cell-specific markers demonstrated glutamine synthetase expression in type A intercalated cells, non-A, non-B intercalated cells, and distal convoluted tubule cells, but not in principal cells, type B intercalated cells, or connecting segment cells. Hypokalemia induced by feeding a nominally K+ -free diet for 12 days decreased glutamine synthetase expression throughout the entire proximal tubule and in the distal convoluted tubule and simultaneously increased glutamine synthetase expression in type A intercalated cells in both the cortical and outer medullary collecting duct. We conclude that glutamine synthetase is widely and specifically expressed in renal epithelial cells and that the regulation of expression differs in specific cell populations. Glutamine synthetase is likely to mediate an important role in renal ammonia metabolism.
Collapse
Affiliation(s)
- Jill W Verlander
- Division of Nephrology, Hypertension and Transplantation, Univ. of Florida College of Medicine, PO Box 100224, Gainesville, FL 32610, USA.
| | | | | | | | | |
Collapse
|
147
|
Eid T, Tu N, Lee TSW, Lai JCK. Regulation of astrocyte glutamine synthetase in epilepsy. Neurochem Int 2013; 63:670-81. [PMID: 23791709 DOI: 10.1016/j.neuint.2013.06.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 05/28/2013] [Accepted: 06/08/2013] [Indexed: 11/20/2022]
Abstract
Astrocytes play a crucial role in regulating and maintaining the extracellular chemical milieu of the central nervous system under physiological conditions. Moreover, proliferation of phenotypically altered astrocytes (a.k.a. reactive astrogliosis) has been associated with many neurologic and psychiatric disorders, including mesial temporal lobe epilepsy (MTLE). Glutamine synthetase (GS), which is found in astrocytes, is the only enzyme known to date that is capable of converting glutamate and ammonia to glutamine in the mammalian brain. This reaction is important, because a continuous supply of glutamine is necessary for the synthesis of glutamate and GABA in neurons. The known stoichiometry of glutamate transport across the astrocyte plasma membrane also suggests that rapid metabolism of intracellular glutamate via GS is a prerequisite for efficient glutamate clearance from the extracellular space. Several studies have indicated that the activity of GS in astrocytes is diminished in several brain disorders, including MTLE. It has been hypothesized that the loss of GS activity in MTLE leads to increased extracellular glutamate concentrations and epileptic seizures. Understanding the mechanisms by which GS is regulated may lead to novel therapeutic approaches to MTLE, which is frequently refractory to antiepileptic drugs. This review discusses several known mechanisms by which GS expression and function are influenced, from transcriptional control to enzyme modification.
Collapse
Affiliation(s)
- Tore Eid
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, United States.
| | | | | | | |
Collapse
|
148
|
|
149
|
Striebel F, Imkamp F, Özcelik D, Weber-Ban E. Pupylation as a signal for proteasomal degradation in bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:103-13. [PMID: 23557784 DOI: 10.1016/j.bbamcr.2013.03.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/21/2013] [Accepted: 03/12/2013] [Indexed: 12/23/2022]
Abstract
Posttranslational modifications in the form of covalently attached proteins like ubiquitin (Ub), were long considered an exclusive feature of eukaryotic organisms. The discovery of pupylation, the modification of lysine residues with a prokaryotic, ubiquitin-like protein (Pup), demonstrated that certain bacteria use a tagging pathway functionally related to ubiquitination in order to target proteins for proteasomal degradation. However, functional analogies do not translate into structural or mechanistic relatedness. Bacterial Pup, unlike eukaryotic Ub, does not adopt a β-grasp fold, but is intrinsically disordered. Furthermore, isopeptide bond formation in the pupylation process is carried out by enzymes evolutionary descendent from glutamine synthetases. While in eukaryotes, the proteasome is the main energy-dependent protein degradation machine, bacterial proteasomes exist in addition to other architecturally related degradation complexes, and their specific role along with the role of pupylation is still poorly understood. In Mycobacterium tuberculosis (Mtb), the Pup-proteasome system contributes to pathogenicity by supporting the bacterium's persistence within host macrophages. Here, we describe the mechanism and structural framework of pupylation and the targeting of pupylated proteins to the proteasome complex. Particular attention is given to the comparison of the bacterial Pup-proteasome system and the eukaryotic ubiquitin-proteasome system. Furthermore, the involvement of pupylation and proteasomal degradation in Mtb pathogenesis is discussed together with efforts to establish the Pup-proteasome system as a drug target. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Frank Striebel
- Max Planck Institute of Biochemistry, Department of Molecular Cell Biology, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
150
|
O'Connell JD, Zhao A, Ellington AD, Marcotte EM. Dynamic reorganization of metabolic enzymes into intracellular bodies. Annu Rev Cell Dev Biol 2013; 28:89-111. [PMID: 23057741 DOI: 10.1146/annurev-cellbio-101011-155841] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Both focused and large-scale cell biological and biochemical studies have revealed that hundreds of metabolic enzymes across diverse organisms form large intracellular bodies. These proteinaceous bodies range in form from fibers and intracellular foci--such as those formed by enzymes of nitrogen and carbon utilization and of nucleotide biosynthesis--to high-density packings inside bacterial microcompartments and eukaryotic microbodies. Although many enzymes clearly form functional mega-assemblies, it is not yet clear for many recently discovered cases whether they represent functional entities, storage bodies, or aggregates. In this article, we survey intracellular protein bodies formed by metabolic enzymes, asking when and why such bodies form and what their formation implies for the functionality--and dysfunctionality--of the enzymes that comprise them. The panoply of intracellular protein bodies also raises interesting questions regarding their evolution and maintenance within cells. We speculate on models for how such structures form in the first place and why they may be inevitable.
Collapse
Affiliation(s)
- Jeremy D O'Connell
- Center for Systems and Synthetic Biology, University of Texas, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|