101
|
Padrão J, Ferreira V, Mesquita DP, Cortez S, Dias N, Duarte MS, Tortella G, Fernandes I, Mota M, Nicolau A. Negative impacts of cleaning agent DEPTAL MCL® on activated sludge wastewater treatment system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155957. [PMID: 35580680 DOI: 10.1016/j.scitotenv.2022.155957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
DEPTAL MCL® is a professional cleaning agent approved by the Portuguese Food Regulatory Authority and is used in agro-food industries, namely in fish canning industries in the north of Portugal. Its extensive use during cleaning procedures results in potential significant negative impacts on the performance of the downstream municipal wastewater treatment plant (WWTP). A lab-scale extended areation activated sludge wastewater treatment system, continuously fed by influent collected at a municipal WWTP, was used to assess the impact of a range of DEPTAL MCL® concentrations during 72 h. Despite distinct activated sludge community composition (due to its dynamic nature) and variations in real influent characteristics, a relevant impact was observed. DEPTAL MCL® effect was underscored through the use of a multivariate analysis using seventeen physicochemical operational factors and nineteen quantitative image analysis (QIA) parameters. DEPTAL MCL® exerted a severe negative impact on phosphorous (P-PO4) removal, total nitrogen (TN) removal and sludge volume index (SVI). With increasing DEPTAL MCL® concentrations, both P-PO4 and TN removal were affected and diminished proportionally. Moreover, several QIA parameters indicate defloculation when DEPTAL MCL® was present, in particular for intermediate size aggregates with significant impacts. Optical density of the effluent (Ode), displayed an increase of effluent turbidity. Percentage of area covered by small aggregates (%Areasml) was also significantly higher for the intermediate and higher DEPTAL MCL® concentrations tested. Principal component analysis exhibited 3 distinct ordenations: (i) control without addition of DEPTAL MCL®; (ii) addition of 0.03% and 0.06% and of (iii) 0.13 and 0.26% (v DEPTAL MCL®/v aeration tank). Canonical correspondence analysis (CCA) was used to correlate the physicochemical data, QIA and the filamentous bacteria species prevalence to DEPTAL MCL® concentration and incubation time. A time persistent DEPTAL MCL® effect was observed, underscoring the need of a pretreatment of wastewater containing this cleaning agent.
Collapse
Affiliation(s)
- Jorge Padrão
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Vânia Ferreira
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - Daniela P Mesquita
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - Susana Cortez
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Nicolina Dias
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - M Salomé Duarte
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - Gonzalo Tortella
- Departamento de Ingeniería Química, Universidad de la Frontera, Temuco, Chile; Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA BIOREN), Universidad de la Frontera, Temuco, Chile
| | - Isabel Fernandes
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Manuel Mota
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Nicolau
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
102
|
Comparison of Various Antimicrobial Agents for Thermoplastic Polymeric Retainers. Polymers (Basel) 2022; 14:polym14183753. [PMID: 36145897 PMCID: PMC9502766 DOI: 10.3390/polym14183753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/21/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022] Open
Abstract
The thermoplastic retainers indicated a rising incidence of cariogenic bacteria such as Streptococcus mutans. A report suggested the case of a patient with severe gingival inflammation and dental caries as a result of inadequate appliance cleaning. This study aims to compare the various antimicrobial agents for thermoplastic polymeric retainers. A minimum bactericidal concentration (MBC) of acetic acid was determined. Streptococcus mutans biofilm was formed on punched 4-mm copolyester (Essix ACE®) and polyurethane (Vivera®) retainers after they were submerged in 0.12% chlorhexidine (CHX group), acetic acid (AA group), Polident Denture Cleanser® (PD group), and Polident Pro Guard & Retainer® (PR group). A crystal violet (CV) test was performed. The biofilm imaging was assessed by confocal laser scanning microscopy (CLSM). The results showed that all chemical disinfectants exhibited statistically significant differences (p < 0.05) compared to the positive control. This novel finding elucidated that 0.625% acetic acid is effective for antimicrobial in both copolyester and polyurethane retainers. However, only the CHX, PD, and PR groups could reduce biofilm mass. In addition, the CV assay cannot provide information about the actual number of living and dead bacteria. Furthermore, the LIVE/DEAD BacLight assay was able to show the bacterial viability.
Collapse
|
103
|
Chen Z, Yin L, Zhang W, Peng A, Sallach JB, Luo Y, Li H. NaCl salinity enhances tetracycline bioavailability to Escherichia coli on agar surfaces. CHEMOSPHERE 2022; 302:134921. [PMID: 35568221 DOI: 10.1016/j.chemosphere.2022.134921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/10/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Soil salinity is a worldwide problem and is damaging soil functions. Meanwhile, increasing amounts of anthropogenic antibiotics are discharged to agricultural soils. Little is known about how soil salinity (e.g., NaCl) could influence the bioavailability of antibiotics to bacteria. In this study, a tetracycline-responsive Escherichia coli bioreporter grew on the surfaces of agar microcosms at the same tetracycline concentration (200 μg/L), but various NaCl concentrations (0.5-19.2 g/L) with estimated osmotic potential of -0.18 to -1.80 MPa, and agar content (0.3%-5%) with estimated intrinsic permeability of 38 to 32,928 nm2. These agar microcosms mimicked very fine textured soils with a range of NaCl salinity. Increasing agar content lowered the intrinsic permeability hence decreasing tetracycline bioavailability to E. coli, due likely to the reduced mass transfer of tetracycline via water flow. Intriguingly, tetracycline bioavailability increased with increasing NaCl concentration which caused the increase in osmotic stress. This is contradictory to the notion that osmotic stress reduces bacterial chemical uptake. Further analysis of E. coli membrane integrity demonstrated that the enhanced tetracycline bioavailability to bacteria could result from the compromised cell membranes and enhanced membrane permeability at higher NaCl salinity. Overall, this study suggests that high soil salinity (NaCl) may enhance the selection pressure exerted by antibiotics on bacteria.
Collapse
Affiliation(s)
- Zeyou Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, United States
| | - Lichun Yin
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, United States
| | - Anping Peng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - J Brett Sallach
- Department of Environment and Geography, University of York, Heslington, York, YO10 5NG, United Kingdom
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, United States.
| |
Collapse
|
104
|
Huang LZY, Elbourne A, Shaw ZL, Cheeseman S, Goff A, Orrell-Trigg R, Chapman J, Murdoch BJ, Crawford RJ, Friedmann D, Bryant SJ, Truong VK, Caruso RA. Dual-action silver functionalized nanostructured titanium against drug resistant bacterial and fungal species. J Colloid Interface Sci 2022; 628:1049-1060. [PMID: 36049281 DOI: 10.1016/j.jcis.2022.08.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/20/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
HYPOTHESIS Titanium and its alloys are commonly used implant materials. Once inserted into the body, the interface of the biomaterials is the most likely site for the development of implant-associated infections. Imparting the titanium substrate with high-aspect-ratio nanostructures, which can be uniformly achieved using hydrothermal etching, enables a mechanical contact-killing (mechanoresponsive) mechanism of bacterial and fungal cells. Interaction between cells and the surface shows cellular inactivation via a physical mechanism meaning that careful engineering of the interface is needed to optimse the technology. This mechanism of action is only effective towards surface adsorbed microbes, thus any cells not directly in contact with the substrate will survive and limit the antimicrobial efficacy of the titanium nanostructures. Therefore, we propose that a dual-action mechanoresponsive and chemical-surface approach must be utilised to improve antimicrobial activity. The addition of antimicrobial silver nanoparticles will provide a secondary, chemical mechanism to escalate the microbial response in tandem with the physical puncture of the cells. EXPERIMENTS Hydrothermal etching is used as a facile method to impart variant nanostrucutres on the titanium substrate to increase the antimicrobial response. Increasing concentrations (0.25 M, 0.50 M, 1.0 M, 2.0 M) of sodium hydroxide etching solution were used to provide differing degrees of nanostructured morphology on the surface after 3 h of heating at 150 °C. This produced titanium nanospikes, nanoblades, and nanowires, respectively, as a function of etchant concentration. These substrates then provided an interface for the deposition of silver nanoparticles via a reduction pathway. Methicillin-resistant Staphylococcous aureus (MRSA) and Candida auris (C. auris) were used as model bacteria and fungi, respectively, to test the effectiveness of the nanostructured titanium with and without silver nanoparticles, and the bio-interactions at the interface. FINDINGS The presence of nanostructure increased the bactericidal response of titanium against MRSA from ∼ 10 % on commercially pure titanium to a maximum of ∼ 60 % and increased the fungicidal response from ∼ 10 % to ∼ 70 % in C. auris. Introducing silver nanoparticles increased the microbiocidal response to ∼ 99 % towards both bacteria and fungi. Importantly, this study highlights that nanostructure alone is not sufficient to develop a highly antimicrobial titanium substrate. A dual-action, physical and chemical antimicrobial approach is better suited to produce highly effective antibacterial and antifungal surface technologies.
Collapse
Affiliation(s)
- Louisa Z Y Huang
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Aaron Elbourne
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Z L Shaw
- School of Engineering, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Samuel Cheeseman
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Abigail Goff
- School of Engineering, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Rebecca Orrell-Trigg
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - James Chapman
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Billy J Murdoch
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne, Victoria 3000, Australia
| | - Russell J Crawford
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Donia Friedmann
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia; School of Chemical Engineering, UNSW Engineering, UNSW, Sydney, New South Wales 2052, Australia
| | - Saffron J Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Vi Khanh Truong
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia; College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia.
| | - Rachel A Caruso
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
105
|
Haddad G, Takakura T, Bellali S, Fontanini A, Ominami Y, Khalil JB, Raoult D. A preliminary investigation into bacterial viability using scanning electron microscopy–energy-dispersive X-ray analysis: The case of antibiotics. Front Microbiol 2022; 13:967904. [PMID: 36003945 PMCID: PMC9393632 DOI: 10.3389/fmicb.2022.967904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The metabolic stages of bacterial development and viability under different stress conditions induced by disinfection, chemical treatments, temperature, or atmospheric changes have been thoroughly investigated. Here, we aim to evaluate early metabolic modifications in bacteria following induced stress, resulting in alterations to bacterial metabolism. A protocol was optimized for bacterial preparation using energy-dispersive X-ray (EDX) microanalysis coupled with scanning electron microscopy (SEM), followed by optimizing EDX data acquisition and analysis. We investigated different preparation methods aiming to detect modifications in the bacterial chemical composition at different states. We first investigated Escherichia coli, acquiring data from fresh bacteria, after heat shock, and after contact with 70% ethanol, in order to prove the feasibility of this new strategy. We then applied the new method to different bacterial species following 1 h of incubation with increasing doses of antibiotics used as a stress-inducing agent. Among the different materials tested aiming to avoiding interaction with bacterial metabolites, phosphorous-doped silicon wafers were selected for the slide preparation. The 15 kV acceleration voltage ensured all the chemical elements of interest were excited. A thick layer of bacterial culture was deposited on the silicon wafer providing information from multiple cells and intra-cellular composition. The EDX spectra of fresh, heat-killed, and alcohol-killed E. coli revealed important modifications in magnesium, potassium, and sodium. Those same alterations were detected when applying this strategy to bacteria exposed to antibiotics. Tests based on SEM–EDX acquisition systems would provide early predictions of the bacterial viability state in different conditions, yielding earlier results than culture.
Collapse
Affiliation(s)
- Gabriel Haddad
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France
| | | | - Sara Bellali
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Anthony Fontanini
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | | | - Jacques Bou Khalil
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Jacques Bou Khalil,
| | - Didier Raoult
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- *Correspondence: Didier Raoult,
| |
Collapse
|
106
|
Perliński P, Mudryk ZJ, Zdanowicz M, Kubera Ł. Abundance of Live and Dead Bacteriopsammon Inhabiting Sandy Ecosystems of Recreational Marine Beaches of the Southern Baltic Sea. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02079-5. [PMID: 35876854 DOI: 10.1007/s00248-022-02079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The study was carried out on four non-tidal sandy marine beaches located on the Polish part of the southern Baltic Sea coast. We applied a LIVE/DEAD™ BacLight™ Bacterial Viability Kit (Invitrogen™) method to determine the abundance of live and dead bacteriopsammon. Live psammon bacteria cells constituted 31-53% of the total number of bacteria inhabiting sand of the studied beaches. Abundance of live and dead psammon bacteria generally differed along the horizontal profile in all beaches. The maximum density of bacteria was noted in the dune and the middle part of the beach (dry zones) and the minimum in wet zones, i.e., under seawater surface and at the swash zone. Generally along the vertical profile, the highest numbers of two studied bacterial groups were noted in the surface sand layer, while with increasing sediment depth their numbers significantly decreased. The abundance of live and dead bacteria showed a distinct seasonal variation.
Collapse
Affiliation(s)
- Piotr Perliński
- Department of Experimental Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewskiego 22B str, 76-200, Słupsk, Poland.
| | - Zbigniew Jan Mudryk
- Department of Experimental Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewskiego 22B str, 76-200, Słupsk, Poland
| | - Marta Zdanowicz
- Department of Experimental Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewskiego 22B str, 76-200, Słupsk, Poland
| | - Łukasz Kubera
- Department of Microbiology and Immunobiology, Faculty of Biological Sciences, Kazimierz Wielki University, Al. Powstańców Wielkopolskich 10, 85-090, Bydgoszcz, Poland
| |
Collapse
|
107
|
Kalinowska A, Pierpaoli M, Jankowska K, Fudala-Ksiazek S, Remiszewska-Skwarek A, Łuczkiewicz A. Insights into the microbial community of treated wastewater, its year-round variability and impact on the receiver, using cultivation, microscopy and amplicon-based methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154630. [PMID: 35307432 DOI: 10.1016/j.scitotenv.2022.154630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/21/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Apart from chemical constituents, wastewater treatment plant (WWTP) effluents also release microorganisms that can be important to the receiving water bodies either from a sanitary point of view, or taking to the account the biogeochemical potential of the recipients. However, little is known about the treated wastewater microbial community, its composition, seasonal changes, functions and fate in the waters of the receiver. Thus, this study presents a synergistic approach coupling new and traditional methods: analytical chemistry, classical microbiology (cultivation- and microscopy-based methods), as well as Next Generation Sequencing and a quantitative real-time polymerase chain reaction (qPCR). The results show that in terms of bacterial community composition, treated wastewater differed from the environmental samples, irrespectively if they were related or unrelated to the WWTP effluent discharge. The canonical correspondence analysis (CCA) taking into account chemical parameters and taxonomical biodiversity indirectly confirmed the seasonal deterioration of the treated wastewater quality as a result of temperature-driven change of activated sludge community structure and biomass washout (observed also by DAPI staining). Despite seasonal fluctuations of total suspended solids and inter-related parameters (such as COD, BOD, TN, TP), the treated wastewater quality remained within current discharge limits. It was due to treatment processes intensively adjusted by WWTP operators, particularly those necessary to maintain an appropriate rate of autotrophic processes of nitrification and to support biological phosphorus removal. This can explain the observed microbiome composition similarity among WWTP effluents at high taxonomic levels. Obtained data also suggest that besides wastewater treatment efficiency, WWTP effluents are still sources of both human-related microorganisms as well as bacteria equipped in genes involved in N-cycling. Their potential of participation in nutrients cycling in the receivers is widely unknown and require critical attention and better understanding.
Collapse
Affiliation(s)
- Agnieszka Kalinowska
- Department of Environmental Engineering Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| | - Mattia Pierpaoli
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| | - Katarzyna Jankowska
- Department of Environmental Engineering Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| | - Sylwia Fudala-Ksiazek
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| | - Anna Remiszewska-Skwarek
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| | - Aneta Łuczkiewicz
- Department of Environmental Engineering Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| |
Collapse
|
108
|
Cho ER, Kang DH. Intensified inactivation efficacy of pulsed ohmic heating for pathogens in soybean milk due to sodium lactate. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
109
|
Pseudomonas aeruginosa polysaccharide Psl supports airway microbial community development. THE ISME JOURNAL 2022; 16:1730-1739. [PMID: 35338335 PMCID: PMC9213427 DOI: 10.1038/s41396-022-01221-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 01/01/2023]
Abstract
Pseudomonas aeruginosa dominates the complex polymicrobial cystic fibrosis (CF) airway and is a leading cause of death in persons with CF. Oral streptococcal colonization has been associated with stable CF lung function. However, no studies have demonstrated how Streptococcus salivarius, the most abundant streptococcal species found in individuals with stable CF lung disease, potentially improves lung function or becomes incorporated into the CF airway biofilm. By utilizing a two-species biofilm model to probe interactions between S. salivarius and P. aeruginosa, we discovered that the P. aeruginosa exopolysaccharide Psl promoted S. salivarius biofilm formation. Further, we identified a S. salivarius maltose-binding protein (MalE) that is required for promotion of biofilm formation both in vitro and in a Drosophila melanogaster co-infection model. Finally, we demonstrate that promotion of dual biofilm formation with S. salivarius is common among environmental and clinical P. aeruginosa isolates. Overall, our data supports a model in which S. salivarius uses a sugar-binding protein to interact with P. aeruginosa exopolysaccharide, which may be a strategy by which S. salivarius establishes itself within the CF airway microbial community.
Collapse
|
110
|
Escherichia coli cell factories with altered chromosomal replication scenarios exhibit accelerated growth and rapid biomass production. Microb Cell Fact 2022; 21:125. [PMID: 35729580 PMCID: PMC9210752 DOI: 10.1186/s12934-022-01851-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/21/2022] [Indexed: 11/24/2022] Open
Abstract
Background Generally, bacteria have a circular genome with a single replication origin for each replicon, whereas archaea and eukaryotes can have multiple replication origins in a single chromosome. In Escherichia coli, bidirectional DNA replication is initiated at the origin of replication (oriC) and arrested by the 10 termination sites (terA–J). Results We constructed E. coli derivatives with additional or ectopic replication origins, which demonstrate the relationship between DNA replication and cell physiology. The cultures of E. coli derivatives with multiple replication origins contained an increased fraction of replicating chromosomes and the cells varied in size. Without the original oriC, E. coli derivatives with double ectopic replication origins manifested impaired growth irrespective of growth conditions and enhanced cell size, and exhibited excessive and asynchronous replication initiation. The generation time of an E. coli strain with three replication origins decreased in a minimal medium supplemented with glucose as the sole carbon source. As well as cell growth, the introduction of additional replication origins promoted increased biomass production. Conclusions Balanced cell growth and physiological stability of E. coli under rapid growth condition are affected by changes in the position and number of replication origins. Additionally, we show that, for the first time to our knowledge, the introduction of replication initiation sites to the chromosome promotes cell growth and increases protein production. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01851-z.
Collapse
|
111
|
Santos-Rosales V, López-Iglesias C, Sampedro-Viana A, Alvarez-Lorenzo C, Ghazanfari S, Magariños B, García-González CA. Supercritical CO 2 sterilization: An effective treatment to reprocess FFP3 face masks and to reduce waste during COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154089. [PMID: 35218842 PMCID: PMC8864888 DOI: 10.1016/j.scitotenv.2022.154089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 05/21/2023]
Abstract
The outbreak of COVID-19 pandemic unveiled an unprecedented scarcity of personal protective equipment (PPE) available in sanitary premises and for the population worldwide. This situation fostered the development of new strategies to reuse PPE that would ensure sterility and, simultaneously, preserve the filtering properties of the materials. In addition, the reuse of PPEs by reprocessing could reduce the environmental impact of the massive single-use and disposal of these materials. Conventional sterilization techniques such as steam or dry heat, ethylene oxide, and gamma irradiation may alter the functional properties of the PPEs and/or leave toxic residues. Supercritical CO2 (scCO2)-based sterilization is herein proposed as a safe, sustainable, and rapid sterilization method for contaminated face masks while preserving their performance. The functional (bacterial filtration efficiency, breathability, splash resistance, straps elasticity) properties of the processed FFP3 face masks were evaluated after 1 and 10 cycles of sterilization. Log-6 sterilization reduction levels were obtained for face masks contaminated with Bacillus pumilus endospores at mild operating conditions (CO2 at 39 °C and 100 bar for 30 min) and with low contents of H2O2 (150 ppm). Physicochemical properties of the FFP3 face masks remained unchanged after reprocessing and differences in efficacy were not observed neither in the filtration tests, following UNE-EN 14683, nor in the integrity of FFP3 filtration after the sterilization process. The herein presented method based on scCO2 technology is the first reported protocol achieving the reprocessing of FFP3 masks up to 10 cycles while preserving their functional properties.
Collapse
Affiliation(s)
- Víctor Santos-Rosales
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Clara López-Iglesias
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Institute of Pharmacy (Pharmaceutical Chemistry), Freie Universität Berlin, Berlin, Germany
| | - Ana Sampedro-Viana
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Samaneh Ghazanfari
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, 6167 RD Geleen, the Netherlands; Department of Biohybrid and Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany
| | - Beatriz Magariños
- Departamento de Microbiología y Parasitología, Facultad de Biología, CIBUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carlos A García-González
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
112
|
Brown JL, Short B, Ware A, Sherry L, Kean R, Ramage G. Cell Viability Assays for Candida auris. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2517:129-153. [PMID: 35674950 DOI: 10.1007/978-1-0716-2417-3_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell viability assays are useful for assessing the efficacy of antifungal therapeutics and disinfection strategies in vitro. In recent years these assays have been fundamental for the testing of conventional and novel therapies against the nosocomial fungal pathogen Candida auris. Here we provide detailed descriptions of methods for assessing cellular viability of Candida auris in vitro, such as metabolic assays (XTT and resazurin), colony-forming unit counting, live/dead quantitative PCR, and fluorescent staining for microscopic analyses.
Collapse
Affiliation(s)
- Jason L Brown
- Oral Sciences Research Group, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, UK. .,Glasgow Biofilm Research Network, Glasgow, UK.
| | - Bryn Short
- Oral Sciences Research Group, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, UK.,Glasgow Biofilm Research Network, Glasgow, UK
| | - Alicia Ware
- Glasgow Biofilm Research Network, Glasgow, UK.,Department of Biological and Biomedical, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Leighann Sherry
- Oral Sciences Research Group, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, UK.,Glasgow Biofilm Research Network, Glasgow, UK
| | - Ryan Kean
- Glasgow Biofilm Research Network, Glasgow, UK.,Department of Biological and Biomedical, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Gordon Ramage
- Oral Sciences Research Group, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, UK. .,Glasgow Biofilm Research Network, Glasgow, UK.
| |
Collapse
|
113
|
Müllerová L, Marková K, Obruča S, Mravec F. Use of Flavin-Related Cellular Autofluorescence to Monitor Processes in Microbial Biotechnology. Microorganisms 2022; 10:microorganisms10061179. [PMID: 35744697 PMCID: PMC9231254 DOI: 10.3390/microorganisms10061179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular autofluorescence is usually considered to be a negative phenomenon because it can affect the sensitivity of fluorescence microscopic or flow cytometric assays by interfering with the signal of various fluorescent probes. Nevertheless, in our work, we adopted a different approach, and green autofluorescence induced by flavins was used as a tool to monitor fermentation employing the bacterium Cupriavidus necator. The autofluorescence was used to distinguish microbial cells from abiotic particles in flow cytometry assays, and it was also used for the determination of viability or metabolic characteristics of the microbial cells. The analyses using two complementary techniques, namely fluorescence microscopy and flow cytometry, are simple and do not require labor sample preparation. Flavins and their autofluorescence can also be used in a combination with other fluorophores when the need for multi-parametrical analyses arises, but it is wise to use dyes that do not emit a green light in order to not interfere with flavins' emission band (500-550 nm).
Collapse
|
114
|
Hu D, Wu J, Li J, Jin L, Chen X, Yao J. Effect of isomaltose oligosaccharide on the freeze-drying process and shelf-life of Pediococcus pentosaceus. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
115
|
Ndukwe ARN, Wiedbrauk S, Boase NRB, Fairfull‐Smith KE. Strategies to Improve the Potency of Oxazolidinones towards Bacterial Biofilms. Chem Asian J 2022; 17:e202200201. [PMID: 35352479 PMCID: PMC9321984 DOI: 10.1002/asia.202200201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Indexed: 11/29/2022]
Abstract
Biofilms are part of the natural lifecycle of bacteria and are known to cause chronic infections that are difficult to treat. Most antibiotics are developed and tested against bacteria in the planktonic state and are ineffective against bacterial biofilms. The oxazolidinones, including the last resort drug linezolid, are one of the main classes of synthetic antibiotics progressed to clinical use in the last 50 years. They have a unique mechanism of action and only develop low levels of resistance in the clinical setting. With the aim of providing insight into strategies to design more potent antibiotic compounds with activity against bacterial biofilms, we review the biofilm activity of clinically approved oxazolidinones and report on structural modifications to oxazolidinones and their delivery systems which lead to enhanced anti-biofilm activity.
Collapse
Affiliation(s)
- Audrey R. N. Ndukwe
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Sandra Wiedbrauk
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Nathan R. B. Boase
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Kathryn E. Fairfull‐Smith
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| |
Collapse
|
116
|
Lattwein KR, Beekers I, Kouijzer JJP, Leon-Grooters M, Langeveld SAG, van Rooij T, van der Steen AFW, de Jong N, van Wamel WJB, Kooiman K. Dispersing and Sonoporating Biofilm-Associated Bacteria with Sonobactericide. Pharmaceutics 2022; 14:1164. [PMID: 35745739 PMCID: PMC9227517 DOI: 10.3390/pharmaceutics14061164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Bacteria encased in a biofilm poses significant challenges to successful treatment, since both the immune system and antibiotics are ineffective. Sonobactericide, which uses ultrasound and microbubbles, is a potential new strategy for increasing antimicrobial effectiveness or directly killing bacteria. Several studies suggest that sonobactericide can lead to bacterial dispersion or sonoporation (i.e., cell membrane permeabilization); however, real-time observations distinguishing individual bacteria during and directly after insonification are missing. Therefore, in this study, we investigated, in real-time and at high-resolution, the effects of ultrasound-induced microbubble oscillation on Staphylococcus aureus biofilms, without or with an antibiotic (oxacillin, 1 μg/mL). Biofilms were exposed to ultrasound (2 MHz, 100-400 kPa, 100-1000 cycles, every second for 30 s) during time-lapse confocal microscopy recordings of 10 min. Bacterial responses were quantified using post hoc image analysis with particle counting. Bacterial dispersion was observed as the dominant effect over sonoporation, resulting from oscillating microbubbles. Increasing pressure and cycles both led to significantly more dispersion, with the highest pressure leading to the most biofilm removal (up to 83.7%). Antibiotic presence led to more variable treatment responses, yet did not significantly impact the therapeutic efficacy of sonobactericide, suggesting synergism is not an immediate effect. These findings elucidate the direct effects induced by sonobactericide to best utilize its potential as a biofilm treatment strategy.
Collapse
Affiliation(s)
- Kirby R. Lattwein
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Office Ee2302, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (I.B.); (J.J.P.K.); (M.L.-G.); (S.A.G.L.); (T.v.R.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| | - Inés Beekers
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Office Ee2302, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (I.B.); (J.J.P.K.); (M.L.-G.); (S.A.G.L.); (T.v.R.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| | - Joop J. P. Kouijzer
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Office Ee2302, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (I.B.); (J.J.P.K.); (M.L.-G.); (S.A.G.L.); (T.v.R.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| | - Mariël Leon-Grooters
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Office Ee2302, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (I.B.); (J.J.P.K.); (M.L.-G.); (S.A.G.L.); (T.v.R.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| | - Simone A. G. Langeveld
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Office Ee2302, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (I.B.); (J.J.P.K.); (M.L.-G.); (S.A.G.L.); (T.v.R.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| | - Tom van Rooij
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Office Ee2302, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (I.B.); (J.J.P.K.); (M.L.-G.); (S.A.G.L.); (T.v.R.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| | - Antonius F. W. van der Steen
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Office Ee2302, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (I.B.); (J.J.P.K.); (M.L.-G.); (S.A.G.L.); (T.v.R.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
- Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Building 22, Room D218, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Nico de Jong
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Office Ee2302, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (I.B.); (J.J.P.K.); (M.L.-G.); (S.A.G.L.); (T.v.R.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
- Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Building 22, Room D218, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Willem J. B. van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center Rotterdam, Office Na9182, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands;
| | - Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Office Ee2302, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (I.B.); (J.J.P.K.); (M.L.-G.); (S.A.G.L.); (T.v.R.); (A.F.W.v.d.S.); (N.d.J.); (K.K.)
| |
Collapse
|
117
|
An Extracytoplasmic Function Sigma Factor Required for Full Virulence in Xanthomonas citri pv. citri. J Bacteriol 2022; 204:e0062421. [PMID: 35446118 DOI: 10.1128/jb.00624-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Xanthomonas includes more than 30 phytopathogenic species that infect a wide range of plants and cause severe diseases that greatly impact crop productivity. These bacteria are highly adapted to the soil and plant environment, being found in decaying material, as epiphytes, and colonizing the plant mesophyll. Signal transduction mechanisms involved in the responses of Xanthomonas to environmental changes are still poorly characterized. Xanthomonad genomes typically encode several representatives of the extracytoplasmic function σ (σECF) factors, whose physiological roles remain elusive. In this work, we functionally characterized the Xanthomonas citri pv. citri EcfL, a σECF factor homologous to members of the iron-responsive FecI-like group. We show that EcfL is not required or induced during iron starvation, despite presenting the common features of other FecI-like σECF factors. EcfL positively regulates one operon composed of three genes that encode a TonB-dependent receptor involved in cell surface signaling, an acid phosphatase, and a lectin-domain containing protein. Furthermore, we demonstrate that EcfL is required for full virulence in citrus, and its regulon is induced inside the plant mesophyll and in response to acid stress. Together, our study suggests a role for EcfL in the adaptation of X. citri to the plant environment, in this way contributing to its ability to cause citrus canker disease. IMPORTANCE The Xanthomonas genus comprises a large number of phytopathogenic species that infect a wide variety of economically important plants worldwide. Bacterial adaptation to the plant and soil environment relies on their repertoire of signal transduction pathways, including alternative sigma factors of the extracytoplasmic function family (σECF). Here, we describe a new σECF factor found in several Xanthomonas species, demonstrating its role in Xanthomonas citri virulence to citrus plants. We show that EcfL regulates a single operon containing three genes, which are also conserved in other Xanthomonas species. This study further expands our knowledge on the functions of the widespread family of σECF factors in phytopathogenic bacteria.
Collapse
|
118
|
Extracellular Polymeric Substances and Biocorrosion/Biofouling: Recent Advances and Future Perspectives. Int J Mol Sci 2022; 23:ijms23105566. [PMID: 35628373 PMCID: PMC9143384 DOI: 10.3390/ijms23105566] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Microbial cells secrete extracellular polymeric substances (EPS) to adhere to material surfaces, if they get in contact with solid materials such as metals. After phase equilibrium, microorganisms can adhere firmly to the metal surfaces causing metal dissolution and corrosion. Attachment and adhesion of microorganisms via EPS increase the possibility and the rate of metal corrosion. Many components of EPS are electrochemical and redox active, making them closely related to metal corrosion. Functional groups in EPS have specific adsorption ability, causing them to play a key role in biocorrosion. This review emphasizes EPS properties related to metal corrosion and protection and the underlying microbially influenced corrosion (MIC) mechanisms. Future perspectives regarding a comprehensive study of MIC mechanisms and green methodologies for corrosion protection are provided.
Collapse
|
119
|
Chen J, Yang X, Chen Y, Feng Y, Pan J, Shi C. Expandable, biodegradable, bioactive quaternized gelatin sponges for rapidly controlling incompressible hemorrhage and promoting wound healing. BIOMATERIALS ADVANCES 2022; 136:212776. [PMID: 35929314 DOI: 10.1016/j.bioadv.2022.212776] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Designing expandable sponges with biodegradability and effective antibacterial properties are the urgent challenge for incompressible hemorrhage and wound healing. In the present investigation, based on quaternized gelatin (QG) and oxidized dextran (OD), a series of expandable sponges (ODQG) with high-water absorption capacity and robust mechanical properties were prepared. ODQG had good biodegradability in vitro and in vivo, and had inherent antibacterial activity (90% for E. coli and 99.74% for S. aureus). Due to the synergy effect of electrostatic interaction and blood concentration, ODQG could effectively attract and activate red blood cells/platelets and accelerate the coagulation process. Therefore, ODQG showed better hemostatic performance than Kuaikang® gelatin sponges and gauzes in incompressible hemorrhage model. Furthermore, ODQG could regulate inflammatory factor (TNF-α) and cytokines (TGF-β, VEGF), and greatly promote wound healing process. The biodegradable sponges with excellent antibacterial properties might have potential application prospect for incompressible hemostasis and wound healing in the future.
Collapse
Affiliation(s)
- Jie Chen
- Department of Intensive Care, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiao Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yeyi Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Jingye Pan
- Department of Intensive Care, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Changcan Shi
- Department of Intensive Care, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| |
Collapse
|
120
|
Agrawal A, Gopu M, Mukherjee R, Mampallil D. Microfluidic Droplet Cluster with Distributed Evaporation Rates as a Model for Bioaerosols. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4567-4577. [PMID: 35394793 DOI: 10.1021/acs.langmuir.1c03273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aerosols and microdroplets are known to act as carriers for pathogens or vessels for chemical reactions. The natural occurrence of evaporation of these droplets has implications for the viability of pathogens or chemical processes. For example, it is important to understand how pathogens survive extreme physiochemical conditions such as confinement and osmotic stress induced by evaporation of aerosol droplets. Previously, larger evaporating droplets were proposed as model systems as the processes in the tiny aerosol droplets are difficult to image. In this context, we propose the concept of evaporation of capillary-clustered aqueous microdroplets dispersed in a thin oil layer. The configuration produces spatially segregated evaporation rates. It allows comparing the consequences of evaporation and its rate for processes occurring in droplets. As a proof of concept, we study the consequences of evaporation and its rate using Escherichia coli (E. coli) and Bacillus subtilis as model organisms. Our experiments indicate that the rate of evaporation of microdroplets is an important parameter in deciding the viability of contained microorganisms. With slow evaporation, E. coli could mitigate the osmotic stress by K+ ion uptake. Our method may also be applicable to other evaporating droplet systems, for example, microdroplet chemistry to understand the implications of evaporation rates.
Collapse
Affiliation(s)
- Akanksha Agrawal
- Indian Institute of Science Education and Research Tirupati, Mangalam P.O. PIN 517507 Tirupati, Andhra Pradesh, India
| | - Maheshwar Gopu
- Indian Institute of Science Education and Research Tirupati, Mangalam P.O. PIN 517507 Tirupati, Andhra Pradesh, India
| | - Raju Mukherjee
- Indian Institute of Science Education and Research Tirupati, Mangalam P.O. PIN 517507 Tirupati, Andhra Pradesh, India
| | - Dileep Mampallil
- Indian Institute of Science Education and Research Tirupati, Mangalam P.O. PIN 517507 Tirupati, Andhra Pradesh, India
| |
Collapse
|
121
|
Biofilm and Gene Expression Characteristics of the Carbapenem-Resistant Enterobacterales, Escherichia coli IMP, and Klebsiella pneumoniae NDM-1 Associated with Common Bacterial Infections. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084788. [PMID: 35457654 PMCID: PMC9024719 DOI: 10.3390/ijerph19084788] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 01/16/2023]
Abstract
In light of the limited therapeutic options with Carbapenem-Resistant Enterobacterales (CRE) infections, understanding the bacterial risk factors, such as biofilm formation and related gene expression of CRE, is vital. This study investigates the biofilm formation and biofilm-related gene expression of two enteric Enterobacterales with major CR determinants Escherichia coli IMP and Klebsiella pneumoniae NDM-1, which were seen in high prevalence in most common bacterial infections over the past few years. To our knowledge, this is the first study that demonstrated the relationship between biofilm formation and the related gene expression, to understand the potential molecular mechanisms during the biofilm formation in CRE. Biofilms were quantified by tissue culture plate assay at the stages of the biofilm development: initial attachment (6 h), microcolony formation (12 h), maturation (24 h), and dispersion (48 h). In a dispersion, event bacteria detach without any mechanical means and colonise another area. To investigate the influence of different growth conditions on biofilm formation, biofilms were quantified under different growth conditions. In parallel, quantitative real-time PCR (qPCR) assessed the biofilm-related gene expression of a cluster of genes, including biofilm maturation, quorum sensing, stress survival, and antibiotic resistance. Structural changes during biofilm development were assessed via confocal laser scanning microscopy (CLSM). We observed that the biofilm formation of CRE is correlated with the biofilm development stages, with maximum biofilm observed at 24 h at the maturation stage. Our data also showed that biofilm growth, under the condition tested, is the major factor influencing the variability of biofilm gene expression quantification assays. qPCR analyses have demonstrated that the expression of biofilm-related genes is highly correlated with phenotypic biofilm development, and these findings can be further expanded to understand the variation in regulation of such genes in these significant CRE pathogens. Our study demonstrated that both CRE strains, E. coli IMP and K. pneumoniae NDM-1, are high biofilm formers, and genes involved in biofilm development are upregulated during biofilm growth. The characteristic of the increased biofilm formation with the upregulation of antibiotic-resistant and biofilm-related genes indicates the successful pathogenic role of biofilms of these selected CRE and is attributed to their multi-drug resistance ability and successful dissemination of CRE in common bacterial infections.
Collapse
|
122
|
Wang M, Ateia M, Hatano Y, Miyanaga K, Yoshimura C. Novel fluorescence-based method for rapid quantification of live bacteria in river water and treated wastewater. ENVIRONMENTAL SCIENCE. ADVANCES 2022; 1:30-36. [PMID: 36778842 PMCID: PMC9909780 DOI: 10.1039/d1va00017a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Monitoring bacteria is essential for ensuring microbial safety of water sources, including river water and treated wastewater. The plate count method is common for monitoring bacterial abundance, although it cannot detect all live bacteria such as viable but non-culturable bacteria, causing underestimation of microbial risks. Live/Dead BacLight kit, involving fluorochromes SYTO 9 and propidium iodide (PI), provides an alternative to assess bacterial viability using flow cytometry or microscopy. However, its application is limited due to the high cost of flow cytometry and the inapplicability of microscopy to most environmental waters. Thus, this study introduces the combination of BacLight kit and fluorescence spectroscopy for quantifying live bacteria in river water and treated wastewater. Mixtures of live and dead Escherichia coli (E. coli) with various ratios and total cell concentrations were stained with SYTO 9 and PI and measured by fluorescence spectroscopy. The fluorescence emission peak area of SYTO 9 in the range of 500-510 nm at the excitation wavelength of 470 nm correlates linearly with the viable cell counts (R 2 > 0.99, p < 0.0001) with only slight variations in the complex water matrix. The tested method can quantify the live E. coli from 3.67 × 104 to 2.70 × 107 cells per mL. This method is simple, sensitive and reliable for quantifying live bacteria in environmental water, which can be later integrated into real-time monitoring systems.
Collapse
Affiliation(s)
- Manna Wang
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Mohamed Ateia
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
- United States Environmental Protection Agency, Center for Environmental Solutions & Emergency Response, Cincinnati, OH, USA
| | - Yuta Hatano
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Kazuhiko Miyanaga
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| |
Collapse
|
123
|
Pantasis S, Friemel J, Brütsch SM, Hu Z, Krautbauer S, Liebisch G, Dengjel J, Weber A, Werner S, Bordoli MR. Vertebrate lonesome kinase modulates the hepatocyte secretome to prevent perivascular liver fibrosis and inflammation. J Cell Sci 2022; 135:275016. [PMID: 35293576 PMCID: PMC9016620 DOI: 10.1242/jcs.259243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
Vertebrate lonesome kinase (VLK) is the only known extracellular tyrosine kinase, but its physiological functions are largely unknown. We show that VLK is highly expressed in hepatocytes of neonatal mice, but downregulated during adulthood. To determine the role of VLK in liver homeostasis and regeneration, we generated mice with a hepatocyte-specific knockout of the VLK gene (Pkdcc). Cultured progenitor cells established from primary hepatocytes of Pkdcc knockout mice produced a secretome, which promoted their own proliferation in 3D spheroids and proliferation of cultured fibroblasts. In vivo, Pkdcc knockout mice developed liver steatosis with signs of inflammation and perivascular fibrosis upon aging, combined with expansion of liver progenitor cells. In response to chronic CCl4-induced liver injury, the pattern of deposited collagen was significantly altered in these mice. The liver injury marker alpha-fetoprotein (AFP) was increased in the secretome of VLK-deficient cultured progenitor cells and in liver tissues of aged or CCl4-treated knockout mice. These results support a key role for VLK and extracellular protein phosphorylation in liver homeostasis and repair through paracrine control of liver cell function and regulation of appropriate collagen deposition. This article has an associated First Person interview with the first author of the paper. Summary: The secreted protein kinase VLK is released from hepatocytes and protects the liver from perivascular fibrosis and inflammation.
Collapse
Affiliation(s)
- Sophia Pantasis
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology ETH, Otto-Stern Weg 7, CH-8093, Zurich, Switzerland
| | - Juliane Friemel
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Salome Mirjam Brütsch
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology ETH, Otto-Stern Weg 7, CH-8093, Zurich, Switzerland
| | - Zehan Hu
- Department of Biology, Université de Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Joern Dengjel
- Department of Biology, Université de Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology ETH, Otto-Stern Weg 7, CH-8093, Zurich, Switzerland
| | - Mattia Renato Bordoli
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology ETH, Otto-Stern Weg 7, CH-8093, Zurich, Switzerland
| |
Collapse
|
124
|
Wang Y, Coomey J, Miller K, Jensen GS, Haswell ES. Interactions between a mechanosensitive channel and cell wall integrity signaling influence pollen germination in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1533-1545. [PMID: 34849746 DOI: 10.1093/jxb/erab525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Cells employ multiple systems to maintain cellular integrity, including mechanosensitive ion channels and the cell wall integrity (CWI) pathway. Here, we use pollen as a model system to ask how these different mechanisms are interconnected at the cellular level. MscS-Like 8 (MSL8) is a mechanosensitive channel required to protect Arabidopsis thaliana pollen from osmotic challenges during in vitro rehydration, germination, and tube growth. New CRISPR/Cas9 and artificial miRNA-generated msl8 alleles produced unexpected pollen phenotypes, including the ability to germinate a tube after bursting, dramatic defects in cell wall structure, and disorganized callose deposition at the germination site. We document complex genetic interactions between MSL8 and two previously established components of the CWI pathway, MARIS and ANXUR1/2. Overexpression of MARISR240C-FP suppressed the bursting, germination, and callose deposition phenotypes of msl8 mutant pollen. Null msl8 alleles suppressed the internalized callose structures observed in MARISR240C-FP lines. Similarly, MSL8-YFP overexpression suppressed bursting in the anxur1/2 mutant background, while anxur1/2 alleles reduced the strong rings of callose around ungerminated pollen grains in MSL8-YFP overexpressors. These data show that mechanosensitive ion channels modulate callose deposition in pollen and provide evidence that cell wall and membrane surveillance systems coordinate in a complex manner to maintain cell integrity.
Collapse
Affiliation(s)
- Yanbing Wang
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- NSF Center for Engineering Mechanobiology
| | - Joshua Coomey
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- NSF Center for Engineering Mechanobiology
| | - Kari Miller
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Gregory S Jensen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Elizabeth S Haswell
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- NSF Center for Engineering Mechanobiology
| |
Collapse
|
125
|
Lin B, Hung A, Li R, Barlow A, Singleton W, Matthyssen T, Sani MA, Hossain MA, Wade JD, O'Brien-Simpson NM, Li W. Systematic comparison of activity and mechanism of antimicrobial peptides against nosocomial pathogens. Eur J Med Chem 2022; 231:114135. [DOI: 10.1016/j.ejmech.2022.114135] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/20/2022]
|
126
|
Sviridova E, Barras A, Addad A, Plotnikov E, Di Martino A, Deresmes D, Nikiforova K, Trusova M, Szunerits S, Guselnikova O, Postnikov P, Boukherroub R. Surface modification of carbon dots with tetraalkylammonium moieties for fine tuning their antibacterial activity. BIOMATERIALS ADVANCES 2022; 134:112697. [PMID: 35581073 DOI: 10.1016/j.msec.2022.112697] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 10/19/2022]
Abstract
The widespread of bacterial infections including biofilms drives the never-ending quest for new antimicrobial agents. Among the great variety of nanomaterials, carbon dots (CDs) are the most promising antibacterial material, but still require the adjustment of their surface properties for enhanced activity. In this contribution, we report a facile functionalization method of carbon dots (CDs) by tetraalkylammonium moieties using diazonium chemistry to improve their antibacterial activity against Gram-positive and Gram-negative bacteria. CDs were modified by novel diazonium salts bearing tetraalkylammonium moieties (TAA) with different alkyl chains (C2, C4, C9, C12) for the optimization of antibacterial activity. Variation of the alkyl chain allows to reach the significant antibacterial effect for CDs-C9 towards Gram-positive Staphylococcus aureus (S. aureus) (MIC = 3.09 ± 1.10 μg mL-1) and Gram-negative Escherichia coli (E. coli) (MIC = 7.93 ± 0.17 μg mL-1) bacteria. The antibacterial mechanism of CDs-C9 is ascribed to the balance between the positive charge and hydrophobicity of the alkyl chains. TAA moieties are responsible for enhanced adherence on the bacterial cell membrane, its penetration and disturbance of physiological metabolism. CDs-C9 were not effective in the generation of reactive oxygen species excluding the oxidative damage mechanism. In addition, CDs-C9 effectively promoted the antibiofilm treatment of S. aureus and E. coli biofilms outperforming previously-reported CDs in terms of treatment duration and minimal inhibitory concentration. The good biocompatibility of CDs-C9 was demonstrated on mouse fibroblast (NIH/3T3), HeLa and U-87 MG cell lines for concentrations up to 256 μg mL-1. Collectively, our work highlights the correlation between the surface chemistry of CDs and their antimicrobial performance.
Collapse
Affiliation(s)
- Elizaveta Sviridova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, IEMN, UMR CNRS 8520, F-59000 Lille, France
| | - Ahmed Addad
- Univ. Lille, CNRS, UMR 8207 - UMET, F-59000 Lille, France
| | - Evgenii Plotnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
| | - Antonio Di Martino
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
| | - Dominique Deresmes
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, IEMN, UMR CNRS 8520, F-59000 Lille, France
| | - Ksenia Nikiforova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
| | - Marina Trusova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, IEMN, UMR CNRS 8520, F-59000 Lille, France
| | - Olga Guselnikova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
| | - Pavel Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation; Department of Solid-State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic.
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, IEMN, UMR CNRS 8520, F-59000 Lille, France.
| |
Collapse
|
127
|
Yang K, Shi Y, Li Y, Wei G, Zhao Q, Huang A. iTRAQ-Based Quantitative Proteomic Analysis of Antibacterial Mechanism of Milk-Derived Peptide BCp12 against Escherichia coli. Foods 2022; 11:foods11050672. [PMID: 35267305 PMCID: PMC8909071 DOI: 10.3390/foods11050672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/05/2023] Open
Abstract
BCp12 is a novel casein-derived antibacterial peptide with a broad-spectrum antibacterial effect. However, its action mechanism against E. coli is unknown. In this study, the growth curve showed that BCp12 had excellent antibacterial activity against E. coli. Red (propidium iodide staining) and green (fluorescein isothiocyanate staining) fluorescence signals were detected at the edges of the E. coli cells treated with BCp12. scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that E. coli cells became rough and shrunken, and part of the cell contents leaked to form a cavity. Furthermore, the iTRAQ proteome analysis showed that 193 and 174 proteins were significantly up-regulated and down-regulated, respectively, after BCp12 treatment. Four enzymes involved in fatty acid degradation of E. coli were down-regulated, disrupting the synthesis of cell membranes. Molecular docking and gel retardation assays showed that BCp12 could bind to genes encoding four key enzymes involved in the fatty acid degradation pathway through hydrogen bonding and hydrophobic interactions, thus significantly inhibiting their activities. Overall, the results indicate that BCp12 inhibits the growth of E. coli, causing metabolic disorders, thus destroying the structure of cell membranes.
Collapse
|
128
|
Lavrentev FV, Rumyantsev IS, Ivanov AS, Shilovskikh VV, Orlova OY, Nikolaev KG, Andreeva DV, Skorb EV. Soft Hydrogel Actuator for Fast Machine-Learning-Assisted Bacteria Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7321-7328. [PMID: 35080838 DOI: 10.1021/acsami.1c22470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We demonstrate that our bio-electrochemical platform facilitates the reduction of detection time from the 3-day period of the existing tests to 15 min. Machine learning and robotized bioanalytical platforms require the principles such as hydrogel-based actuators for fast and easy analysis of bioactive analytes. Bacteria are fragile and environmentally sensitive microorganisms that require a special environment to support their lifecycles during analytical tests. Here, we develop a bio-electrochemical platform based on the soft hydrogel/eutectic gallium-indium alloy interface for the detection of Streptococcus thermophilus and Bacillus coagulans bacteria in various mediums. The soft hydrogel-based device is capable to support bacteria' viability during detection time. Current-voltage data are used for multilayer perceptron algorithm training. The multilayer perceptron model is capable of detecting bacterial concentrations in the 104 to 108 cfu/mL range of the culture medium or in the dairy products with high accuracy (94%). Such a fast and easy biodetection is extremely important for food and agriculture industries and biomedical and environmental science.
Collapse
Affiliation(s)
- Filipp V Lavrentev
- Infochemistry Scientific Center of ITMO University, Lomonosova Street 9, St. Petersburg 191002, Russia
| | - Igor S Rumyantsev
- Infochemistry Scientific Center of ITMO University, Lomonosova Street 9, St. Petersburg 191002, Russia
| | - Artemii S Ivanov
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Vladimir V Shilovskikh
- Infochemistry Scientific Center of ITMO University, Lomonosova Street 9, St. Petersburg 191002, Russia
| | - Olga Yu Orlova
- Infochemistry Scientific Center of ITMO University, Lomonosova Street 9, St. Petersburg 191002, Russia
| | - Konstantin G Nikolaev
- Infochemistry Scientific Center of ITMO University, Lomonosova Street 9, St. Petersburg 191002, Russia
| | - Daria V Andreeva
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Ekaterina V Skorb
- Infochemistry Scientific Center of ITMO University, Lomonosova Street 9, St. Petersburg 191002, Russia
| |
Collapse
|
129
|
Tian Y, Wu Y, Zhang G, Chen H, Wu D, Liu J, Li Y, Shen S, Feng D, Pan Y, Li J. Study on the Collection Efficiency of Bioaerosol Nanoparticles by Andersen-Type Impactors. J Biomed Nanotechnol 2022; 18:319-326. [PMID: 35484751 DOI: 10.1166/jbn.2022.3276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Airborne transmission is much more common than previously thought. Based on our knowledge about SARS-COV-2 (COVID-19) infection, the aerosol transmission routes for all respiratory infections must be reassessed. Thus far, the COVID-19 outbreak has caused catastrophic public health and economic crises, posing a serious threat to the lives and health of people around the world and directing public attention toward the airborne transmission of pathogens. The novel coronavirus transmission in the form of nanoaerosols in a wider range hinders prevention and early warning efforts. As a classical bioaerosol sampler, the Andersen six-stage sampler is widely used in the collection and research of aerosol particles. In this study, the physical and biological collection efficiency of the six-stage sampler was explored by qPCR and colony counting method. Results showed that the physical collection efficiency reached more than 50% when the particle size was larger than 0.75 μm. However, the overall biological collection efficiency was only 0.25%. In addition, fluorescence microscopy and flow cytometry were used to detect the microbial state after sampling, and the results showed that the proportion of the collected live bacteria was less than 15% of the total. This result is of great significance not only for the application of the Andersen six-stage sampler in collecting nanosized bioaerosols, but also provides reference for the selection of subsequent detection technologies for effective collection.
Collapse
Affiliation(s)
- Ying Tian
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yanqi Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| | | | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Dan Wu
- Beijing Institute of Metrology, Beijing, 100029, China
| | - Jiaqi Liu
- Beijing Institute of Metrology, Beijing, 100029, China
| | - Yinglong Li
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Shangyi Shen
- Beijing Institute of Metrology, Beijing, 100029, China
| | - Duan Feng
- Beijing Institute of Metrology, Beijing, 100029, China
| | - Yiting Pan
- Beijing Institute of Metrology, Beijing, 100029, China
| | - Jingjing Li
- Beijing Institute of Metrology, Beijing, 100029, China
| |
Collapse
|
130
|
Meire MA, van der Waal SV. A critical analysis of research methods and experimental models to study intracanal medicaments. Int Endod J 2022; 55 Suppl 2:330-345. [PMID: 35100452 DOI: 10.1111/iej.13694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/26/2022] [Indexed: 12/01/2022]
Abstract
In order to ensure predictable decontamination of the root canal system, chemo-mechanical preparation of the root canal space is sometimes supplemented with the use of intracanal medication. As microbial control of the root canal space is fundamental to the resolution of apical periodontitis, root canal disinfection strategies haven been researched intensively. The use of intracanal medication as a supplementary step to the chemo-mechanical preparation of the root canal space is one of them. Because of the costs and limitations of clinical research it is relevant and common practice to first evaluate alternative or new root canal disinfection modalities in laboratory studies. This involves the simulation of a root canal infection in a laboratory model, on which different disinfection strategies can be tested. When modelling the infected root canal, different levels of infection can be discriminated: suspended bacteria, microbial biofilms and infected dentine. This review describes the experimental models associated with these infection levels and critically appraises their value and methodological details. Suggestions for relevant research methods and experimental models are given, as well as some good practices for laboratory-based microbiological studies.
Collapse
Affiliation(s)
- M A Meire
- Department of Oral Health Sciences, Section of Endodontology, Ghent University, Ghent, Belgium
| | - S V van der Waal
- Department of Endodontology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| |
Collapse
|
131
|
Shaw ZL, Cheeseman S, Huang LZY, Penman R, Ahmed T, Bryant SJ, Bryant G, Christofferson AJ, Orrell-Trigg R, Dekiwadia C, Truong VK, Vongsvivut JP, Walia S, Elbourne A. Illuminating the biochemical interaction of antimicrobial few-layer black phosphorus with microbial cells using synchrotron macro-ATR-FTIR. J Mater Chem B 2022; 10:7527-7539. [PMID: 35024716 DOI: 10.1039/d1tb02575a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the fight against drug-resistant pathogenic bacterial and fungal cells, low-dimensional materials are emerging as a promising alternative treatment method. Specifically, few-layer black phosphorus (BP) has demonstrated its effectiveness against a wide range of pathogenic bacterial and fungal cells with studies suggesting low cytotoxicity towards healthy mammalian cells. However, the antimicrobial mechanism of action of BP is not well understood. Before new applications for this material can be realised, further in-depth investigations are required. In this work, the biochemical interaction between BP and a series of microbial cells is investigated using a variety of microscopy and spectroscopy techniques to provide a greater understanding of the antimicrobial mechanism. Synchrotron macro-attenuated total reflection-Fourier transform infrared (ATR-FTIR) micro-spectroscopy is used to elucidate the chemical changes occurring outside and within the cell of interest after exposure to BP nanoflakes. The ATR-FTIR data, coupled with high-resolution microscopy, reveals major physical and bio-chemical changes to the phospholipids and amide I and II proteins, as well as minor chemical changes to the structural polysaccharides and nucleic acids when compared to untreated cells. These changes can be attributed to the physical interaction of the BP nanoflakes with the cell membranes, combined with the oxidative stress induced by the degradation of the BP nanoflakes. This study provides insight into the biochemical interaction of BP nanoflakes with microbial cells, allowing for a better understanding of the antimicrobial mechanism of action that will be important for the next generation of applications such as implant coatings, wound dressings, or medical surfaces.
Collapse
Affiliation(s)
- Z L Shaw
- School of Engineering, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3001, Australia.
| | - Samuel Cheeseman
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne Victoria 3001, Australia.
| | - Louisa Z Y Huang
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne Victoria 3001, Australia.
| | - Rowan Penman
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne Victoria 3001, Australia.
| | - Taimur Ahmed
- School of Engineering, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3001, Australia. .,Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Haripur, 22620, Pakistan
| | - Saffron J Bryant
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne Victoria 3001, Australia.
| | - Gary Bryant
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne Victoria 3001, Australia.
| | - Andrew J Christofferson
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne Victoria 3001, Australia.
| | - Rebecca Orrell-Trigg
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne Victoria 3001, Australia.
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility (RMMF), RMIT University, Melbourne, Victoria 3001, Australia
| | - Vi Khanh Truong
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne Victoria 3001, Australia.
| | - Jitraporn Pimm Vongsvivut
- Infrared Microspectroscopy Beamline, ANSTO Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Sumeet Walia
- School of Engineering, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3001, Australia. .,Functional Materials and Microsystems Research Group and MicroNano Research Facility, RMIT University, Melbourne, Victoria 3001, Australia
| | - Aaron Elbourne
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne Victoria 3001, Australia.
| |
Collapse
|
132
|
Wen J, Liu J, Wu J, He D. Rapid measurement of waterborne bacterial viability based on difunctional gold nanoprobe. RSC Adv 2022; 12:1675-1681. [PMID: 35425161 PMCID: PMC8978865 DOI: 10.1039/d1ra07287k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
Rapid measurement of waterborne bacterial viability is crucial for ensuring the safety of public health. Herein, we proposed a colorimetric assay for rapid measurement of waterborne bacterial viability based on a difunctional gold nanoprobe (dGNP). This versatile dGNP is composed of bacteria recognizing parts and signal indicating parts, and can generate color signals while recognizing bacterial suspensions of different viabilities. This dGNP-based colorimetric assay has a fast response and can be accomplished within 10 min. Moreover, the proposed colorimetric method is able to measure bacterial viability between 0% and 100%. The method can also measure the viability of other bacteria including Staphylococcus aureus, Shewanella oneidensis, and Escherichia coli O157H7. Furthermore, the proposed method has acceptable recovery (95.5–104.5%) in measuring bacteria-spiked real samples. This study offers a simple and effective method for the rapid measurement of bacterial viability and therefore should have application potential in medical diagnosis, food safety, and environmental monitoring. A colorimetric method is proposed to measure waterborne bacterial viability by using a difunctional gold nanoprobe that can generate color signals while recognizing bacterial suspensions of different viabilities.![]()
Collapse
Affiliation(s)
- Junlin Wen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Jianbo Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Jialin Wu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Daigui He
- College of Artificial Intelligence, Guangdong Mechanical & Electrical Polytechnic Guangzhou 510550 P. R. China +86-20-36552429 +86-20-36552429
| |
Collapse
|
133
|
Sammarro Silva KJ, Sabogal-Paz LP. Analytical challenges and perspectives of assessing viability of Giardia muris cysts and Cryptosporidium parvum oocysts by live/dead simultaneous staining. ENVIRONMENTAL TECHNOLOGY 2022; 43:60-69. [PMID: 32463712 DOI: 10.1080/09593330.2020.1775712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Giardia and Cryptosporidium are pathogenic protozoa often present in the environment in their infective form(cysts and oocysts). These parasites are very resistant to disinfection, which makes them important target organisms in environmental quality monitoring and sanitation. Viability assessment provides an interpretation of cell inactivation, and it can be evaluated by membrane integrity as well as enzyme activity, using different staining methods. These are straightforward and adequate to laboratories that lack infrastructure for molecular-based technologies or animal infectivity tests. This study investigated simultaneous staining by a commercial live/dead kit, in order to assess viability of Cryptosporidium parvum oocysts and Giardia muris cysts, comparing it to propidium iodide (PI) incorporation, a common stain applied in viability estimation. Results suggested that, although the central hypothesis of one-panel visualization (α = 0.05) was met, simultaneous staining impaired (oo)cyst detection by immunofluorescence assay (IFA), which was found to be essential to enumeration, as the live/dead test led to poor (oo)cyst labelling or a 10-fold lower recovery when carried out concomitantly to IFA. As for the viability assessment itself, although red dye uptake occurred as expected by dead or weakened organisms, neither live G. muris cysts or C. parvum oocysts present any green fluorescence by esterase metabolism. This may have been caused by low enzyme activity in the infective form and/or wall thickness of these parasites. The results do not exclude the possibility of simultaneous fluorescence staining for protozoa, but it is a starting point for a broader analysis, that may consider, for instance, different incubation conditions.
Collapse
Affiliation(s)
- Kamila Jessie Sammarro Silva
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Lyda Patricia Sabogal-Paz
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
134
|
Biswas P, Datta HK, Dastidar P. Multi-NSAID-based Zn(II) coordination complex-derived metallogelators/metallogels as plausible multi-drug self-delivery systems. Chem Commun (Camb) 2021; 58:969-972. [PMID: 34939629 DOI: 10.1039/d1cc05334e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metallogelators/metallogels derived from a series of multi-NSAID-based Zn(II)-coordination complexes displaying anti-cancer and anti-bacterial properties were designed based on a structural rationale as plausible multi-drug self-delivery systems.
Collapse
Affiliation(s)
- Protap Biswas
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| | - Hemanta Kumar Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| | - Parthasarathi Dastidar
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| |
Collapse
|
135
|
Tatsuno I, Niimi Y, Tomita M, Terashima H, Hasegawa T, Matsumoto T. Mechanism of transient photothermal inactivation of bacteria using a wavelength-tunable nanosecond pulsed laser. Sci Rep 2021; 11:22310. [PMID: 34785646 PMCID: PMC8595719 DOI: 10.1038/s41598-021-01543-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/29/2021] [Indexed: 11/24/2022] Open
Abstract
There is a great demand for novel disinfection technologies to inactivate various pathogenic viruses and bacteria. In this situation, ultraviolet (UVC) disinfection technologies seem to be promising because biocontaminated air and surfaces are the major media for disease transmission. However, UVC is strongly absorbed by human cells and protein components; therefore, there are concerns about damaging plasma components and causing dermatitis and skin cancer. To avoid these concerns, in this study, we demonstrate that the efficient inactivation of bacteria is achieved by visible pulsed light irradiation. The principle of inactivation is based on transient photothermal heating. First, we provide experimental confirmation that extremely high temperatures above 1000 K can be achieved by pulsed laser irradiation. Evidence of this high temperature is directly confirmed by melting gold nanoparticles (GNPs). Inorganic GNPs are used because of their well-established thermophysical properties. Second, we show inactivation behaviour by pulsed laser irradiation. This inactivation behaviour cannot be explained by a simple optical absorption effect. We experimentally and theoretically clarify this inactivation mechanism based on both optical absorption and scattering effects. We find that scattering and absorption play an important role in inactivation because the input irradiation is inherently scattered by the bacteria; therefore, the dose that bacteria feel is reduced. This scattering effect can be clearly shown by a technique that combines stained Escherichia coli and site selective irradiation obtained by a wavelength tunable pulsed laser. By measuring Live/Dead fluorescence microscopy images, we show that the inactivation attained by the transient photothermal heating is possible to instantaneously and selectively kill microorganisms such as Escherichia coli bacteria. Thus, this method is promising for the site selective inactivation of various pathogenic viruses and bacteria in a safe and simple manner.
Collapse
Affiliation(s)
- Ichiro Tatsuno
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Yuna Niimi
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Makoto Tomita
- Department of Physics, Faculty of Science, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Hiroshi Terashima
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Tadao Hasegawa
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Takahiro Matsumoto
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan.
- Graduate School of Design and Architecture, Nagoya City University, Nagoya, 464-0083, Japan.
| |
Collapse
|
136
|
Kwon KY, Cheeseman S, Frias-De-Diego A, Hong H, Yang J, Jung W, Yin H, Murdoch BJ, Scholle F, Crook N, Crisci E, Dickey MD, Truong VK, Kim TI. A Liquid Metal Mediated Metallic Coating for Antimicrobial and Antiviral Fabrics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104298. [PMID: 34550628 DOI: 10.1002/adma.202104298] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/24/2021] [Indexed: 05/24/2023]
Abstract
Fabrics are widely used in hospitals and many other settings for bedding, clothing, and face masks; however, microbial pathogens can survive on surfaces for a long time, leading to microbial transmission. Coatings of metallic particles on fabrics have been widely used to eradicate pathogens. However, current metal particle coating technologies encounter numerous issues such as nonuniformity, processing complexity, and poor adhesion. To overcome these issues, an easy-to-control and straightforward method is reported to coat a wide range of fabrics by using gallium liquid metal (LM) particles to facilitate the deposition of liquid metal copper alloy (LMCu) particles. Gallium particles coated on the fabric provide nucleation sites for forming LMCu particles at room temperature via galvanic replacement of Cu2+ ions. The LM helps promote strong adhesion of the particles to the fabric. The presence of the LMCu particles can eradicate over 99% of pathogens (including bacteria, fungi, and viruses) within 5 min, which is significantly more effective than control samples coated with only Cu. The coating remains effective over multiple usages and against contaminated droplets and aerosols, such as those encountered in facemasks. This facile coating method is promising for generating robust antibacterial, antifungal, and antiviral fabrics and surfaces.
Collapse
Affiliation(s)
- Ki Yoon Kwon
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Samuel Cheeseman
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Alba Frias-De-Diego
- College of Veterinary Medicine, Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Haeleen Hong
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jiayi Yang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Woojin Jung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hong Yin
- Advanced Manufacturing and Fabrication, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Billy J Murdoch
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Frank Scholle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Elisa Crisci
- College of Veterinary Medicine, Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Vi Khanh Truong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
137
|
Maekawa K, Natsuda K, Hidaka M, Uematsu M, Soyama A, Hara T, Takatsuki M, Nagai K, Miura K, Eguchi S. Long-term culture of rat hepatocytes using human amniotic membrane as a culture substrate. Regen Ther 2021; 18:384-390. [PMID: 34660855 PMCID: PMC8488178 DOI: 10.1016/j.reth.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/28/2021] [Accepted: 09/12/2021] [Indexed: 11/17/2022] Open
Abstract
Amniotic membrane is attracting attention as a new material for regenerative medicine. We herein report that the culture of primary rat hepatocytes on human amniotic membrane maintained their morphology and their production of albumin for at least two months. Human amniotic membrane was collected during planned cesarean section and kept frozen until usage. Primary rat hepatocytes were plated on human amniotic membrane. Hepatocytes accumulated as colonies on amniotic membrane, and their rat albumin level was maintained for two months. Their three-dimensional structure on extracellular matrix, which is abundant in amniotic membranes might influence the maintenance of the hepatocyte-specific function. Long-term primary culture of rat hepatocyte on the human amniotic membrane was successful. Albumin production from primary isolated hepatocytes was maintained for the long term. Amniotic membrane provided the situation of 3D structure for isolated rat hepatocyte.
Collapse
Key Words
- AM, amniotic membrane
- Albumin synthesis
- DMSO, dimethyl sulfoxide
- EGF, epidermal growth factor
- ELISA, enzyme-linked immunosorbent assay
- FBS, fetal bovine serum
- HBV, hepatitis-B virus
- HCV, hepatitis-C virus
- HGF, hepatocyte growth factor
- HIV, human immunodeficiency virus
- HTLV-1, human T-cell leukemia virus type 1
- Human amniotic membrane
- LT, liver transplantation
- PBS, phosphate-buffered saline
- Rat hepatocyte
Collapse
Affiliation(s)
- Kyoichiro Maekawa
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koji Natsuda
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masafumi Uematsu
- Department of Ophthalmology and Visual Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takanobu Hara
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mitsuhisa Takatsuki
- Department of Digestive and General Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kazuhiro Nagai
- Transfusion and Cell Therapy Unit, Nagasaki University Hospital, Nagasaki, Japan
| | - Kiyonori Miura
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of BioMedical Sciences, Nagasaki, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
138
|
Chiang ELC, Lee S, Medriano CA, Li L, Bae S. Assessment of physiological responses of bacteria to chlorine and UV disinfection using a plate count method, flow cytometry and viability PCR. J Appl Microbiol 2021; 132:1788-1801. [PMID: 34637587 DOI: 10.1111/jam.15325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 11/28/2022]
Abstract
AIMS This study aimed to investigate the physiological responses of two gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and two gram-positive bacteria (Enterococcus faecalis and Bacillus sphaericus) to ultraviolet (UV) and chlorine disinfection. METHODS AND RESULTS Bacterial inactivation by UV and chlorine disinfection were evaluated with a plate count method for culturability, FCM and PMA-qPCR for membrane integrity and DyeTox13-qPCR for enzymatic activity, respectively. Both UV and chorine disinfection caused complete loss of culturability while membrane integrity remained intact after UV disinfection. Both DyeTox13-qPCR and PMA-qPCR showed high ΔCt values up to 8.9 after chlorine disinfection, indicating that both methods were able to distinguish non-treated from chlorine-treated cells. Although PMA-qPCR could not differentiate membrane integrity of cells on UV exposure, DyeTox13-qPCR showed significant differences in ΔCt values of 5.05 and 10.4 for gram-negative (E. coli) and gram-positive (Enterococcus) bacteria, respectively. However, DyeTox13-qPCR for gram-negative bacteria displayed relatively small differences in ΔCt values compared with gram-positive bacteria. CONCLUSION UV and chlorine disinfection led to changes in physiological state of gram-negative and gram-positive bacteria. Particularly, UV disinfection could induce active but non-culturable (ABNC) for gram-negative bacteria and dormant cell for gram-positive bacteria where intact cells no longer showed the enzymatic activity. SIGNIFICANCE AND IMPACT OF THE STUDY UV and chlorine are commonly used to disinfect water, food and fomites to inactivate pathogenic bacteria. However, a viable but non-culturable (VBNC) state of bacteria induced by disinfection may underestimate the health risks because of the potential resuscitation of VBNC cells. This study highlighted that bacteria could undergo different physiological (ABNC or dormant) states during UV and chlorine disinfection. In addition, viability PCR techniques could provide insight into the changes in physiological states during disinfection processes.
Collapse
Affiliation(s)
- Elaine L C Chiang
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Seunguk Lee
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Carl A Medriano
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Liyan Li
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Sungwoo Bae
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
139
|
Böllmann J, Martienssen M. Impact of pH conditions and the characteristics of two electrodialysis membranes on biofilm development under semi-realistic conditions. BIOFOULING 2021; 37:998-1005. [PMID: 34802350 DOI: 10.1080/08927014.2021.1999424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
The reuse of treated wastewater for irrigation is of increasing importance. The Ecosave farming project developed a new photocatalytic electrodialysis process for desalination and hygienization. However, membrane scaling significantly reduces filtration efficiency. This study investigated biofilm development on anion and cation exchange membranes at a wide pH range in pre-treated wastewater. Epifluorescence microscopic quantification of the biofilm by cell counts and surface coverage together with 16S rDNA gene copy numbers showed stronger biofilm development on the anion exchange membrane (AEM) compared with the cation exchange membrane (CEM) with up to 105 cells mm-2 and 20% surface coverage after three weeks. As the AEM biofilm developed best in neutral and a slightly alkaline pH, the CEM was colonized preferably at alkaline conditions. Extreme pH conditions strongly inhibited biofilm growth, which might help to minimize the maintenance effort by creating those conditions during the operation of the dialysis cell itself.
Collapse
Affiliation(s)
- Jörg Böllmann
- Biotechnology of Water Treatment, Brandenburgische Technische Universität Cottbus-Senftenberg, Cottbus, Germany
| | - Marion Martienssen
- Biotechnology of Water Treatment, Brandenburgische Technische Universität Cottbus-Senftenberg, Cottbus, Germany
| |
Collapse
|
140
|
Park KH, Sun PF, Kang EH, Han GD, Kim BJ, Jang Y, Lee SH, Shim JH, Park HD. Photocatalytic anti-biofouling performance of nanoporous ceramic membranes treated by atomic layer deposited ZnO. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
141
|
Negishi N, Inaba T, Miyazaki Y, Ishii G, Yang Y, Koura S. Aqueous mechano-bactericidal action of acicular aragonite crystals. Sci Rep 2021; 11:19218. [PMID: 34584148 PMCID: PMC8478985 DOI: 10.1038/s41598-021-98797-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023] Open
Abstract
Nanoneedle structures on dragonfly and cicada wing surfaces or black silicon nanoneedles demonstrate antibacterial phenomena, namely mechano-bactericidal action. These air-exposed, mechano-bactericidal surfaces serve to destroy adherent bacteria, but their bactericidal action in the water is no precedent to report. Calcium carbonate easily accumulates on solid surfaces during long-term exposure to hard water. We expect that aragonite nanoneedles, in particular, which grow on TiO2 during the photocatalytic treatment of calcium-rich groundwater, exhibit mechano-bactericidal action against bacteria in water. Here, we showed that acicular aragonite modified on TiO2 ceramics prepared from calcium bicarbonate in mineral water by photocatalysis exhibits mechanical bactericidal activity against E. coli in water. Unmodified, calcite-modified and aragonite-modified TiO2 ceramics were exposed to water containing E. coli (in a petri dish), and their bactericidal action over time was investigated under static and agitated conditions. The surfaces of the materials were observed by scanning electron microscopy, and the live/dead bacterial cells were observed by confocal laser scanning microscopy. As a result, the synergistic bactericidal performance achieved by mechano-bactericidal action and photocatalysis was demonstrated. Aragonite itself has a high biological affinity for the human body different from the other whisker-sharpen nanomaterials, therefore, the mechano-bactericidal action of acicular aragonite in water is expected to inform the development of safe water purification systems for use in developing countries.
Collapse
Affiliation(s)
- Nobuaki Negishi
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, 305-8569, Japan.
| | - Tomohiro Inaba
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, 305-8569, Japan
| | - Yukari Miyazaki
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, 305-8569, Japan
| | - Genki Ishii
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, 305-8569, Japan
- Department of Applied Chemistry, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, 275-0016, Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Setsuko Koura
- Department of Applied Chemistry, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, 275-0016, Japan
| |
Collapse
|
142
|
Chen J, Wang X, Wang S, Chen C, Zhang W, Zhang Y. Ultra-Rapid Drug Susceptibility Testing for Klebsiella pneumoniae Clinical Isolates in 60 Min by SYBR Green I/Propidium Iodide Viability Assay. Front Microbiol 2021; 12:694522. [PMID: 34512572 PMCID: PMC8431398 DOI: 10.3389/fmicb.2021.694522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022] Open
Abstract
Background We aimed to optimize and validate the drug susceptibility test (DST) assay by SYBR Green I/PI (SG-PI) method using a panel of 89 Klebsiella pneumoniae clinical isolates in comparison with the conventional DST method to three most important antibiotics used for treatment of this bacterial infection, including imipenem, cefmetazole, and gentamicin. Methods By staining with SYBR Green I and PI dyes, green fluorescence and red fluorescence, which linearly correlated with the percentages of live and dead or membrane damaged cells, respectively, were used to produce two standard curves to calculate the relative cell membrane impermeable rates for each log and stationary phase cultures. Stationary phase K. pneumoniae cells were used in imipenem and cefmetazole SG-PI DST assay whereas log phase cells were used in the gentamicin assay. The conventional broth microdilution method was used as a gold standard for DST for comparison. Results Data showed that after antibiotic treatment for 30–60 min, the antibiotic-resistant K. pneumoniae strains had significantly higher numbers of surviving cells than the susceptible strains at different concentrations of imipenem, cefmetazole, and gentamicin, where the average relative membrane impermeable rates were 88.5, 92.5, and 103.8% for resistant clinical strains, respectively, and 9.1, 49.3, and 71.5% for susceptible strains, respectively. Overall, the total concordances between the ultra-rapid SG-PI method and conventional minimal inhibitory concentration assay in diagnosing imipenem, cefmetazole and gentamicin resistance were high and were 96.6% (86/89), 95.4% (83/87), and 95.5% (85/89), respectively. Conclusion We demonstrate that our novel SG-PI assay can accurately and stably detect resistance to different antibiotics in clinical isolates of K. pneumoniae in an ultra-fast manner in 60–90 min.
Collapse
Affiliation(s)
- Jiazhen Chen
- Shanghai Key Laboratory Infectious Diseases and Biosafety Emergency Response, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuyang Wang
- Shanghai Key Laboratory Infectious Diseases and Biosafety Emergency Response, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shiyong Wang
- Shanghai Key Laboratory Infectious Diseases and Biosafety Emergency Response, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Chen
- Shanghai Key Laboratory Infectious Diseases and Biosafety Emergency Response, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Shanghai Key Laboratory Infectious Diseases and Biosafety Emergency Response, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Zhang
- Shanghai Key Laboratory Infectious Diseases and Biosafety Emergency Response, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
143
|
Kang HK, Park J, Seo CH, Park Y. PEP27-2, a Potent Antimicrobial Cell-Penetrating Peptide, Reduces Skin Abscess Formation during Staphylococcus aureus Infections in Mouse When Used in Combination with Antibiotics. ACS Infect Dis 2021; 7:2620-2636. [PMID: 34251811 DOI: 10.1021/acsinfecdis.0c00894] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PEP27, a 27-amino acid (aa) peptide secreted by Streptococcus pneumoniae, is an autolytic peptide that functions as a major virulence factor. To develop a clinically applicable antimicrobial peptide (AMP), we designed PEP27 analogs with Trp substitutions to enhance its antimicrobial activity compared to that of PEP27. Particularly, PEP27-2 showed strong antimicrobial activity against a wide variety of bacteria, including multidrug-resistant (MDR) bacteria. It was found that the antimicrobial activity of PEP27-2 was increased by substituting Trp for the aa at the middle position of PEP27. We found that PEP27-2 acts as an effective cell-penetrating peptide in bacterial and mammalian cells. Here, we proved that subcutaneous infection with MDR Staphylococcus aureus induced skin lesions such as skeletal muscle damage, deep inflammation, and necrosis of the overlaying dermis in mice. Combination treatment with antibiotics revealed synergistic effects, remarkably reducing abscess size and improving the bacteria removal rate from the infection site. Moreover, PEP27-2-antibiotic combination treatment reduced inflammation, lowering levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, inducible NO synthase (iNOS), and cyclooxygenase (COX-2) in skin abscess tissue. The results suggest that the PEP27-2 peptide is a promising therapeutic option for combating MDR bacterial strains by enhancing antibiotic penetration and protecting against MDR bacteria.
Collapse
Affiliation(s)
- Hee Kyoung Kang
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea
| | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju 32588, Korea
| | - Chang Ho Seo
- Department of Bioinformatics, Kongju National University, Kongju 32588, Korea
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea
- Research Center for Proteineous Materials (RCPM), Chosun University, Gwangju 61452, Korea
| |
Collapse
|
144
|
Survival of Escherichia coli and Listeria innocua on Lettuce after Irrigation with Contaminated Water in a Temperate Climate. Foods 2021; 10:foods10092072. [PMID: 34574181 PMCID: PMC8468451 DOI: 10.3390/foods10092072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/20/2022] Open
Abstract
Microbial disease outbreaks related to fresh produce consumption, including leafy green vegetables, have increased in recent years. Where contamination occurs, pathogen persistence may represent a risk for consumers' health. This study analysed the survival of E. coli and L. innocua on lettuce plants watered with contaminated irrigation water via a single irrigation event and within stored irrigation water. Separate lettuce plants (Lactuca sativa var. capitata) were irrigated with water spiked with Log10 7 cfu/mL of each of the two strains and survival assessed via direct enumeration, enrichment and qPCR. In parallel, individual 20 L water microcosms were spiked with Log10 7 cfu/mL of the individual strains and sampled at similar time points. Both strains were observed to survive on lettuce plants up to 28 days after inoculation. Direct quantification by culture methods showed a Log10 4 decrease in the concentration of E. coli 14 days after inoculation, and a Log10 3 decrease in the concentration of L. innocua 10 days after inoculation. E. coli was detected in water samples up to 7 days after inoculation and L. innocua was detected up to 28 days by direct enumeration. Both strains were recovered from enriched samples up to 28 days after inoculation. These results demonstrate that E. coli and L. innocua strains are able to persist on lettuce after a single contamination event up until the plants reach a harvestable state. Furthermore, the persistence of E. coli and L. innocua in water for up to 28 days after inoculation illustrates the potential for multiple plant contamination events from stored irrigation water, emphasising the importance of ensuring that irrigation water is of a high quality.
Collapse
|
145
|
EpicPCR 2.0: Technical and Methodological Improvement of a Cutting-Edge Single-Cell Genomic Approach. Microorganisms 2021; 9:microorganisms9081649. [PMID: 34442728 PMCID: PMC8399275 DOI: 10.3390/microorganisms9081649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022] Open
Abstract
EpicPCR (Emulsion, Paired Isolation and Concatenation PCR) is a recent single-cell genomic method based on a fusion-PCR allowing us to link a functional sequence of interest to a 16S rRNA gene fragment and use the mass sequencing of the resulting amplicons for taxonomic assignment of the functional sequence-carrying bacteria. Although it is interesting because it presents the highest efficiency for assigning a bacterial host to a marker, epicPCR remains a complex multistage procedure with technical difficulties that may easily impair the approach depth and quality. Here, we described how to adapt epicPCR to new gene targets and environmental matrices while identifying the natural host range of SXT/R391 integrative and conjugative elements in water microbial communities from the Meurthe River (France). We notably show that adding a supplementary PCR step allowed us to increase the amplicon yield and thus the number of reads obtained after sequencing. A comparison of operational taxonomic unit (OTU) identification approaches when using biological and technical replicates demonstrated that, although OTUs can be validated when obtained from three out of three technical replicates, up to now, results obtained from two or three biological replicates give a similar and even a better confidence level in OTU identification, while allowing us to detect poorly represented SXT/R391 hosts in microbial communities.
Collapse
|
146
|
Sharma S, Compant S, Franken P, Ruppel S, Ballhausen MB. It Takes Two to Tango: A Bacterial Biofilm Provides Protection against a Fungus-Feeding Bacterial Predator. Microorganisms 2021; 9:microorganisms9081566. [PMID: 34442645 PMCID: PMC8398733 DOI: 10.3390/microorganisms9081566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 11/23/2022] Open
Abstract
Fungus-bacterium interactions are widespread, encompass multiple interaction types from mutualism to parasitism, and have been frequent targets for microbial inoculant development. In this study, using in vitro systems combined with confocal laser scanning microscopy and real-time quantitative PCR, we test whether the nitrogen-fixing bacterium Kosakonia radicincitans can provide protection to the plant-beneficial fungus Serendipita indica, which inhabits the rhizosphere and colonizes plants as an endophyte, from the fungus-feeding bacterium Collimonas fungivorans. We show that K. radicincitans can protect fungal hyphae from bacterial feeding on solid agar medium, with probable mechanisms being quick hyphal colonization and biofilm formation. We furthermore find evidence for different feeding modes of K. radicincitans and C. fungivorans, namely “metabolite” and “hyphal feeding”, respectively. Overall, we demonstrate, to our knowledge, the first evidence for a bacterial, biofilm-based protection of fungal hyphae against attack by a fungus-feeding, bacterial predator on solid agar medium. Besides highlighting the importance of tripartite microbial interactions, we discuss implications of our results for the development and application of microbial consortium-based bioprotectants and biostimulants.
Collapse
Affiliation(s)
- Shubhangi Sharma
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
| | - Stéphane Compant
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430 Tulln, Austria;
| | - Philipp Franken
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 24, 07743 Jena, Germany
| | - Silke Ruppel
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
| | - Max-Bernhard Ballhausen
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
- Correspondence:
| |
Collapse
|
147
|
Yu JH, Xu XF, Hou W, Meng Y, Huang MY, Lin J, Chen WM. Synthetic cajaninstilbene acid derivatives eradicate methicillin-resistant Staphylococcus aureus persisters and biofilms. Eur J Med Chem 2021; 224:113691. [PMID: 34274830 DOI: 10.1016/j.ejmech.2021.113691] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022]
Abstract
The Staphylococcus aureus can switch to a transient genotype-invariant dormancy, known as a persister, to survive treatment with high doses of antibiotics. This transient persister is an important reason underlying its resistance. There is an urgent need to find new antibacterial agents capable of eradicating methicillin-resistant S. aureus (MRSA) persisters. In this study, 37 new derivatives of cajaninstilbene acid (CSA) were designed and synthesized, and their biological activity against MRSA persisters was evaluated. Most of the newly synthesized derivatives exhibit more potent antimicrobial properties against S. aureus and MRSA than CSA itself, and 23 of the 37 derivatives show a tendency to eradicate MRSA persisters. A representative compound (A6) was demonstrated to target bacterial cell membranes. It eradicated the adherent biofilm of MRSA in a concentration dependent manner, and showed a synergistic antibacterial effect with piperacilin. In a model mouse abscess caused by MRSA persisters, A6 effectively reduced the bacterial load in vivo. These results indicate that A6 is a potential candidate for treatment of MRSA persister infections.
Collapse
Affiliation(s)
- Jia-Hui Yu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Xiao-Fang Xu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Wen Hou
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Ying Meng
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Mei-Yan Huang
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jing Lin
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Wei-Min Chen
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
148
|
Wang L, Ye C, Guo L, Chen C, Kong X, Chen Y, Shu L, Wang P, Yu X, Fang J. Assessment of the UV/Chlorine Process in the Disinfection of Pseudomonas aeruginosa: Efficiency and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9221-9230. [PMID: 34138551 DOI: 10.1021/acs.est.1c00645] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
UV irradiation and chlorination have been widely used for water disinfection. However, there are some limitations, such as the risk of generating viable but nonculturable bacteria and bacteria reactivation when using UV irradiation or chlorination alone. This study comprehensively evaluated the feasibility of the UV/chlorine process in drinking water disinfection, and Pseudomonas aeruginosa was selected as the target microorganism. The number of culturable cells was effectively reduced by more than 5 orders of magnitude (5-log10) after UV, chlorine, and UV/chlorine treatments. However, intact and VBNC cells were detected at 103 to 104 cells/mL after UV and chlorine treatments, whereas they were undetectable after UV/chlorine treatment due to the primary contribution of reactive chlorine species (Cl•, Cl2•-, and ClO•). After UV/chlorine treatment, the metabolic activity determined using single cell Raman spectroscopy was much lower than that after UV. The level of toxic opr gene in P. aeruginosa decreased by more than 99% after UV/chlorine treatment. Importantly, bacterial dark reactivation was completely suppressed by UV/chlorine treatment but not UV or chlorination. This study suggests that the UV/chlorine treatment can completely damage bacteria and is promising for pathogen inactivation to overcome the limitations of UV and chlorine treatments alone.
Collapse
Affiliation(s)
- Liping Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, P. R. China
| | - Lizheng Guo
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Chunyan Chen
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Xiujuan Kong
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yaoqing Chen
- School of Public Health, Shenzhen, Sun Yat-Sen University, Shenzhen 510000, P. R. China
| | - Longfei Shu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Peng Wang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, P.R. China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, P. R. China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
149
|
Pawlak A, Belbekhouche S. Controlling the growth of Escherichia coli by layer-by-layer encapsulation. Colloids Surf B Biointerfaces 2021; 206:111950. [PMID: 34218012 DOI: 10.1016/j.colsurfb.2021.111950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 11/19/2022]
Abstract
Escherichia coli is one of the most common commensal aerobic bacteria in the gut microbiota of humans (and other mammals). Nevertheless, if left free to proliferate, it can induce a large range of diseases from diarrhoea to extra-intestinal diseases. In recent years, this bacterium had become increasingly resistant to antibiotics. It is therefore essential to implement new approaches able to maintain both bacterial viability and to control their proliferation. In this context, we developed a process to encapsulate Escherichia coli in polymer shells. We took advantage of the fact that this bacterium has a negatively charged surface and modified it via a layer-by-layer process, i.e. with oppositely charged polyelectrolyte pairs (namely chitosan as the polycation and alginate or dextran sulfate as polyanion). We successfully demonstrate the controlled coating of the bacterial surface via zeta potential measurement, the viability of the encapsulated bacteria and a delay in growth due to the multilayer coating. This delay was dependent on the number of polyelectrolyte layers.
Collapse
Affiliation(s)
- André Pawlak
- Institut National de la Santé et de la Recherche Médicale (INSERM), IMRB U955, Créteil, F-94010, France; Université Paris Est, Faculté de Médecine, UMRS 955, Créteil, F-94010, France
| | - Sabrina Belbekhouche
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320, Thiais, France.
| |
Collapse
|
150
|
Analysis of Pathogenic Bacterial and Yeast Biofilms Using the Combination of Synchrotron ATR-FTIR Microspectroscopy and Chemometric Approaches. Molecules 2021; 26:molecules26133890. [PMID: 34202224 PMCID: PMC8271424 DOI: 10.3390/molecules26133890] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 01/04/2023] Open
Abstract
Biofilms are assemblages of microbial cells, extracellular polymeric substances (EPS), and other components extracted from the environment in which they develop. Within biofilms, the spatial distribution of these components can vary. Here we present a fundamental characterization study to show differences between biofilms formed by Gram-positive methicillin-resistant Staphylococcus aureus (MRSA), Gram-negative Pseudomonas aeruginosa, and the yeast-type Candida albicans using synchrotron macro attenuated total reflectance-Fourier transform infrared (ATR-FTIR) microspectroscopy. We were able to characterise the pathogenic biofilms' heterogeneous distribution, which is challenging to do using traditional techniques. Multivariate analyses revealed that the polysaccharides area (1200-950 cm-1) accounted for the most significant variance between biofilm samples, and other spectral regions corresponding to amides, lipids, and polysaccharides all contributed to sample variation. In general, this study will advance our understanding of microbial biofilms and serve as a model for future research on how to use synchrotron source ATR-FTIR microspectroscopy to analyse their variations and spatial arrangements.
Collapse
|