101
|
Moore SA, Surgey EGE, Cadwgan AM. Malaria vaccines: where are we and where are we going? THE LANCET. INFECTIOUS DISEASES 2002; 2:737-43. [PMID: 12467689 DOI: 10.1016/s1473-3099(02)00451-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Malaria is still killing over one million people each year and its incidence is increasing. The need for an effective vaccine is greater than ever. A major difficulty with vaccine research is that the malaria parasite presents thousands of antigens to the human immune system that vary throughout its life cycle. Identifying those that may prove to be vaccine targets is complicated and time consuming. Most vaccines are targeted at individual stages of the malaria life cycle, although it is likely that only the development of a multistage vaccine will offer complete protection to both visitors to, and residents of, a malaria-endemic area. With the development of a successful vaccine other issues such as cost, distribution, education, and compliance will have to be addressed. This review describes some of the current vaccine candidates for immunising against malaria.
Collapse
|
102
|
Matuschewski K, Ross J, Brown SM, Kaiser K, Nussenzweig V, Kappe SHI. Infectivity-associated changes in the transcriptional repertoire of the malaria parasite sporozoite stage. J Biol Chem 2002; 277:41948-53. [PMID: 12177071 DOI: 10.1074/jbc.m207315200] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Injection of Plasmodium salivary gland sporozoites into the vertebrate host by Anopheles mosquitoes initiates malaria infection. Sporozoites develop within oocysts in the mosquito midgut and then enter and mature in the salivary glands. Although morphologically similar, oocyst sporozoites and salivary gland sporozoites differ strikingly in their infectivity to the mammalian host, ability to elicit protective immune responses, and cell motility. Here, we show that differential gene expression coincides with these dramatic phenotypic differences. Using suppression subtractive cDNA hybridization we identified highly up-regulated mRNAs transcribed from 30 distinct genes in salivary gland sporozoites. Of those genes, 29 are not significantly expressed in the parasite's blood stages. The most frequently recovered transcript encodes a protein kinase. Developmental up-regulation of specific mRNAs in the infectious transmission stage of Plasmodium indicates that their translation products may have unique roles in hepatocyte infection and/or development of liver stages.
Collapse
Affiliation(s)
- Kai Matuschewski
- Michael Heidelberger Division, Department of Pathology, New York University School of Medicine, New York 10016, USA.
| | | | | | | | | | | |
Collapse
|
103
|
Abstract
Our understanding of the intricate interactions between the malarial parasite and the mosquito vector is complicated both by the number and diversity of parasite and vector species, and by the experimental inaccessibility of phenomena under investigation. Steady developments in techniques to study the parasite in the mosquito have recently been augmented by methods to culture in their entirety the sporogonic stages of some parasite species. These, together with the new saturation technologies, and genetic transformation of both parasite and vector will permit penetrating studies into an exciting and largely unknown area of parasite-host interactions, an understanding of which must result in the development of new intervention strategies. This microreview highlights key areas of current basic molecular interest, and identifies numerous lacunae in our knowledge that must be filled if we are to make rational decisions for future control strategies. It will conclude by trying to explain why in the opinion of this reviewer understanding malaria-mosquito interactions may be critical to our future attempts to limit a disease of growing global importance.
Collapse
Affiliation(s)
- R E Sinden
- Biological Sciences Department, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK.
| |
Collapse
|
104
|
Moreira LA, Ito J, Ghosh A, Devenport M, Zieler H, Abraham EG, Crisanti A, Nolan T, Catteruccia F, Jacobs-Lorena M. Bee venom phospholipase inhibits malaria parasite development in transgenic mosquitoes. J Biol Chem 2002; 277:40839-43. [PMID: 12167627 DOI: 10.1074/jbc.m206647200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Malaria kills millions of people every year, and new control measures are urgently needed. The recent demonstration that (effector) genes can be introduced into the mosquito germ line to diminish their ability to transmit the malaria parasite offers new hope toward the fight of the disease (Ito, J., Ghosh, A., Moreira, L. A., Wimmer, E. A. & Jacobs-Lorena, M. (2002) Nature, 417, 452-455). Because of the high selection pressure that an effector gene imposes on the parasite population, development of resistant strains is likely to occur. In search of additional antiparasitic effector genes, we have generated transgenic Anopheles stephensi mosquitoes that express the bee venom phospholipase A2 (PLA2) gene from the gut-specific and blood-inducible Anopheles gambiae carboxypeptidase (AgCP) promoter. Northern blot analysis indicated that the PLA2 mRNA is specifically expressed in the guts of transgenic mosquitoes with peak expression at approximately 4 h after blood ingestion. Western blot and immunofluorescence analyses detected PLA2 protein in the midgut epithelia of transgenic mosquitoes from 8 to 24 h after a blood meal. Importantly, transgene expression reduced Plasmodium berghei oocyst formation by 87% on average and greatly impaired transmission of the parasite to naive mice. The results indicate that PLA2 may be used as an additional effector gene to block the development of the malaria parasite in mosquitoes.
Collapse
Affiliation(s)
- Luciano A Moreira
- Department of Genetics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4955, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Labie D. Des moustiques capables d’interrompre le cycle du Plasmodium. Med Sci (Paris) 2002. [DOI: 10.1051/medsci/20021810936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
106
|
Ghosh AK, Moreira LA, Jacobs-Lorena M. Plasmodium-mosquito interactions, phage display libraries and transgenic mosquitoes impaired for malaria transmission. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:1325-1331. [PMID: 12225923 DOI: 10.1016/s0965-1748(02)00095-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Malaria continues to kill millions of people every year and new strategies to combat this disease are urgently needed. Recent advances in the study of the mosquito vector and its interactions with the malaria parasite suggest that it may be possible to genetically manipulate the mosquito in order to reduce its vectorial capacity. Here we review the advances made to date in four areas: (1) the introduction of foreign genes into the mosquito germ line; (2) the characterization of tissue-specific promoters; (3) the identification of gene products that block development of the parasite in the mosquito; and (4) the generation of transgenic mosquitoes impaired for malaria transmission. While initial results show great promise, the problem of how to spread the blocking genes through wild mosquito populations remains to be solved.
Collapse
Affiliation(s)
- A K Ghosh
- Department of Genetics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4955, USA
| | | | | |
Collapse
|
107
|
Al-Olayan EM, Williams GT, Hurd H. Apoptosis in the malaria protozoan, Plasmodium berghei: a possible mechanism for limiting intensity of infection in the mosquito. Int J Parasitol 2002; 32:1133-43. [PMID: 12117496 DOI: 10.1016/s0020-7519(02)00087-5] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Death by apoptosis regulates cell numbers in metazoan tissues and it is mediated by activation of caspases and results in characteristic morphological and biochemical changes. We report here that the malaria protozoan, Plasmodium berghei, exhibits features typical of metazoan apoptotic cells including condensation of chromatin, fragmentation of the nuclear DNA and movement of phosphatidylserine from the inner to the outer lamellae of the cell membrane. In addition, proteins with caspase-like activity were identified in the cytoplasm of the ookinete suggesting that the cellular mechanism of cell death may be similar to that of multicellular eukaryotes. Our data show that more than 50% of the mosquito midgut stages of the parasite die naturally by apoptosis before gut invasion. Cell death was prevented by a caspase inhibitor, treatment resulting in a doubling of parasite intensity. All these features also occur in vitro. Cell suicide thus plays a major and hitherto unrecognised role in controlling parasite populations and could be a novel target for malaria control strategies.
Collapse
Affiliation(s)
- Ebtesam M Al-Olayan
- Centre for Applied Entomology and Parasitology, Keele University, Staffordshire ST5 5BG, UK
| | | | | |
Collapse
|
108
|
|
109
|
Ito J, Ghosh A, Moreira LA, Wimmer EA, Jacobs-Lorena M. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 2002; 417:452-5. [PMID: 12024215 DOI: 10.1038/417452a] [Citation(s) in RCA: 336] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Malaria is estimated to cause 0.7 to 2.7 million deaths per year, but the actual figures could be substantially higher owing to under-reporting and difficulties in diagnosis. If no new control measures are developed, the malaria death toll is projected to double in the next 20 years. Efforts to control the disease are hampered by drug resistance in the Plasmodium parasites, insecticide resistance in mosquitoes, and the lack of an effective vaccine. Because mosquitoes are obligatory vectors for malaria transmission, the spread of malaria could be curtailed by rendering them incapable of transmitting parasites. Many of the tools required for the genetic manipulation of mosquito competence for malaria transmission have been developed. Foreign genes can now be introduced into the germ line of both culicine and anopheline mosquitoes, and these transgenes can be expressed in a tissue-specific manner. Here we report on the use of such tools to generate transgenic mosquitoes that express antiparasitic genes in their midgut epithelium, thus rendering them inefficient vectors for the disease. These findings have significant implications for the development of new strategies for malaria control.
Collapse
Affiliation(s)
- Junitsu Ito
- Case Western Reserve University, Department of Genetics, 10900 Euclid Avenue, Ohio 44106-4955, USA
| | | | | | | | | |
Collapse
|
110
|
Kariu T, Yuda M, Yano K, Chinzei Y. MAEBL is essential for malarial sporozoite infection of the mosquito salivary gland. J Exp Med 2002; 195:1317-23. [PMID: 12021311 PMCID: PMC2193753 DOI: 10.1084/jem.20011876] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Malarial sporozoites mature in the oocysts formed in the mosquito midgut wall and then selectively invade the salivary glands, where they wait to be transmitted to the vertebrate host via mosquito bite. Invasion into the salivary gland has been thought to be mediated by specific ligand-receptor interactions, but the molecules involved in these interactions remain unknown. MAEBL is a single transmembrane-like protein that is structurally related to merozoite adhesive proteins. We found MAEBL of the rodent malaria parasite, Plasmodium berghei, to be specifically produced by the sporozoites in the oocyst and localized in their micronemes, which are secretory organelles involved in malarial parasite invasion into the host cell. A targeted disruption experiment of the P. berghei MAEBL gene revealed that it was essential for sporozoite infection of the salivary gland and was involved in the attachment to the salivary gland surface. In contrast, the disruption of the MAEBL gene did not affect sporozoite motility in vitro nor infectivity to the vertebrate host. These results suggest that P. berghei MAEBL is a sporozoite attachment protein that participates in specific binding to and infection of the mosquito salivary gland.
Collapse
Affiliation(s)
- Tohru Kariu
- Department of Medical Zoology, Mie University School of Medicine, Edobashi, Tsu, 514-0001, Japan
| | | | | | | |
Collapse
|
111
|
Al-Olayan EM, Beetsma AL, Butcher GA, Sinden RE, Hurd H. Complete development of mosquito phases of the malaria parasite in vitro. Science 2002; 295:677-9. [PMID: 11809973 DOI: 10.1126/science.1067159] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Methods for reproducible in vitro development of the mosquito stages of malaria parasites to produce infective sporozoites have been elusive for over 40 years. We have cultured gametocytes of Plasmodium berghei through to infectious sporozoites with efficiencies similar to those recorded in vivo and without the need for salivary gland invasion. Oocysts developed extracellularly in a system whose essential elements include co-cultured Drosophila S2 cells, basement membrane matrix, and insect tissue culture medium. Sporozoite production required the presence of para-aminobenzoic acid. The entire life cycle of P. berghei, a useful model malaria parasite, can now be achieved in vitro.
Collapse
Affiliation(s)
- Ebtesam M Al-Olayan
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK
| | | | | | | | | |
Collapse
|
112
|
Abstract
Genome projects and associated technologies are now being established for mosquito species that are vectors of human disease. The recent announcement of an award by the National Institute of Allergy and Infectious Diseases (NIAID) to Celera Genomics to sequence the Anopheles gambiae genome will further accelerate the completion of the sequencing of this genome. Completion of the An. gambiae sequence will mean that the genomes of all three organisms involved in the transmission of falciparum malaria--the mosquito, the parasite, and the human--will have been sequenced. This will greatly facilitate the identification of genes and pathways involved in the transmission of malaria. The recent genetic transformation of An. gambiae with the piggyBac transposable element and the transformation of another important malarial vector, Anopheles stephensi using the Minos element, now provide researchers with powerful tools with which to genetically manipulate these medically important vector species. Here we review the recent progress made in the extension of contemporary tools of modern genetics and genomics into these medically important insects.
Collapse
Affiliation(s)
- Peter W Atkinson
- Department of Entomology, University of California, Riverside, California 92521, USA.
| | | |
Collapse
|
113
|
Ghosh AK, Ribolla PE, Jacobs-Lorena M. Targeting Plasmodium ligands on mosquito salivary glands and midgut with a phage display peptide library. Proc Natl Acad Sci U S A 2001; 98:13278-81. [PMID: 11687659 PMCID: PMC60861 DOI: 10.1073/pnas.241491198] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite vast efforts and expenditures in the past few decades, malaria continues to kill millions of persons every year, and new approaches for disease control are urgently needed. To complete its life cycle in the mosquito, Plasmodium, the causative agent of malaria, has to traverse the epithelia of the midgut and salivary glands. Although strong circumstantial evidence indicates that parasite interactions with the two organs are specific, hardly any information is available about the interacting molecules. By use of a phage display library, we identified a 12-aa peptide--salivary gland and midgut peptide 1 (SM1)--that binds to the distal lobes of the salivary gland and to the luminal side of the midgut epithelium, but not to the midgut surface facing the hemolymph or to ovaries. The coincidence of the tissues with which parasites and the SM1 peptide interact suggested that the parasite and peptide recognize the same surface ligand. In support of this hypothesis, the SM1 peptide strongly inhibited Plasmodium invasion of salivary gland and midgut epithelia. These experiments suggest a new strategy for the genetic manipulation of mosquito vectorial capacity.
Collapse
Affiliation(s)
- A K Ghosh
- Department of Genetics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4955, USA
| | | | | |
Collapse
|
114
|
Vizioli J, Bulet P, Hoffmann JA, Kafatos FC, Müller HM, Dimopoulos G. Gambicin: a novel immune responsive antimicrobial peptide from the malaria vector Anopheles gambiae. Proc Natl Acad Sci U S A 2001; 98:12630-5. [PMID: 11606751 PMCID: PMC60105 DOI: 10.1073/pnas.221466798] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2001] [Indexed: 11/18/2022] Open
Abstract
A novel mosquito antimicrobial peptide, gambicin, and the corresponding gene were isolated in parallel through differential display-PCR, an expressed sequence tag (EST) project, and characterization of an antimicrobial activity in a mosquito cell line by reverse-phase chromatography. The 616-bp gambicin ORF encodes an 81-residue protein that is processed and secreted as a 61-aa mature peptide containing eight cysteines engaged in four disulfide bridges. Gambicin lacks sequence homology with other known proteins. Like other Anopheles gambiae antimicrobial peptide genes, gambicin is induced by natural or experimental infection in the midgut, fatbody, and hemocyte-like cell lines. Within the midgut, gambicin is predominantly expressed in the anterior part. Both local and systemic gambicin expression is induced during early and late stages of natural malaria infection. In vitro experiments showed that the 6.8-kDa mature peptide can kill both Gram-positive and Gram-negative bacteria, has a morphogenic effect on a filamentous fungus, and is marginally lethal to Plasmodium berghei ookinetes. An oxidized form of gambicin isolated from the cell line medium was more active against bacteria than the nonoxidized form from the same medium.
Collapse
Affiliation(s)
- J Vizioli
- Institut de Biologie Moléculaire et Cellulaire, 15 Rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
115
|
Garcia CR, Markus RP, Madeira L. Tertian and quartan fevers: temporal regulation in malarial infection. J Biol Rhythms 2001; 16:436-43. [PMID: 11669417 DOI: 10.1177/074873001129002114] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The periodicity in the development of Plasmodium parasites in infected animals, including man, has been known for almost 100 years. In turn, this periodicity is a consequence of the synchronous maturation of the parasite during its intracellular development. The cyclic fever that characterizes malarial infections is the outward manifestation of the parasite development. Until recently, little was known about the mechanisms by which parasite synchronicity is established and maintained. This review surveys the recent literature bearing on two main questions. (1) What are the mechanisms involved in the process of parasite synchronicity? (2) Do the circadian rhythms of the host interfere with the parasite cycle?
Collapse
Affiliation(s)
- C R Garcia
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Brazil.
| | | | | |
Collapse
|
116
|
Langer RC, Vinetz JM. Plasmodium ookinete-secreted chitinase and parasite penetration of the mosquito peritrophic matrix. Trends Parasitol 2001; 17:269-72. [PMID: 11378031 DOI: 10.1016/s1471-4922(01)01918-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Malaria transmission-blocking strategies aimed at disrupting parasite-mosquito interactions have the potential to make important contributions to global malaria control. It has been suggested that Plasmodium-secreted chitinase plays a crucial role in allowing the ookinete to initiate its invasion of the mosquito midgut, which suggests that this enzyme is a candidate target for blocking malaria transmission. In this review, the authors discuss Plasmodium chitinases from the molecular, biochemical and cell biology viewpoints. Future directions of study could involve developing strategies for interrupting the function of Plasmodium chitinases within the mosquito midgut, including transmission-blocking drugs or vaccines, or the development of chitinase-inhibitor-producing transgenic mosquitoes.
Collapse
Affiliation(s)
- R C Langer
- WHO Collaborating Center for Tropical Diseases, University of Texas Medical Branch, Keiller 2.138, 301 University Blvd, Galveston, TX 77555-0609, USA
| | | |
Collapse
|
117
|
Shao L, Devenport M, Jacobs-Lorena M. The peritrophic matrix of hematophagous insects. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2001; 47:119-125. [PMID: 11376458 DOI: 10.1002/arch.1042] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The peritrophic matrix (PM) is an extracellular envelope that lines the digestive tract of most insects. It is thought to play key roles in protecting insects from pathogens and facilitating digestion. Until recently, little information was available on the molecular composition of the PM. This review summarizes recent progress in the study of the PM from hematophagous insects, with emphasis on molecular and physiological aspects. Topics discussed include the presence of chitin and protein diversity in the PM, cloning and characterization of genes encoding PM proteins, PM permeability, and the role of the PM as a barrier for pathogens.
Collapse
Affiliation(s)
- L Shao
- Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4955, USA
| | | | | |
Collapse
|
118
|
Dimopoulos G, Müller HM, Levashina EA, Kafatos FC. Innate immune defense against malaria infection in the mosquito. Curr Opin Immunol 2001; 13:79-88. [PMID: 11154922 DOI: 10.1016/s0952-7915(00)00186-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Anopheles gambiae, the most important vector of malaria, employs its innate immune system in the fight against Plasmodium. This can affect the propagative capacity of Plasmodium in the vector and, in some cases, leads to total refractoriness to the parasite. The components operating in the mosquito's innate immune system and their potential relevance to antimalarial responses are being systematically dissected.
Collapse
Affiliation(s)
- G Dimopoulos
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | | | | | |
Collapse
|
119
|
Pandey SK, Naware NB, Trivedi P, Saxena AK. Molecular modeling and 3D-QSAR studies in 2-aziridinyl-and 2,3-bis(aziridinyl)-1,4-naphthoquinonyl sulfonate and acylate derivatives as potential antimalarial agents. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2001; 12:547-564. [PMID: 11813805 DOI: 10.1080/10629360108039834] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Malaria is still continuing to be one of the most dreadful diseases of the tropical countries particularly due to the development of resistance to the existing antimalarials. From observed, antimalarial activity of 2-aziridinyl- and 2,3-bis(aziridinyl)-1,4-naphthoquinonyl sulfonate and acylate derivatives acting through redox cycling mechanism, molecular modeling and three dimensional-quantitative structure activity relationship (3D-QSAR) studies have been carried out on a set of 63 compounds to identify important pharmacophors. Among several 3D-QSAR models generated, three models with correlation coefficient r > 0.82, match > 0.60 and chance = 0.00 have shown two common biophoric sites: one being the oxygen atom at position 1 of the naphthoquinone ring in terms of pi-population, charge and electron donating ability while the second being the center of the phenyl ring in terms of its 6pi-electrons. In addition to these sites, the models also share two common secondary sites: one positively contributing H-acceptor site while the second site contributing negatively in terms of steric refractivity. All these models showed good agreement between the experimental, calculated and predicted antimalarial activities.
Collapse
Affiliation(s)
- S K Pandey
- Medicinal Chemistry Division, Central Drug Research Institute, (CDRI) Chattar Manzil, Lucknow, India
| | | | | | | |
Collapse
|
120
|
Han YS, Thompson J, Kafatos FC, Barillas-Mury C. Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei: the time bomb theory of ookinete invasion of mosquitoes. EMBO J 2000; 19:6030-40. [PMID: 11080150 PMCID: PMC305834 DOI: 10.1093/emboj/19.22.6030] [Citation(s) in RCA: 287] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We present a detailed analysis of the interactions between Anopheles stephensi midgut epithelial cells and Plasmodium berghei ookinetes during invasion of the mosquito by the parasite. In this mosquito, P. berghei ookinetes invade polarized columnar epithelial cells with microvilli, which do not express high levels of vesicular ATPase. The invaded cells are damaged, protrude towards the midgut lumen and suffer other characteristic changes, including induction of nitric oxide synthase (NOS) expression, a substantial loss of microvilli and genomic DNA fragmentation. Our results indicate that the parasite inflicts extensive damage leading to subsequent death of the invaded cell. Ookinetes were found to be remarkably plastic, to secrete a subtilisin-like serine protease and the GPI-anchored surface protein Pbs21 into the cytoplasm of invaded cells, and to be capable of extensive lateral movement between cells. The epithelial damage inflicted is repaired efficiently by an actin purse-string-mediated restitution mechanism, which allows the epithelium to 'bud off' the damaged cells without losing its integrity. A new model, the time bomb theory of ookinete invasion, is proposed and its implications are discussed.
Collapse
Affiliation(s)
- Y S Han
- Colorado State University, Pathology Department, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|