101
|
Sachs JL, Skophammer RG, Bansal N, Stajich JE. Evolutionary origins and diversification of proteobacterial mutualists. Proc Biol Sci 2013; 281:20132146. [PMID: 24285193 DOI: 10.1098/rspb.2013.2146] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mutualistic bacteria infect most eukaryotic species in nearly every biome. Nonetheless, two dilemmas remain unresolved about bacterial-eukaryote mutualisms: how do mutualist phenotypes originate in bacterial lineages and to what degree do mutualists traits drive or hinder bacterial diversification? Here, we reconstructed the phylogeny of the hyperdiverse phylum Proteobacteria to investigate the origins and evolutionary diversification of mutualistic bacterial phenotypes. Our ancestral state reconstructions (ASRs) inferred a range of 34-39 independent origins of mutualist phenotypes in Proteobacteria, revealing the surprising frequency with which host-beneficial traits have evolved in this phylum. We found proteobacterial mutualists to be more often derived from parasitic than from free-living ancestors, consistent with the untested paradigm that bacterial mutualists most often evolve from pathogens. Strikingly, we inferred that mutualists exhibit a negative net diversification rate (speciation minus extinction), which suggests that mutualism evolves primarily via transitions from other states rather than diversification within mutualist taxa. Moreover, our ASRs infer that proteobacterial mutualist lineages exhibit a paucity of reversals to parasitism or to free-living status. This evolutionary conservatism of mutualism is contrary to long-standing theory, which predicts that selection should often favour mutants in microbial mutualist populations that exploit or abandon more slowly evolving eukaryotic hosts.
Collapse
Affiliation(s)
- Joel L Sachs
- Department of Biology, University of California, , Riverside, CA 92521, USA, Department of Plant Pathology and Microbiology, University of California, , Riverside, CA 92521, USA, Institute for Integrative Genome Biology, University of California, , Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
102
|
Friman VP, Ghoul M, Molin S, Johansen HK, Buckling A. Pseudomonas aeruginosa adaptation to lungs of cystic fibrosis patients leads to lowered resistance to phage and protist enemies. PLoS One 2013; 8:e75380. [PMID: 24069407 PMCID: PMC3777905 DOI: 10.1371/journal.pone.0075380] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/12/2013] [Indexed: 01/21/2023] Open
Abstract
Pathogenic life styles can lead to highly specialized interactions with host species, potentially resulting in fitness trade-offs in other ecological contexts. Here we studied how adaptation of the environmentally transmitted bacterial pathogen, Pseudomonas aeruginosa, to cystic fibrosis (CF) patients affects its survival in the presence of natural phage (14/1, ΦKZ, PNM and PT7) and protist (Tetrahymena thermophila and Acanthamoebae polyphaga) enemies. We found that most of the bacteria isolated from relatively recently intermittently colonised patients (1–25 months), were innately phage-resistant and highly toxic for protists. In contrast, bacteria isolated from long time chronically infected patients (2–23 years), were less efficient in both resisting phages and killing protists. Moreover, chronic isolates showed reduced killing of wax moth larvae (Galleria mellonella) probably due to weaker in vitro growth and protease expression. These results suggest that P. aeruginosa long-term adaptation to CF-lungs could trade off with its survival in aquatic environmental reservoirs in the presence of microbial enemies, while lowered virulence could reduce pathogen opportunities to infect insect vectors; factors that are both likely to result in poorer environmental transmission. From an applied perspective, phage therapy could be useful against chronic P. aeruginosa lung infections that are often characterized by multidrug resistance: chronic isolates were least resistant to phages and their poor growth will likely slow down the emergence of beneficial resistance mutations.
Collapse
Affiliation(s)
- Ville-Petri Friman
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Biosciences, University of Exeter, Penryn, United Kingdom
- * E-mail:
| | - Melanie Ghoul
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Søren Molin
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | | | - Angus Buckling
- Biosciences, University of Exeter, Penryn, United Kingdom
| |
Collapse
|
103
|
Sanada-Morimura S, Matsumura M, Noda H. Male killing caused by a Spiroplasma symbiont in the small brown planthopper, Laodelphax striatellus. J Hered 2013; 104:821-9. [PMID: 23975837 DOI: 10.1093/jhered/est052] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spiroplasma-mediated late male killing was found in the small brown planthopper, Laodelphax striatellus. Female-biased colonies (maternal lines, N = 4) were established from planthoppers collected in Taiwan and Japan. This sex ratio distortion was maternally inherited (sex ratio of total number of progenies [female:male]: 488:0 in F1, 198:7 in F2, 407:0 in F3; likelihood ratio test of all generations, P < 0.0001) and caused by male death during nymphal stages. The female-biased colonies were doubly infected with Spiroplasma and Wolbachia, and the non-biased colonies were infected solely with Wolbachia. Antibiotic treatment resulted in a normal sex ratio, strongly suggesting that bacteria are manipulating host reproduction. Spiroplasma-singly-infected planthopper colonies created by the antibiotic treatment produced progeny with strongly female-biased sex ratios (181:2; likelihood ratio test, χ(2) = 231.6, P < 0.0001). This is the first report of Spiroplasma-mediated male killing in hemimetabolous insects.
Collapse
|
104
|
McLean JS, Lombardo MJ, Badger JH, Edlund A, Novotny M, Yee-Greenbaum J, Vyahhi N, Hall AP, Yang Y, Dupont CL, Ziegler MG, Chitsaz H, Allen AE, Yooseph S, Tesler G, Pevzner PA, Friedman RM, Nealson KH, Venter JC, Lasken RS. Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum. Proc Natl Acad Sci U S A 2013; 110:E2390-9. [PMID: 23754396 PMCID: PMC3696752 DOI: 10.1073/pnas.1219809110] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The "dark matter of life" describes microbes and even entire divisions of bacterial phyla that have evaded cultivation and have yet to be sequenced. We present a genome from the globally distributed but elusive candidate phylum TM6 and uncover its metabolic potential. TM6 was detected in a biofilm from a sink drain within a hospital restroom by analyzing cells using a highly automated single-cell genomics platform. We developed an approach for increasing throughput and effectively improving the likelihood of sampling rare events based on forming small random pools of single-flow-sorted cells, amplifying their DNA by multiple displacement amplification and sequencing all cells in the pool, creating a "mini-metagenome." A recently developed single-cell assembler, SPAdes, in combination with contig binning methods, allowed the reconstruction of genomes from these mini-metagenomes. A total of 1.07 Mb was recovered in seven contigs for this member of TM6 (JCVI TM6SC1), estimated to represent 90% of its genome. High nucleotide identity between a total of three TM6 genome drafts generated from pools that were independently captured, amplified, and assembled provided strong confirmation of a correct genomic sequence. TM6 is likely a Gram-negative organism and possibly a symbiont of an unknown host (nonfree living) in part based on its small genome, low-GC content, and lack of biosynthesis pathways for most amino acids and vitamins. Phylogenomic analysis of conserved single-copy genes confirms that TM6SC1 is a deeply branching phylum.
Collapse
Affiliation(s)
- Jeffrey S McLean
- Microbial and Environmental Genomics, J. Craig Venter Institute, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Lin H, Gudmestad NC. Aspects of pathogen genomics, diversity, epidemiology, vector dynamics, and disease management for a newly emerged disease of potato: zebra chip. PHYTOPATHOLOGY 2013; 103:524-537. [PMID: 23268582 DOI: 10.1094/phyto-09-12-0238-rvw] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
An overview is provided for the aspects of history, biology, genomics, genetics, and epidemiology of zebra chip (ZC), a destructive disease of potato (Solanum tuberosum) that represents a major threat to the potato industries in the United States as well as other potato-production regions in the world. The disease is associated with a gram-negative, phloem-limited, insect-vectored, unculturable prokaryote, 'Candidatus Liberibacter solanacearum', that belongs to the Rhizobiaceae family of α-Proteobacteria. The closest cultivated relatives of 'Ca. L. solanacearum' are members of the group of bacteria known as the α-2 subgroup. In spite of the fact that Koch's postulates sensu stricto have not been fulfilled, a great deal of progress has been made in understanding the ZC disease complex since discovery of the disease. Nevertheless, more research is needed to better understand vector biology, disease mechanisms, host response, and epidemiology in the context of vector-pathogen-plant interactions. Current ZC management strategies focus primarily on psyllid control. The ultimate control of ZC likely relies on host resistance. Unfortunately, all commercial potato cultivars are susceptible to ZC. Elucidation of the 'Ca. L. solanacearum' genome sequence has provided insights into the genetic basis of virulence and physiological and metabolic capability of this organism. Finally, the most effective, sustainable management of ZC is likely to be based on integrated strategies, including removal or reduction of vectors or inocula, improvement of host resistance to the presumptive pathogen and psyllid vectors, and novel gene-based therapeutic treatment.
Collapse
Affiliation(s)
- Hong Lin
- United States Department of Agriculture-Agricultural Research Service Crop Diseases, Pests and Genetics Research Unit 9611, S. Riverbend Avenue, Parlier, CA 93648, USA.
| | | |
Collapse
|
106
|
Comparative genomic analysis of the genus Nocardiopsis provides new insights into its genetic mechanisms of environmental adaptability. PLoS One 2013; 8:e61528. [PMID: 23626695 PMCID: PMC3634020 DOI: 10.1371/journal.pone.0061528] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/12/2013] [Indexed: 12/04/2022] Open
Abstract
The genus Nocardiopsis, a widespread group in phylum Actinobacteria, has received much attention owing to its ecological versatility, pathogenicity, and ability to produce a rich array of bioactive metabolites. Its high environmental adaptability might be attributable to its genome dynamics, which can be estimated through comparative genomic analysis targeting microorganisms with close phylogenetic relationships but different phenotypes. To shed light on speciation, gene content evolution, and environmental adaptation in these unique actinobacteria, we sequenced draft genomes for 16 representative species of the genus and compared them with that of the type species N. dassonvillei subsp. dassonvillei DSM 43111T. The core genome of 1,993 orthologous and paralogous gene clusters was identified, and the pan-genomic reservoir was found not only to accommodate more than 22,000 genes, but also to be open. The top ten paralogous genes in terms of copy number could be referred to three functional categories: transcription regulators, transporters, and synthases related to bioactive metabolites. Based on phylogenomic reconstruction, we inferred past evolutionary events, such as gene gains and losses, and identified a list of clade-specific genes implicated in environmental adaptation. These results provided insights into the genetic causes of environmental adaptability in this cosmopolitan actinobacterial group and the contributions made by its inherent features, including genome dynamics and the constituents of core and accessory proteins.
Collapse
|
107
|
Partial disruption of translational and posttranslational machinery reshapes growth rates of Bartonella birtlesii. mBio 2013; 4:e00115-13. [PMID: 23611908 PMCID: PMC3638310 DOI: 10.1128/mbio.00115-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Specialization of bacteria in a new niche is associated with genome repertoire changes, and speciation in bacterial specialists is associated with genome reduction. Here, we tested a signature-tagged mutant library of 3,456 Bartonella birtlesii clones to detect mutants that could grow rapidly in vitro. Overall, we found 124 mutants that grew faster than the parental wild-type strain in vitro. We sequenced the genomes of the four mutants with the most rapid growth (formed visible colonies in only 1 to 2 days compared with 5 days for the wild type) and compared them to the parental isolate genome. We found that the number of disrupted genes associated with translation in the 124 rapid-growth clones was significantly higher than the number of genes involved in translation in the full genome (P < 10−6). Analysis of transposon integration in the genome of the four most rapidly growing clones revealed that one clone lacked one of the two wild-type RNA ribosomal operons. Finally, one of the four clones did not induce bacteremia in our mouse model, whereas infection with the other three resulted in a significantly lower bacterial count in blood than that with the wild-type strain. Here, we show that specialization in a specific niche could be caused by the disruption of critical genes. Most of these genes were involved in translation, and we show that evolution of obligate parasitism bacteria was specifically associated with disruption of translation system-encoding genes.
Collapse
|
108
|
Decelle J. New perspectives on the functioning and evolution of photosymbiosis in plankton: Mutualism or parasitism? Commun Integr Biol 2013; 6:e24560. [PMID: 23986805 PMCID: PMC3742057 DOI: 10.4161/cib.24560] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/04/2013] [Accepted: 04/04/2013] [Indexed: 11/19/2022] Open
Abstract
Photosymbiosis is common and widely distributed in plankton and is considered to be beneficial for both partners (mutualism). Such intimate associations involving heterotrophic hosts and microalgal symbionts have been extensively studied in coral reefs, but in the planktonic realm, the ecology and evolution of photosymbioses remain poorly understood. Acantharia (Radiolaria) are ubiquitous and abundant heterotrophic marine protists, many of which host endosymbiotic microalgae. Two types of photosymbiosis involving acantharians have recently been described using molecular techniques: one found in a single acantharian species involving multiple microalgal partners (dinoflagellates and haptophytes), and the other observed in more than 25 acantharian species exclusively living with the haptophyte Phaeocystis. Contrary to most benthic and terrestrial mutualistic symbioses, these symbiotic associations share the common feature of involving symbionts that are abundant in their free-living stage. We propose a hypothetical framework that may explain this original mode of symbiosis, and discuss the ecological and evolutionary implications. We suggest that photosymbiosis in Acantharia, and probably in other planktonic hosts, may not be a mutualistic relationship but rather an "inverted parasitism," from which only hosts seem to benefit by sequestrating and exploiting microalgal cells. The relatively small population size of microalgae in hospite would prevent reciprocal evolution that can select uncooperative symbionts, therefore making this horizontally-transmitted association stable over evolutionary time. The more we learn about the diversity of life and the structure of genomes, the more it appears that much of the evolution of biodiversity is about the manipulation of other species-to gain resources and, in turn, to avoid being manipulated (John Thompson, 1999).
Collapse
Affiliation(s)
- Johan Decelle
- Université Pierre et Marie Curie (Paris 6) and Centre National de la Recherche Scientifique; Unité Mixte de Recherche 7144; Equipe Evolution des Protistes et Ecosystèmes Pélagiques; Station Biologique; Roscoff, France
| |
Collapse
|
109
|
Tokuda G, Elbourne LDH, Kinjo Y, Saitoh S, Sabree Z, Hojo M, Yamada A, Hayashi Y, Shigenobu S, Bandi C, Paulsen IT, Watanabe H, Lo N. Maintenance of essential amino acid synthesis pathways in the Blattabacterium cuenoti symbiont of a wood-feeding cockroach. Biol Lett 2013; 9:20121153. [PMID: 23515978 DOI: 10.1098/rsbl.2012.1153] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In addition to harbouring intestinal symbionts, some animal species also possess intracellular symbiotic microbes. The relative contributions of gut-resident and intracellular symbionts to host metabolism, and how they coevolve are not well understood. Cockroaches and the termite Mastotermes darwiniensis present a unique opportunity to examine the evolution of spatially separated symbionts, as they harbour gut symbionts and the intracellular symbiont Blattabacterium cuenoti. The genomes of B. cuenoti from M. darwiniensis and the social wood-feeding cockroach Cryptocercus punctulatus are each missing most of the pathways for the synthesis of essential amino acids found in the genomes of relatives from non-wood-feeding hosts. Hypotheses to explain this pathway degradation include: (i) feeding on microbes present in rotting wood by ancestral hosts; (ii) the evolution of high-fidelity transfer of gut microbes via social behaviour. To test these hypotheses, we sequenced the B. cuenoti genome of a third wood-feeding species, the phylogenetically distant and non-social Panesthia angustipennis. We show that host wood-feeding does not necessarily lead to degradation of essential amino acid synthesis pathways in B. cuenoti, and argue that ancestral high-fidelity transfer of gut microbes best explains their loss in strains from M. darwiniensis and C. punctulatus.
Collapse
Affiliation(s)
- Gaku Tokuda
- TBRC, University of the Ryukyus, Okinawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Zhou W, Nakhleh L. Convergent evolution of modularity in metabolic networks through different community structures. BMC Evol Biol 2012; 12:181. [PMID: 22974099 PMCID: PMC3534581 DOI: 10.1186/1471-2148-12-181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/09/2012] [Indexed: 01/01/2023] Open
Abstract
Background It has been reported that the modularity of metabolic networks of bacteria is closely related to the variability of their living habitats. However, given the dependency of the modularity score on the community structure, it remains unknown whether organisms achieve certain modularity via similar or different community structures. Results In this work, we studied the relationship between similarities in modularity scores and similarities in community structures of the metabolic networks of 1021 species. Both similarities are then compared against the genetic distances. We revisited the association between modularity and variability of the microbial living environments and extended the analysis to other aspects of their life style such as temperature and oxygen requirements. We also tested both topological and biological intuition of the community structures identified and investigated the extent of their conservation with respect to the taxomony. Conclusions We find that similar modularities are realized by different community structures. We find that such convergent evolution of modularity is closely associated with the number of (distinct) enzymes in the organism’s metabolome, a consequence of different life styles of the species. We find that the order of modularity is the same as the order of the number of the enzymes under the classification based on the temperature preference but not on the oxygen requirement. Besides, inspection of modularity-based communities reveals that these communities are graph-theoretically meaningful yet not reflective of specific biological functions. From an evolutionary perspective, we find that the community structures are conserved only at the level of kingdoms. Our results call for more investigation into the interplay between evolution and modularity: how evolution shapes modularity, and how modularity affects evolution (mainly in terms of fitness and evolvability). Further, our results call for exploring new measures of modularity and network communities that better correspond to functional categorizations.
Collapse
Affiliation(s)
- Wanding Zhou
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | | |
Collapse
|
111
|
Yamauchi A, Telschow A. Bistability of endosymbiont evolution of genome size and host sex control. J Theor Biol 2012; 309:58-66. [DOI: 10.1016/j.jtbi.2012.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 05/16/2012] [Accepted: 05/16/2012] [Indexed: 10/28/2022]
|
112
|
Abstract
Gene loss by deletion is a common evolutionary process in bacteria, as exemplified by bacteria with small genomes that have evolved from bacteria with larger genomes by reductive processes. The driving force(s) for genome reduction remains unclear, and here we examined the hypothesis that gene loss is selected because carriage of superfluous genes confers a fitness cost to the bacterium. In the bacterium Salmonella enterica, we measured deletion rates at 11 chromosomal positions and the fitness effects of several spontaneous deletions. Deletion rates varied over 200-fold between different regions with the replication terminus region showing the highest rates. Approximately 25% of the examined deletions caused an increase in fitness under one or several growth conditions, and after serial passage of wild-type bacteria in rich medium for 1,000 generations we observed fixation of deletions that substantially increased bacterial fitness when reconstructed in a non-evolved bacterium. These results suggest that selection could be a significant driver of gene loss and reductive genome evolution.
Collapse
|
113
|
Kölsch G, Synefiaridou D. Shared Ancestry of Symbionts? Sagrinae and Donaciinae (Coleoptera, Chrysomelidae) Harbor Similar Bacteria. INSECTS 2012; 3:473-91. [PMID: 26466539 PMCID: PMC4553606 DOI: 10.3390/insects3020473] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 04/11/2012] [Accepted: 04/17/2012] [Indexed: 12/03/2022]
Abstract
When symbioses between insects and bacteria are discussed, the origin of a given association is regularly of interest. We examined the evolution of the symbiosis between reed beetles (Coleoptera, Chrysomelidae, Donaciinae) and intracellular symbionts belonging to the Enterobacteriaceae. We analyzed the partial sequence of the 16S rRNA to assess the phylogenetic relationships with bacteria we found in other beetle groups (Cerambycidae, Anobiidae, other Chrysomelidae). We discuss the ecology of each association in the context of the phylogenetic analysis. The bacteria in Sagra femorata (Chrysomelidae, Sagrinae) are very closely related to those in the Donaciinae and are located in similar mycetomes. The Sagrinae build a cocoon for pupation like the Donaciinae, in which the bacteria produce the material required for the cocoon. These aspects support the close relationship between Sagrinae and Donaciinae derived in earlier studies and make a common ancestry of the symbioses likely. Using PCR primers specific for fungi, we found Candida sp. in the mycetomes of a cerambycid beetle along with the bacteria.
Collapse
Affiliation(s)
- Gregor Kölsch
- Zoological Institute, Molecular Evolutionary Biology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| | - Dimitra Synefiaridou
- Zoological Institute, Molecular Evolutionary Biology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| |
Collapse
|
114
|
Frederickson ME, Ravenscraft A, Miller GA, Arcila Hernández LM, Booth G, Pierce NE. The direct and ecological costs of an ant-plant symbiosis. Am Nat 2012; 179:768-78. [PMID: 22617264 DOI: 10.1086/665654] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
How strong is selection for cheating in mutualisms? The answer depends on the type and magnitude of the costs of the mutualism. Here we investigated the direct and ecological costs of plant defense by ants in the association between Cordia nodosa, a myrmecophytic plant, and Allomerus octoarticulatus, a phytoecious ant. Cordia nodosa trees produce food and housing to reward ants that protect them against herbivores. For nearly 1 year, we manipulated the presence of A. octoarticulatus ants and most insect herbivores on C. nodosa in a full-factorial experiment. Ants increased plant growth when herbivores were present but decreased plant growth when herbivores were absent, indicating that hosting ants can be costly to plants. However, we did not detect a cost to ant colonies of defending host plants against herbivores. Although this asymmetry in costs suggests that the plants may be under stronger selection than the ants to cheat by withholding investment in their partner, the costs to C. nodosa are probably at least partly ecological, arising because ants tend scale insects on their host plants. We argue that ecological costs should favor resistance or traits other than cheating and thus that neither partner may face much temptation to cheat.
Collapse
Affiliation(s)
- Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada.
| | | | | | | | | | | |
Collapse
|
115
|
Dutta C, Paul S. Microbial lifestyle and genome signatures. Curr Genomics 2012; 13:153-62. [PMID: 23024607 PMCID: PMC3308326 DOI: 10.2174/138920212799860698] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/13/2011] [Accepted: 09/28/2011] [Indexed: 12/29/2022] Open
Abstract
Microbes are known for their unique ability to adapt to varying lifestyle and environment, even to the extreme or adverse ones. The genomic architecture of a microbe may bear the signatures not only of its phylogenetic position, but also of the kind of lifestyle to which it is adapted. The present review aims to provide an account of the specific genome signatures observed in microbes acclimatized to distinct lifestyles or ecological niches. Niche-specific signatures identified at different levels of microbial genome organization like base composition, GC-skew, purine-pyrimidine ratio, dinucleotide abundance, codon bias, oligonucleotide composition etc. have been discussed. Among the specific cases highlighted in the review are the phenomena of genome shrinkage in obligatory host-restricted microbes, genome expansion in strictly intra-amoebal pathogens, strand-specific codon usage in intracellular species, acquisition of genome islands in pathogenic or symbiotic organisms, discriminatory genomic traits of marine microbes with distinct trophic strategies, and conspicuous sequence features of certain extremophiles like those adapted to high temperature or high salinity.
Collapse
Affiliation(s)
- Chitra Dutta
- Structural Biology & Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | | |
Collapse
|
116
|
Aujoulat F, Roger F, Bourdier A, Lotthé A, Lamy B, Marchandin H, Jumas-Bilak E. From environment to man: genome evolution and adaptation of human opportunistic bacterial pathogens. Genes (Basel) 2012; 3:191-232. [PMID: 24704914 PMCID: PMC3899952 DOI: 10.3390/genes3020191] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 02/29/2012] [Accepted: 02/29/2012] [Indexed: 02/07/2023] Open
Abstract
Environment is recognized as a huge reservoir for bacterial species and a source of human pathogens. Some environmental bacteria have an extraordinary range of activities that include promotion of plant growth or disease, breakdown of pollutants, production of original biomolecules, but also multidrug resistance and human pathogenicity. The versatility of bacterial life-style involves adaptation to various niches. Adaptation to both open environment and human specific niches is a major challenge that involves intermediate organisms allowing pre-adaptation to humans. The aim of this review is to analyze genomic features of environmental bacteria in order to explain their adaptation to human beings. The genera Pseudomonas, Aeromonas and Ochrobactrum provide valuable examples of opportunistic behavior associated to particular genomic structure and evolution. Particularly, we performed original genomic comparisons among aeromonads and between the strictly intracellular pathogens Brucella spp. and the mild opportunistic pathogens Ochrobactrum spp. We conclude that the adaptation to human could coincide with a speciation in action revealed by modifications in both genomic and population structures. This adaptation-driven speciation could be a major mechanism for the emergence of true pathogens besides the acquisition of specialized virulence factors.
Collapse
Affiliation(s)
- Fabien Aujoulat
- Université Montpellier 1, UMR 5119 (UM2, CNRS, IRD, IFREMER, UM1), équipe Pathogènes et Environnements, Montpellier 34093, France.
| | - Frédéric Roger
- Université Montpellier 1, UMR 5119 (UM2, CNRS, IRD, IFREMER, UM1), équipe Pathogènes et Environnements, Montpellier 34093, France.
| | - Alice Bourdier
- Université Montpellier 1, UMR 5119 (UM2, CNRS, IRD, IFREMER, UM1), équipe Pathogènes et Environnements, Montpellier 34093, France.
| | - Anne Lotthé
- Université Montpellier 1, UMR 5119 (UM2, CNRS, IRD, IFREMER, UM1), équipe Pathogènes et Environnements, Montpellier 34093, France.
| | - Brigitte Lamy
- Université Montpellier 1, UMR 5119 (UM2, CNRS, IRD, IFREMER, UM1), équipe Pathogènes et Environnements, Montpellier 34093, France.
| | - Hélène Marchandin
- Université Montpellier 1, UMR 5119 (UM2, CNRS, IRD, IFREMER, UM1), équipe Pathogènes et Environnements, Montpellier 34093, France.
| | - Estelle Jumas-Bilak
- Université Montpellier 1, UMR 5119 (UM2, CNRS, IRD, IFREMER, UM1), équipe Pathogènes et Environnements, Montpellier 34093, France.
| |
Collapse
|
117
|
Garcia-Gonzalez A, Rivera-Rivera RJ, Massey SE. The Presence of the DNA Repair Genes mutM, mutY, mutL, and mutS is Related to Proteome Size in Bacterial Genomes. Front Genet 2012; 3:3. [PMID: 22403581 PMCID: PMC3288817 DOI: 10.3389/fgene.2012.00003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 01/03/2012] [Indexed: 11/13/2022] Open
Abstract
DNA repair is expected to be a modulator of underlying mutation rates, however the major factors affecting the distribution of DNA repair pathways have not been determined. The Proteomic Constraint theory proposes that mutation rates are inversely proportional to the amount of heredity information contained in a genome, which is effectively the proteome. Thus, organisms with larger proteomes are expected to possess more efficient DNA repair. We show that an important factor influencing the presence or absence of four DNA repair genes mutM, mutY, mutL, and mutS is indeed the size of the bacterial proteome. This is true both of intracellular and other bacteria. In addition, the relationship of DNA repair to genome GC content was examined. In principle, if a DNA repair pathway is biased in the types of mutations it corrects, this may alter the genome GC content. The presence of the mismatch repair genes mutL and mutS was not correlated with genome GC content, consistent with their involvement in an unbiased DNA repair pathway. In contrast, the presence of the base excision repair genes mutM and mutY, whose products both correct GC → AT mutations, was positively correlated with genome GC content, consistent with their biased repair mechanism. Phylogenetic analysis however indicates that the relationship between the presence of mutM and mutY genes and genome GC content is not a simple one.
Collapse
|
118
|
Sloan DB, Alverson AJ, Wu M, Palmer JD, Taylor DR. Recent acceleration of plastid sequence and structural evolution coincides with extreme mitochondrial divergence in the angiosperm genus Silene. Genome Biol Evol 2012; 4:294-306. [PMID: 22247429 PMCID: PMC3318436 DOI: 10.1093/gbe/evs006] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The angiosperm genus Silene exhibits some of the most extreme and rapid divergence ever identified in mitochondrial genome architecture and nucleotide substitution rates. These patterns have been considered mitochondrial specific based on the absence of correlated changes in the small number of available nuclear and plastid gene sequences. To better assess the relationship between mitochondrial and plastid evolution, we sequenced the plastid genomes from four Silene species with fully sequenced mitochondrial genomes. We found that two species with fast-evolving mitochondrial genomes, S. noctiflora and S. conica, also exhibit accelerated rates of sequence and structural evolution in their plastid genomes. The nature of these changes, however, is markedly different from those in the mitochondrial genome. For example, in contrast to the mitochondrial pattern, which appears to be genome wide and mutationally driven, the plastid substitution rate accelerations are restricted to a subset of genes and preferentially affect nonsynonymous sites, indicating that altered selection pressures are acting on specific plastid-encoded functions in these species. Indeed, some plastid genes in S. noctiflora and S. conica show strong evidence of positive selection. In contrast, two species with more slowly evolving mitochondrial genomes, S. latifolia and S. vulgaris, have correspondingly low rates of nucleotide substitution in plastid genes as well as a plastid genome structure that has remained essentially unchanged since the origin of angiosperms. These results raise the possibility that common evolutionary forces could be shaping the extreme but distinct patterns of divergence in both organelle genomes within this genus.
Collapse
|
119
|
Abstract
Since the last decade of the twentieth century, systems biology has gained the ability to study the structure and function of genome-scale metabolic networks. These are systems of hundreds to thousands of chemical reactions that sustain life. Most of these reactions are catalyzed by enzymes which are encoded by genes. A metabolic network extracts chemical elements and energy from the environment, and converts them into forms that the organism can use. The function of a whole metabolic network constrains evolutionary changes in its parts. I will discuss here three classes of such changes, and how they are constrained by the function of the whole. These are the accumulation of amino acid changes in enzyme-coding genes, duplication of enzyme-coding genes, and changes in the regulation of enzymes. Conversely, evolutionary change in network parts can alter the function of the whole network. I will discuss here two such changes, namely the elimination of reactions from a metabolic network through loss of function mutations in enzyme-coding genes, and the addition of metabolic reactions, for example through mechanisms such as horizontal gene transfer. Reaction addition also provides a window into the evolution of metabolic innovations, the ability of a metabolism to sustain life on new sources of energy and of chemical elements.
Collapse
|
120
|
Wernegreen JJ. Reduced selective constraint in endosymbionts: elevation in radical amino acid replacements occurs genome-wide. PLoS One 2011; 6:e28905. [PMID: 22194947 PMCID: PMC3237559 DOI: 10.1371/journal.pone.0028905] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 11/16/2011] [Indexed: 11/18/2022] Open
Abstract
As predicted by the nearly neutral model of evolution, numerous studies have shown that reduced N(e) accelerates the accumulation of slightly deleterious changes under genetic drift. While such studies have mostly focused on eukaryotes, bacteria also offer excellent models to explore the effects of N(e). Most notably, the genomes of host-dependent bacteria with small N(e) show signatures of genetic drift, including elevated K(a)/K(s). Here, I explore the utility of an alternative measure of selective constraint: the per-site rate of radical and conservative amino acid substitutions (D(r)/D(c)). I test the hypothesis that purifying selection against radical amino acid changes is less effective in two insect endosymbiont groups (Blochmannia of ants and Buchnera of aphids), compared to related gamma-Proteobacteria. Genome comparisons demonstrate a significant elevation in D(r)/D(c) in endosymbionts that affects the majority (66-79%) of shared orthologs examined. The elevation of D(r)/D(c) in endosymbionts affects all functional categories examined. Simulations indicate that D(r)/D(c) estimates are sensitive to codon frequencies and mutational parameters; however, estimation biases occur in the opposite direction as the patterns observed in genome comparisons, thereby making the inference of elevated D(r)/D(c) more conservative. Increased D(r)/D(c) and other signatures of genome degradation in endosymbionts are consistent with strong effects of genetic drift in their small populations, as well as linkage to selected sites in these asexual bacteria. While relaxed selection against radical substitutions may contribute, genome-wide processes such as genetic drift and linkage best explain the pervasive elevation in D(r)/D(c) across diverse functional categories that include basic cellular processes. Although the current study focuses on a few bacterial lineages, it suggests D(r)/D(c) is a useful gauge of selective constraint and may provide a valuable alternative to K(a)/K(s) when high sequence divergences preclude estimates of K(s). Broader application of D(r)/D(c) will benefit from approaches less prone to estimation biases.
Collapse
Affiliation(s)
- Jennifer J Wernegreen
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America.
| |
Collapse
|
121
|
Taylor M, Mediannikov O, Raoult D, Greub G. Endosymbiotic bacteria associated with nematodes, ticks and amoebae. ACTA ACUST UNITED AC 2011; 64:21-31. [PMID: 22126456 DOI: 10.1111/j.1574-695x.2011.00916.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 11/21/2011] [Accepted: 11/21/2011] [Indexed: 01/20/2023]
Abstract
Endosymbiosis is a mutualistic, parasitic or commensal symbiosis in which one symbiont is living within the body of another organism. Such symbiotic relationship with free-living amoebae and arthropods has been reported with a large biodiversity of microorganisms, encompassing various bacterial clades and to a lesser extent some fungi and viruses. By contrast, current knowledge on symbionts of nematodes is still mainly restricted to Wolbachia and its interaction with filarial worms that lead to increased pathogenicity of the infected nematode. In this review article, we aim to highlight the main characteristics of symbionts in term of their ecology, host cell interactions, parasitism and co-evolution, in order to stimulate future research in a field that remains largely unexplored despite the availability of modern tools.
Collapse
Affiliation(s)
- Mark Taylor
- Molecular and Biochemical Parasitology Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | | | | |
Collapse
|
122
|
Vavre F, Mavingui P. [Endosymbionts of arthropods and nematodes: allies to fight infectious diseases?]. Med Sci (Paris) 2011; 27:953-8. [PMID: 22130021 DOI: 10.1051/medsci/20112711010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Arthropods and nematodes are important protagonists in human health because either they act as vectors of pathogens (bacteria, protozoa, viruses or fungus), or are themselves parasites. Fighting infectious diseases is based essentially on vaccination (prevention) or chemotherapeutic (curative) approaches in human, but one can envisage as an alternative to reduce the number of vectors or limit their ability to spread pathogens. Such strategies controlling dissemination will undoubtedly benefit from the knowledge accumulated by recent works on powerful mechanisms developed by symbiotic insect bacteria such as Wolbachia to popagate in arthropods and nematods. This review summarizes these recent data, and indicate how these mechanisms can be manipulated to reduce the dissemination of insect vectors propagating human diseases.
Collapse
Affiliation(s)
- Fabrice Vavre
- Université Lyon 1, Laboratoire de biométrie et biologie évolutive, Villeurbanne, France.
| | | |
Collapse
|
123
|
Kvist S, Narechania A, Oceguera-Figueroa A, Fuks B, Siddall ME. Phylogenomics of Reichenowia parasitica, an alphaproteobacterial endosymbiont of the freshwater leech Placobdella parasitica. PLoS One 2011; 6:e28192. [PMID: 22132238 PMCID: PMC3223239 DOI: 10.1371/journal.pone.0028192] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 11/02/2011] [Indexed: 01/30/2023] Open
Abstract
Although several commensal alphaproteobacteria form close relationships with plant hosts where they aid in (e.g.,) nitrogen fixation and nodulation, only a few inhabit animal hosts. Among these, Reichenowia picta, R. ornata and R. parasitica, are currently the only known mutualistic, alphaproteobacterial endosymbionts to inhabit leeches. These bacteria are harbored in the epithelial cells of the mycetomal structures of their freshwater leech hosts, Placobdella spp., and these structures have no other obvious function than housing bacterial symbionts. However, the function of the bacterial symbionts has remained unclear. Here, we focused both on exploring the genomic makeup of R. parasitica and on performing a robust phylogenetic analysis, based on more data than previous hypotheses, to test its position among related bacteria. We sequenced a combined pool of host and symbiont DNA from 36 pairs of mycetomes and performed an in silico separation of the different DNA pools through subtractive scaffolding. The bacterial contigs were compared to 50 annotated bacterial genomes and the genome of the freshwater leech Helobdella robusta using a BLASTn protocol. Further, amino acid sequences inferred from the contigs were used as queries against the 50 bacterial genomes to establish orthology. A total of 358 orthologous genes were used for the phylogenetic analyses. In part, results suggest that R. parasitica possesses genes coding for proteins related to nitrogen fixation, iron/vitamin B translocation and plasmid survival. Our results also indicate that R. parasitica interacts with its host in part by transmembrane signaling and that several of its genes show orthology across Rhizobiaceae. The phylogenetic analyses support the nesting of R. parasitica within the Rhizobiaceae, as sister to a group containing Agrobacterium and Rhizobium species.
Collapse
Affiliation(s)
- Sebastian Kvist
- Richard Gilder Graduate School, American Museum of Natural History, New York, New York, United States of America
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
| | - Apurva Narechania
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
| | - Alejandro Oceguera-Figueroa
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
- Department of Biology, The Graduate Center, The City University of New York, New York, New York, United States of America
| | - Bella Fuks
- Long Island University Brooklyn Campus, Brooklyn, New York, United States of America
| | - Mark E. Siddall
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
| |
Collapse
|
124
|
Luo H, Friedman R, Tang J, Hughes AL. Genome reduction by deletion of paralogs in the marine cyanobacterium Prochlorococcus. Mol Biol Evol 2011; 28:2751-60. [PMID: 21531921 PMCID: PMC3203624 DOI: 10.1093/molbev/msr081] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Several isolates of the marine cyanobacterial genus Prochlorococcus have smaller genome sizes than those of the closely related genus Synechococcus. In order to test whether loss of protein-coding genes has contributed to genome size reduction in Prochlorococcus, we reconstructed events of gene family evolution over a strongly supported phylogeny of 12 Prochlorococcus genomes and 9 Synechococcus genomes. Significantly, more events both of loss of paralogs within gene families and of loss of entire gene families occurred in Prochlorococcus than in Synechococcus. The number of nonancestral gene families in genomes of both genera was positively correlated with the extent of genomic islands (GIs), consistent with the hypothesis that horizontal gene transfer (HGT) is associated with GIs. However, even when only isolates with comparable extents of GIs were compared, significantly more events of gene family loss and of paralog loss were seen in Prochlorococcus than in Synechococcus, implying that HGT is not the primary reason for the genome size difference between the two genera.
Collapse
Affiliation(s)
- Haiwei Luo
- Department of Biological Sciences, University of South Carolina
| | - Robert Friedman
- Department of Biological Sciences, University of South Carolina
| | - Jijun Tang
- Department of Computer Science and Engineering, University of South Carolina
| | | |
Collapse
|
125
|
McCutcheon JP, von Dohlen CD. An interdependent metabolic patchwork in the nested symbiosis of mealybugs. Curr Biol 2011; 21:1366-72. [PMID: 21835622 DOI: 10.1016/j.cub.2011.06.051] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/23/2011] [Accepted: 06/21/2011] [Indexed: 11/28/2022]
Abstract
Highly reduced genomes of 144-416 kilobases have been described from nutrient-provisioning bacterial symbionts of several insect lineages [1-5]. Some host insects have formed stable associations with pairs of bacterial symbionts that live in specialized cells and provide them with essential nutrients; genomic data from these systems have revealed remarkable levels of metabolic complementarity between the symbiont pairs [3, 4, 6, 7]. The mealybug Planococcus citri (Hemiptera: Pseudococcidae) contains dual bacterial symbionts existing with an unprecedented organization: an unnamed gammaproteobacteria, for which we propose the name Candidatus Moranella endobia, lives inside the betaproteobacteria Candidatus Tremblaya princeps [8]. Here we describe the complete genomes and metabolic contributions of these unusual nested symbionts. We show that whereas there is little overlap in retained genes involved in nutrient production between symbionts, several essential amino acid pathways in the mealybug assemblage require a patchwork of interspersed gene products from Tremblaya, Moranella, and possibly P. citri. Furthermore, although Tremblaya has the smallest cellular genome yet described, it contains a genomic inversion present in both orientations in individual insects, starkly contrasting with the extreme structural stability typical of highly reduced bacterial genomes [4, 9, 10].
Collapse
Affiliation(s)
- John P McCutcheon
- Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
126
|
Park DS, Suh SJ, Hebert PDN, Oh HW, Hong KJ. DNA barcodes for two scale insect families, mealybugs (Hemiptera: Pseudococcidae) and armored scales (Hemiptera: Diaspididae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2011; 101:429-434. [PMID: 21272395 DOI: 10.1017/s0007485310000714] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Although DNA barcode coverage has grown rapidly for many insect orders, there are some groups, such as scale insects, where sequence recovery has been difficult. However, using a recently developed primer set, we recovered barcode records from 373 specimens, providing coverage for 75 species from 31 genera in two families. Overall success was >90% for mealybugs and >80% for armored scale species. The G·C content was very low in most species, averaging just 16.3%. Sequence divergences (K2P) between congeneric species averaged 10.7%, while intra-specific divergences averaged 0.97%. However, the latter value was inflated by high intra-specific divergence in nine taxa, cases that may indicate species overlooked by current taxonomic treatments. Our study establishes the feasibility of developing a comprehensive barcode library for scale insects and indicates that its construction will both create an effective system for identifying scale insects and reveal taxonomic situations worthy of deeper analysis.
Collapse
Affiliation(s)
- D-S Park
- Biological Resource Center, KRIBB, Daejeon, Korea
| | | | | | | | | |
Collapse
|
127
|
Tarrío R, Ayala FJ, Rodríguez-Trelles F. The Vein Patterning 1 (VEP1) gene family laterally spread through an ecological network. PLoS One 2011; 6:e22279. [PMID: 21818306 PMCID: PMC3144213 DOI: 10.1371/journal.pone.0022279] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 06/18/2011] [Indexed: 11/23/2022] Open
Abstract
Lateral gene transfer (LGT) is a major evolutionary mechanism in prokaryotes. Knowledge about LGT— particularly, multicellular— eukaryotes has only recently started to accumulate. A widespread assumption sees the gene as the unit of LGT, largely because little is yet known about how LGT chances are affected by structural/functional features at the subgenic level. Here we trace the evolutionary trajectory of VEin Patterning 1, a novel gene family known to be essential for plant development and defense. At the subgenic level VEP1 encodes a dinucleotide-binding Rossmann-fold domain, in common with members of the short-chain dehydrogenase/reductase (SDR) protein family. We found: i) VEP1 likely originated in an aerobic, mesophilic and chemoorganotrophic α-proteobacterium, and was laterally propagated through nets of ecological interactions, including multiple LGTs between phylogenetically distant green plant/fungi-associated bacteria, and five independent LGTs to eukaryotes. Of these latest five transfers, three are ancient LGTs, implicating an ancestral fungus, the last common ancestor of land plants and an ancestral trebouxiophyte green alga, and two are recent LGTs to modern embryophytes. ii) VEP1's rampant LGT behavior was enabled by the robustness and broad utility of the dinucleotide-binding Rossmann-fold, which provided a platform for the evolution of two unprecedented departures from the canonical SDR catalytic triad. iii) The fate of VEP1 in eukaryotes has been different in different lineages, being ubiquitous and highly conserved in land plants, whereas fungi underwent multiple losses. And iv) VEP1-harboring bacteria include non-phytopathogenic and phytopathogenic symbionts which are non-randomly distributed with respect to the type of harbored VEP1 gene. Our findings suggest that VEP1 may have been instrumental for the evolutionary transition of green plants to land, and point to a LGT-mediated ‘Trojan Horse’ mechanism for the evolution of bacterial pathogenesis against plants. VEP1 may serve as tool for revealing microbial interactions in plant/fungi-associated environments.
Collapse
Affiliation(s)
- Rosa Tarrío
- Universidad de Santiago de Compostela, CIBERER, Genome Medicine Group, Santiago de Compostela, Spain
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
| | - Francisco Rodríguez-Trelles
- Grup de Biologia Evolutiva, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
128
|
Plague GR, Dougherty KM, Boodram KS, Boustani SE, Cao H, Manning SR, McNally CC. Relaxed natural selection alone does not permit transposable element expansion within 4,000 generations in Escherichia coli. Genetica 2011; 139:895-902. [PMID: 21751098 DOI: 10.1007/s10709-011-9593-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 06/25/2011] [Indexed: 10/18/2022]
Abstract
Insertion sequences (ISs) are transposable genetic elements in bacterial genomes. IS elements are common among bacteria but are generally rare within free-living species, probably because of the negative fitness effects they have on their hosts. Conversely, ISs frequently proliferate in intracellular symbionts and pathogens that recently transitioned from a free-living lifestyle. IS elements can profoundly influence the genomic evolution of their bacterial hosts, although it is unknown why they often expand in intracellular bacteria. We designed a laboratory evolution experiment with Escherichia coli K-12 to test the hypotheses that IS elements often expand in intracellular bacteria because of relaxed natural selection due to (1) their generally small effective population sizes (N (e)) and thus enhanced genetic drift, and (2) their nutrient rich environment, which makes many biosynthetic genes unnecessary and thus selectively neutral territory for IS insertion. We propagated 12 populations under four experimental conditions: large N (e) versus small N (e), and nutrient rich medium versus minimal medium. We found that relaxed selection over 4,000 generations was not sufficient to permit IS element expansion in any experimental population, thus leading us to hypothesize that IS expansion in intracellular symbionts may often be spurred by enhanced transposition rates, possibly due to environmental stress, coupled with relaxed natural selection.
Collapse
Affiliation(s)
- Gordon R Plague
- Louis Calder Center-Biological Field Station, Department of Biological Sciences, Fordham University, Armonk, NY 10504, USA.
| | | | | | | | | | | | | |
Collapse
|
129
|
Abstract
Diverse bacterial lineages form beneficial infections with eukaryotic hosts. The origins, evolution, and breakdown of these mutualisms represent important evolutionary transitions. To examine these key events, we synthesize data from diverse interactions between bacteria and eukaryote hosts. Five evolutionary transitions are investigated, including the origins of bacterial associations with eukaryotes, the origins and subsequent stable maintenance of bacterial mutualism with hosts, the capture of beneficial symbionts via the evolution of strict vertical transmission within host lineages, and the evolutionary breakdown of bacterial mutualism. Each of these transitions has occurred many times in the history of bacterial-eukaryote symbiosis. We investigate these evolutionary events across the bacterial domain and also among a focal set of well studied bacterial mutualist lineages. Subsequently, we generate a framework for examining evolutionary transitions in bacterial symbiosis and test hypotheses about the selective, ecological, and genomic forces that shape these events.
Collapse
|
130
|
Abstract
Host-adapted bacteria include mutualists and pathogens of animals, plants and insects. Their study is therefore important for biotechnology, biodiversity and human health. The recent rapid expansion in bacterial genome data has provided insights into the adaptive, diversifying and reductive evolutionary processes that occur during host adaptation. The results have challenged many pre-existing concepts built from studies of laboratory bacterial strains. Furthermore, recent studies have revealed genetic changes associated with transitions from parasitism to mutualism and opened new research avenues to understand the functional reshaping of bacteria as they adapt to growth in the cytoplasm of a eukaryotic host.
Collapse
|
131
|
The genome of Erysipelothrix rhusiopathiae, the causative agent of swine erysipelas, reveals new insights into the evolution of firmicutes and the organism's intracellular adaptations. J Bacteriol 2011; 193:2959-71. [PMID: 21478354 DOI: 10.1128/jb.01500-10] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erysipelothrix rhusiopathiae is a Gram-positive bacterium that represents a new class, Erysipelotrichia, in the phylum Firmicutes. The organism is a facultative intracellular pathogen that causes swine erysipelas, as well as a variety of diseases in many animals. Here, we report the first complete genome sequence analysis of a member of the class Erysipelotrichia. The E. rhusiopathiae genome (1,787,941 bp) is one of the smallest genomes in the phylum Firmicutes. Phylogenetic analyses based on the 16S rRNA gene and 31 universal protein families suggest that E. rhusiopathiae is phylogenetically close to Mollicutes, which comprises Mycoplasma species. Genome analyses show that the overall features of the E. rhusiopathiae genome are similar to those of other Gram-positive bacteria; it possesses a complete set of peptidoglycan biosynthesis genes, two-component regulatory systems, and various cell wall-associated virulence factors, including a capsule and adhesins. However, it lacks many orthologous genes for the biosynthesis of wall teichoic acids (WTA) and lipoteichoic acids (LTA) and the dltABCD operon, which is responsible for d-alanine incorporation into WTA and LTA, suggesting that the organism has an atypical cell wall. In addition, like Mollicutes, its genome shows a complete loss of fatty acid biosynthesis pathways and lacks the genes for the biosynthesis of many amino acids, cofactors, and vitamins, indicating reductive genome evolution. The genome encodes nine antioxidant factors and nine phospholipases, which facilitate intracellular survival in phagocytes. Thus, the E. rhusiopathiae genome represents evolutionary traits of both Firmicutes and Mollicutes and provides new insights into its evolutionary adaptations for intracellular survival.
Collapse
|
132
|
Genomes of the most dangerous epidemic bacteria have a virulence repertoire characterized by fewer genes but more toxin-antitoxin modules. PLoS One 2011; 6:e17962. [PMID: 21437250 PMCID: PMC3060909 DOI: 10.1371/journal.pone.0017962] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 02/22/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We conducted a comparative genomic study based on a neutral approach to identify genome specificities associated with the virulence capacity of pathogenic bacteria. We also determined whether virulence is dictated by rules, or if it is the result of individual evolutionary histories. We systematically compared the genomes of the 12 most dangerous pandemic bacteria for humans ("bad bugs") to their closest non-epidemic related species ("controls"). METHODOLOGY/PRINCIPAL FINDINGS We found several significantly different features in the "bad bugs", one of which was a smaller genome that likely resulted from a degraded recombination and repair system. The 10 Cluster of Orthologous Group (COG) functional categories revealed a significantly smaller number of genes in the "bad bugs", which lacked mostly transcription, signal transduction mechanisms, cell motility, energy production and conversion, and metabolic and regulatory functions. A few genes were identified as virulence factors, including secretion system proteins. Five "bad bugs" showed a greater number of poly (A) tails compared to the controls, whereas an elevated number of poly (A) tails was found to be strongly correlated to a low GC% content. The "bad bugs" had fewer tandem repeat sequences compared to controls. Moreover, the results obtained from a principal component analysis (PCA) showed that the "bad bugs" had surprisingly more toxin-antitoxin modules than did the controls. CONCLUSIONS/SIGNIFICANCE We conclude that pathogenic capacity is not the result of "virulence factors" but is the outcome of a virulent gene repertoire resulting from reduced genome repertoires. Toxin-antitoxin systems could participate in the virulence repertoire, but they may have developed independently of selfish evolution.
Collapse
|
133
|
Georgiades K, Merhej V, El Karkouri K, Raoult D, Pontarotti P. Gene gain and loss events in Rickettsia and Orientia species. Biol Direct 2011; 6:6. [PMID: 21303508 PMCID: PMC3055210 DOI: 10.1186/1745-6150-6-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 02/08/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome degradation is an ongoing process in all members of the Rickettsiales order, which makes these bacterial species an excellent model for studying reductive evolution through interspecies variation in genome size and gene content. In this study, we evaluated the degree to which gene loss shaped the content of some Rickettsiales genomes. We shed light on the role played by horizontal gene transfers in the genome evolution of Rickettsiales. RESULTS Our phylogenomic tree, based on whole-genome content, presented a topology distinct from that of the whole core gene concatenated phylogenetic tree, suggesting that the gene repertoires involved have different evolutionary histories. Indeed, we present evidence for 3 possible horizontal gene transfer events from various organisms to Orientia and 6 to Rickettsia spp., while we also identified 3 possible horizontal gene transfer events from Rickettsia and Orientia to other bacteria. We found 17 putative genes in Rickettsia spp. that are probably the result of de novo gene creation; 2 of these genes appear to be functional. On the basis of these results, we were able to reconstruct the gene repertoires of "proto-Rickettsiales" and "proto-Rickettsiaceae", which correspond to the ancestors of Rickettsiales and Rickettsiaceae, respectively. Finally, we found that 2,135 genes were lost during the evolution of the Rickettsiaceae to an intracellular lifestyle. CONCLUSIONS Our phylogenetic analysis allowed us to track the gene gain and loss events occurring in bacterial genomes during their evolution from a free-living to an intracellular lifestyle. We have shown that the primary mechanism of evolution and specialization in strictly intracellular bacteria is gene loss. Despite the intracellular habitat, we found several horizontal gene transfers between Rickettsiales species and various prokaryotic, viral and eukaryotic species. OPEN PEER REVIEW Reviewed by Arcady Mushegian, Eugene V. Koonin and Patrick Forterre. For the full reviews please go to the Reviewers' comments section.
Collapse
Affiliation(s)
- Kalliopi Georgiades
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, URMITE, CNRS-IRD UMR 6236 IFR48 Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | | | | | | | | |
Collapse
|
134
|
Abstract
Levels of parasitism are continuously distributed in nature. Models of host-parasite coevolution, however, typically assume that species can be easily characterized as either parasitic or non-parasitic. Consequently, it is poorly understood which factors influence the evolution of parasitism itself. We investigate how ploidy level and the genetic mechanisms underlying infection influence evolution along the continuum of parasitism levels. In order for parasitism to evolve, selective benefits to the successful invasion of hosts must outweigh the losses when encountering resistant hosts. However, we find that exactly where this threshold occurs depends not only on the strength of selection, but also on the genetic model of interaction, the ploidy level in each species, and the nature of the costs to virulence and resistance. With computer simulations, we are able to incorporate more realistic dynamics at the loci underlying species interactions and to extend our analyses in a number of directions, including finite population sizes, multiple alleles and different generation times.
Collapse
Affiliation(s)
- Leithen K M'Gonigle
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.
| | | |
Collapse
|
135
|
|
136
|
Two new subfamilies of DNA mismatch repair proteins (MutS) specifically abundant in the marine environment. ISME JOURNAL 2011; 5:1143-51. [PMID: 21248859 DOI: 10.1038/ismej.2010.210] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
MutS proteins are ubiquitous in cellular organisms and have important roles in DNA mismatch repair or recombination. In the virus world, the amoeba-infecting Mimivirus, as well as the recently sequenced Cafeteria roenbergensis virus are known to encode a MutS related to the homologs found in octocorals and ɛ-proteobacteria. To explore the presence of MutS proteins in other viral genomes, we performed a genomic survey of four giant viruses ('giruses') (Pyramimonas orientalis virus (PoV), Phaeocystis pouchetii virus (PpV), Chrysochromulina ericina virus (CeV) and Heterocapsa circularisquama DNA virus (HcDNAV)) that infect unicellular marine algae. Our analysis revealed the presence of a close homolog of Mimivirus MutS in all the analyzed giruses. These viral homologs possess a specific domain structure, including a C-terminal HNH-endonuclease domain, defining the new MutS7 subfamily. We confirmed the presence of conserved mismatch recognition residues in all members of the MutS7 subfamily, suggesting their role in DNA mismatch repair rather than DNA recombination. PoV and PpV were found to contain an additional type of MutS, which we propose to call MutS8. The MutS8 proteins in PoV and PpV were found to be closely related to homologs from 'Candidatus Amoebophilus asiaticus', an obligate intracellular amoeba-symbiont belonging to the Bacteroidetes. Furthermore, our analysis revealed that MutS7 and MutS8 are abundant in marine microbial metagenomes and that a vast majority of these environmental sequences are likely of girus origin. Giruses thus seem to represent a major source of the underexplored diversity of the MutS family in the microbial world.
Collapse
|
137
|
Georgiades K, Raoult D. Defining pathogenic bacterial species in the genomic era. Front Microbiol 2011; 1:151. [PMID: 21687765 PMCID: PMC3109419 DOI: 10.3389/fmicb.2010.00151] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 12/31/2011] [Indexed: 11/13/2022] Open
Abstract
Actual definitions of bacterial species are limited due to the current criteria of definition and the use of restrictive genetic tools. The 16S ribosomal RNA sequence, for example, has been widely used as a marker for phylogenetic analyses; however, its use often leads to misleading species definitions. According to the first genetic studies, removing a certain number of genes from pathogenic bacteria removes their capacity to infect hosts. However, more recent studies have demonstrated that the specialization of bacteria in eukaryotic cells is associated with massive gene loss, especially for allopatric endosymbionts that have been isolated for a long time in an intracellular niche. Indeed, sympatric free-living bacteria often have bigger genomes and exhibit greater resistance and plasticity and constitute species complexes rather than true species. Specialists, such as pathogenic bacteria, escape these bacterial complexes and colonize a niche, thereby gaining a species name. Their specialization allows them to become allopatric, and their gene losses eventually favor reductive genome evolution. A pathogenic species is characterized by a gene repertoire that is defined not only by genes that are present but also by those that are lacking. It is likely that current bacterial pathogens will disappear soon and be replaced by new ones that will emerge from bacterial complexes that are already in contact with humans.
Collapse
Affiliation(s)
- Kalliopi Georgiades
- Faculté de Médecine et de Pharmacie, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, CNRS-IRD, UMR 6236, IFR48 Marseille, France
| | | |
Collapse
|
138
|
Pérez-Brocal V, Latorre A, Moya A. Symbionts and pathogens: what is the difference? Curr Top Microbiol Immunol 2011; 358:215-43. [PMID: 22076025 DOI: 10.1007/82_2011_190] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The ecological relationships that organisms establish with others can be considered as broad and diverse as the forms of life that inhabit and interact in our planet. Those interactions can be considered as a continuum spectrum, ranging from beneficial to detrimental outcomes. However, this picture has revealed as more complex and dynamic than previously thought, involving not only factors that affect the two or more members that interact, but also external forces, with chance playing a crucial role in this interplay. Thus, defining a particular symbiont as mutualist or pathogen in an exclusive way, based on simple rules of classification is increasingly challenging if not unfeasible, since new methodologies are providing more evidences that depict exceptions, reversions and transitions within either side of this continuum, especially evident at early stages of symbiotic associations. This imposes a wider and more dynamic view of a complex landscape of interactions.
Collapse
Affiliation(s)
- Vicente Pérez-Brocal
- Área de Genómica y Salud, Centro Superior de Investigación en Salud Pública, Valencia, Spain.
| | | | | |
Collapse
|
139
|
Selected codon usage bias in members of the class Mollicutes. Gene 2010; 473:110-8. [PMID: 21147204 DOI: 10.1016/j.gene.2010.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 11/20/2010] [Accepted: 11/22/2010] [Indexed: 11/24/2022]
Abstract
Mollicutes are parasitic microorganisms mainly characterized by small cell sizes, reduced genomes and great A and T mutational bias. We analyzed the codon usage patterns of the completely sequenced genomes of bacteria that belong to this class. We found that for many organisms not only mutational bias but also selection has a major effect on codon usage. Through a comparative perspective and based on three widely used criteria we were able to classify Mollicutes according to the effect of selection on codon usage. We found conserved optimal codons in many species and study the tRNA gene pool in each genome. Previous results are reinforced by the fact that, when selection is operative, the putative optimal codons found match the respective cognate tRNA. Finally, we trace selection effect backwards to the common ancestor of the class and estimate the phylogenetic inertia associated with this character. We discuss the possible scenarios that explain the observed evolutionary patterns.
Collapse
|
140
|
|
141
|
|
142
|
Kloesges T, Popa O, Martin W, Dagan T. Networks of gene sharing among 329 proteobacterial genomes reveal differences in lateral gene transfer frequency at different phylogenetic depths. Mol Biol Evol 2010; 28:1057-74. [PMID: 21059789 PMCID: PMC3021791 DOI: 10.1093/molbev/msq297] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Lateral gene transfer (LGT) is an important mechanism of natural variation among prokaryotes. Over the full course of evolution, most or all of the genes resident in a given prokaryotic genome have been affected by LGT, yet the frequency of LGT can vary greatly across genes and across prokaryotic groups. The proteobacteria are among the most diverse of prokaryotic taxa. The prevalence of LGT in their genome evolution calls for the application of network-based methods instead of tree-based methods to investigate the relationships among these species. Here, we report networks that capture both vertical and horizontal components of evolutionary history among 1,207,272 proteins distributed across 329 sequenced proteobacterial genomes. The network of shared proteins reveals modularity structure that does not correspond to current classification schemes. On the basis of shared protein-coding genes, the five classes of proteobacteria fall into two main modules, one including the alpha-, delta-, and epsilonproteobacteria and the other including beta- and gammaproteobacteria. The first module is stable over different protein identity thresholds. The second shows more plasticity with regard to the sequence conservation of proteins sampled, with the gammaproteobacteria showing the most chameleon-like evolutionary characteristics within the present sample. Using a minimal lateral network approach, we compared LGT rates at different phylogenetic depths. In general, gene evolution by LGT within proteobacteria is very common. At least one LGT event was inferred to have occurred in at least 75% of the protein families. The average LGT rate at the species and class depth is about one LGT event per protein family, the rate doubling at the phylum level to an average of two LGT events per protein family. Hence, our results indicate that the rate of gene acquisition per protein family is similar at the level of species (by recombination) and at the level of classes (by LGT). The frequency of LGT per genome strongly depends on the species lifestyle, with endosymbionts showing far lower LGT frequencies than free-living species. Moreover, the nature of the transferred genes suggests that gene transfer in proteobacteria is frequently mediated by conjugation.
Collapse
Affiliation(s)
- Thorsten Kloesges
- Institute of Botany III, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | | | | | | |
Collapse
|
143
|
Sabri A, Leroy P, Haubruge E, Hance T, Frère I, Destain J, Thonart P. Isolation, pure culture and characterization of Serratia symbiotica sp. nov., the R-type of secondary endosymbiont of the black bean aphid Aphis fabae. Int J Syst Evol Microbiol 2010; 61:2081-2088. [PMID: 20870890 DOI: 10.1099/ijs.0.024133-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An intracellular symbiotic bacterium was isolated from the flora of a natural clone of the black bean aphid Aphis fabae. The strain was able to grow freely in aerobic conditions on a rich medium containing 1 % of each of the following substrates: glucose, yeast extract and casein peptone. Pure culture was achieved through the use of solid-phase culture on the same medium and the strain was designated CWBI-2.3(T). 16S rRNA gene sequence analysis revealed that strain CWBI-2.3(T) was a member of the class Gammaproteobacteria, having high sequence similarity (>99 %) with 'Candidatus Serratia symbiotica', the R-type of secondary endosymbiont that is found in several aphid species. As strain CWBI-2.3(T) ( = LMG 25624(T) = DSM 23270(T)) was the first R-type symbiont to be isolated and characterized, it was designated as the type strain of Serratia symbiotica sp. nov.
Collapse
Affiliation(s)
- Ahmed Sabri
- CWBI, University of Liege B40, 4000 Liege, Belgium
| | - Pascal Leroy
- Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Eric Haubruge
- Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Thierry Hance
- Unité d'Ecologie et de Biogéographie, 1348 Louvain-la-Neuve, Belgium
| | - Isabelle Frère
- Unité d'Ecologie et de Biogéographie, 1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
144
|
McCutcheon JP, Moran NA. Functional convergence in reduced genomes of bacterial symbionts spanning 200 My of evolution. Genome Biol Evol 2010; 2:708-18. [PMID: 20829280 PMCID: PMC2953269 DOI: 10.1093/gbe/evq055] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The main genomic changes in the evolution of host-restricted microbial symbionts are ongoing inactivation and loss of genes combined with rapid sequence evolution and extreme structural stability; these changes reflect high levels of genetic drift due to small population sizes and strict clonality. This genomic erosion includes irreversible loss of genes in many functional categories and can include genes that underlie the nutritional contributions to hosts that are the basis of the symbiotic association. Candidatus Sulcia muelleri is an ancient symbiont of sap-feeding insects and is typically coresident with another bacterial symbiont that varies among host subclades. Previously sequenced Sulcia genomes retain pathways for the same eight essential amino acids, whereas coresident symbionts synthesize the remaining two. Here, we describe a dual symbiotic system consisting of Sulcia and a novel species of Betaproteobacteria, Candidatus Zinderia insecticola, both living in the spittlebug Clastoptera arizonana. This Sulcia has completely lost the pathway for the biosynthesis of tryptophan and, therefore, retains the ability to make only 7 of the 10 essential amino acids. Zinderia has a tiny genome (208 kb) and the most extreme nucleotide base composition (13.5% G + C) reported to date, yet retains the ability to make the remaining three essential amino acids, perfectly complementing capabilities of the coresident Sulcia. Combined with the results from related symbiotic systems with complete genomes, these data demonstrate the critical role that bacterial symbionts play in the host insect’s biology and reveal one outcome following the loss of a critical metabolic activity through genome reduction.
Collapse
|
145
|
Bai X, Zhang W, Orantes L, Jun TH, Mittapalli O, Mian MAR, Michel AP. Combining next-generation sequencing strategies for rapid molecular resource development from an invasive aphid species, Aphis glycines. PLoS One 2010; 5:e11370. [PMID: 20614011 PMCID: PMC2894077 DOI: 10.1371/journal.pone.0011370] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 06/04/2010] [Indexed: 11/21/2022] Open
Abstract
Background Aphids are one of the most important insect taxa in terms of ecology, evolutionary biology, genetics and genomics, and interactions with endosymbionts. Additionally, many aphids are serious pest species of agricultural and horticultural plants. Recent genetic and genomic research has expanded molecular resources for many aphid species, including the whole genome sequencing of the pea aphid, Acrythosiphon pisum. However, the invasive soybean aphid, Aphis glycines, lacks in any significant molecular resources. Methodology/Principal Findings Two next-generation sequencing technologies (Roche-454 and Illumina GA-II) were used in a combined approach to develop both transcriptomic and genomic resources, including expressed genes and molecular markers. Over 278 million bp were sequenced among the two methods, resulting in 19,293 transcripts and 56,688 genomic sequences. From this data set, 635 SNPs and 1,382 microsatellite markers were identified. For each sequencing method, different soybean aphid biotypes were used which revealed potential biotype specific markers. In addition, we uncovered 39,822 bp of sequence that were related to the obligatory endosymbiont, Buchnera aphidicola, as well as sequences that suggest the presence of Hamiltonella defensa, a facultative endosymbiont. Conclusions and Significance Molecular resources for an invasive, non-model aphid species were generated. Additionally, the power of next-generation sequencing to uncover endosymbionts was demonstrated. The resources presented here will complement ongoing molecular studies within the Aphididae, including the pea aphid whole genome, lead to better understanding of aphid adaptation and evolution, and help provide novel targets for soybean aphid control.
Collapse
Affiliation(s)
- Xiaodong Bai
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Wei Zhang
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Lucia Orantes
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Tae-Hwan Jun
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, United States of America
- United States Department of Agriculture - Agricultural Research Services and Department of Horticulture and Crop Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Omprakash Mittapalli
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, United States of America
| | - M. A. Rouf Mian
- United States Department of Agriculture - Agricultural Research Services and Department of Horticulture and Crop Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Andrew P. Michel
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
146
|
Newton ILG, Bordenstein SR. Correlations between bacterial ecology and mobile DNA. Curr Microbiol 2010; 62:198-208. [PMID: 20577742 DOI: 10.1007/s00284-010-9693-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 06/05/2010] [Indexed: 10/19/2022]
Abstract
Several factors can affect the density of mobile DNA in bacterial genomes including rates of exposure to novel gene pools, recombination, and reductive evolution. These traits are difficult to measure across a broad range of bacterial species, but the ecological niches occupied by an organism provide some indication of the relative magnitude of these forces. Here, by analyzing 384 bacterial genomes assigned to three ecological categories (obligate intracellular, facultative intracellular, and extracellular), we address two, related questions: How does the density of mobile DNA vary across the Bacteria? And is there a statistically supported relationship between ecological niche and mobile element gene density? We report three findings. First, the fraction of mobile element genes in bacterial genomes ranges from 0 to 21% and decreases significantly: facultative intracellular > extracellular > obligate intracellular bacteria. Results further show that the obligate intracellular bacteria that host switch have a higher mobile DNA gene density than the obligate intracellular bacteria that are vertically transmitted. Second, while bacteria from the three ecological niches differ in their average mobile DNA contents, the ranges of mobile DNA found in each category overlap a surprising extent, suggesting bacteria with different lifestyles can tolerate similar amounts of mobile DNA. Third, mobile DNA gene densities increase with genome size across the entire dataset, and the significance of this correlation is dependent on the obligate intracellular bacteria. Further, mobile DNA gene densities do not correlate with evolutionary relationships in a 16S rDNA phylogeny. These findings statistically support a compelling link between mobile element evolution and bacterial ecology.
Collapse
Affiliation(s)
- Irene L G Newton
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
| | | |
Collapse
|
147
|
Yamauchi A, Telschow A, Kobayashi Y. Evolution of cytoplasmic sex ratio distorters: Effect of paternal transmission. J Theor Biol 2010; 266:79-87. [PMID: 20558180 DOI: 10.1016/j.jtbi.2010.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 06/09/2010] [Accepted: 06/09/2010] [Indexed: 11/27/2022]
Abstract
Eukaryotic organisms carry various genetic factors the so-called cytoplasmic genetic elements (CGEs), in their cytoplasm. Numerous examples are known in which CGEs possess the ability to control sex determination of their host organisms and cause sex ratio distortion (SRD). In general, CGEs are inherited maternally from female hosts, via egg cytoplasm to offspring. Thus, the elements tend to evolve abilities to avoid entrance into "dead-end" males. Previous theoretical studies have revealed that, as long as maternal transmission is perfect, CGEs evolve the highest levels of ability to cause SRD. However, it is recently reported that some CGEs transmit from male to offspring through infection to female in mating. This raises the question of how such a paternal contribution alters selective forces and SRD evolution. In the present study, the evolutionary process of SRD ability of CGEs was analyzed theoretically. The main finding is that paternal transmission results in evolution towards intermediate levels of SRD. Further, coexistence was observed of different CGEs inducing different levels of SRD. These results point to the importance of paternal transmission in the evolution of CGEs.
Collapse
Affiliation(s)
- Atsushi Yamauchi
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Japan.
| | | | | |
Collapse
|
148
|
Abstract
The frequencies of alternative synonymous codons vary both among species and among genes from the same genome. These patterns have been inferred to reflect the action of natural selection. Here we evaluate this in bacteria. While intragenomic variation in many species is consistent with selection favouring translationally optimal codons, much of the variation among species appears to be due to biased patterns of mutation. The strength of selection on codon usage can be estimated by two different approaches. First, the extent of bias in favour of translationally optimal codons in highly expressed genes, compared to that in genes where selection is weak, reveals the long-term effectiveness of selection. Here we show that the strength of selected codon usage bias is highly correlated with bacterial growth rate, suggesting that selection has favoured translational efficiency. Second, the pattern of bias towards optimal codons at polymorphic sites reveals the ongoing action of selection. Using this approach we obtained results that were completely consistent with the first method; importantly, the frequency spectra of optimal codons at polymorphic sites were similar to those predicted under an equilibrium model. Highly expressed genes in Escherichia coli appear to be under continuing strong selection, whereas selection is very weak in genes expressed at low levels.
Collapse
Affiliation(s)
- Paul M Sharp
- Institute of Evolutionary Biology, University of Edinburgh, , Kings Buildings, Edinburgh EH9 3JT, UK.
| | | | | |
Collapse
|
149
|
Can the tight co-speciation between reed beetles (Col., Chrysomelidae, Donaciinae) and their bacterial endosymbionts, which provide cocoon material, clarify the deeper phylogeny of the hosts? Mol Phylogenet Evol 2010; 54:810-21. [DOI: 10.1016/j.ympev.2009.10.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 10/29/2009] [Accepted: 10/31/2009] [Indexed: 11/23/2022]
|
150
|
Paul S, Dutta A, Bag SK, Das S, Dutta C. Distinct, ecotype-specific genome and proteome signatures in the marine cyanobacteria Prochlorococcus. BMC Genomics 2010; 11:103. [PMID: 20146791 PMCID: PMC2836286 DOI: 10.1186/1471-2164-11-103] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 02/10/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The marine cyanobacterium Prochlorococcus marinus, having multiple ecotypes of distinct genotypic/phenotypic traits and being the first documented example of genome shrinkage in free-living organisms, offers an ideal system for studying niche-driven molecular micro-diversity in closely related microbes. The present study, through an extensive comparative analysis of various genomic/proteomic features of 6 high light (HL) and 6 low light (LL) adapted strains, makes an attempt to identify molecular determinants associated with their vertical niche partitioning. RESULTS Pronounced strand-specific asymmetry in synonymous codon usage is observed exclusively in LL strains. Distinct dinucleotide abundance profiles are exhibited by 2 LL strains with larger genomes and G+C-content approximately 50% (group LLa), 4 LL strains having reduced genomes and G+C-content approximately 35-37% (group LLb), and 6 HL strains. Taking into account the emergence of LLa, LLb and HL strains (based on 16S rRNA phylogeny), a gradual increase in average aromaticity, pI values and beta- & coil-forming propensities and a decrease in mean hydrophobicity, instability indices and helix-forming propensities of core proteins are observed. Greater variations in orthologous gene repertoire are found between LLa and LLb strains, while higher number of positively selected genes exist between LL and HL strains. CONCLUSION Strains of different Prochlorococcus groups are characterized by distinct compositional, physicochemical and structural traits that are not mere remnants of a continuous genetic drift, but are potential outcomes of a grand scheme of niche-oriented stepwise diversification, that might have driven them chronologically towards greater stability/fidelity and invoked upon them a special ability to inhabit diverse oceanic environments.
Collapse
Affiliation(s)
- Sandip Paul
- Structural Biology & Bioinformatics Division, Indian Institute of Chemical Biology, 4, Raja S C Mullick Road, Kolkata - 700 032, India
| | | | | | | | | |
Collapse
|