101
|
Goggi J, Pullar IA, Carney SL, Bradford HF. Modulation of neurotransmitter release induced by brain-derived neurotrophic factor in rat brain striatal slices in vitro. Brain Res 2002; 941:34-42. [PMID: 12031545 DOI: 10.1016/s0006-8993(02)02505-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study examined the influence of brain-derived neurotrophic factor (BDNF) on the basal and depolarisation-induced release of the neurotransmitters GABA, dopamine and serotonin from rat striatal brain slices in vitro. BDNF potentiated the potassium or veratrine-stimulated release of GABA, dopamine and serotonin. This potentiation was shown to be dependent on activation of the high-affinity tyrosine kinase-linked receptor TrkB, as K252a (a potent TrkB antagonist) largely prevented the effects. BDNF potentiated the release of each neurotransmitter to similar extents irrespective of the type of depolarising stimulus used. In all cases the potentiation of neurotransmitter release caused by BDNF was dependent on membrane depolarisation as BDNF alone was incapable of causing potentiation. These results, obtained using striatal slices in vitro, suggest that BDNF may be acting via the specific receptor TrkB to modulate synaptic performance in the corpus striatum in vivo.
Collapse
Affiliation(s)
- Julian Goggi
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, South Kensington, London SW7 2AY, UK
| | | | | | | |
Collapse
|
102
|
Gooney M, Shaw K, Kelly A, O'Mara SM, Lynch MA. Long-term potentiation and spatial learning are associated with increased phosphorylation of TrkB and extracellular signal-regulated kinase (ERK) in the dentate gyrus: evidence for a role for brain-derived neurotrophic factor. Behav Neurosci 2002; 116:455-63. [PMID: 12049326 DOI: 10.1037/0735-7044.116.3.455] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, the authors investigate changes in the presynaptic terminal of the dentate gyrus that accompany 2 types of hippocampal-dependent plasticity: spatial learning and long-term potentiation (LTP). Parallel changes occurred in the dentate gyrus of rats that had undergone training in the Morris water maze and had sustained LTP. In both cases, KCl-induced brain-derived neurotrophic factor release was increased, and this was accompanied by increased phosphorylation of TrkB and the mitogen-activated protein kinase, ERK. Glutamate release was also enhanced, and the data suggest that this may be a consequence of increased activation of TrkB and ERK. Because the data indicate that similar cellular modifications are shared by these 2 forms of plasticity, they provide circumstantial evidence that LTP satisfies some of the requirements of a memory-inducing cellular substrate.
Collapse
Affiliation(s)
- M Gooney
- Department of Physiology, Trinity College, Dublin, Ireland
| | | | | | | | | |
Collapse
|
103
|
Scharfman HE, Goodman JH, Sollas AL, Croll SD. Spontaneous limbic seizures after intrahippocampal infusion of brain-derived neurotrophic factor. Exp Neurol 2002; 174:201-14. [PMID: 11922662 DOI: 10.1006/exnr.2002.7869] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The results of several studies have contributed to the hypothesis that BDNF promotes seizure activity, particularly in adult hippocampus. To test this hypothesis, BDNF, vehicle (phosphate-buffered saline, PBS), or albumin was infused directly into the hippocampus for 2 weeks using osmotic minipumps. Rats were examined behaviorally, electrophysiologically, and anatomically. An additional group was tested for sensitivity to the convulsant pilocarpine. Spontaneous behavioral seizures were observed in BDNF-infused rats (8/32; 25%) but not in controls (0/20; 0%). In a subset of six animals (three BDNF, three albumin), blind electrophysiological analysis of scalp recordings contralateral to the infused hippocampus demonstrated abnormalities in all BDNF rats; but not controls. Neuronal loss in BDNF-treated rats was not detected relative to PBS- or albumin-treated animals, but immunocytochemical markers showed a pattern of expression in BDNF-treated rats that was similar to rats with experimentally induced seizures. Thus, BDNF-infused rats had increased expression of NPY in hilar neurons of the dentate gyrus relative to control rats. NPY and BDNF expression was increased in the mossy fiber axons of dentate gyrus granule cells relative to controls. The increase in NPY and BDNF expression in BDNF-treated rats was bilateral and occurred throughout the septotemporal axis of the hippocampus. Mossy fiber sprouting occurred in five BDNF-treated rats but no controls. In another group of infused rats that was tested for seizure sensitivity to the convulsant pilocarpine, BDNF-infused rats had a shorter latency to status epilepticus than PBS-infused rats. In addition, the progression from normal behavior to severe seizures was faster in BDNF-treated rats. These data support the hypothesis that intrahippocampal BDNF infusion can facilitate, and potentially initiate, seizure activity in adult hippocampus.
Collapse
Affiliation(s)
- Helen E Scharfman
- Center for Neural Recovery and Rehabilitation Research, Helen Hayes Hospital, West Haverstraw, New York, 10993-1195, USA
| | | | | | | |
Collapse
|
104
|
Long-lasting potentiation of GABAergic synapses in dopamine neurons after a single in vivo ethanol exposure. J Neurosci 2002. [PMID: 11896147 DOI: 10.1523/jneurosci.22-06-02074.2002] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mesolimbic dopamine (DA) system originating in the ventral tegmental area (VTA) is involved in many drug-related behaviors, including ethanol self-administration. In particular, VTA activity regulating ethanol consummatory behavior appears to be modulated through GABA(A) receptors. Previous exposure to ethanol enhances ethanol self-administration, but the mechanisms underlying this phenomenon are not well understood. In this study, we examined changes occurring at GABA synapses onto VTA DA neurons after a single in vivo exposure to ethanol. We observed that evoked GABA(A) IPSCs in DA neurons of ethanol-treated animals exhibited paired-pulse depression (PPD) compared with saline-treated animals, which exhibited paired-pulse facilitation (PPF). Furthermore, PPD was still present 1 week after the single exposure to ethanol. An increase in frequency of spontaneous miniature GABA(A) IPSCs (mIPSCs) was also observed in the ethanol-treated animals. Additionally, the GABA(B) receptor antagonist (3-aminopropyl)(diethoxymethyl) phosphinic acid shifted PPD to PPF, indicating that presynaptic GABA(B) receptor activation, likely attributable to GABA spillover, might play a role in mediating PPD in the ethanol-treated mice. The activation of adenylyl cyclase by forskolin increased the amplitude of GABA(A) IPSCs and the frequency of mIPSCs in the saline- but not in the ethanol-treated animals. Conversely, the protein kinase A (PKA) inhibitor N-[z-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide significantly decreased both the frequency of spontaneous mIPSCs and the amplitude of GABA(A) IPSCs in the ethanol-treated mice but not in the saline controls. The present results indicate that potentiation of GABAergic synapses, via a PKA-dependent mechanism, occurs in the VTA after a single in vivo exposure to ethanol, and such potentiation might be a key synaptic modification underlying increased ethanol intake.
Collapse
|
105
|
Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J Neurosci 2002. [PMID: 11880483 DOI: 10.1523/jneurosci.22-05-01532.2002] [Citation(s) in RCA: 561] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is implicated in long-term synaptic plasticity in the adult hippocampus, but the cellular mechanisms are little understood. Here we used intrahippocampal microinfusion of BDNF to trigger long-term potentiation (BDNF-LTP) at medial perforant path--granule cell synapses in vivo. BDNF infusion led to rapid phosphorylation of the mitogen-activated protein (MAP) kinases ERK (extracellular signal-regulated protein kinase) and p38 but not JNK (c-Jun N-terminal protein kinase). These effects were restricted to the infused dentate gyrus; no changes were observed in microdissected CA3 and CA1 regions. Local infusion of MEK (MAP kinase kinase) inhibitors (PD98059 and U0126) during BDNF delivery abolished BDNF-LTP and the associated ERK activation. Application of MEK inhibitor during established BDNF-LTP had no effect. Activation of MEK-ERK is therefore required for the induction, but not the maintenance, of BDNF-LTP. BDNF-LTP was further coupled to ERK-dependent phosphorylation of the transcription factor cAMP response element-binding protein. Finally, we investigated the expression of two immediate early genes, activity-regulated cytoskeleton-associated protein (Arc) and Zif268, both of which are required for generation of late, mRNA synthesis-dependent LTP. BDNF infusion resulted in selective upregulation of mRNA and protein for Arc. In situ hybridization showed that Arc transcripts are rapidly and extensively delivered to granule cell dendrites. U0126 blocked Arc upregulation in parallel with BDNF-LTP. The results support a model in which BDNF triggers long-lasting synaptic strengthening through MEK-ERK and selective induction of the dendritic mRNA species Arc.
Collapse
|
106
|
Pereira DB, Carvalho AP, Duarte CB. Non-specific effects of the MEK inhibitors PD098,059 and U0126 on glutamate release from hippocampal synaptosomes. Neuropharmacology 2002; 42:9-19. [PMID: 11750912 DOI: 10.1016/s0028-3908(01)00162-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In order to investigate a role for the extracellular-signal-regulated kinases 1 and 2 (ERK1/2) on hippocampal neurotransmitter release, we studied the effect of commonly used MEK (mitogen-activated protein kinase [MAPK]/ERK kinase) inhibitors, PD098,059 and U0126, on depolarization-induced glutamate release. PD098,059 inhibited glutamate release from hippocampal synaptosomes stimulated with 15 mM KCl in a concentration-dependent manner. At the same range of concentrations, PD098,059 inhibited basal and KCl-stimulated ERK1/2 phosphorylation. U0126, however, did not significantly affect KCl-evoked glutamate release at concentrations shown to inhibit ERK activity. Nonetheless, U0126 unspecifically potentiated depolarization-induced Ca2+-independent glutamate release, which masked a small dose-dependent inhibitory effect on the Ca2+-dependent release. PD098,059 reduced the [Ca2+]i response to KCl by partially inhibiting Ca2+ entry through N- and P-/Q-type voltage-gated Ca2+ channels, whereas U0126 did not affect depolarization-induced Ca2+ influx. To overcome the unspecific effect of PD098,059 on Ca2+ entry, we studied the effect of both MEK inhibitors on glutamate release stimulated by a Ca2+ ionophore. PD098,029 and U0126 showed a small dose-dependent inhibitory effect on ionomycin-induced glutamate release, at concentrations shown to inhibit ionomycin-stimulated ERK phosphorylation. These findings uncover new unspecific actions for both MEK inhibitors and suggest a minor role for ERK in modulating glutamate release in the hippocampus.
Collapse
Affiliation(s)
- D B Pereira
- Center for Neuroscience of Coimbra, University of Coimbra, 3004-517, Coimbra, Portugal
| | | | | |
Collapse
|
107
|
Hartmann M, Heumann R, Lessmann V. Synaptic secretion of BDNF after high-frequency stimulation of glutamatergic synapses. EMBO J 2001; 20:5887-97. [PMID: 11689429 PMCID: PMC125691 DOI: 10.1093/emboj/20.21.5887] [Citation(s) in RCA: 402] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The protein brain-derived neurotrophic factor (BDNF) has been postulated to be a retrograde or paracrine synaptic messenger in long-term potentiation and other forms of activity-dependent synaptic plasticity. Although crucial for this concept, direct evidence for the activity-dependent synaptic release of BDNF is lacking. Here we investigate secretion of BDNF labelled with green fluorescent protein (BDNF-GFP) by monitoring the changes in fluorescence intensity of dendritic BDNF-GFP vesicles at glutamatergic synaptic junctions of living hippocampal neurons. We show that high-frequency activation of glutamatergic synapses triggers the release of BDNF-GFP from synaptically localized secretory granules. This release depends on activation of postsynaptic ionotropic glutamate receptors and on postsynaptic Ca(2+) influx. Release of BDNF-GFP is also observed from extrasynaptic dendritic vesicle clusters, suggesting that a possible spatial restriction of BDNF release to specific synaptic sites can only occur if the postsynaptic depolarization remains local. These results support the concept of BDNF being a synaptic messenger of activity-dependent synaptic plasticity, which is released from postsynaptic neurons.
Collapse
Affiliation(s)
| | | | - Volkmar Lessmann
- Department of Molecular Neurobiochemistry, Ruhr University Bochum, NC7-132, D-44780 Bochum, Germany
Corresponding author e-mail:
| |
Collapse
|
108
|
Abstract
Transcellular retrograde signaling from the postsynaptic target cell to the presynaptic neuron plays critical roles in the formation, maturation, and plasticity of synaptic connections. We here review recent progress in our understanding of the retrograde signaling at developing central synapses. Three forms of potential retrograde signals-membrane-permeant factors, membrane-bound factors, and secreted factors-have been implicated at both developing and mature synapses. Although many of these signals may be active constitutively, retrograde factors produced in association with activity-dependent synaptic plasticity, e.g., long-term potentiation and long-term depression, are of particular interest, because they may induce modification of neuronal excitability and synaptic transmission, functions directly related to the processing and storage of information in the nervous system.
Collapse
Affiliation(s)
- H W Tao
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 97420, USA
| | | |
Collapse
|
109
|
Zhu WJ, Roper SN. Brain-derived neurotrophic factor enhances fast excitatory synaptic transmission in human epileptic dentate gyrus. Ann Neurol 2001; 50:188-94. [PMID: 11506401 DOI: 10.1002/ana.1074] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) has trophic effects and modulates synaptic transmission in the hippocampal formation in animal studies. It is also upregulated in acute and chronic epilepsy models and in human temporal lobe epilepsy. This study was undertaken to examine the effects of BDNF on fast synaptic transmission in the human epileptic dentate gyrus. Hippocampal specimens were acquired from patients with temporal lobe epilepsy during surgical removal of the anterior temporal lobe intended to treat the epileptic condition. Whole-cell patch-clamp recordings were obtained from dentate granule cells in transverse hippocampal slices in vitro. Application of BDNF increased the amplitude and frequency of spontaneous excitatory postsynaptic currents and increased the amplitude of evoked excitatory postsynaptic currents. BDNF had no effect on spontaneous inhibitory postsynaptic currents but produced a decrease in amplitude of evoked inhibitory postsynaptic currents. BDNF's effects were abolished by coapplication of the tyrosine kinase inhibitor K252a. Therefore, BDNF enhances fast excitatory transmission in the epileptic human dentate gyrus and may play an important role in epileptogenesis in temporal lobe epilepsy. This raises the possibility of designing therapies for this disorder that may be both anticonvulsant and antiepileptogenic.
Collapse
Affiliation(s)
- W J Zhu
- Department of Neurological Surgery and Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville 32610-0265, USA
| | | |
Collapse
|
110
|
BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses. J Neurosci 2001. [PMID: 11404410 DOI: 10.1523/jneurosci.21-12-04249.2001] [Citation(s) in RCA: 346] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is emerging as a key mediator of activity-dependent modifications of synaptic strength in the CNS. We investigated the hypothesis that BDNF enhances quantal neurotransmitter release by modulating the distribution of synaptic vesicles within presynaptic terminals using organotypic slice cultures of postnatal rat hippocampus. BDNF specifically increased the number of docked vesicles at the active zone of excitatory synapses on CA1 dendritic spines, with only a small increase in active zone size. In agreement with the hypothesis that an increased docked vesicle density enhances quantal neurotransmitter release, BDNF increased the frequency, but not the amplitude, of AMPA receptor-mediated miniature EPSCs (mEPSCs) recorded from CA1 pyramidal neurons in hippocampal slices. Synapse number, independently estimated from dendritic spine density and electron microscopy measurements, was also increased after BDNF treatment, indicating that the actions of BNDF on mEPSC frequency can be partially attributed to an increased synaptic density. Our results further suggest that all these actions were mediated via tyrosine kinase B (TrkB) receptor activation, established by inhibition of plasma membrane tyrosine kinases with K-252a. These results provide additional evidence of a fundamental role of the BDNF-TrkB signaling cascade in synaptic transmission, as well as in cellular models of hippocampus-dependent learning and memory.
Collapse
|
111
|
Gooney M, Lynch MA. Long-term potentiation in the dentate gyrus of the rat hippocampus is accompanied by brain-derived neurotrophic factor-induced activation of TrkB. J Neurochem 2001; 77:1198-207. [PMID: 11389170 DOI: 10.1046/j.1471-4159.2001.00334.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A role for neurotrophic factors, in particular brain-derived neurotrophic factor (BDNF), in modulating synaptic plasticity in the adult brain has been described in recent years by several laboratories. A great deal of emphasis has been placed on establishing its precise role in the expression of long-term potentiation (LTP) in the hippocampus. Here we attempt to address this question by investigating, first, its release following induction of LTP in perforant path-granule cell synapses and, second, the signalling events which follow activation of the BDNF receptor, TrkB, in the presynaptic terminal. We report that BDNF release is increased from slices of dentate gyrus following tetanic stimulation of the perforant path and that TrkB activation is increased in synaptosomes prepared from tetanized dentate gyrus. These changes are accompanied by increased activation of one member of the family of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK) and the data indicate that these events play a role in modulating release of glutamate from perforant path-granule cell synapses, because the Trk inhibitor K252a and the ERK inhibitor, UO126, both inhibited the BDNF-induced enhancement of release. We propose that the increase in phosphorylation of the transcription factor cAMP response element binding protein and in protein synthesis might underlie the more persistent components of LTP in dentate gyrus.
Collapse
Affiliation(s)
- M Gooney
- Department of Physiology, Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | | |
Collapse
|
112
|
Brünig I, Penschuck S, Berninger B, Benson J, Fritschy JM. BDNF reduces miniature inhibitory postsynaptic currents by rapid downregulation of GABA(A) receptor surface expression. Eur J Neurosci 2001; 13:1320-8. [PMID: 11298792 DOI: 10.1046/j.0953-816x.2001.01506.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Changes in neurotransmitter receptor density at the synapse have been proposed as a mechanism underlying synaptic plasticity. Neurotrophic factors are known to influence synaptic strength rapidly. In the present study, we found that brain-derived neurotrophic factor (BDNF) acts postsynaptically to reduce gamma-aminobutyric acid (GABA)-ergic function. Using primary cultures of rat hippocampal neurons, we investigated the effects of BDNF on GABAergic miniature inhibitory postsynaptic currents (mIPSCs) and on the localization of GABAA receptors. Application of BDNF (100 ng/mL) led within minutes to a marked reduction (33.5%) of mIPSC amplitudes in 50% of neurons, recorded in the whole-cell patch-clamp mode, leaving frequency and decay kinetics unaffected. This effect was blocked by the protein kinase inhibitor K252a, which binds with high affinity to trkB receptors. Immunofluorescence staining with an antibody against trkB revealed that about 70% of cultured hippocampal pyramidal cells express trkB. In dual labelling experiments, use of neurobiotin injections to label the recorded cells revealed that all cells responsive to BDNF were immunopositive for trkB. Treatment of cultures with BDNF reduced the immunoreactivity for the GABAA receptor subunits-alpha2, -beta2,3 and -gamma2 in the majority of neurons. This effect was detectable after 15 min and lasted at least 12 h. Neurotrophin-4 (NT-4), but not neurotrophin-3 (NT-3), also reduced GABAA receptor immunoreactivity, supporting the proposal that this effect is mediated by trkB. Altogether the results suggest that exposure to BDNF induces a rapid reduction in postsynaptic GABAA receptor number that is responsible for the decline in GABAergic mIPSC amplitudes.
Collapse
Affiliation(s)
- I Brünig
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
113
|
Affiliation(s)
- H Thoenen
- Max-Planck-Institute of Neurobiology, Department of Neurobiochemistry, Martinsried, Germany
| |
Collapse
|
114
|
Bolton MM, Lo DC, Sherwood NT. Long-term regulation of excitatory and inhibitory synaptic transmission in hippocampal cultures by brain-derived neurotrophic factor. PROGRESS IN BRAIN RESEARCH 2001; 128:203-18. [PMID: 11105680 DOI: 10.1016/s0079-6123(00)28018-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- M M Bolton
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
115
|
Kafitz KW, Rose CR, Konnerth A. Neurotrophin-evoked rapid excitation of central neurons. PROGRESS IN BRAIN RESEARCH 2001; 128:243-9. [PMID: 11105683 DOI: 10.1016/s0079-6123(00)28021-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- K W Kafitz
- Institute for Physiology, Technical University of Munich, Germany
| | | | | |
Collapse
|
116
|
Lu B, Gottschalk W. Modulation of hippocampal synaptic transmission and plasticity by neurotrophins. PROGRESS IN BRAIN RESEARCH 2001; 128:231-41. [PMID: 11105682 DOI: 10.1016/s0079-6123(00)28020-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- B Lu
- Unit on Synapse Development and Plasticity, NICHD, NIH, Bethesda, MD 20892-4480, USA.
| | | |
Collapse
|
117
|
Reibel S, Larmet Y, Lê BT, Carnahan J, Marescaux C, Depaulis A. Brain-derived neurotrophic factor delays hippocampal kindling in the rat. Neuroscience 2001; 100:777-88. [PMID: 11036211 DOI: 10.1016/s0306-4522(00)00351-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Epileptic seizures increase the expression of brain-derived neurotrophic factor in the hippocampus. Since this neurotrophin exerts modulatory effects on neuronal excitability in this structure, it may play an important role in hippocampal epileptogenesis. This question was addressed by studying the effects of chronic infusions of recombinant brain-derived neurotrophic factor and brain-derived neurotrophic factor antisense in the hippocampus during the first seven days of hippocampal kindling. Infusion with brain-derived neurotrophic factor (6-24 microg/day) significantly delayed the progression of standard hippocampal kindling and strongly suppressed seizures induced by rapid hippocampal kindling. These suppressive effects were dose dependent, long lasting, not secondary to neuronal toxicity and specific to this neurotrophin, as nerve growth factor accelerated hippocampal kindling progression. They also appeared to be specific to the hippocampus, as infusion of brain-derived neurotrophic factor (48 microg/day) in the amygdala only resulted in a slight and transient delay of amygdala kindling. Conversely to the protective effects of exogenous brain-derived neurotrophic factor, chronic hippocampal infusion of antisense oligodeoxynucleotides (12 nmol/day), resulting in reduced expression of endogenous brain-derived neurotrophic factor in the hippocampus, aggravated seizures during hippocampal kindling. Taken together, our results lead us to suggest that the seizure-induced increase in brain-derived neurotrophic factor expression in the hippocampus may constitute an endogenous regulatory mechanism able to restrain hippocampal epileptogenesis.
Collapse
Affiliation(s)
- S Reibel
- INSERM U398, Faculté de Médecine, Université Louis Pasteur, 11 rue Humann, 67085 Cedex, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
118
|
Activity-dependent release of endogenous brain-derived neurotrophic factor from primary sensory neurons detected by ELISA in situ. J Neurosci 2001. [PMID: 11007900 DOI: 10.1523/jneurosci.20-19-07417.2000] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To define activity-dependent release of endogenous brain-derived neurotrophic factor (BDNF), we developed an in vitro model using primary sensory neurons and a modified ELISA, termed ELISA in situ. Dissociate cultures of nodose-petrosal ganglion cells from newborn rats were grown in wells precoated with anti-BDNF antibody to capture released BDNF, which was subsequently detected using conventional ELISA. Conventional ELISA alone was unable to detect any increase in BDNF concentration above control values following chronic depolarization with 40 mM KCl for 72 hr. However, ELISA in situ demonstrated a highly significant increase in BDNF release, from 65 pg/ml in control to 228 pg/ml in KCl-treated cultures. The efficacy of the in situ assay appears to be related primarily to rapid capture of released BDNF that prevents BDNF binding to the cultured cells. We therefore used this approach to compare BDNF release from cultures exposed for 30 min to either continuous depolarization with elevated KCl or patterned electrical field stimulation (50 biphasic rectangular pulses of 25 msec, at 20 Hz, every 5 sec). Short-term KCl depolarization was completely ineffective at evoking any detectable release of BDNF, whereas patterned electrical stimulation increased extracellular BDNF levels by 20-fold. In addition, the magnitude of BDNF release was dependent on stimulus pattern, with high-frequency bursts being most effective. These data indicate that the optimal stimulus profile for BDNF release resembles that of other neuroactive peptides. Moreover, our findings demonstrate that BDNF release can encode temporal features of presynaptic neuronal activity.
Collapse
|
119
|
Abstract
The role of neurotrophins as regulatory factors that mediate the differentiation and survival of neurons has been well described. More recent evidence indicates that neurotrophins may also act as synaptic modulators. Here, I review the evidence that synaptic activity regulates the synthesis, secretion and action of neurotrophins, which can in turn induce immediate changes in synaptic efficacy and morphology. By this account, neurotrophins may participate in activity-dependent synaptic plasticity, linking synaptic activity with long-term functional and structural modification of synaptic connections.
Collapse
Affiliation(s)
- M M Poo
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA.
| |
Collapse
|
120
|
Murer MG, Yan Q, Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease. Prog Neurobiol 2001; 63:71-124. [PMID: 11040419 DOI: 10.1016/s0301-0082(00)00014-9] [Citation(s) in RCA: 648] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a small dimeric protein, structurally related to nerve growth factor, which is abundantly and widely expressed in the adult mammalian brain. BDNF has been found to promote survival of all major neuronal types affected in Alzheimer's disease and Parkinson's disease, like hippocampal and neocortical neurons, cholinergic septal and basal forebrain neurons, and nigral dopaminergic neurons. In this article, we summarize recent work on the molecular and cellular biology of BDNF, including current ideas about its intracellular trafficking, regulated synthesis and release, and actions at the synaptic level, which have considerably expanded our conception of BDNF actions in the central nervous system. But our primary aim is to review the literature regarding BDNF distribution in the human brain, and the modifications of BDNF expression which occur in the brain of individuals with Alzheimer's disease and Parkinson's disease. Our knowledge concerning BDNF actions on the neuronal populations affected in these pathological states is also reviewed, with an aim at understanding its pathogenic and pathophysiological relevance.
Collapse
Affiliation(s)
- M G Murer
- Departamento de Fisiologia, Facultad de Medicina, Universidad de Buenos Aires, Paraguay.
| | | | | |
Collapse
|
121
|
Taniguchi N, Takada N, Kimura F, Tsumoto T. Actions of brain-derived neurotrophic factor on evoked and spontaneous EPSCs dissociate with maturation of neurones cultured from rat visual cortex. J Physiol 2000; 527 Pt 3:579-92. [PMID: 10990542 PMCID: PMC2270088 DOI: 10.1111/j.1469-7793.2000.t01-1-00579.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
To address the question of whether brain-derived neurotrophic factor (BDNF) directly enhances excitatory synaptic transmission, we recorded excitatory postsynaptic currents (EPSCs) from solitary neurones cultured on glial microislands for 7-38 days, and observed changes in EPSCs after the application of BDNF. In this preparation the possible action of BDNF on GABAergic inhibition was not involved, and evoked and spontaneous (miniature) EPSCs were derived from the same group of synapses (autapses). The application of BDNF at a concentration of 200 ng ml-1 rapidly enhanced the frequency of miniature EPSCs (mEPSCs) in almost all the neurones tested. On the other hand, the amplitude of mEPSCs did not change at all, suggesting that the site of BDNF action is presynaptic. In contrast to the enhanced frequency of mEPSCs, evoked EPSCs were not potentiated in 61 % of the cells tested. Most of these BDNF-insensitive EPSCs had a peak amplitude larger than 1 nA, while most of the other BDNF-sensitive EPSCs had a smaller amplitude. The former EPSCs had smaller coefficients of variation (CVs) of amplitude, while the latter had larger CVs, suggesting the possibility that the presynaptic release probability for the former groups of EPSCs might have beeen saturated so that the BDNF action was occluded. To test this possibility we applied a low Ca2+ solution to 17 cells and reduced the amplitude of their evoked EPSCs to less than or near to 1 nA. It was found, however, that BDNF did not enhance these EPSCs. Rather, evoked EPSCs of almost all the cells cultured for less than 15 days were enhanced by BDNF, while those of most of the cells cultured for longer than 16 days were not enhanced. These results suggest that BDNF enhances transmitter release from presynaptic sites through its action on the release machinery, which can be differentiated into a BDNF-insensitive form for evoked release and a BDNF-sensitive form for spontaneous release with maturation of synapses.
Collapse
Affiliation(s)
- N Taniguchi
- CREST, Japan Science and Technology Corporation, and Division of Neurophysiology, Biomedical Research Center, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871 Japan
| | | | | | | |
Collapse
|
122
|
Brain-derived neurotrophic factor differentially regulates excitatory and inhibitory synaptic transmission in hippocampal cultures. J Neurosci 2000. [PMID: 10777787 DOI: 10.1523/jneurosci.20-09-03221.2000] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has been postulated to be a key signaling molecule in regulating synaptic strength and overall circuit activity. In this context, we have found that BDNF dramatically increases the frequency of spontaneously initiated action potentials in hippocampal neurons in dissociated culture. Using analysis of unitary synaptic transmission and immunocytochemical methods, we determined that chronic treatment with BDNF potentiates both excitatory and inhibitory transmission, but that it does so via different mechanisms. BDNF strengthens excitation primarily by augmenting the amplitude of AMPA receptor-mediated miniature EPSCs (mEPSCs) but enhances inhibition by increasing the frequency of mIPSC and increasing the size of GABAergic synaptic terminals. In contrast to observations in other systems, BDNF-mediated increases in AMPA-receptor mediated mEPSC amplitudes did not require activity, because blocking action potentials with tetrodotoxin for the entire duration of BDNF treatment had no effect on the magnitude of this enhancement. These forms of synaptic regulations appear to be a selective action of BDNF because intrinsic excitability, synapse number, and neuronal survival are not affected in these cultures. Thus, although BDNF induces a net increase in overall circuit activity, this results from potentiation of both excitatory and inhibitory synaptic drive through distinct and selective physiological mechanisms.
Collapse
|
123
|
Kumura E, Kimura F, Taniguchi N, Tsumoto T. Brain-derived neurotrophic factor blocks long-term depression in solitary neurones cultured from rat visual cortex. J Physiol 2000; 524 Pt 1:195-204. [PMID: 10747192 PMCID: PMC2269848 DOI: 10.1111/j.1469-7793.2000.t01-2-00195.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/1999] [Accepted: 12/22/1999] [Indexed: 11/28/2022] Open
Abstract
1. To address questions of whether long-term depression (LTD) in the visual cortex is expressed in pre- or postsynaptic sites, whether brain-derived neurotrophic factor (BDNF) exerts its LTD-blocking action without involvement of GABAergic inhibition, and whether the action of BDNF is pre- or postsynaptic, we observed excitatory postsynaptic currents (EPSCs) from solitary neurones cultured on glial microislands. In this preparation GABAergic inhibition is not involved and a group of synapses (autapses) which generate evoked EPSCs is thought to be the same as those generating spontaneous EPSCs. 2. A short depolarising voltage step to the soma generated Na+ spikes which were followed by autaptic EPSCs. When this somatic activation was paired with prolonged depolarisation for 100 ms to -30 mV and repeated at 1 Hz for 5 min, LTD was induced in all of the nine cells tested. Then, the frequency of spontaneous EPSCs decreased, but the amplitude did not change, suggesting that the site of LTD expression is presynaptic. 3. Application of BDNF at 50 ng ml-1 blocked the depression of evoked EPSCs and the decrease in the frequency of spontaneous EPSCs. An inhibitor for receptor tyrosine kinases, K252a, antagonised the action of BDNF, suggesting an involvement of BDNF receptors, TrkB. 4. These results suggest that BDNF prevents low-frequency inputs from inducing LTD of excitatory synaptic transmission through presynaptic mechanisms in the developing visual cortex.
Collapse
Affiliation(s)
- E Kumura
- CREST, Japan Science and Technology Corporation and Division of Neurophysiology, Biomedical Research Center, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871 Japan
| | | | | | | |
Collapse
|
124
|
Brain-derived neurotrophic factor acutely inhibits AMPA-mediated currents in developing sensory relay neurons. J Neurosci 2000. [PMID: 10684891 DOI: 10.1523/jneurosci.20-05-01904.2000] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is expressed by many primary sensory neurons that no longer require neurotrophins for survival, indicating that BDNF may be used as a signaling molecule by the afferents themselves. Because many primary afferents also express glutamate, we investigated the possibility that BDNF modulates glutamatergic AMPA responses of newborn second-order sensory relay neurons. Perforated-patch, voltage-clamp recordings were made from dissociated neurons of the brainstem nucleus tractus solitarius (nTS), a region that receives massive primary afferent input from BDNF-containing neurons in the nodose and petrosal cranial sensory ganglia. Electrophysiological analysis was combined in some experiments with anterograde labeling of primary afferent terminals to specifically analyze responses of identified second-order neurons. Our data demonstrate that BDNF strongly inhibits AMPA-mediated currents in a large subset of nTS cells. Specifically, AMPA responses were either completely abolished or markedly inhibited by BDNF in 73% of postnatal day (P0) cells and in 82% of identified P5 second-order sensory relay neurons. This effect of BDNF is mimicked by NT-4, but not NGF, and blocked by the Trk tyrosine kinase inhibitor K252a, consistent with a requirement for TrkB receptor activation. Moreover, analysis of TrkB expression in culture revealed a close correlation between the percentage of nTS neurons in which BDNF inhibits AMPA currents and the percentage of neurons that exhibit TrkB immunoreactivity. These data document a previously undefined mechanism of acute modulation of AMPA responses by BDNF and indicate that BDNF may regulate glutamatergic transmission at primary afferent synapses.
Collapse
|
125
|
Asztely F, Kokaia M, Olofsdotter K, Ortegren U, Lindvall O. Afferent-specific modulation of short-term synaptic plasticity by neurotrophins in dentate gyrus. Eur J Neurosci 2000; 12:662-9. [PMID: 10712646 DOI: 10.1046/j.1460-9568.2000.00956.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neurotrophins modulate synaptic transmission and plasticity in the adult brain. We here show a novel feature of this synaptic modulation, i.e. that two populations of excitatory synaptic connections to granule cells in the dentate gyrus, lateral perforant path (LPP) and medial perforant path (MPP), are differentially influenced by the neurotrophins BDNF and NT-3. Using field recordings and whole-cell patch-clamp recordings in hippocampal slices, we found that paired-pulse (PP) depression at MPP-granule cell synapses was impaired in BDNF knock-out (+/-) mice, but PP facilitation at LPP synapses to the same cells was not impaired. In accordance, scavenging of endogenous BDNF with TrkB-IgG fusion protein also impaired PP depression at MPP-granule cell synapses, but not PP facilitation at LPP-granule cell synapses. Conversely, in NT-3+/- mice, PP facilitation was impaired at LPP-granule cell synapses whilst PP depression at MPP-granule cell synapses was unaffected. These deficits could be reversed by application of exogenous neurotrophins in an afferent-specific manner. Our data suggest that BDNF and NT-3 differentially regulate the synaptic impact of different afferent inputs onto single target neurons in the CNS.
Collapse
Affiliation(s)
- F Asztely
- Section of Restorative Neurology, Wallenberg Neuroscience Center, University Hospital, S-221 85 Lund, Sweden.
| | | | | | | | | |
Collapse
|
126
|
Schinder AF, Berninger B, Poo M. Postsynaptic target specificity of neurotrophin-induced presynaptic potentiation. Neuron 2000; 25:151-63. [PMID: 10707980 DOI: 10.1016/s0896-6273(00)80879-x] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The role of the target cell in neurotrophin-induced modifications of glutamatergic synaptic transmission was examined in cultured hippocampal neurons. Brain-derived neurotrophic factor (BDNF) induced rapid and persistent potentiation of evoked glutamate release when the postsynaptic neuron was glutamatergic, or excitatory (E-->E), but not when it was GABAergic, or inhibitory (E-->1). This target-specific action of BDNF was also found at divergent outputs of a single presynaptic neuron innervating both glutamatergic and GABAergic neurons, suggesting that individual terminals can be independently modified. Surprisingly, BDNF increased the frequency of miniature postsynaptic currents at both E-->E and E-->I, although it had no effect on evoked currents at E-->I. Finally, potentiation by neurotrophin-3 (NT-3) was also target specific. The selective effect at E-->E suggests that retrograde signaling by the postsynaptic target cell endows a localized presynaptic action of neurotrophins.
Collapse
Affiliation(s)
- A F Schinder
- Department of Biology, University of California, San Diego, La Jolla 92093, USA
| | | | | |
Collapse
|
127
|
|
128
|
Long-term enhancement of central synaptic transmission by chronic brain-derived neurotrophic factor treatment. J Neurosci 1999. [PMID: 10436057 DOI: 10.1523/jneurosci.19-16-07025.1999] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Acute effects of neurotrophins on synaptic plasticity have recently received much attention, but the roles of these factors in regulating long-lasting changes in synaptic function remain unclear. To address this issue we studied the long-term (days to weeks) and short-term (minutes to hours) effects of brain-derived neurotrophic factor (BDNF) on excitatory synaptic transmission in autaptic cultures of hippocampal CA1 neurons. We found that BDNF induced long-term enhancement of the strength of non-NMDA receptor-mediated glutamatergic transmission. This upregulation of EPSC amplitude occurred via an increase in the size of unitary synaptic currents, with no significant contribution from other aspects of neuronal electrical and synaptic function including cell size, voltage-gated sodium and potassium current levels, the number and size of synaptic contacts, and the frequency of spontaneous neurotransmitter release. Chronic BDNF treatment also decreased the degree of synaptic depression measured in response to paired stimuli. Thus, BDNF induced long-term synaptic enhancement of both basal and use-dependent synaptic transmission via specific changes to the synapse rather than through generalized potentiation of neuronal growth and differentiation. Finally, we showed that the long-term effects of BDNF are functionally and mechanistically distinct from its acute effects on synaptic transmission, suggesting that, in vivo, BDNF activation of Trk receptors can have different functional effects depending on the time course of its action.
Collapse
|
129
|
Actions of brain-derived neurotrophic factor in slices from rats with spontaneous seizures and mossy fiber sprouting in the dentate gyrus. J Neurosci 1999. [PMID: 10377368 DOI: 10.1523/jneurosci.19-13-05619.1999] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study examined the acute actions of brain-derived neurotrophic factor (BDNF) in the rat dentate gyrus after seizures, because previous studies have shown that BDNF has acute effects on dentate granule cell synaptic transmission, and other studies have demonstrated that BDNF expression increases in granule cells after seizures. Pilocarpine-treated rats were studied because they not only have seizures and increased BDNF expression in granule cells, but they also have reorganization of granule cell "mossy fiber" axons. This reorganization, referred to as "sprouting," involves collaterals that grow into novel areas, i.e., the inner molecular layer, where granule cell and interneuron dendrites are located. Thus, this animal model allowed us to address the effects of BDNF in the dentate gyrus after seizures, as well as the actions of BDNF on mossy fiber transmission after reorganization. In slices with sprouting, BDNF bath application enhanced responses recorded in the inner molecular layer to mossy fiber stimulation. Spontaneous bursts of granule cells occurred, and these were apparently generated at the site of the sprouted axon plexus. These effects were not accompanied by major changes in perforant path-evoked responses or paired-pulse inhibition, occurred only after prolonged (30-60 min) exposure to BDNF, and were blocked by K252a. The results suggest a preferential action of BDNF at mossy fiber synapses, even after substantial changes in the dentate gyrus network. Moreover, the results suggest that activation of trkB receptors could contribute to the hyperexcitability observed in animals with sprouting. Because human granule cells also express increased BDNF mRNA after seizures, and sprouting can occur in temporal lobe epileptics, the results may have implications for understanding temporal lobe epilepsy.
Collapse
|
130
|
Griesbeck O, Canossa M, Campana G, Gärtner A, Hoener MC, Nawa H, Kolbeck R, Thoenen H. Are there differences between the secretion characteristics of NGF and BDNF? Implications for the modulatory role of neurotrophins in activity-dependent neuronal plasticity. Microsc Res Tech 1999; 45:262-75. [PMID: 10383119 DOI: 10.1002/(sici)1097-0029(19990515/01)45:4/5<262::aid-jemt10>3.0.co;2-k] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In previous experiments the activity-dependent secretion of nerve growth factor (NGF) from native hippocampal slices and from NGF-cDNA transfected hippocampal neurons showed unusual characteristics [Blochl and Thoenen (1995) Eur J Neurosci 7:1220-1228; (1996) Mol Cell Neurosci 7:173-190]. In both hippocampal slices and cultured hippocampal neurons the activity-dependent secretion proved to be independent of extracellular calcium, but dependent on the release of calcium from intracellular stores. Under different experimental conditions, Goodman et al. [(1996) Mol Cell Neurosci 7:222-238] reported that the high potassium-mediated secretion of brain-derived neurotrophic factor (BDNF) from hippocampal cultures was dependent on extracellular calcium. Mowla et al. [(1997) Proc 27th Annu Meet Soc Neurosci New Orleans 875.10] reported on even further-reaching differences between NGF and BDNF secretion, namely, that in hippocampal neurons and in pituitary cell lines NGF was secreted exclusively according to the constitutive pathway, whereas BDNF was exclusively sorted according to the activity-dependent regulated pathway. In view of the crucial importance of such potential differences between the processing, sorting, and secretory mechanisms of different neurotrophins for their modulatory roles in activity-dependent neuronal plasticity, a thorough analysis under comparable experimental conditions was mandatory. We demonstrate that in native hippocampal slices and adenoviral-transduced hippocampal neurons there are no differences between NGF and BDNF with respect to the subcellular distribution and mechanism of secretion; that the activity-dependent secretion of both NGF and BDNF is dependent on intact intracellular calcium stores; and that the differences between our own observations and those of Goodman et al. (ibid.) regarding the dependence on extracellular calcium do not reflect differences between NGF and BDNF sorting and secretion, but reflect the differing experimental conditions used.
Collapse
Affiliation(s)
- O Griesbeck
- Max-Planck-Institute of Neurobiology, Department of Neurobiochemistry, Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Berninger B, Schinder AF, Poo MM. Synaptic Reliability Correlates with Reduced Susceptibility to Synaptic Potentiation by Brain-Derived Neurotrophic Factor. Learn Mem 1999. [DOI: 10.1101/lm.6.3.232] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent studies have implicated brain-derived neurotrophic factor (BDNF) in use-dependent modification of hippocampal synapses. BDNF can rapidly potentiate synaptic transmission at glutamatergic synapses by enhancing transmitter release. Using simultaneous perforated patch recording from pairs and triplets of glutamatergic hippocampal neurons, we have examined how the initial state of the glutamatergic synapse determines its susceptibility to synaptic modification by BDNF. We found that the degree of synaptic potentiation by BDNF depends on the initial reliability and strength of the synapse: Relatively weak connections were strongly potentiated, whereas the effect was markedly reduced at stronger synapses. The degree of BDNF-induced potentiation strongly correlated with the initial coefficient of variation (CV) of the amplitude of excitatory postsynaptic currents (EPSCs) and inversely correlated with the initial paired–pulse facilitation, suggesting that synapses with lower release probability (Pr) are more susceptible to the action of BDNF. To determine whether saturation of Pr could have masked the potentiation effect of BDNF in the stronger synapses, we lowered the initial Pr either by reducing the extracellular Ca2+ concentration ([Ca2+]o) or by bath application of adenosine. Synapses that were initially strong remained unaffected by BDNF under these conditions of reduced Pr. Thus, the lack of BDNF effect on synaptic efficacy cannot simply be accounted for by saturation of Pr, but rather may be due to intrinsic changes associated with synaptic maturation that might covary with Pr. Finally, the dependence on initial synaptic strength was also found for divergent outputs of the same presynaptic neuron, suggesting that synaptic terminals with different degrees of responsiveness to BDNF can coexist within in the same neuron.
Collapse
|
132
|
Brain-derived neurotrophic factor prevents low-frequency inputs from inducing long-term depression in the developing visual cortex. J Neurosci 1999. [PMID: 10066265 DOI: 10.1523/jneurosci.19-06-02122.1999] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is reported to enhance synaptic transmission and to play a role in long-term potentiation in hippocampus and neocortex. If so, a shortage or blockade of BDNF might lead to another form of synaptic plasticity, long-term depression (LTD). To test this possibility and to elucidate mechanisms if it is the case, EPSCs evoked by test stimulation of layer IV were recorded from layer II/III neurons in visual cortical slices of young rats in the whole-cell voltage-clamp mode. LTD was induced by low-frequency stimulation (LFS) at 1 Hz for 10-15 min if each pulse of the LFS was paired with depolarization of neurons to -30 mV but was not induced if their membrane potentials were kept at -70 mV. Such an LTD was blocked by exogenously applied BDNF, probably through presynaptic mechanisms. Suppression of endogenous BDNF activity by the anti-BDNF antibody or an inhibitor for BDNF receptors made otherwise ineffective stimuli (LFS without postsynaptic depolarization) effective for LTD induction, suggesting that endogenous BDNF may prevent low-frequency inputs from inducing LTD in the developing visual cortex.
Collapse
|
133
|
Abstract
Examples of signaling molecules that are devoted to neuronal development at the exclusion of other functions are scarce. It may then come as no surprise to learn that a family of molecules that promote neuronal survival, differentiation and outgrowth also regulate synaptic transmission at both developing and mature synapses. Indeed, many studies over the past five years have shown that neurotrophins, including nerve growth factor (NGF), neurotrophin-3 (NT-3), NT-4/5 and brain-derived neurotrophic factor (BDNF), have both rapid and long-latency influences on synaptic strength. New research has highlighted the enormous range of neurotrophin actions at both developing and mature synapses, demonstrating that transmission can be enhanced or reduced at excitatory and inhibitory synapses by either pre- or postsynaptic mechanisms.
Collapse
Affiliation(s)
- E M Schuman
- Howard Hughes Medical Institute Division of Biology 216-76 Caltech Pasadena California 91125 USA.
| |
Collapse
|
134
|
Bradley J, Sporns O. BDNF-dependent enhancement of exocytosis in cultured cortical neurons requires translation but not transcription. Brain Res 1999; 815:140-9. [PMID: 9974134 DOI: 10.1016/s0006-8993(98)01112-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), are involved in acute modulation of synaptic plasticity. Different modes of action of BDNF have been described with time courses ranging from seconds to hours, but the sequence of cellular processes responsible for BDNF-dependent modulation of synaptic plasticity is unknown. We have used optical imaging of the styryl dye, FM1-43, which selectively labels synaptic vesicles, to investigate potential presynaptic effects of BDNF. Addition of BDNF to cultured cortical neurons for 3 h produced a significant enhancement of exocytosis upon modest depolarization. BDNF had no effect on exocytosis either immediately or after incubation for 30 min. BDNF-dependent enhancement of exocytosis was blocked by the tyrosine kinase inhibitor, K252a, but not by K252b, consistent with signalling via the TrkB receptor. Having demonstrated that the BDNF-dependent enhancement of synaptic vesicle release was present only after 1 h, we investigated whether de novo gene transcription and/or protein synthesis were involved. Addition of the inhibitors of RNA synthesis, actinomycin D, or 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole (DRB), did not affect the enhancement of exocytosis produced by BDNF. However, the effect of BDNF was blocked by the inhibitors of translation, cycloheximide or anisomycin. Our results indicate a rapid BDNF-dependent enhancement of neurotransmitter release that requires translation but not transcription.
Collapse
Affiliation(s)
- J Bradley
- Neurosciences Institute, San Diego, CA 92121, USA
| | | |
Collapse
|
135
|
Lessmann V. Neurotrophin-dependent modulation of glutamatergic synaptic transmission in the mammalian CNS. GENERAL PHARMACOLOGY 1998; 31:667-74. [PMID: 9809461 DOI: 10.1016/s0306-3623(98)00190-6] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
1. The protein family of the neurotrophins, consisting of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and Neurotrophin-3, -4/5, and -6 (NT-3; NT-4/5; NT-6) is well known to enhance the survival and to stabilize the phenotype of different populations of neurons in the central and the peripheral nervous system. These effects are mediated via binding to specific tyrosine kinase receptors (Trks) and to the low-affinity p75 neurotrophin receptor. 2. The neurotrophins NGF, BDNF, and NT-3 and the BDNF and NT-3 selective receptors (TrkB, TrkC) are expressed at high levels in neurons of the basal forebrain, the hippocampus, and the neocortex of the mammalian brain. The expression and secretion of NGF and BDNF in these brain areas is regulated by (physiological levels of) neuronal activity. 3. Exogenous application of the neurotrophins to hippocampal and neocortical neurons can enhance excitatory glutamatergic synaptic transmission via activation of Trk receptors. In addition, long-term potentiation (a potential cellular correlate for learning and memory formation in mammals) in the rodent hippocampus depends on endogenous supply of neurons with BDNF. 4. Judged by the analysis of electrophysiological data, the BDNF- and NT-3-induced enhancement of glutamatergic synapses is mediated by increasing the efficacy of glutamate release from the presynaptic neuron. However, neurotrophin-dependent postsynaptic enhancement of NMDA (but not AMPA) receptor responsiveness has also been shown. 5. On the molecular level, neither the pre- nor the postsynaptic modulation of glutamatergic synapses by neurotrophins is well understood. However, neurotrophins were shown to acutely affect intraneuronal Ca2+ levels and to influence molecular components of the transmitter release machinery, which could underly the presynaptic modifications, whereas BDNF-induced phosphorylation of NMDA-type glutamate receptors could account for the postsynaptic effects. 6. Taken together, these results suggest that the activity-dependent release of neurotrophins at frequently used synapses could modulate the synaptic efficacy at these junctions. Thus, neurotrophins might operate as locally released feedback modulators of synaptic transmission, and this could be a cellular correlate for certain aspects of information processing in the mammalian brain.
Collapse
Affiliation(s)
- V Lessmann
- Department of Molecular Neurobiochemistry, Ruhr-Universität Bochum, Germany.
| |
Collapse
|