101
|
Li G, Zhao H, Wang H, Guo X, Guo X, Sun Q, Xu B. Characterization of a Decapentapletic Gene (AccDpp) from Apis cerana cerana and Its Possible Involvement in Development and Response to Oxidative Stress. PLoS One 2016; 11:e0149117. [PMID: 26881804 PMCID: PMC4755538 DOI: 10.1371/journal.pone.0149117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 01/27/2016] [Indexed: 12/25/2022] Open
Abstract
To tolerate many acute and chronic oxidative stress-producing agents that exist in the environment, organisms have evolved many classes of signal transduction pathways, including the transforming growth factor β (TGFβ) signal pathway. Decapentapletic gene (Dpp) belongs to the TGFβ superfamily, and studies on Dpp have mainly focused on its role in the regulation of development. No study has investigated the response of Dpp to oxidative pressure in any organism, including Apis cerana cerana (A. cerana cerana). In this study, we identified a Dpp gene from A. cerana cerana named AccDpp. The 5΄ flanking region of AccDpp had many transcription factor binding sites that relevant to development and stress response. AccDpp was expressed at all stages of A. cerana cerana, with its highest expression in 15-day worker bees. The mRNA level of AccDpp was higher in the poison gland and midgut than other tissues. Furthermore, the transcription of AccDpp could be repressed by 4°C and UV, but induced by other treatments, according to our qRT-PCR analysis. It is worth noting that the expression level of AccDpp protein was increased after a certain time when A. cerana cerana was subjected to all simulative oxidative stresses, a finding that was not completely consistent with the result from qRT-PCR. It is interesting that recombinant AccDpp restrained the growth of Escherichia coli, a function that might account for the role of the antimicrobial peptides of AccDpp. In conclusion, these results provide evidence that AccDpp might be implicated in the regulation of development and the response of oxidative pressure. The findings may lay a theoretical foundation for further genetic studies of Dpp.
Collapse
Affiliation(s)
- Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
| | - Hang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
| | - Xulei Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
| | - Qinghua Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
- * E-mail: (QS); (BX)
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
- * E-mail: (QS); (BX)
| |
Collapse
|
102
|
Li X, Ma J, Li Y. Molecular Cloning and Expression Determination ofp38 MAPKfrom the Liver and Kidney of Silver Carp. J Biochem Mol Toxicol 2016; 30:224-31. [DOI: 10.1002/jbt.21781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 10/30/2015] [Accepted: 12/11/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Xiaoyu Li
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Junguo Ma
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Yuanyuan Li
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| |
Collapse
|
103
|
Zhang Y, Wang X, Qin X, Wang X, Liu F, White E, Zheng XFS. PP2AC Level Determines Differential Programming of p38-TSC-mTOR Signaling and Therapeutic Response to p38-Targeted Therapy in Colorectal Cancer. EBioMedicine 2015; 2:1944-56. [PMID: 26844273 PMCID: PMC4703732 DOI: 10.1016/j.ebiom.2015.11.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/14/2022] Open
Abstract
The p38 MAP kinase is a promising cancer drug target but its therapeutic effect is not fully understood. Here we report that the response of colorectal cancer (CRC) to p38 inhibitors (p38i) is highly variable: while p38i induces regression of one subgroup of CRCs, it stimulates growth of another subgroup. We further show that PP2AC is differentially expressed in the two different CRC subgroups, which determines the programing of p38-TSC-mTORC1 signaling through differential TSC2 phosphorylation at S664, 1254 and 1798, and the antitumor activity by p38i. Remarkably, modulation of PP2AC level is sufficient to reprogram p38-to-mTORC1 signaling and antitumor response. PP2AC expression accurately predicts therapeutic response to p38i in several CRC models, including a large cohort of patient-derived xenografts (PDXs). Moreover, we demonstrate that combination of p38 and mTOR kinase inhibitors effectively overcomes resistance to either inhibitor in single agent therapy. These results demonstrate that alternative routing of signal transduction underlies differential response to p38 and mTOR targeted therapies. The biomarker-guided therapeutic strategies described herein provide a compelling reason for testing in metastatic CRC patients who suffer very poor prognosis due to lack of efficacious drug therapies. p38i has anticancer or cancer-promoting effects in two distinct subgroups of CRCs Differential programing in p38-mTORC1 signaling determines therapeutic response PP2AC expression level programs p38-to-mTOR signaling. Combination of mTOR and p38 kinase inhibitors overcomes drug-resistance to single agent therapy. PP2AC predicts therapeutic response in a large cohort of CRC PDX models.
This study investigates the efficacy and mechanism of a class of developmental anti-inflammatory drugs called p38i in colorectal cancer. p38i profoundly inhibits tumors with low PP2AC, but promotes tumors with high PP2AC. The different treatment outcomes are due to that PP2AC level determines how p38i affects the activity of mTOR, another cancer drug target. Combination of p38i and mTOR inhibitors effectively overcomes resistance to single agent therapies. This study identifies PP2AC as a predictive biomarker and treatment strategies to guide p38-targeted therapy for colorectal cancer patients, especially those with metastatic cancer harboring K-RAS mutations who suffer very poor prognosis.
Collapse
Affiliation(s)
- Yanjie Zhang
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA; Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Xiaowen Wang
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Xiaoyu Qin
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Xinxin Wang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Feng Liu
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA; Department of Molecular Biology and Biochemistry, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| | - X F Steven Zheng
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, 675 Hoes Lane, Piscataway, NJ 08854, USA
| |
Collapse
|
104
|
Niu X, Wang Y, Li W, Zhang H, Wang X, Mu Q, He Z, Yao H. Esculin exhibited anti-inflammatory activities in vivo and regulated TNF-α and IL-6 production in LPS-stimulated mouse peritoneal macrophages in vitro through MAPK pathway. Int Immunopharmacol 2015; 29:779-786. [PMID: 26391063 DOI: 10.1016/j.intimp.2015.08.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/06/2015] [Accepted: 08/31/2015] [Indexed: 10/23/2022]
Abstract
Esculin, a coumarinic derivative found in Aesculus hippocastanum L. (Horse-chestnut), has been reported to have potent anti-inflammatory properties. The present study is designed to investigate the protective effects of esculin on various inflammation models in vivo and in vitro and to clarify the possible mechanism. Induced-animal models of inflammation and lipopolysaccharide (LPS)-challenged mouse peritoneal macrophages were used to examine the anti-inflammatory activity of esculin. In present study, xylene-induced mouse ear edema, carrageenan-induced rat paw edema, and carrageenan-induced mouse pleurisy were attenuated by esculin. In vitro, the pro-inflammatory cytokine levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in supernatant were reduced by esculin. Meanwhile, we found that esculin significantly inhibited LPS-induced activation of mitogen-activated protein kinase (MAPK) pathway in peritoneal macrophages. These results suggest that esculin has potent anti-inflammatory activities in vivo and in vitro, which may involve the inhibition of the MAPK pathway. Esculin may be a promising preventive agent for inflammatory diseases in human.
Collapse
Affiliation(s)
- Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Yu Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Hailin Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xiumei Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Qingli Mu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Zehong He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Huan Yao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| |
Collapse
|
105
|
Tsai YJ, Tsai T, Peng PC, Li PT, Chen CT. Histone acetyltransferase p300 is induced by p38MAPK after photodynamic therapy: the therapeutic response is increased by the p300HAT inhibitor anacardic acid. Free Radic Biol Med 2015; 86:118-32. [PMID: 26001729 DOI: 10.1016/j.freeradbiomed.2015.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 12/11/2022]
Abstract
Oxidative stress mediated by photodynamic therapy (PDT) mediates the tumoricidal effect, but has also been shown to induce the expression of prosurvival molecules, such as cyclooxygenase-2 (COX-2), which is involved in tumor recurrences after PDT. However, the molecular mechanism is still not fully understood. In this study, we found that activated p38MAPK could significantly up-regulate the activity and expression of histone acetyltransferase p300 (p300HAT) in A375 and C26 cells treated with ALA-and chlorin e6 (Ce6)-mediated photodynamic treatment. A colony-formation assay showed that PDT-induced cytotoxicity was dramatically elevated in the presence of the p300HAT inhibitor anacardic acid (AA). Further studies showed that increased p300HAT acetylates histone H3 and NF-κB p65 subunit to up-regulate the COX-2 expression, which was reduced by AA or p300HAT shRNA. Using chromatin immunoprecipitation analysis, we found that the augmented acetylation of histone H3 and NF-κB increases their binding to the COX-2 promoter region. These in vitro findings were further verified in mice bearing murine C26 and human A375 tumors treated with liposomal Ce6 mediated PDT. Meanwhile, the combination of PDT and AA resulted in greater tumor regression in BALB/c mice bearing C26 tumors, compared with PDT only or combined with COX-2 inhibitor. Finally, we demonstrated that suppression of the PDT-induced p300HAT activity also resulted in the decreased expression of survivin, restoring caspase-3 activity and sensitizing PDT-treated cells from autophagy to apoptosis due to the Becline-1 cleavage. This study demonstrates for the first time the molecular mechanisms involved in histone modification induced by PDT-mediated oxidative stress, suggesting that HAT inhibitors may provide a novel therapeutic approach for improving PDT response.
Collapse
Affiliation(s)
- Yi-Jane Tsai
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Tsuimin Tsai
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Po-Chun Peng
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Pei-Tzu Li
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chin-Tin Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
106
|
Effects of p38α/β inhibition on acute lymphoblastic leukemia proliferation and survival in vivo. Leukemia 2015; 29:2307-16. [PMID: 26104660 DOI: 10.1038/leu.2015.153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 06/03/2015] [Accepted: 06/11/2015] [Indexed: 12/24/2022]
Abstract
P38α/β has been described as a tumor-suppressor controlling cell cycle checkpoints and senescence in epithelial malignancies. However, p38α/β also regulates other cellular processes. Here, we describe a role of p38α/β as a regulator of acute lymphoblastic leukemia (ALL) proliferation and survival in experimental ALL models. We also report first evidence that p38α/β phosphorylation is associated with the occurrence of relapses in TEL-AML1-positive leukemia. First, in vitro experiments show that p38α/β signaling is induced in a cyclical manner upon initiation of proliferation and remains activated during log-phase of cell growth. Next, we provide evidence that growth-permissive signals in the bone marrow activate p38α/β in a novel avian ALL model, in which therapeutic targeting can be tested. We further demonstrate that p38α/β inhibition by small molecules can suppress leukemic expansion and prolong survival of mice bearing ALL cell lines and primary cells. Knockdown of p38α strongly delays leukemogenesis in mice xenografted with cell lines. Finally, we show that in xenografted TEL-AML1 patients, ex vivo p38α/β phosphorylation is associated with an inferior long-term relapse-free survival. We propose p38α/β as a mediator of proliferation and survival in ALL and show first preclinical evidence for p38α/β inhibition as an adjunct approach to conventional therapies.
Collapse
|
107
|
The cerebral cavernous malformation pathway controls cardiac development via regulation of endocardial MEKK3 signaling and KLF expression. Dev Cell 2015; 32:168-80. [PMID: 25625206 DOI: 10.1016/j.devcel.2014.12.009] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 09/21/2014] [Accepted: 12/05/2014] [Indexed: 12/23/2022]
Abstract
The cerebral cavernous malformation (CCM) pathway is required in endothelial cells for normal cardiovascular development and to prevent postnatal vascular malformations, but its molecular effectors are not well defined. Here we show that loss of CCM signaling in endocardial cells results in mid-gestation heart failure associated with premature degradation of cardiac jelly. CCM deficiency dramatically alters endocardial and endothelial gene expression, including increased expression of the Klf2 and Klf4 transcription factors and the Adamts4 and Adamts5 proteases that degrade cardiac jelly. These changes in gene expression result from increased activity of MEKK3, a mitogen-activated protein kinase that binds CCM2 in endothelial cells. MEKK3 is both necessary and sufficient for expression of these genes, and partial loss of MEKK3 rescues cardiac defects in CCM-deficient embryos. These findings reveal a molecular mechanism by which CCM signaling controls endothelial gene expression during cardiovascular development that may also underlie CCM formation.
Collapse
|
108
|
Arechederra M, Priego N, Vázquez-Carballo A, Sequera C, Gutiérrez-Uzquiza Á, Cerezo-Guisado MI, Ortiz-Rivero S, Roncero C, Cuenda A, Guerrero C, Porras A. p38 MAPK down-regulates fibulin 3 expression through methylation of gene regulatory sequences: role in migration and invasion. J Biol Chem 2014; 290:4383-97. [PMID: 25548290 DOI: 10.1074/jbc.m114.582239] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
p38 MAPKs regulate migration and invasion. However, the mechanisms involved are only partially known. We had previously identified fibulin 3, which plays a role in migration, invasion, and tumorigenesis, as a gene regulated by p38α. We have characterized in detail how p38 MAPK regulates fibulin 3 expression and its role. We describe here for the first time that p38α, p38γ, and p38δ down-regulate fibulin 3 expression. p38α has a stronger effect, and it does so through hypermethylation of CpG sites in the regulatory sequences of the gene. This would be mediated by the DNA methylase, DNMT3A, which is down-regulated in cells lacking p38α, but once re-introduced represses Fibulin 3 expression. p38α through HuR stabilizes dnmt3a mRNA leading to an increase in DNMT3A protein levels. Moreover, by knocking-down fibulin 3, we have found that Fibulin 3 inhibits migration and invasion in MEFs by mechanisms involving p38α/β inhibition. Hence, p38α pro-migratory/invasive effect might be, at least in part, mediated by fibulin 3 down-regulation in MEFs. In contrast, in HCT116 cells, Fibulin 3 promotes migration and invasion through a mechanism dependent on p38α and/or p38β activation. Furthermore, Fibulin 3 promotes in vitro and in vivo tumor growth of HCT116 cells through a mechanism dependent on p38α, which surprisingly acts as a potent inducer of tumor growth. At the same time, p38α limits fibulin 3 expression, which might represent a negative feed-back loop.
Collapse
Affiliation(s)
- María Arechederra
- From the Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Neibla Priego
- From the Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Ana Vázquez-Carballo
- From the Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Celia Sequera
- From the Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Álvaro Gutiérrez-Uzquiza
- From the Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - María Isabel Cerezo-Guisado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología-CSIC, Campus de Canto Blanco, 28049 Madrid, Spain
| | - Sara Ortiz-Rivero
- Centro de Investigación del Cáncer, IBMCC, Departamento de Medicina, Facultad de Medicina, Universidad de Salamanca, Instituto de Investigaciones Biomédicas de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Cesáreo Roncero
- From the Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Ana Cuenda
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología-CSIC, Campus de Canto Blanco, 28049 Madrid, Spain
| | - Carmen Guerrero
- Centro de Investigación del Cáncer, IBMCC, Departamento de Medicina, Facultad de Medicina, Universidad de Salamanca, Instituto de Investigaciones Biomédicas de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Almudena Porras
- From the Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain,
| |
Collapse
|
109
|
p38α (MAPK14) critically regulates the immunological response and the production of specific cytokines and chemokines in astrocytes. Sci Rep 2014; 4:7405. [PMID: 25502009 PMCID: PMC4264013 DOI: 10.1038/srep07405] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/19/2014] [Indexed: 02/08/2023] Open
Abstract
In CNS lesions, “reactive astrocytes” form a prominent cellular response. However, the nature of this astrocyte immune activity is not well understood. In order to study astrocytic immune responses to inflammation and injury, we generated mice with conditional deletion of p38α (MAPK14) in GFAP+ astrocytes. We studied the role of p38α signaling in astrocyte immune activation both in vitro and in vivo, and simultaneously examined the effects of astrocyte activation in CNS inflammation. Our results showed that specific subsets of cytokines (TNFα, IL-6) and chemokines (CCL2, CCL4, CXCL1, CXCL2, CXCL10) are critically regulated by p38α signaling in astrocytes. In an in vivo CNS inflammation model of intracerebral injection of LPS, we observed markedly attenuated astrogliosis in conditional GFAPcre p38α−/− mice. However, GFAPcre p38α−/− mice showed marked upregulation of CCL2, CCL3, CCL4, CXCL2, CXCL10, TNFα, and IL-1β compared to p38αfl/fl cohorts, suggesting that in vivo responses to LPS after GFAPcre p38α deletion are complex and involve interactions between multiple cell types. This finding was supported by a prominent increase in macrophage/microglia and neutrophil recruitment in GFAPcre p38α−/− mice compared to p38αfl/fl controls. Together, these studies provide important insights into the critical role of p38α signaling in astrocyte immune activation.
Collapse
|
110
|
Wang J, Sun X, Zhang H, Wang Y, Li Y. MPA influences tumor cell proliferation, migration, and invasion induced by RANKL through PRB involving the MAPK pathway in endometrial cancer. Oncol Rep 2014; 33:799-809. [PMID: 25483570 DOI: 10.3892/or.2014.3651] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/30/2014] [Indexed: 11/05/2022] Open
Abstract
The targeting of receptor activator of nuclear factor-κB ligand (RANKL) is being increasingly investigated as a potential therapeutic strategy in several types of cancers. However, the exact function and mechanism of RANKL in human endometrial cancer (EC), particularly in progesterone-resistant and aggressive EC, remain unclear. We evaluated whether targeting of RANKL might be an efficient therapeutic strategy in EC. In the present study, we performed the first investigation of the relationship between RANK/RANKL expression in EC tissues and clinicopathological features. In the present study, we showed that RANK/RANKL was aberrantly overexpressed in human EC tissues. The higher RANK expression in human EC was associated with myometrial invasion, lymph node metastasis and lymphovascular space involvement. Additionally, we discovered that RANK/RANKL promoted EC cell proliferation, migration and invasion, which was correlated with the activated mitogen-activated protein kinase (MAPK) pathway. Moreover, medroxyprogesterone acetate (MPA)-mediated progesterone receptor B (PRB) was found to significantly inhibit the EC cell behavior induced by RANKL in vitro. Furthermore, MPA efficiently inhibited the tumorigenicity in an in vivo xenograft model. Collectively, RANKL is a common tumor promoter, which activates MAPK signaling in EC cells. MPA-mediated PRB plays important roles in inhibiting the growth, migratory and invasive capacities of EC cells induced by RANKL. Targeting of RANKL may be useful in the treatment of EC.
Collapse
Affiliation(s)
- Jing Wang
- Department of Gynecology, International Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Xiao Sun
- Laboratory for Gynecologic Oncology, International Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Huijuan Zhang
- Department of Pathology and Biobank, International Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Yudong Wang
- Department of Gynecology, International Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Yuhong Li
- Department of Gynecology, International Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| |
Collapse
|
111
|
Cawyer CR, Horvat D, Leonard D, Allen SR, Jones RO, Zawieja DC, Kuehl TJ, Uddin MN. Hyperglycemia impairs cytotrophoblast function via stress signaling. Am J Obstet Gynecol 2014; 211:541.e1-8. [PMID: 24793974 DOI: 10.1016/j.ajog.2014.04.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/28/2014] [Accepted: 04/28/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Diabetes mellitus is a risk factor for preeclampsia. Cytotrophoblast (CTB) invasion is facilitated from the conversion of plasminogen to plasmin by urokinase plasminogen activator (uPA), regulated by plasminogen activator inhibitor 1 (PAI-1), and may be inhibited in preeclampsia. This study assessed signaling mechanisms of hyperglycemia-induced CTB dysfunction. STUDY DESIGN Human CTBs were treated with 45, 135, 225, 495, or 945 mg/dL glucose for 48 hours. Some cells were pretreated with a p38 inhibitor (SB203580) or a peroxisome proliferator-activated receptor-gamma (PPAR-γ) ligand (rosiglitazone). Expression of uPA, PAI-1, and PPAR-γ levels and p38 mitogen-activated protein kinase phosphorylation were measured by Western blot in cell lysates. Messenger ribonucleic acid of uPA and PAI-1 was measured by quantitative polymerase chain reaction. Levels of interleukin-6, angiogenic (vascular endothelial growth factor [VEGF], placenta growth factor [PlGF]) and antiangiogenic factors (soluble fms-like tyrosine kinase-1 [sFlt-1], soluble endoglin [sEng]) were measured in the media by enzyme-linked immunosorbent assay kits. Statistical comparisons were performed using analysis of variance with a Duncan's post-hoc test. RESULTS Both uPA and PAI-1 protein and messenger ribonucleic acid were down-regulated (P < .05) in CTBs treated with 135 mg/dL glucose or greater compared with basal (45 mg/dL). The sEng, sFlt-1, and interleukin-6 were up-regulated, whereas the VEGF and PlGF were down-regulated by 135 mg/dL glucose or greater. p38 phosphorylation and PPAR-γ were up-regulated (P < .05) in hyperglycemia-treated CTBs. The SB203580 or rosiglitazone pretreatment showed an attenuation of glucose-induced down-regulation of uPA and PAI-1. CONCLUSION Hyperglycemia disrupts the invasive profile of CTB by decreasing uPA and PAI-1 expression; down-regulating VEGF and PlGF; and up-regulating sEng, sFlt-1, and interleukin-6. Attenuation of CTB dysfunction by SB203580 or rosiglitazone pretreatment suggests the involvement of stress signaling.
Collapse
Affiliation(s)
- Chase R Cawyer
- Department of Obstetrics and Gynecology, Scott and White Healthcare/Texas A&M Health Science Center College of Medicine, Temple, TX
| | - Darijana Horvat
- Department of Obstetrics and Gynecology, Scott and White Healthcare/Texas A&M Health Science Center College of Medicine, Temple, TX
| | | | - Steven R Allen
- Department of Obstetrics and Gynecology, Scott and White Healthcare/Texas A&M Health Science Center College of Medicine, Temple, TX
| | - Richard O Jones
- Department of Obstetrics and Gynecology, Scott and White Healthcare/Texas A&M Health Science Center College of Medicine, Temple, TX
| | - David C Zawieja
- Department of Medical Physiology, Scott and White Healthcare/Texas A&M Health Science Center College of Medicine, Temple, TX
| | - Thomas J Kuehl
- Department of Obstetrics and Gynecology, Scott and White Healthcare/Texas A&M Health Science Center College of Medicine, Temple, TX
| | - Mohammad N Uddin
- Department of Obstetrics and Gynecology, Scott and White Healthcare/Texas A&M Health Science Center College of Medicine, Temple, TX.
| |
Collapse
|
112
|
Wu X, Zhang W, Font-Burgada J, Palmer T, Hamil AS, Biswas SK, Poidinger M, Borcherding N, Xie Q, Ellies LG, Lytle NK, Wu LW, Fox RG, Yang J, Dowdy SF, Reya T, Karin M. Ubiquitin-conjugating enzyme Ubc13 controls breast cancer metastasis through a TAK1-p38 MAP kinase cascade. Proc Natl Acad Sci U S A 2014; 111:13870-5. [PMID: 25189770 PMCID: PMC4183333 DOI: 10.1073/pnas.1414358111] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Metastatic spread is the leading cause of cancer mortality. Breast cancer (BCa) metastatic recurrence can happen years after removal of the primary tumor. Here we show that Ubc13, an E2 enzyme that catalyzes K63-linked protein polyubiquitination, is largely dispensable for primary mammary tumor growth but is required for metastatic spread and lung colonization by BCa cells. Loss of Ubc13 inhibited BCa growth and survival only at metastatic sites. Ubc13 was dispensable for transforming growth factor β (TGFβ)-induced SMAD activation but was required for activation of non-SMAD signaling via TGFβ-activating kinase 1 (TAK1) and p38, whose activity controls expression of numerous metastasis promoting genes. p38 activation restored metastatic activity to Ubc13-deficient cells, and its pharmacological inhibition attenuated BCa metastasis in mice, suggesting it is a therapeutic option for metastatic BCa.
Collapse
Affiliation(s)
- Xuefeng Wu
- Laboratory of Gene Regulation and Signal Transduction and Departments of Pharmacology, Pathology, and
| | - Weizhou Zhang
- Laboratory of Gene Regulation and Signal Transduction and Departments of Pharmacology, Pathology, and Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Joan Font-Burgada
- Laboratory of Gene Regulation and Signal Transduction and Departments of Pharmacology, Pathology, and
| | | | - Alexander S Hamil
- Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Subhra K Biswas
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648
| | - Michael Poidinger
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648; Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Nicholas Borcherding
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Qing Xie
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | | | - Nikki K Lytle
- Departments of Pharmacology, Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093; and
| | - Li-Wha Wu
- Laboratory of Gene Regulation and Signal Transduction and Departments of Pharmacology, Pathology, and Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Raymond G Fox
- Departments of Pharmacology, Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093; and
| | | | - Steven F Dowdy
- Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Tannishtha Reya
- Departments of Pharmacology, Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093; and
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction and Departments of Pharmacology, Pathology, and
| |
Collapse
|
113
|
In vivo RNAi screening identifies a mechanism of sorafenib resistance in liver cancer. Nat Med 2014; 20:1138-46. [PMID: 25216638 DOI: 10.1038/nm.3679] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 08/06/2014] [Indexed: 11/08/2022]
Abstract
In solid tumors, resistance to therapy inevitably develops upon treatment with cytotoxic drugs or molecularly targeted therapies. Here, we describe a system that enables pooled shRNA screening directly in mouse hepatocellular carcinomas (HCC) in vivo to identify genes likely to be involved in therapy resistance. Using a focused shRNA library targeting genes located within focal genomic amplifications of human HCC, we screened for genes whose inhibition increased the therapeutic efficacy of the multikinase inhibitor sorafenib. Both shRNA-mediated and pharmacological silencing of Mapk14 (p38α) were found to sensitize mouse HCC to sorafenib therapy and prolong survival by abrogating Mapk14-dependent activation of Mek-Erk and Atf2 signaling. Elevated Mapk14-Atf2 signaling predicted poor response to sorafenib therapy in human HCC, and sorafenib resistance of p-Mapk14-expressing HCC cells could be reverted by silencing Mapk14. Our results suggest that a combination of sorafenib and Mapk14 blockade is a promising approach to overcoming therapy resistance of human HCC.
Collapse
|
114
|
Xia L, Dong Z, Zhang Y, Zhang X, Song X, Sun M, Hu Y, Liu S, Wang K, Qu X, Wei F. Interleukin-4 and granulocyte-macrophage colony-stimulating factor mediates the upregulation of soluble vascular endothelial growth factor receptor-1 in RAW264.7 cells-a process in which p38 mitogen-activated protein kinase signaling has an important role. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2014; 49:344-51. [PMID: 25132397 DOI: 10.1016/j.jmii.2014.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 06/10/2014] [Accepted: 06/18/2014] [Indexed: 01/29/2023]
Abstract
BACKGROUND/PURPOSE Soluble vascular endothelial growth factor receptor-1 (sVEGFR1) antagonizes angiogenesis by inhibiting the biological function of vascular endothelial growth factor (VEGF). Immature dendritic cells (imDCs) express high levels of sVEGFR1 during development and are antiangiogenic. This study aimed to investigate the changes in VEGFR1, sVEGFR1, and VEGF levels during the development of imDCs and explore the underlying signaling mechanisms. METHODS To model the differentiation of imDCs from monocytes, RAW264.7 cells, a murine monocyte/macrophage cell line, were stimulated by interleukin-4 (IL-4; 10 ng/mL, 20 ng/mL, and 40 ng/mL) and/or by granulocyte-macrophage colony-stimulating factor (GM-CSF; 10 ng/mL, 20 ng/mL, and 50 ng/mL) and/or pretreated by the p38 inhibitor SB203580. The levels of VEGFR1, sVEGFR1, and VEGF were detected by reverse transcription polymerase chain reaction (RT-PCR), Western blot, and enzyme-linked immunosorbent assay (ELISA). RESULTS IL-4 increased the VEGFR1 mRNA and sVEGFR1 levels in RAW264.7 (p < 0.05). This increase was inhibited by SB203580. Granulocyte-macrophage colony-stimulating factor increased the sVEGFR1 levels, but it had no significant effect on VEGFR1 mRNA levels. SB203580 decreased the expression of VEGFR1 mRNA induced by GM-CSF, whereas sVEGFR1 was unaffected. IL-4 had a greater effect on sVEGFR1 levels, compared to GM-CSF. CONCLUSION IL-4 and GM-CSF increased sVEGFR1 levels, but did not significantly effect VEGF expression, and led to the antiangiogenesis properties of monocytes. p38 Mitogen-activated protein kinase signaling has an important role in the process.
Collapse
Affiliation(s)
- Lin Xia
- Department of Stomatology, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, PR China; Department of Stomatology, Shuguang Branch of Shanghai Baoshan Hospital, Shanghai, PR China
| | - Zhaogang Dong
- Institute of Basic Medical Sciences and Key Laboratory of Cardiovascular Proteomics in Shandong Province, Qilu Hospital, Shandong University, Jinan, PR China
| | - Yun Zhang
- Department of Stomatology, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, PR China
| | - Xiaoying Zhang
- Department of Stomatology, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, PR China
| | - Xiaobin Song
- Department of Stomatology, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, PR China
| | - Mingxia Sun
- Department of Stomatology, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, PR China
| | - Yingwei Hu
- Department of Stomatology, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, PR China
| | - Shaohua Liu
- Department of Stomatology, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, PR China
| | - Ketao Wang
- Department of Stomatology, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, PR China
| | - Xun Qu
- Institute of Basic Medical Sciences and Key Laboratory of Cardiovascular Proteomics in Shandong Province, Qilu Hospital, Shandong University, Jinan, PR China
| | - Fengcai Wei
- Department of Stomatology, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, PR China
| |
Collapse
|
115
|
Grossi V, Peserico A, Tezil T, Simone C. p38α MAPK pathway: a key factor in colorectal cancer therapy and chemoresistance. World J Gastroenterol 2014; 20:9744-9758. [PMID: 25110412 PMCID: PMC4123363 DOI: 10.3748/wjg.v20.i29.9744] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/13/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) remains one of the most common malignancies in the world. Although surgical resection combined with adjuvant therapy is effective at the early stages of the disease, resistance to conventional therapies is frequently observed in advanced stages, where treatments become ineffective. Resistance to cisplatin, irinotecan and 5-fluorouracil chemotherapy has been shown to involve mitogen-activated protein kinase (MAPK) signaling and recent studies identified p38α MAPK as a mediator of resistance to various agents in CRC patients. Studies published in the last decade showed a dual role for the p38α pathway in mammals. Its role as a negative regulator of proliferation has been reported in both normal (including cardiomyocytes, hepatocytes, fibroblasts, hematopoietic and lung cells) and cancer cells (colon, prostate, breast, lung tumor cells). This function is mediated by the negative regulation of cell cycle progression and the transduction of some apoptotic stimuli. However, despite its anti-proliferative and tumor suppressor activity in some tissues, the p38α pathway may also acquire an oncogenic role involving cancer related-processes such as cell metabolism, invasion, inflammation and angiogenesis. In this review, we summarize current knowledge about the predominant role of the p38α MAPK pathway in CRC development and chemoresistance. In our view, this might help establish the therapeutic potential of the targeted manipulation of this pathway in clinical settings.
Collapse
|
116
|
Yen SY, Tseng JK, Chuang SM, Chen SE, Ju JC. Expression and activation of mitogen-activated protein kinases in matured porcine oocytes under thermal stress. J Reprod Dev 2014; 60:388-94. [PMID: 25087868 PMCID: PMC4219997 DOI: 10.1262/jrd.2014-004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we determined the expression and activation of p38 MAPK in matured porcine oocytes subjected to heat shock
(HS). When MII oocytes were heated, only the phosphorylated p38 levels relative to the total p38 levels decreased (P <
0.01) after HS, but no clear relationship with HS treatments was observed in the ERK, JNK and p90rsk expressions
of matured oocytes. To confirm p38 activation in matured oocytes, immunocytochemical staining was performed to localize its
expression and distribution in the ooplasm, and the results were largely consistent with previous Western blot analyses.
Moreover, when matured oocytes were co-cultured with a P38 MAPK inhibitor, SB203580, for 4 h at 41.5 C, the activation of its
immediate downstream substrate MAPKAPK-2 was not inhibited within any of the treatment groups. It appears that the MAPKAPK2
levels increased only under prolonged culture (HS4h and C4h) compared with the control group. In conclusion, p38 activity in
porcine oocytes was decreased after exposure to HS and prolonged culture. These alterations of p38 and activation of MAPKAPK2
may be associated with porcine oocyte viability under HS conditions, and a potential cross-talk between p38 MAPK and other
signaling cascades may exist, which warrants additional investigation.
Collapse
Affiliation(s)
- Shih-Ying Yen
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | | | | | | | | |
Collapse
|
117
|
Jiao ZH, Li M, Feng YX, Shi JC, Zhang J, Shao B. Hormesis effects of silver nanoparticles at non-cytotoxic doses to human hepatoma cells. PLoS One 2014; 9:e102564. [PMID: 25033410 PMCID: PMC4102499 DOI: 10.1371/journal.pone.0102564] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/20/2014] [Indexed: 11/19/2022] Open
Abstract
Silver nanoparticles (AgNPs) have attracted considerable attentions due to their unique properties and diverse applications. Although it has been reported that AgNPs have acute toxic effects on a variety of cultured mammalian cells and animal models, few studies have been conducted to evaluate the associated risk of AgNPs to human health at non-cytotoxic doses. In this paper, HepG2 cells were exposed to 10 nm and 100 nm AgNPs under non-cytotoxic conditions, and cell viability was assessed. At low doses, AgNPs displayed "hormesis" effects by accelerating cell proliferation. Further studies indicated that the activation states of MAPKs were differentially regulated in this process. Specifically, by increasing the expression of downstream genes, p38 MAPK played a central role in non-cytotoxic AgNP-induced hormesis. Moreover, the treatment of HepG2 cells with silver ions (Ag+) at the same dose levels induced distinct biological effects, suggesting that different intrinsic properties exist for AgNPs and Ag+.
Collapse
Affiliation(s)
- Zhi-Hao Jiao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Ming Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Yi-Xing Feng
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Jia-Chen Shi
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
- * E-mail:
| |
Collapse
|
118
|
Brien P, Pugazhendhi D, Woodhouse S, Oxley D, Pell JM. p38α MAPK regulates adult muscle stem cell fate by restricting progenitor proliferation during postnatal growth and repair. Stem Cells 2014; 31:1597-610. [PMID: 23592450 DOI: 10.1002/stem.1399] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 03/05/2013] [Accepted: 03/18/2013] [Indexed: 11/05/2022]
Abstract
Stem cell function is essential for the maintenance of adult tissue homeostasis. Controlling the balance between self-renewal and differentiation is crucial to maintain a receptive satellite cell pool capable of responding to growth and regeneration cues. The mitogen-activated protein kinase p38α has been implicated in the regulation of these processes but its influence in adult muscle remains unknown. Using conditional satellite cell p38α knockout mice we have demonstrated that p38α restricts excess proliferation in the postnatal growth phase while promoting timely myoblast differentiation. Differentiation was still able to occur in the p38α-null satellite cells, however, but was delayed. An absence of p38α resulted in a postnatal growth defect along with the persistence of an increased reservoir of satellite cells into adulthood. This population was still capable of responding to cardiotoxin-induced injury, resulting in complete, albeit delayed, regeneration, with further enhancement of the satellite cell population. Increased p38γ phosphorylation accompanied the absence of p38α, and inhibition of p38γ ex vivo substantially decreased the myogenic defect. We have used genome-wide transcriptome analysis to characterize the changes in expression that occur between resting and regenerating muscle, and the influence p38α has on these expression profiles. This study provides novel evidence for the fundamental role of p38α in adult muscle homeostasis in vivo.
Collapse
|
119
|
Garcia-Guerra L, Vila-Bedmar R, Carrasco-Rando M, Cruces-Sande M, Martín M, Ruiz-Gómez A, Ruiz-Gómez M, Lorenzo M, Fernández-Veledo S, Mayor F, Murga C, Nieto-Vázquez I. Skeletal muscle myogenesis is regulated by G protein-coupled receptor kinase 2. J Mol Cell Biol 2014; 6:299-311. [PMID: 24927997 DOI: 10.1093/jmcb/mju025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
G protein-coupled receptor kinase 2 (GRK2) is an important serine/threonine-kinase regulating different membrane receptors and intracellular proteins. Attenuation of Drosophila Gprk2 in embryos or adult flies induced a defective differentiation of somatic muscles, loss of fibers, and a flightless phenotype. In vertebrates, GRK2 hemizygous mice contained less but more hypertrophied skeletal muscle fibers than wild-type littermates. In C2C12 myoblasts, overexpression of a GRK2 kinase-deficient mutant (K220R) caused precocious differentiation of cells into immature myotubes, which were wider in size and contained more fused nuclei, while GRK2 overexpression blunted differentiation. Moreover, p38MAPK and Akt pathways were activated at an earlier stage and to a greater extent in K220R-expressing cells or upon kinase downregulation, while the activation of both kinases was impaired in GRK2-overexpressing cells. The impaired differentiation and fewer fusion events promoted by enhanced GRK2 levels were recapitulated by a p38MAPK mutant, which was able to mimic the inhibitory phosphorylation of p38MAPK by GRK2, whereas the blunted differentiation observed in GRK2-expressing clones was rescued in the presence of a constitutively active upstream stimulator of the p38MAPK pathway. These results suggest that balanced GRK2 function is necessary for a timely and complete myogenic process.
Collapse
Affiliation(s)
- Lucia Garcia-Guerra
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University, 28040 Madrid, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Barcelona, Spain Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain CIBER de enfermedades neurodegenerativas (CIBERNED), 28049 Madrid, Spain
| | - Rocío Vila-Bedmar
- Departament of Molecular Biology and Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain Instituto de Investigación Sanitaria la Princesa, 28006 Madrid, Spain
| | | | - Marta Cruces-Sande
- Departament of Molecular Biology and Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain Instituto de Investigación Sanitaria la Princesa, 28006 Madrid, Spain
| | - Mercedes Martín
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), 28049 Madrid, Spain
| | - Ana Ruiz-Gómez
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), 28049 Madrid, Spain
| | - Mar Ruiz-Gómez
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), 28049 Madrid, Spain
| | - Margarita Lorenzo
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University, 28040 Madrid, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Barcelona, Spain
| | - Sonia Fernández-Veledo
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Barcelona, Spain Hospital Universitari de Tarragona Joan XXIII. IISPV. Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Federico Mayor
- Departament of Molecular Biology and Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain Instituto de Investigación Sanitaria la Princesa, 28006 Madrid, Spain
| | - Cristina Murga
- Departament of Molecular Biology and Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain Instituto de Investigación Sanitaria la Princesa, 28006 Madrid, Spain
| | - Iria Nieto-Vázquez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University, 28040 Madrid, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Barcelona, Spain
| |
Collapse
|
120
|
Irisin and FNDC5: effects of 12-week strength training, and relations to muscle phenotype and body mass composition in untrained women. Eur J Appl Physiol 2014; 114:1875-88. [PMID: 24906447 DOI: 10.1007/s00421-014-2922-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 05/21/2014] [Indexed: 01/12/2023]
Abstract
PURPOSE To investigate the effects of strength training on abundances of irisin-related biomarkers in skeletal muscle and blood of untrained young women, and their associations with body mass composition, muscle phenotype and levels of thyroid hormones. METHODS Eighteen untrained women performed 12 weeks of progressive whole-body heavy strength training, with measurement of strength, body composition, expression of irisin-related genes (FNDC5 and PGC1α) in two different skeletal muscles, and levels of serum-irisin and -thyroid hormones, before and after the training intervention. RESULTS The strength training intervention did not result in changes in serum-irisin or muscle FNDC5 expression, despite considerable effects on strength, lean body mass (LBM) and skeletal muscle phenotype. Our data indicate that training affects irisin biology in a LBM-dependent manner. However, no association was found between steady-state serum-irisin or training-associated changes in serum-irisin and alterations in body composition. FNDC5 expression was higher in m.Biceps brachii than in m.Vastus lateralis, with individual expression levels being closely correlated, suggesting a systemic mode of transcriptional regulation. In pre-biopsies, FNDC5 expression was correlated with proportions of aerobic muscle fibers, a relationship that disappeared in post-biopsies. No association was found between serum-thyroid hormones and FNDC5 expression or serum-irisin. CONCLUSION No evidence was found for an effect of strength training on irisin biology in untrained women, though indications were found for a complex interrelationship between irisin, body mass composition and muscle phenotype. FNDC5 expression was closely associated with muscle fiber composition in untrained muscle.
Collapse
|
121
|
Resveratrol relieves hydrogen peroxide-induced premature senescence associated with SIRT1 in human mesenchymal stem cells. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-014-0004-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
122
|
Abstract
The binding of tumour necrosis factor α (TNFα) to cell surface receptors engages multiple signal transduction pathways, including three groups of mitogen-activated protein (MAP) kinases: extracellular-signal-regulated kinases (ERKs); the cJun NH2-terminal kinases (JNKs); and the p38 MAP kinases. These MAP kinase signalling pathways induce a secondary response by increasing the expression of several inflammatory cytokines (including TNFα) that contribute to the biological activity of TNFα. MAP kinases therefore function both upstream and down-stream of signalling by TNFα receptors. Here we review mechanisms that mediate these actions of MAP kinases during the response to TNFα.
Collapse
Affiliation(s)
- Guadalupe Sabio
- Department of Vascular Biology and Inflammation, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Roger J Davis
- Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
123
|
Parages ML, Capasso JM, Niell FX, Jiménez C. Responses of cyclic phosphorylation of MAPK-like proteins in intertidal macroalgae after environmental stress. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:276-284. [PMID: 24120533 DOI: 10.1016/j.jplph.2013.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 06/02/2023]
Abstract
The presence and activation of MAPK-like proteins in intertidal macroalgae is described in the current study. Two MAPK-like proteins of 40 and 42 kDa in size similar to p38 and JNK, of mammalian cells have been identified in six representative species of intertidal macroalgae from the Strait of Gibraltar (Southern Spain), namely in the chlorophytes Ulva rigida and Chaetomorpha aerea, the rhodophytes Corallina elongata and Jania rubens, and the phaeophytes Dictyota dichotoma and Dilophus spiralis. Phosphorylation of MAPK-like proteins was studied during semi-tidal cycles. Analysis of p38-like and JNK-like MAPKs in macroalgae protein extracts was carried out by using specific antibodies against the phosphorylated forms of both MAPKs. Protein blot analysis of samples collected from 2009 to 2011 in natural growing sites on days when either low or high tide occurred at midday, indicated that MAPK-like proteins in all species were highly phosphorylated in response to desiccation imposed by low tide or high irradiance. Phosphorylation of p38-like MAPK always preceded that of JNK-like MAPK. In addition, phosphorylation of MAPKs was fastest in rhodophytes, followed by chlorophytes and then finally phaeophytes. In the first group, phosphorylation was mostly dependent on desiccation, whereas both high irradiance and desiccation were responsible for p38-like and JNK-like phosphorylation in chlorophytes. In phaeophytes, high irradiance was mostly responsible for MAPK-like activation.
Collapse
Affiliation(s)
- María L Parages
- Department of Ecology, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain.
| | - Juan M Capasso
- Department of Ecology, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain
| | - F Xavier Niell
- Department of Ecology, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain
| | - Carlos Jiménez
- Department of Ecology, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain
| |
Collapse
|
124
|
Cell differentiation versus cell death: extracellular glucose is a key determinant of cell fate following oxidative stress exposure. Cell Death Dis 2014; 5:e1074. [PMID: 24556689 PMCID: PMC3944267 DOI: 10.1038/cddis.2014.52] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 12/01/2013] [Accepted: 12/02/2013] [Indexed: 02/07/2023]
Abstract
Cells, particularly mechano-sensitive musculoskeletal cells such as tenocytes, routinely encounter oxidative stress. Oxidative stress can not only stimulate tissue repair, but also cause damage leading to tissue degeneration. As diabetes is associated with increased oxidative damage as well as increased risk of tendon degeneration, the aim of this study was to determine if extracellular glucose levels alter the response of tendon cells to oxidative stress. Primary human tenocytes were cultured in either high (17.5 mM) or low (5 mM) glucose and treated with 100 μM hydrogen peroxide. In low glucose, peroxide-treated cells remained fully viable and collagen synthesis was increased, suggesting an anabolic response. In high glucose, however, peroxide treatment led to increased bim-mediated apoptosis. The activities of both forkhead box O (FOXO1) and p53 were required for upregulation of bim RNA expression in high glucose. We found that both p53-mediated inhibition of the bim repressor micro RNA (miR17-92) and FOXO1-mediated upregulation of bim transcription were required to permit accumulation of bim RNA. High glucose coupled with oxidative stress resulted in upregulation of miR28-5p, which directly inhibited expression of the p53 deacetylase sirtuin 3, resulting in increased levels of acetylated p53. In peroxide-treated cells in both high and low glucose, protein levels of acetylated FOXO1 as well as HIF1α (hypoxia-inducible factor 1α) were increased. However, under low-glucose conditions, peroxide treatment resulted in activation of p38, which inhibited FOXO1-mediated but promoted HIF1α-mediated transcriptional activity. In low glucose, HIF1α upregulated expression of sox9 and scleraxis, two critical transcription factors involved in establishing the tenocyte phenotype, and increased collagen synthesis. The switch from FOXO1-mediated (proapoptosis) to HIF1α-mediated (prodifferentiation) transcription occurred at an extracellular glucose concentration of 7 mM, a concentration equivalent to the maximum normal blood glucose concentration. Extracellular glucose has a profound effect on the cellular response to oxidative stress. A level of oxidative stress normally anabolic may be pathological in high glucose.
Collapse
|
125
|
Vandomme J, Touil Y, Ostyn P, Olejnik C, Flamenco P, El Machhour R, Segard P, Masselot B, Bailliez Y, Formstecher P, Polakowska R. Insulin-like growth factor 1 receptor and p38 mitogen-activated protein kinase signals inversely regulate signal transducer and activator of transcription 3 activity to control human dental pulp stem cell quiescence, propagation, and differentiation. Stem Cells Dev 2014; 23:839-51. [PMID: 24266654 DOI: 10.1089/scd.2013.0400] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dental pulp stem cells (DPSCs) remain quiescent until activated in response to severe dental pulp damage. Once activated, they exit quiescence and enter regenerative odontogenesis, producing reparative dentin. The factors and signaling molecules that control the quiescence/activation and commitment to differentiation of human DPSCs are not known. In this study, we determined that the inhibition of insulin-like growth factor 1 receptor (IGF-1R) and p38 mitogen-activated protein kinase (p38 MAPK) signaling commonly activates DPSCs and promotes their exit from the G0 phase of the cell cycle as well as from the pyronin Y(low) stem cell compartment. The inhibition of these two pathways, however, inversely determines DPSC fate. In contrast to p38 MAPK inhibitors, IGF-1R inhibitors enhance dental pulp cell sphere-forming capacity and reduce the cells' colony-forming capacity without inducing cell death. The inverse cellular changes initiated by IGF-1R and p38 MAPK inhibitors were accompanied by inverse changes in the levels of active signal transducer and activator of transcription 3 (STAT3) factor, inactive glycogen synthase kinase 3, and matrix extracellular phosphoglycoprotein, a marker of early odontoblast differentiation. Our data suggest that there is cross talk between the IGF-1R and p38 MAPK signaling pathways in DPSCs and that the signals provided by these pathways converge at STAT3 and inversely regulate its activity to maintain quiescence or to promote self-renewal and differentiation of the cells. We propose a working model that explains the possible interactions between IGF-1R and p38 MAPK at the molecular level and describes the cellular consequences of these interactions. This model may inspire further fundamental study and stimulate research on the clinical applications of DPSC in cellular therapy and tissue regeneration.
Collapse
Affiliation(s)
- Jerome Vandomme
- 1 Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL) , Lille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Kühnöl C, Herbarth M, Föll J, Staege MS, Kramm C. CD137 stimulation and p38 MAPK inhibition improve reactivity in an in vitro model of glioblastoma immunotherapy. Cancer Immunol Immunother 2013; 62:1797-809. [PMID: 24129764 PMCID: PMC11028552 DOI: 10.1007/s00262-013-1484-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022]
Abstract
Dendritic cell vaccination has become an interesting option for cancer immunotherapy. Tumor-lysate-pulsed dendritic cells (DC) can prime naïve T cells and induce the regression of established tumors including gliomas as shown in various animal models. Despite hopeful results even in clinical studies, the outcome for many patients is still unsatisfying. In the present study, we tested the combination of tumor-lysate-pulsed dendritic cells (TPDC) with a monoclonal antibody against CD137, a monoclonal antibody against CD25 (daclizumab) and a specific p38 mitogen-activated protein kinase (p38 MAPK) inhibitor (SB203580) for improving immunostimulation in an in vitro model of immunotherapy for human gliomas. We observed a higher secretion of interferon gamma by TPDC-primed peripheral blood mononuclear cells (PBMC) that were incubated with an antibody against CD137 or the p38 MAPK inhibitor. In addition, we observed higher specific lysis of tumor cells after incubation of PBMC with the p38 MAPK inhibitor or the anti-CD137 antibody. In contrast, incubation of TPDC-primed PBMC with the anti-CD25 antibody did enhance neither interferon gamma secretion nor cellular cytotoxicity. Cell depletion experiments demonstrated that the immune reaction induced by TPDC is strongly dependent on CD4-positive and CD8-positive cells. Incubation of DC during maturation and antigen loading with the anti-CD137 antibody did not enhance cytotoxicity and interferon gamma secretion in comparison with application of the anti-CD137 antibody during priming. In conclusion, our data suggest that p38 MAPK inhibition and anti-CD137 antibodies can enhance the immune response against glioblastoma cells.
Collapse
MESH Headings
- Antibodies, Monoclonal, Humanized/pharmacology
- Blotting, Western
- Brain Neoplasms/immunology
- Brain Neoplasms/metabolism
- Brain Neoplasms/therapy
- Cell Proliferation
- Cells, Cultured
- Cytotoxicity, Immunologic
- Daclizumab
- Dendritic Cells/cytology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Enzyme Inhibitors/pharmacology
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Glioblastoma/immunology
- Glioblastoma/metabolism
- Glioblastoma/therapy
- Humans
- Imidazoles/pharmacology
- Immunoglobulin G/pharmacology
- Immunosuppressive Agents/pharmacology
- Immunotherapy
- Interferon-gamma
- Interleukin-2 Receptor alpha Subunit/antagonists & inhibitors
- Interleukin-2 Receptor alpha Subunit/immunology
- Interleukin-2 Receptor alpha Subunit/metabolism
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Pyridines/pharmacology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- p38 Mitogen-Activated Protein Kinases/immunology
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Caspar Kühnöl
- Department of Pediatrics, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany
| | - Monique Herbarth
- Department of Pediatrics, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany
| | - Jürgen Föll
- Department of Pediatrics and Juvenile Medicine, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Martin S. Staege
- Department of Pediatrics, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany
| | - Christof Kramm
- Department of Pediatrics, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
127
|
Hassan F, Islam S, Koide N, Mu MM, Ito H, Mori I, Yoshida T, Yokochi T. Role of p38 Mitogen-Activated Protein Kinase (MAPK) for Vacuole Formation in Lipopolysaccharide (LPS)-Stimulated Macrophages. Microbiol Immunol 2013; 48:807-15. [PMID: 15557738 DOI: 10.1111/j.1348-0421.2004.tb03612.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The role of p38 mitogen-activated protein kinase (MAPK) on vacuole formation in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells was examined. LPS definitely induced the formation of vacuoles in RAW 264.7 cells and SB202190 as a p38 specific inhibitor also induced slight vacuole formation. The simultaneous treatment with LPS and SB202190 induced many more vacuoles in RAW 264.7 cells than the treatment with LPS or SB202190 alone, and the vacuoles were extraordinarily large in size. On the other hand, an inactive inhibitor of p38 MAPK did not augment LPS-induced vacuole formation. Further, the inhibitors of other MAPKs and nuclear factor (NF)-kappaB pathways did not affect it. The extraordinarily large vacuoles in RAW 264.7 cells treated with LPS and SB202190 were possibly formed via fusion of small vacuoles. However, SB202190 did not augment vacuole formation in CpG DNA or interferon (IFN)-gamma-stimulated RAW 264.7 cells. The role of p38 MAPK in the vacuole formation in LPS-stimulated macrophages is discussed.
Collapse
Affiliation(s)
- Ferdaus Hassan
- Department of Microbiology and Immunology and Research Center for Infectious Disease, Aichi Medical University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Lin CY, Hsiao WC, Huang CJ, Kao CF, Hsu GSW. Heme oxygenase-1 induction by the ROS–JNK pathway plays a role in aluminum-induced anemia. J Inorg Biochem 2013; 128:221-8. [DOI: 10.1016/j.jinorgbio.2013.07.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 01/16/2023]
|
129
|
Chen R, Duan CY, Chen SK, Zhang CY, He T, Li H, Liu YP, Dai RY. The suppressive role of p38 MAPK in cellular vacuole formation. J Cell Biochem 2013; 114:1789-99. [PMID: 23444236 DOI: 10.1002/jcb.24522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/12/2013] [Indexed: 12/25/2022]
Abstract
Vacuolization of the cytoplasm is one of the dramatic and frequently observed phenomena in various cell types. Cellular vacuoles occur spontaneously or via a wide range of inductive stimuli, but the molecular mechanism involved in this process remains largely unknown. In this study, we investigated the role of the p38 and JNK pathways in the formation of cytoplasmic vacuoles. We found that p38 and JNK agonist anisomycin abolishes spontaneous cytoplasmic vacuolization of HepG2 cells through p38 activation, but not through JNK activation. Importantly, blocking the activity of p38 or suppression the expression of p38 elicits cytoplasmic vacuoles formation in various cancer cells. Furthermore, cytoplasmic vacuoles induced by p38 blocking are derived from the perinuclear region. These observations provide direct evidence for a role of p38 signaling in regulating the formation of cytoplasmic vacuoles.
Collapse
Affiliation(s)
- Run Chen
- Department of Public Health of Luzhou Medical College, Luzhou, Sichuan, China
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Syed YA, Baer A, Hofer MP, González GA, Rundle J, Myrta S, Huang JK, Zhao C, Rossner MJ, Trotter MWB, Lubec G, Franklin RJM, Kotter MR. Inhibition of phosphodiesterase-4 promotes oligodendrocyte precursor cell differentiation and enhances CNS remyelination. EMBO Mol Med 2013; 5:1918-34. [PMID: 24293318 PMCID: PMC3914530 DOI: 10.1002/emmm.201303123] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/12/2013] [Accepted: 09/18/2013] [Indexed: 01/25/2023] Open
Abstract
The increasing effectiveness of new disease-modifying drugs that suppress disease activity in multiple sclerosis has opened up opportunities for regenerative medicines that enhance remyelination and potentially slow disease progression. Although several new targets for therapeutic enhancement of remyelination have emerged, few lend themselves readily to conventional drug development. Here, we used transcription profiling to identify mitogen-activated protein kinase (Mapk) signalling as an important regulator involved in the differentiation of oligodendrocyte progenitor cells (OPCs) into oligodendrocytes. We show in tissue culture that activation of Mapk signalling by elevation of intracellular levels of cyclic adenosine monophosphate (cAMP) using administration of either dibutyryl-cAMP or inhibitors of the cAMP-hydrolysing enzyme phosphodiesterase-4 (Pde4) enhances OPC differentiation. Finally, we demonstrate that systemic delivery of a Pde4 inhibitor leads to enhanced differentiation of OPCs within focal areas of toxin-induced demyelination and a consequent acceleration of remyelination. These data reveal a novel approach to therapeutic enhancement of remyelination amenable to pharmacological intervention and hence with significant potential for translation.
Collapse
Affiliation(s)
- Yasir A Syed
- Wellcome Trust and MRC Cambridge Stem Cell Institute, and Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, West Forvie Building, Forvie Site, Robinson Way, Cambridge, UK; Department of Neurosurgery, Medical University Vienna, Vienna, Austria; Max-Planck Institute for Experimental Medicine, Department of Neurogenetics, Goettingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Abdelfadil E, Cheng YH, Bau DT, Ting WJ, Chen LM, Hsu HH, Lin YM, Chen RJ, Tsai FJ, Tsai CH, Huang CY. Thymoquinone induces apoptosis in oral cancer cells through p38β inhibition. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:683-96. [PMID: 23711149 DOI: 10.1142/s0192415x1350047x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oral cancer is a common malignancy associated with high morbidity and mortality. While p38 MAPK is reported to be involved in different cellular activities such as proliferation and differentiation, reports rarely define the roles of the individual members of the p38 MAPK family in cancer. We used two unique cell lines developed by our lab representing chemically induced oral cancer cells (T28) and non-tumor cells (N28) obtained from tissues surrounding the induced cancer as a model to screen out whether p38 MAPK is involved in the malignant transformation processes. The results suggest an association between p38β not p38α and oral cancer development. Additionally, the anti-cancer activity of thymoquinone (TQ) was screened out and we found evidences suggesting that the anti-tumor activity of TQ may be attributed to the downregulation of p38β MAPK.
Collapse
Affiliation(s)
- Ehab Abdelfadil
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Villumsen BH, Danielsen JR, Povlsen L, Sylvestersen KB, Merdes A, Beli P, Yang YG, Choudhary C, Nielsen ML, Mailand N, Bekker-Jensen S. A new cellular stress response that triggers centriolar satellite reorganization and ciliogenesis. EMBO J 2013; 32:3029-40. [PMID: 24121310 DOI: 10.1038/emboj.2013.223] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/19/2013] [Indexed: 01/20/2023] Open
Abstract
Centriolar satellites are small, granular structures that cluster around centrosomes, but whose biological function and regulation are poorly understood. We show that centriolar satellites undergo striking reorganization in response to cellular stresses such as UV radiation, heat shock, and transcription blocks, invoking acute and selective displacement of the factors AZI1/CEP131, PCM1, and CEP290 from this compartment triggered by activation of the stress-responsive kinase p38/MAPK14. We demonstrate that the E3 ubiquitin ligase MIB1 is a new component of centriolar satellites, which interacts with and ubiquitylates AZI1 and PCM1 and suppresses primary cilium formation. In response to cell stress, MIB1 is abruptly inactivated in a p38-independent manner, leading to loss of AZI1, PCM1, and CEP290 ubiquitylation and concomitant stimulation of ciliogenesis, even in proliferating cells. Collectively, our findings uncover a new two-pronged signalling response, which by coupling p38-dependent phosphorylation with MIB1-catalysed ubiquitylation of ciliogenesis-promoting factors plays an important role in controlling centriolar satellite status and key centrosomal functions in a cell stress-regulated manner.
Collapse
Affiliation(s)
- Bine H Villumsen
- Ubiquitin Signaling Group, Department of Disease Biology, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
β-Amyloid-evoked apoptotic cell death is mediated through MKK6-p66shc pathway. Neuromolecular Med 2013; 16:137-49. [PMID: 24085465 DOI: 10.1007/s12017-013-8268-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
We have previously shown the involvement of p66shc in mediating apoptosis. Here, we demonstrate the novel mechanism of β-Amyloid-induced toxicity in the mammalian cells. β-Amyloid leads to the phosphorylation of p66shc at the serine 36 residue and activates MKK6, by mediating the phosphorylation at serine 207 residue. Treatment of cells with antioxidants blocks β-Amyloid-induced serine phosphorylation of MKK6, reactive oxygen species (ROS) generation, and hence protected cells against β-Amyloid-induced cell death. Our results indicate that serine phosphorylation of p66shc is carried out by active MKK6. MKK6 knock-down resulted in decreased serine 36 phosphorylation of p66shc. Co-immunoprecipitation results demonstrate a direct physical association between p66shc and WT MKK6, but not with its mutants. Increase in β-Amyloid-induced ROS production was observed in the presence of MKK6 and p66shc, when compared to triple mutant of MKK6 (inactive) and S36 mutant of p66shc. ROS scavengers and knock-down against p66shc, and MKK6 significantly decreased the endogenous level of active p66shc, ROS production, and cell death. Finally, we show that the MKK6-p66shc complex mediates β-Amyloid-evoked apoptotic cell death.
Collapse
|
134
|
Park EJ, Umh HN, Kim SW, Cho MH, Kim JH, Kim Y. ERK pathway is activated in bare-FeNPs-induced autophagy. Arch Toxicol 2013; 88:323-36. [PMID: 24068039 DOI: 10.1007/s00204-013-1134-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/12/2013] [Indexed: 11/30/2022]
Abstract
Iron oxide nanoparticles (FeNPs) are known to be one of the most biocompatible and safe nanoparticles. However, their long-term persistence remains a problem, and macrophages play as an important mediator in continuous stimulation of the immune system due to biopersistence of nanoparticles. In the present study, we identified the mechanisms underlying the uptake and toxicity of bare-FeNPs using RAW264.7 cells, a mouse peritoneal macrophage cell line. The bare-FeNPs penetrated the cell membrane through electrostatic interactions together with the general phagocytic pathway. At 24 h after exposure, they distributed freely in the cytosol or within autophagosome-like vacuoles. Bare-FeNPs induced decrease in the cell viability along with the cell cycle arrest in G1 phase. In addition, they increased the generation of ROS and the secretion of NO and TNF alpha as well as the expression of SOD-1 and SOD-2 proteins, which are an antioxidant. While the mitochondrial calcium level, the intensity of labeled mitochondria, and ATP production decreased, the levels of autophagy-related proteins such as p62, beclin 1, ATG5, and LC3B increased in a dose-dependent manner together with the levels of ATF 3, p-EGFR, and p-ERK proteins. However, the level of p-JNK protein clearly decreased. TEM images also showed that damaged organelle exist within autophagosome-like vacuoles with bare-FeNPs. On the basis of these results, we suggest that bare-FeNPs induce autophagy by initiating oxidative stress in RAW264.7 cells. Furthermore, ERK, but not JNK, pathway is activated in bare-FeNPs-induced autophagy.
Collapse
Affiliation(s)
- Eun-Jung Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea,
| | | | | | | | | | | |
Collapse
|
135
|
Kharmate G, Rajput PS, Lin YC, Kumar U. Inhibition of tumor promoting signals by activation of SSTR2 and opioid receptors in human breast cancer cells. Cancer Cell Int 2013; 13:93. [PMID: 24059654 PMCID: PMC3852783 DOI: 10.1186/1475-2867-13-93] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/23/2013] [Indexed: 12/31/2022] Open
Abstract
Background Somatostatin receptors (SSTRs) and opioid receptors (ORs) belong to the superfamily of G-protein coupled receptors and function as negative regulators of cell proliferation in breast cancer. In the present study, we determined the changes in SSTR subtype 2 (SSTR2) and μ, δ and κ-ORs expression, signaling cascades and apoptosis in three different breast cancer cells namely MCF-7, MDA-MB231 and T47D. Methods Immunocytochemistry and western blot analysis were employed to study the colocalization and changes in MAPKs (ERK1/2 and p38), cell survival pathway (PI3K/AKT) and tumor suppressor proteins (PTEN and p53) in breast cancer cell lines. The nature of cell death upon activation of SSTR2 or OR was analysed using flow cytometry analysis. Results The activation of SSTR2 and ORs modulate MAPKs (ERK1/2 and p38) in cell dependent and possibly estrogen receptor (ER) dependent manner. The activation of tumor suppressor proteins phosphatase and tensin homolog (PTEN) and p53 antagonized the PI3K/AKT cell survival pathway. Flow cytometry analyses reveal increased necrosis as opposed to apoptosis in MCF-7 and T47D cells when compared to ER negative MDA-MB231 cells. Furthermore, receptor and agonist dependent expression of ORs in SSTR2 immunoprecipitate suggest that SSTR2 and ORs might interact as heterodimers and inhibit epidermal growth factor receptor phosphorylation. Conclusion Taken together, findings indicate a new role for SSTR2/ORs in modulation of signaling pathways involved in cancer progression and provide novel therapeutic approaches in breast cancer treatment.
Collapse
Affiliation(s)
- Geetanjali Kharmate
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T1Z3, Canada.
| | | | | | | |
Collapse
|
136
|
p38β, A novel regulatory target of Pokemon in hepatic cells. Int J Mol Sci 2013; 14:13511-24. [PMID: 23807508 PMCID: PMC3742200 DOI: 10.3390/ijms140713511] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/08/2013] [Accepted: 06/10/2013] [Indexed: 11/27/2022] Open
Abstract
Pokemon is an important proto-oncogene involved in various biological processes and cancer development, such as cell differentiation, tumorigenesis and metastasis. Pokemon is recognized as a transcription factor localized upstream of several oncogenes, regulating their expression. p38MAPKs act as key regulatory factors in cellular signaling pathways associated with inflammatory responses, cell proliferation, differentiation and survival. p38β, a member of p38MAPK family, is closely correlated with tumorigenesis, but the mechanism of activation remains unclear. In this study, we found overexpression of Pokemon promoted the growth, migration and invasion of HepG2 cells. However, a p38 inhibitor SB202190 efficiently attenuated the promoting effect of Pokemon in the HepG2 cells. Targeted expression or silencing of Pokemon changed cellular p38β protein level and phosphorylation of downstream ATF2 in the p38 signaling pathway. Both dual luciferase report assay and ChIP assay suggested that p38β is a novel regulatory target of the transcription factor Pokemon and positively regulated by Pokemon in hepatic cells.
Collapse
|
137
|
Qi H, Cao Y, Huang W, Liu Y, Wang Y, Li L, Liu L, Ji Z, Sun H. Crucial role of calcium-sensing receptor activation in cardiac injury of diabetic rats. PLoS One 2013; 8:e65147. [PMID: 23717692 PMCID: PMC3661517 DOI: 10.1371/journal.pone.0065147] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 04/23/2013] [Indexed: 01/20/2023] Open
Abstract
Cardiac injury is a common pathological change frequently accompanied by diabetes mellitus. Recently, some evidence indicated that calcium-sensing receptor (CaSR) expressed in the cardiac tissue. However, the functional role of CaSR in diabetic cardiac injury remains unclear. The present study was designed to investigate the relationship between CaSR activation and diabetes-induced cardiac injury. Diabetic model was successfully established by administration of streptozotocin (STZ) in vivo, and cardiomyocyte injury was simulated by 25.5 mM glucose in vitro. Apoptotic rate, intracellular calcium concentration ([Ca2+]i) and the expression of Bcl-2, Bax, extracellular signal-regulated protein kinase (ERK), c-Jun NH2-terminal protein kinase (JNK), and p38 were examined. We demonstrated a significant increase in left ventricular end-diastolic pressure (LVEDP) as well as decrease in maximum rate of left ventricular pressure rise and fall (±dp/dtmax), and left ventricular systolic pressure (LVSP), apoptosis of cardiomyocytes was also observed by TUNEL staining. In vitro, 25.5 mM glucose-induced apoptosis was detected by flow cytometry in neonatal rat cardiomyocytes. Further results showed that 25.5 mM glucose significantly increased [Ca2+]i, up-regulated the expression of Bax, P-ERK and P-JNK, and suppressed Bcl-2 expression. However, the above deleterious changes were further confirmed when co-treatment with CaSR agonist GdCl3 (300 µM). But the effects of GdCl3 were attenuated by 10 µM NPS-2390, a specific CaSR inhibitor. When CaSR was silence by siRNA transfection, the effects of high glucose were inhibited. These results suggest that CaSR activation could lead to the apoptosis of cardiomyocytes in diabetic cardiac injury through the induction of calcium overload, the activation of the mitochondrial, and mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- Hanping Qi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Wei Huang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Yang Liu
- Department of Basic Nursing, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Ye Wang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Lei Li
- Department of Surgery, Fifth Clinical College of Harbin Medical University, Daqing, Heilongjiang, China
| | - Lijuan Liu
- Department of Pathology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Zhong Ji
- Department of Physiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Hongli Sun
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
- * E-mail:
| |
Collapse
|
138
|
Soni HM, Jain MR, Mehta AA. Mechanism(s) Involved in Carbon Monoxide-releasing Molecule-2-mediated Cardioprotection During Ischaemia-reperfusion Injury in Isolated Rat Heart. Indian J Pharm Sci 2013; 74:281-91. [PMID: 23626383 PMCID: PMC3630723 DOI: 10.4103/0250-474x.107047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 07/18/2012] [Accepted: 07/20/2012] [Indexed: 12/01/2022] Open
Abstract
The purpose of the present study was to determine the mechanism(s) involved in carbon monoxide-releasing molecule-2, carbon monoxide-releasing molecule-2-induced cardioprotection. We used the transition metal carbonyl compound carbon monoxide-releasing molecule-2 that can act as carbon monoxide donor in cardiac ischaemia-reperfusion injury model using isolated rat heart preparation. Langendorff's perfused rat hearts when treated with carbon monoxide-releasing molecule-2 (50 μM) for 10 min before global ischaemia exhibited significant reduction in postischaemic levels of myocardial injury markers, creatine kinase and lactate dehydrogenase in coronary effluent. Similarly, pretreatment with carbon monoxide-releasing molecule-2 showed significantly improved postischaemic recovery of heart rate, coronary flow rate, cardiodynamic parameters and reduced infarct size as compared to vehicle control hearts. Perfusion with p38 mitogen-activated protein kinase inhibitor, SB203580, a specific inhibitor of α and β isoform, before and concomitantly with carbon monoxide-releasing molecule-2 treatment abolished carbon monoxide-releasing molecule-2-induced cardioprotection. However, p38 mitogen-activated protein kinase alpha inhibitor, SCIO-469, was unable to inhibit the cardioprotective effect of carbon monoxide-releasing molecule-2. Furthermore, protective effect of carbon monoxide-releasing molecule-2 was significantly inhibited by the protein kinase C inhibitor, chelerythrine, when added before and concomitantly with carbon monoxide-releasing molecule-2. It was also observed that, perfusion with phosphatidylinositol 3-kinase inhibitor, wortmannin, before and concomitantly with carbon monoxide-releasing molecule-2 was not able to inhibit carbon monoxide-releasing molecule-2-induced cardioprotection. Interestingly, we observed that wortmannin perfusion before ischaemia and continued till reperfusion significantly inhibited carbon monoxide-releasing molecule-2-mediated cardioprotection. Our findings suggest that the carbon monoxide-releasing molecule-2 treatment may activate the p38 mitogen-activated protein kinase β and protein kinase C pathways before ischaemia and phosphatidylinositol 3-kinase pathway during reperfusion which may be responsible for the carbon monoxide-releasing molecule-2-mediated cardioprotective effect.
Collapse
Affiliation(s)
- H M Soni
- Department of Pharmacology, L.M. College of Pharmacy, Navarangpura, Ahmedabad-380 009, India ; Zydus Research Centre, Sarkhej-Bavla, NH 8A Moraiya, Ahmedabad-382 210, India
| | | | | |
Collapse
|
139
|
Ju X, Wen Y, Metzger D, Jung M. The role of p38 in mitochondrial respiration in male and female mice. Neurosci Lett 2013; 544:152-6. [PMID: 23603578 DOI: 10.1016/j.neulet.2013.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 03/29/2013] [Accepted: 04/10/2013] [Indexed: 01/28/2023]
Abstract
p38 is a mitogen-activated protein kinase and mediates cell growth, cell differentiation, and synaptic plasticity. The aim of this study is to determine the extent to which p38 plays a role in maintaining mitochondrial respiration in male and female mice under a normal condition. To achieve this aim, we have generated transgenic mice that lack p38 in cerebellar Purkinje neurons by crossing Pcp2 (Purkinje cell protein 2)-Cre mice with p38(loxP/loxP) mice. Mitochondria from cerebellum were then isolated from the transgenic and wild-type mice to measure mitochondrial respiration using XF24 respirometer. The mRNA and protein expression of cytochrome c oxidase (COX) in cerebellum were also measured using RT-PCR and immunoblot methods. Separately, HT22 cells were used to determine the involvement of 17β-estradiol (E2) and COX in mitochondrial respiration. The genetic knockout of p38 in Purkinje neurons suppressed the mitochondrial respiration only in male mice and increased COX expression only in female mice. The inhibition of COX by sodium azide (SA) sharply suppressed mitochondrial respiration of HT22 cells in a manner that was protected by E2. These data suggest that p38 is required for the mitochondrial respiration of male mice. When p38 is below a normal level, females may maintain mitochondrial respiration through COX up-regulation.
Collapse
Affiliation(s)
- Xiaohua Ju
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | | | | | | |
Collapse
|
140
|
Maia V, Ortiz-Rivero S, Sanz M, Gutierrez-Berzal J, Alvarez-Fernández I, Gutierrez-Herrero S, de Pereda JM, Porras A, Guerrero C. C3G forms complexes with Bcr-Abl and p38α MAPK at the focal adhesions in chronic myeloid leukemia cells: implication in the regulation of leukemic cell adhesion. Cell Commun Signal 2013; 11:9. [PMID: 23343344 PMCID: PMC3629710 DOI: 10.1186/1478-811x-11-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 01/18/2013] [Indexed: 12/17/2022] Open
Abstract
Background Previous studies by our group and others have shown that C3G interacts with Bcr-Abl through its SH3-b domain. Results In this work we show that C3G and Bcr-Abl form complexes with the focal adhesion (FA) proteins CrkL, p130Cas, Cbl and Abi1 through SH3/SH3-b interactions. The association between C3G and Bcr-Abl decreased upon Abi1 or p130Cas knock-down in K562 cells, which suggests that Abi1 and p130Cas are essential partners in this interaction. On the other hand, C3G, Abi1 or Cbl knock-down impaired adhesion to fibronectin, while p130Cas silencing enhanced it. C3G, Cbl and p130Cas-SH3-b domains interact directly with common proteins involved in the regulation of cell adhesion and migration. Immunoprecipitation and immunofluorescence studies revealed that C3G form complexes with the FA proteins paxillin and FAK and their phosphorylated forms. Additionally, C3G, Abi1, Cbl and p130Cas regulate the expression and phosphorylation of paxillin and FAK. p38α MAPK also participates in the regulation of adhesion in chronic myeloid leukemia cells. It interacts with C3G, CrkL, FAK and paxillin and regulates the expression of paxillin, CrkL and α5 integrin, as well as paxillin phosphorylation. Moreover, double knock-down of C3G/p38α decreased adhesion to fibronectin, similarly to the single silencing of one of these genes, either C3G or p38α. These suggest that C3G and p38α MAPK are acting through a common pathway to regulate cell adhesion in K562 cells, as previously described for the regulation of apoptosis. Conclusions Our results indicate that C3G-p38αMAPK pathway regulates K562 cell adhesion through the interaction with FA proteins and Bcr-Abl, modulating the formation of different protein complexes at FA.
Collapse
Affiliation(s)
- Vera Maia
- Centro de Investigación del Cáncer, IBMCC, CSIC-Universidad de Salamanca, Salamanca, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Mechanism of maprotiline-induced apoptosis: role of [Ca2+](i), ERK, JNK and caspase-3 signaling pathways. Toxicology 2012; 304:1-12. [PMID: 23219590 DOI: 10.1016/j.tox.2012.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 11/22/2012] [Accepted: 11/24/2012] [Indexed: 11/24/2022]
Abstract
Antidepressants are generally used for treatment of various mood and anxiety disorders. Several studies have shown the anti-tumor and cytotoxic activities of some antidepressants, but the underlying mechanisms were unclear. Maprotiline is a tetracyclic antidepressant and possesses a highly selective norepinephrine reuptake ability. We found that maprotiline decreased cell viability in a concentration- and time-dependent manner in Neuro-2a cells. Maprotiline induced apoptosis and increased caspase-3 activation. The activation of caspase-3 by maprotiline appears to depend on the activation of JNK and the inactivation of ERK. Maprotiline also induced [Ca(2+)](i) increases which involved the mobilization of intracellular Ca(2+) stored in the endoplasmic reticulum. Pretreatment with BAPTA/AM, a Ca(2+) chelator, suppressed maprotiline-induced ERK phosphorylation, enhanced caspase-3 activation and increased maprotiline-induced apoptosis. In conclusion, maprotiline induced apoptosis in Neuro-2a cells through activation of JNK-associated caspase-3 pathways. Maprotiline also evoked an anti-apoptotic response that was both Ca(2+)- and ERK-dependent.
Collapse
|
142
|
González-Terán B, Cortés JR, Manieri E, Matesanz N, Verdugo Á, Rodríguez ME, González-Rodríguez Á, Valverde ÁM, Valverde Á, Martín P, Davis RJ, Sabio G. Eukaryotic elongation factor 2 controls TNF-α translation in LPS-induced hepatitis. J Clin Invest 2012. [PMID: 23202732 DOI: 10.1172/jci65124] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bacterial LPS (endotoxin) has been implicated in the pathogenesis of acute liver disease through its induction of the proinflammatory cytokine TNF-α. TNF-α is a key determinant of the outcome in a well-established mouse model of acute liver failure during septic shock. One possible mechanism for regulating TNF-α expression is through the control of protein elongation during translation, which would allow rapid cell adaptation to physiological changes. However, the regulation of translational elongation is poorly understood. We found that expression of p38γ/δ MAPK proteins is required for the elongation of nascent TNF-α protein in macrophages. The MKK3/6-p38γ/δ pathway mediated an inhibitory phosphorylation of eukaryotic elongation factor 2 (eEF2) kinase, which in turn promoted eEF2 activation (dephosphorylation) and subsequent TNF-α elongation. These results identify a new signaling pathway that regulates TNF-α production in LPS-induced liver damage and suggest potential cell-specific therapeutic targets for liver diseases in which TNF-α production is involved.
Collapse
Affiliation(s)
- Bárbara González-Terán
- Department of Vascular Biology and Inflammation, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Llopis A, Salvador N, Ercilla A, Guaita-Esteruelas S, Barrantes IDB, Gupta J, Gaestel M, Davis RJ, Nebreda AR, Agell N. The stress-activated protein kinases p38α/β and JNK1/2 cooperate with Chk1 to inhibit mitotic entry upon DNA replication arrest. Cell Cycle 2012; 11:3627-37. [PMID: 22935704 DOI: 10.4161/cc.21917] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Accurate DNA replication is crucial for the maintenance of genome integrity. To this aim, cells have evolved complex surveillance mechanisms to prevent mitotic entry in the presence of partially replicated DNA. ATR and Chk1 are key elements in the signal transduction pathways of DNA replication checkpoint; however, other kinases also make significant contributions. We show here that the stress kinases p38 and JNK are activated when DNA replication is blocked, and that their activity allows S/M, but not G 2/M, checkpoint maintenance when Chk1 is inhibited. Activation of both kinases by DNA replication inhibition is not mediated by the caffeine-sensitive kinases ATR or ATM. Phosphorylation of MKK3/6 and MKK4, p38 and JNK upstream kinases was also observed upon DNA replication inhibition. Using a genetic approach, we dissected the p38 pathway and showed that both p38α and p38β isoforms collaborate to inhibit mitotic entry. We further defined MKK3/6 and MK2/3 as the key upstream and downstream elements in the p38 signaling cascade after replication arrest. Accordingly, we found that the stress signaling pathways collaborate with Chk1 to keep cyclin B1/Cdk1 complexes inactive when DNA replication is inhibited, thereby preventing cell cycle progression when DNA replication is stalled. Our results show a complex response to replication stress, where multiple pathways are activated and fulfill overlapping roles to prevent mitotic entry with unreplicated DNA.
Collapse
Affiliation(s)
- Alba Llopis
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Niu X, Xing W, Li W, Fan T, Hu H, Li Y. Isofraxidin exhibited anti-inflammatory effects in vivo and inhibited TNF-α production in LPS-induced mouse peritoneal macrophages in vitro via the MAPK pathway. Int Immunopharmacol 2012; 14:164-71. [PMID: 22800929 DOI: 10.1016/j.intimp.2012.06.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/11/2012] [Accepted: 06/30/2012] [Indexed: 10/28/2022]
Abstract
Isofraxidin (IF) is a Coumarin compound that can be isolated from medicinal plants, such as Sarcandra glabra (Thunb.). Nakai is widely used in Asian countries for the treatment of anti-bacterial, anti-inflammatory and anti-tumour action. The present investigation was designed to evaluate the effect of IF on inflammation and nociception. In addition, we investigated a potential novel mechanism to explain the anti-inflammatory properties of IF. In vivo, xylene-induced mouse ear edema, carrageenan-induced rat paw edema, LPS-induced mouse endotoxic shock, acetic acid-induced mice writhing and formalin-induced mouse pain models were used to evaluate the anti-inflammatory activity of IF. In vitro, we examined the effects of IF inhibition on TNF-α production and the regulation of ERK1/2 and p38 phosphorylation activity in LPS-induced mouse peritoneal macrophages. Our results demonstrated that IF can significantly decrease xylene-induced ear edema, carrageenan-induced paw edema, acetic acid-induced writhing and formalin-induced pain. Moreover, IF greatly inhibited the production of TNF-α in the serum of LPS-stimulated mice and peritoneal macrophages, and it decreased phospho-p38 and ERK1/2 protein expression in LPS-stimulated mouse peritoneal macrophages. Overall, our data suggest that IF possesses significant analgesic and anti-inflammatory activities that may be mediated through the regulation of pro-inflammatory cytokines, TNF-α and the phosphorylation of p38 and ERK1/2.
Collapse
Affiliation(s)
- Xiaofeng Niu
- School of Medicine, Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | | | | | | | | | | |
Collapse
|
145
|
Ye X, Li P, Yu Q, Yang Q. Bacillus subtilis inhibition of enterotoxic Escherichia coli-induced activation of MAPK signaling pathways in Caco-2 cells. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0506-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
146
|
Tanriover G, Sozen B, Seker A, Kilic T, Gunel M, Demir N. Ultrastructural analysis of vascular features in cerebral cavernous malformations. Clin Neurol Neurosurg 2012; 115:438-44. [PMID: 22776801 DOI: 10.1016/j.clineuro.2012.06.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/06/2012] [Accepted: 06/16/2012] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Investigation of the structure of vascular malformations highlights the pathogenic mechanisms underlying their clinical behavior. One of the vascular malformations is called cerebral cavernous malformation (CCM). However, the ultrastructural features of the vascular malformations are not defined in detail. METHODS We aimed to investigate the ultrastructural features of CCMs using transmission (TEM), scanning (SEM) electron microscopy, and also immunohistochemistry methods with antibodies against CCM proteins such as CCM2 and CCM3. CCM tissues (n=6) microsurgically excised from patients for conventional indications. RESULTS CCM2 and CCM3 were strongly detected in the vascular endothelium. However, there was a very weak immunostaining in stroma. SEM observations revealed that there were ruptures and damages in the luminal endothelium, possibly due to the damage of intercellular junctions. TEM observations also showed a few ruptures and detachments between the endothelium and basal lamina as observed with partially damages and disconnections. The architecture of pericytes showed protrusions and shrinkages. Our results suggest that the thin vessel walls of CCMs were lacking of subendothelial support and intact basal lamina underlying the endothelial cells. CONCLUSION This study is so far the first study attempting to show human CCM lesions with SEM. We believe that an understanding of the ultrastructural features of these lesions by light and electron microscopy techniques would help to understand the pathology of these diseases.
Collapse
Affiliation(s)
- Gamze Tanriover
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Antalya 07070, Turkey
| | | | | | | | | | | |
Collapse
|
147
|
The many faces of p38 mitogen-activated protein kinase in progenitor/stem cell differentiation. Biochem J 2012; 445:1-10. [DOI: 10.1042/bj20120401] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Regulation of stem cells is essential for development and adult tissue homoeostasis. The proper control of stem cell self-renewal and differentiation maintains organ physiology, and disruption of such a balance results in disease. There are many mechanisms that have been established as stem cell regulators, such as Wnt or Notch signals. However, the intracellular mechanisms that mediate and integrate these signals are not well understood. A new intracellular pathway that has been reported to be involved in the regulation of many stem cell types is that of p38 MAPK (mitogen-activated protein kinase). In particular, p38α is essential for the proper differentiation of many haematopoietic, mesenchymal and epithelial stem/progenitor cells. Many reports have shown that disruption of this kinase pathway has pathological consequences in many organs. Understanding the extracellular cues and downstream targets of p38α in stem cell regulation may help to tackle some of the pathologies associated with improper differentiation and regulation of stem cell function. In the present review we present a vision of the current knowledge on the roles of the p38α signal as a regulator of stem/progenitor cells in different tissues in physiology and disease.
Collapse
|
148
|
Singh AK, Pandey R, Gill K, Singh R, Saraya A, Chauhan SS, Yadav S, Pal S, Singh N, Dey S. p38β MAP kinase as a therapeutic target for pancreatic cancer. Chem Biol Drug Des 2012; 80:266-73. [PMID: 22515544 DOI: 10.1111/j.1747-0285.2012.01395.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pancreatic cancer is very difficult to diagnose in its early stage. Molecular marker and imaging have not proven to be accurate modalities for screening of pancreatic cancer. This study aims to develop p38β as a protein marker for pancreatic cancer and to design peptide inhibitor against the same. The serum p38β level of pancreatic cancer (n = 35; 5.06 μg/mL) was twofold higher compared to that of the chronic pancreatitis (n = 10; 2.92 μg/mL) and matched normal control (n = 10; 2.86 μg/ml) (p < 0.0005). Peptide inhibitors were designed to inhibit the activity of p38β and the kinetic assay had shown the dissociation constant, (K(D)) to be 3.16 × 10(-8) M and IC(50), 25 nM by Surface Plasmon Resonance (SPR) and Enzyme-Linked Immunosorbent Assay (ELISA), respectively. The peptide inhibitor also significantly reduced viability and induced cytotoxicity in Human Pancreatic carcinoma epithelial-like cell line (PANC-1) cells.
Collapse
Affiliation(s)
- Abhay Kumar Singh
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Lopes MW, Soares FMS, de Mello N, Nunes JC, de Cordova FM, Walz R, Leal RB. Time-Dependent Modulation of Mitogen Activated Protein Kinases and AKT in Rat Hippocampus and Cortex in the Pilocarpine Model of Epilepsy. Neurochem Res 2012; 37:1868-78. [DOI: 10.1007/s11064-012-0797-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/11/2012] [Accepted: 05/07/2012] [Indexed: 01/14/2023]
|
150
|
Nerve growth factor-induced cell cycle reentry in newborn neurons is triggered by p38MAPK-dependent E2F4 phosphorylation. Mol Cell Biol 2012; 32:2722-37. [PMID: 22586272 DOI: 10.1128/mcb.00239-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cumulative evidence indicates that activation of cyclin D-dependent kinase 4/6 (cdk4/6) represents a major trigger of cell cycle reentry and apoptosis in vertebrate neurons. We show here the existence of another mechanism triggering cell cycle reentry in differentiating chick retinal neurons (DCRNs), based on phosphorylation of E2F4 by p38(MAPK). We demonstrate that the activation of p75(NTR) by nerve growth factor (NGF) induces nuclear p38(MAPK) kinase activity, which leads to Thr phosphorylation and subsequent recruitment of E2F4 to the E2F-responsive cdc2 promoter. Inhibition of p38(MAPK), but not of cdk4/6, specifically prevents NGF-dependent cell cycle reentry and apoptosis in DCRNs. Moreover, a constitutively active form of chick E2F4 (Thr261Glu/Thr263Glu) stimulates G(1)/S transition and apoptosis, even after inhibition of p38(MAPK) activity. In contrast, a dominant-negative E2F4 form (Thr261Ala/Thr263Ala) prevents NGF-induced cell cycle reactivation and cell death in DCRNs. These results indicate that NGF-induced cell cycle reentry in neurons depends on the activation of a novel, cdk4/6-independent pathway that may participate in neurodegeneration.
Collapse
|