101
|
Boudreau HE, Casterline BW, Burke DJ, Leto TL. Wild-type and mutant p53 differentially regulate NADPH oxidase 4 in TGF-β-mediated migration of human lung and breast epithelial cells. Br J Cancer 2014; 110:2569-82. [PMID: 24714748 PMCID: PMC4021516 DOI: 10.1038/bjc.2014.165] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/04/2014] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Transforming growth factor-beta (TGF-β) induces the epithelial-to-mesenchymal transition (EMT) leading to increased cell plasticity at the onset of cancer cell invasion and metastasis. Mechanisms involved in TGF-β-mediated EMT and cell motility are unclear. Recent studies showed that p53 affects TGF-β/SMAD3-mediated signalling, cell migration, and tumorigenesis. We previously demonstrated that Nox4, a Nox family NADPH oxidase, is a TGF-β/SMAD3-inducible source of reactive oxygen species (ROS) affecting cell migration and fibronectin expression, an EMT marker, in normal and metastatic breast epithelial cells. Our present study investigates the involvement of p53 in TGF-β-regulated Nox4 expression and cell migration. METHODS We investigated the effect of wild-type p53 (WT-p53) and mutant p53 proteins on TGF-β-regulated Nox4 expression and cell migration. Nox4 mRNA and protein, ROS production, cell migration, and focal adhesion kinase (FAK) activation were examined in three different cell models based on their p53 mutational status. H1299, a p53-null lung epithelial cell line, was used for heterologous expression of WT-p53 or mutant p53. In contrast, functional studies using siRNA-mediated knockdown of endogenous p53 were conducted in MDA-MB-231 metastatic breast epithelial cells that express p53-R280K and MCF-10A normal breast cells that have WT-p53. RESULTS We found that WT-p53 is a potent suppressor of TGF-β-induced Nox4, ROS production, and cell migration in p53-null lung epithelial (H1299) cells. In contrast, tumour-associated mutant p53 proteins (R175H or R280K) caused enhanced Nox4 expression and cell migration in both TGF-β-dependent and TGF-β-independent pathways. Moreover, knockdown of endogenous mutant p53 (R280K) in TGF-β-treated MDA-MB-231 metastatic breast epithelial cells resulted in decreased Nox4 protein and reduced phosphorylation of FAK, a key regulator of cell motility. Expression of WT-p53 or dominant-negative Nox4 decreased TGF-β-mediated FAK phosphorylation, whereas mutant p53 (R280K) increased phospho-FAK. Furthermore, knockdown of WT-p53 in MCF-10A normal breast epithelial cells increased basal Nox4 expression, whereas p53-R280K could override endogenous WT-p53 repression of Nox4. Remarkably, immunofluorescence analysis revealed MCF-10A cells expressing p53-R280K mutant showed an upregulation of Nox4 in both confluent and migrating cells. CONCLUSIONS Collectively, our findings define novel opposing functions for WT-p53 and mutant p53 proteins in regulating Nox4-dependent signalling in TGF-β-mediated cell motility.
Collapse
MESH Headings
- Breast/cytology
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Transformed
- Cell Line, Tumor
- Cell Movement
- Enzyme Induction
- Epithelial Cells/physiology
- Epithelial-Mesenchymal Transition
- Female
- Focal Adhesion Protein-Tyrosine Kinases/physiology
- Gene Expression Regulation, Neoplastic
- Genes, p53
- Humans
- Lung/cytology
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Mutation, Missense
- NADPH Oxidase 4
- NADPH Oxidases/biosynthesis
- NADPH Oxidases/genetics
- Neoplasm Metastasis
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- RNA Interference
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- RNA, Small Interfering/pharmacology
- Reactive Oxygen Species/metabolism
- Transfection
- Transforming Growth Factor beta/physiology
- Tumor Suppressor Protein p53/physiology
Collapse
Affiliation(s)
- H E Boudreau
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, MD 20852, USA
| | - B W Casterline
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, MD 20852, USA
| | - D J Burke
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, MD 20852, USA
| | - T L Leto
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, MD 20852, USA
| |
Collapse
|
102
|
Li J, Pang Q. Oxidative stress-associated protein tyrosine kinases and phosphatases in Fanconi anemia. Antioxid Redox Signal 2014; 20:2290-301. [PMID: 24206276 PMCID: PMC3995293 DOI: 10.1089/ars.2013.5715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Fanconi anemia (FA) is a genetic disorder featuring chromosomal instability, developmental defects, progressive bone marrow failure, and predisposition to cancer. Besides the predominant role in DNA damage response and/or repair, many studies have linked FA proteins to oxidative stress. Oxidative stress, defined as imbalance in pro-oxidant and antioxidant homeostasis, has been considered to contribute to disease development, including FA. RECENT ADVANCES A variety of signaling pathways may be influenced by oxidative stress, particularly the equilibrium between protein kinases and phosphatases, consequently leading to an aberrant phosphorylation state of cellular proteins. Dysfunction of kinases/phosphatases has been implicated in the pathophysiology of human diseases. In FA, evidence is emerging that links abnormal phosphorylation/de-phosphorylation of signaling molecules to clinical complications and malformations. CRITICAL ISSUES In this study, we review the recent findings on the oxidative stress-related kinases and phosphatases, particularly tyrosine phosphatases in FA. FUTURE DIRECTIONS Understanding the role of oxidative stress-related kinases and phosphatases in FA may provide unique and generic possibilities for the future development of therapeutic strategies by targeting the dysregulated protein kinases and phosphatases in a clinical setting.
Collapse
Affiliation(s)
- Jie Li
- 1 Division of Neurosurgery, Center for Theoretic and Applied Neuro-Oncology, Moores Cancer Center, University of California , San Diego, La Jolla, California
| | | |
Collapse
|
103
|
Kim SR, Jung YR, Kim DH, An HJ, Kim MK, Kim ND, Chung HY. Caffeic acid regulates LPS-induced NF-κB activation through NIK/IKK and c-Src/ERK signaling pathways in endothelial cells. Arch Pharm Res 2014; 37:539-47. [PMID: 23888332 DOI: 10.1007/s12272-013-0211-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/08/2013] [Indexed: 01/04/2023]
Abstract
The redox sensitive, proinflammatory nuclear transcription factor NF-κB plays a key role in inflammation. In a redox state disrupted by oxidative stress, pro-inflammatory genes are upregulated by the activation of NF-κB via diverse kinases. Thus, the search and characterization of new substances that modulate NF-κB are topics of considerable research interest. Caffeic acid is a component of garlic, some fruits, and coffee, and is widely used as a phenolic agent in beverages. In the present study, caffeic acid was examined with respect to the modulation of inflammatory NF-κB activation via the redox-related c-Src/ERK and NIK/IKK pathways via the reduction of oxidative stress. YPEN-1 cells (an endothelial cell line) were used to explore the molecular mechanism underlying the anti-inflammatory effect of caffeic acid by examining its modulation of NF-κB signaling pathway by LPS. Our results show that LPS-induced oxidative stress-related NF-κB activation upregulated pro-inflammatory COX-2, NF-κB targeting gene which were all inhibited effectively by caffeic acid. Our study shows that caffeic acid inhibits the activation of NF-κB via the c-Src/ERK and NIK/IKK signal transduction pathways. Our results indicate that antioxidative effect of caffeic acid and its restoration of redox balance are responsible for its anti-inflammatory action. Thus, the study provides new information regarding the anti-inflammatory properties of caffeic acid and the roles in the regulation of LPS-induced oxidative stress induces alterations in signal transduction pathways.
Collapse
Affiliation(s)
- So Ra Kim
- Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, 609-735, Korea
| | | | | | | | | | | | | |
Collapse
|
104
|
Baldanzi G. Inhibition of diacylglycerol kinases as a physiological way to promote diacylglycerol signaling. Adv Biol Regul 2014; 55:39-49. [PMID: 24582387 DOI: 10.1016/j.jbior.2014.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/02/2014] [Accepted: 02/02/2014] [Indexed: 01/12/2023]
Abstract
Diacylglycerol is a key regulator of cell physiology, controlling the membrane recruitment and activation of signaling molecules. Accordingly, diacylglycerol generation and metabolism are strictly controlled, allowing for localized regulation of its concentration. While the increased production of diacylglycerol upon receptor triggering is well recognized, the modulation of diacylglycerol metabolism by diacylglycerol kinases (DGKs) is less characterized. Some agonists induce DGK activation and recruitment to the plasma membrane, promoting diacylglycerol metabolism to phosphatidic acid. Conversely, several reports indicate that signaling pathways that selectively inhibits DGK isoforms can enhance cellular diacylglycerol levels and signal transduction. For example, the impairment of DGKθ activity by RhoA binding to the catalytic domain represents a conserved mechanism controlling diacylglycerol signaling from Caenorhabditis elegans motoneurons to mammalian hepatocytes. Similarly, DGKα activity is inhibited in lymphocytes by TCR signaling, thus contributing to a rise in diacylglycerol concentration for downstream signaling. Finally, DGKμ activity is inhibited by ischemia-reperfusion-generated reactive oxygen species in airway endothelial cells, promoting diacylglycerol-mediated ion channel opening and edema. In those systems, DGKs provide a gatekeeper function by blunting diacylglycerol levels or possibly establishing permissive domains for diacylglycerol signaling. In this review, I discuss the possible general relevance of DGK inhibition to enhanced diacylglycerol signaling.
Collapse
Affiliation(s)
- Gianluca Baldanzi
- University "A. Avogadro" del Piemonte Orientale, Department of Translational Medicine, via Solaroli 17, 28100 Novara, Italy.
| |
Collapse
|
105
|
Maeda A, Kai K, Ishii M, Ishii T, Akagawa M. Safranal, a novel protein tyrosine phosphatase 1B inhibitor, activates insulin signaling in C2C12 myotubes and improves glucose tolerance in diabetic KK-Aymice. Mol Nutr Food Res 2014; 58:1177-89. [DOI: 10.1002/mnfr.201300675] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/24/2013] [Accepted: 01/02/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Ayumi Maeda
- Department of Biological Chemistry; Division of Applied Life Science; Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Sakai Japan
| | - Kenji Kai
- Department of Biological Chemistry; Division of Applied Life Science; Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Sakai Japan
| | - Megumi Ishii
- Department of Biological Chemistry; Division of Applied Life Science; Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Sakai Japan
| | - Takeshi Ishii
- Department of Food and Nutritional Sciences, and Global COE Program; University of Shizuoka; Shizuoka Japan
| | - Mitsugu Akagawa
- Department of Biological Chemistry; Division of Applied Life Science; Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Sakai Japan
| |
Collapse
|
106
|
2-cys peroxiredoxins: emerging hubs determining redox dependency of Mammalian signaling networks. Int J Cell Biol 2014; 2014:715867. [PMID: 24672551 PMCID: PMC3932224 DOI: 10.1155/2014/715867] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/25/2013] [Indexed: 01/28/2023] Open
Abstract
Mammalian cells have a well-defined set of antioxidant enzymes, which includes superoxide dismutases, catalase, glutathione peroxidases, and peroxiredoxins. Peroxiredoxins are the most recently identified family of antioxidant enzymes that catalyze the reduction reaction of peroxides, such as H2O2. In particular, typical 2-Cys peroxiredoxins are the featured peroxidase enzymes that receive the electrons from NADPH by coupling with thioredoxin and thioredoxin reductase. These enzymes distribute throughout the cellular compartments and, therefore, are thought to be broad-range antioxidant defenders. However, recent evidence demonstrates that typical 2-Cys peroxiredoxins play key signal regulatory roles in the various signaling networks by interacting with or residing near a specific redox-sensitive molecule. These discoveries help reveal the redox signaling landscape in mammalian cells and may further provide a new paradigm of therapeutic approaches based on redox signaling.
Collapse
|
107
|
Suzuki T, Yang J. Hydrogen peroxide activation of ERK5 confers resistance to Jurkat cells against apoptosis induced by the extrinsic pathway. Biochem Biophys Res Commun 2014; 444:248-53. [PMID: 24462874 DOI: 10.1016/j.bbrc.2014.01.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 01/15/2014] [Indexed: 01/13/2023]
Abstract
Reactive oxygen species (ROS) including hydrogen peroxide (H₂O₂) exhibit both pro-survival and pro-death signaling in leukemic cells. We examined the effect of exogenous H₂O₂ on Fas ligand (FasL) -induced apoptosis in Jurkat cells. H₂O₂ applied prior to (pre-conditioning) and during (post-conditioning) FasL stimulation attenuated early apoptosis through activation of EKR5. H₂O₂ increased the activated caspase-8 sequestered in the mitochondria thereby decreasing cell death through the extrinsic apoptotic pathway. In addition, inhibition of a protein tyrosine phosphatase likely explains the post-conditioning requirement for H₂O₂. Given that chemotherapeutic agents used for the treatment of acute lymphoblastic leukemia are thought to work partly through production of ROS, a simultaneous inhibition of the ERK5 pathway may abrogate the ROS-initiated pro-survival signaling for an enhanced cell kill.
Collapse
Affiliation(s)
- Takeshi Suzuki
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53711, USA; Department of Anesthesiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jay Yang
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53711, USA.
| |
Collapse
|
108
|
Boivin B, Chaudhary F, Dickinson BC, Haque A, Pero SC, Chang CJ, Tonks NK. Receptor protein-tyrosine phosphatase α regulates focal adhesion kinase phosphorylation and ErbB2 oncoprotein-mediated mammary epithelial cell motility. J Biol Chem 2013; 288:36926-35. [PMID: 24217252 DOI: 10.1074/jbc.m113.527564] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the role of protein-tyrosine phosphatase α (PTPα) in regulating signaling by the ErbB2 oncoprotein in mammary epithelial cells. Using this model, we demonstrated that activation of ErbB2 led to the transient inactivation of PTPα, suggesting that attenuation of PTPα activity may contribute to enhanced ErbB2 signaling. Furthermore, RNAi-induced suppression of PTPα led to increased cell migration in an ErbB2-dependent manner. The ability of ErbB2 to increase cell motility in the absence of PTPα was characterized by prolonged interaction of GRB7 with ErbB2 and increased association of ErbB2 with a β1-integrin-rich complex, which depended on GRB7-SH2 domain interactions. Finally, suppression of PTPα resulted in increased phosphorylation of focal adhesion kinase on Tyr-407, which induced the recruitment of vinculin and the formation of a novel focal adhesion kinase complex in response to ErbB2 activation in mammary epithelial cells. Collectively, these results reveal a new role for PTPα in the regulation of motility of mammary epithelial cells in response to ErbB2 activation.
Collapse
Affiliation(s)
- Benoit Boivin
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | | | | | | | | | | | | |
Collapse
|
109
|
Panzhinskiy E, Ren J, Nair S. Protein tyrosine phosphatase 1B and insulin resistance: role of endoplasmic reticulum stress/reactive oxygen species/nuclear factor kappa B axis. PLoS One 2013; 8:e77228. [PMID: 24204775 PMCID: PMC3799617 DOI: 10.1371/journal.pone.0077228] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 09/01/2013] [Indexed: 12/24/2022] Open
Abstract
Obesity-induced endoplasmic reticulum (ER) stress has been proposed as an important pathway in the development of insulin resistance. Protein-tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin signaling and is tethered to the ER-membrane. The aim of the study was to determine the mechanisms involved in the crosstalk between ER-stress and PTP1B. PTP1B whole body knockout and C57BL/6J mice were subjected to a high-fat or normal chow-diet for 20 weeks. High-fat diet feeding induced body weight gain, increased adiposity, systemic glucose intolerance, and hepatic steatosis were attenuated by PTP1B deletion. High-fat diet- fed PTP1B knockout mice also exhibited improved glucose uptake measured using [(3)H]-2-deoxy-glucose incorporation assay and Akt phosphorylation in the skeletal muscle tissue, compared to their wild-type control mice which received similar diet. High-fat diet-induced upregulation of glucose-regulated protein-78, phosphorylation of eukaryotic initiation factor 2α and c-Jun NH2-terminal kinase-2 were significantly attenuated in the PTP1B knockout mice. Mice lacking PTP1B showed decreased expression of the autophagy related protein p62 and the unfolded protein response adaptor protein NCK1 (non-catalytic region of tyrosine kinase). Treatment of C2C12 myotubes with the ER-stressor tunicamycin resulted in the accumulation of reactive oxygen species (ROS), leading to the activation of protein expression of PTP1B. Furthermore, tunicamycin-induced ROS production activated nuclear translocation of NFκB p65 and was required for ER stress-mediated expression of PTP1B. Our data suggest that PTP1B is induced by ER stress via the activation of the ROS-NFκB axis which is causes unfolded protein response and mediates insulin resistance in the skeletal muscle under obese condition.
Collapse
Affiliation(s)
- Evgeniy Panzhinskiy
- School of Pharmacy & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, Wyoming, United States of America
| | - Jun Ren
- School of Pharmacy & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, Wyoming, United States of America
| | - Sreejayan Nair
- School of Pharmacy & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, Wyoming, United States of America
| |
Collapse
|
110
|
Wu Y, Antony S, Meitzler JL, Doroshow JH. Molecular mechanisms underlying chronic inflammation-associated cancers. Cancer Lett 2013; 345:164-73. [PMID: 23988267 DOI: 10.1016/j.canlet.2013.08.014] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 12/17/2022]
Abstract
Although it is now accepted that chronic inflammation plays an essential role in tumorigenesis, the underlying molecular mechanisms linking inflammation and cancer remain to be fully explored. Inflammatory mediators present in the tumor microenvironment, including cytokines and growth factors, as well as reactive oxygen species (ROS) and reactive nitrogen species (RNS), have been implicated in the etiology of inflammation-associated cancers. Epithelial NADPH oxidase (Nox) family proteins, which generate ROS regulated by cytokines, are upregulated during chronic inflammation and cancer. ROS serve as effector molecules participating in host defense or as chemo-attractants recruiting leukocytes to wounds, thereby influencing the inflammatory reaction in damaged tissues. ROS can alter chromosomal DNA, leading to genomic instability, and may serve as signaling molecules that affect tumor cell proliferation, survival, metabolism, angiogenesis, and metastasis. Targeting Noxs and their downstream signaling components may be a promising approach to pre-empting inflammation-related malignancies.
Collapse
Affiliation(s)
- Yongzhong Wu
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Smitha Antony
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer L Meitzler
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James H Doroshow
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
111
|
Rodiño-Janeiro BK, Paradela-Dobarro B, Castiñeiras-Landeira MI, Raposeiras-Roubín S, González-Juanatey JR, Álvarez E. Current status of NADPH oxidase research in cardiovascular pharmacology. Vasc Health Risk Manag 2013; 9:401-28. [PMID: 23983473 PMCID: PMC3750863 DOI: 10.2147/vhrm.s33053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The implications of reactive oxygen species in cardiovascular disease have been known for some decades. Rationally, therapeutic antioxidant strategies combating oxidative stress have been developed, but the results of clinical trials have not been as good as expected. Therefore, to move forward in the design of new therapeutic strategies for cardiovascular disease based on prevention of production of reactive oxygen species, steps must be taken on two fronts, ie, comprehension of reduction-oxidation signaling pathways and the pathophysiologic roles of reactive oxygen species, and development of new, less toxic, and more selective nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors, to clarify both the role of each NADPH oxidase isoform and their utility in clinical practice. In this review, we analyze the value of NADPH oxidase as a therapeutic target for cardiovascular disease and the old and new pharmacologic agents or strategies to prevent NADPH oxidase activity. Some inhibitors and different direct or indirect approaches are available. Regarding direct NADPH oxidase inhibition, the specificity of NADPH oxidase is the focus of current investigations, whereas the chemical structure-activity relationship studies of known inhibitors have provided pharmacophore models with which to search for new molecules. From a general point of view, small-molecule inhibitors are preferred because of their hydrosolubility and oral bioavailability. However, other possibilities are not closed, with peptide inhibitors or monoclonal antibodies against NADPH oxidase isoforms continuing to be under investigation as well as the ongoing search for naturally occurring compounds. Likewise, some different approaches include inhibition of assembly of the NADPH oxidase complex, subcellular translocation, post-transductional modifications, calcium entry/release, electron transfer, and genetic expression. High-throughput screens for any of these activities could provide new inhibitors. All this knowledge and the research presently underway will likely result in development of new drugs for inhibition of NADPH oxidase and application of therapeutic approaches based on their action, for the treatment of cardiovascular disease in the next few years.
Collapse
Affiliation(s)
- Bruno K Rodiño-Janeiro
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- European Molecular Biology Laboratory, Grenoble, France
| | | | | | - Sergio Raposeiras-Roubín
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- Cardiology Department, University Clinic Hospital of Santiago de Compostela,
Santiago de Compostela, Spain
| | - José R González-Juanatey
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- Cardiology Department, University Clinic Hospital of Santiago de Compostela,
Santiago de Compostela, Spain
- Medicine Department, University of Santiago de Compostela, Santiago de Compostela,
Spain
| | - Ezequiel Álvarez
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- Medicine Department, University of Santiago de Compostela, Santiago de Compostela,
Spain
| |
Collapse
|
112
|
Penney RB, Roy D. Thioredoxin-mediated redox regulation of resistance to endocrine therapy in breast cancer. Biochim Biophys Acta Rev Cancer 2013; 1836:60-79. [PMID: 23466753 DOI: 10.1016/j.bbcan.2013.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 12/27/2022]
Abstract
Resistance to endocrine therapy in breast carcinogenesis due to the redox regulation of the signal transduction system by reactive oxygen species (ROS) is the subject of this review article. Both antiestrogens and aromatase inhibitors are thought to prevent cancer through modulating the estrogen receptor function, but other mechanisms cannot be ruled out as these compounds also block metabolism and redox cycling of estrogen and are free radical scavengers. Endocrine therapeutic agents, such as, tamoxifen and other antiestrogens, and the aromatase inhibitor, exemestane, are capable of producing ROS. Aggressive breast cancer cells have high oxidative stress and chronic treatment with exemestane, fulvestrant or tamoxifen may add additional ROS stress. Breast cancer cells receiving long-term antiestrogen treatment appear to adapt to this increased persistent level of ROS. This, in turn, may lead to the disruption of reversible redox signaling that involves redox-sensitive phosphatases, protein kinases, such as, ERK and AKT, and transcription factors, such as, AP-1, NRF-1 and NF-κB. Thioredoxin modulates the expression of estrogen responsive genes through modulating the production of H2O2 in breast cancer cells. Overexpressing thioredoxine reductase 2 and reducing oxidized thioredoxin restores tamoxifen sensitivity to previously resistant breast cancer cells. In summary, it appears that resistance to endocrine therapy may be mediated, in part, by ROS-mediated dysregulation of both estrogen-dependent and estrogen-independent redox-sensitive signaling pathways. Further studies are needed to define the mechanism of action of thioredoxin modifiers, and their effect on the redox regulation that contributes to restoring the antiestrogen-mediated signal transduction system and growth inhibitory action.
Collapse
Affiliation(s)
- Rosalind Brigham Penney
- Department of Environmental and Occupational Health, Florida International University, Miami, FL 33199, USA
| | | |
Collapse
|
113
|
Abstract
Radiation therapy methods have evolved remarkably in recent years which have resulted in more effective local tumor control with negligible toxicity of surrounding normal tissues. However, local recurrence and distant metastasis often occur following radiation therapy mostly due to the development of radioresistance through the deregulation of the cell cycle, apoptosis, and inhibition of DNA damage repair mechanisms. Over the last decade, extensive progress in radiotherapy and gene therapy combinatorial approaches has been achieved to overcome resistance of tumor cells to radiation. In this review, we summarize the results from experimental cancer therapy studies on the combination of radiation therapy and gene therapy.
Collapse
|
114
|
Madureira PA, Waisman DM. Annexin A2: the importance of being redox sensitive. Int J Mol Sci 2013; 14:3568-94. [PMID: 23434659 PMCID: PMC3588059 DOI: 10.3390/ijms14023568] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 12/28/2022] Open
Abstract
Hydrogen peroxide (H2O2) is an important second messenger in cellular signal transduction. H2O2-dependent signalling regulates many cellular processes, such as proliferation, differentiation, migration and apoptosis. Nevertheless, H2O2 is an oxidant and a major contributor to DNA damage, protein oxidation and lipid peroxidation, which can ultimately result in cell death and/or tumourigenesis. For this reason, cells have developed complex antioxidant systems to scavenge ROS. Recently, our laboratory identified the protein, annexin A2, as a novel cellular redox regulatory protein. Annexin A2 possesses a reactive cysteine residue (Cys-8) that is readily oxidized by H2O2 and subsequently reduced by the thioredoxin system, thereby enabling annexin A2 to participate in multiple redox cycles. Thus, a single molecule of annexin A2 can inactivate several molecules of H2O2. In this report, we will review the studies detailing the reactivity of annexin A2 thiols and the importance of these reactive cysteine(s) in regulating annexin A2 structure and function. We will also focus on the recent reports that establish novel functions for annexin A2, namely as a protein reductase and as a cellular redox regulatory protein. We will further discuss the importance of annexin A2 redox regulatory function in disease, with a particular focus on tumour progression.
Collapse
Affiliation(s)
- Patrícia A. Madureira
- Centre for Molecular and Structural Biomedicine, University of Algarve, Campus of Gambelas, Faro, 8005-139, Portugal; E-Mail:
| | - David M. Waisman
- Departments of Biochemistry & Molecular Biology and Pathology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-902-494-1803; Fax: +1-902-494-1355
| |
Collapse
|
115
|
Vasdev S, Stuckless J, Richardson V. Role of the immune system in hypertension: modulation by dietary antioxidants. Int J Angiol 2012. [PMID: 23204821 DOI: 10.1055/s-0031-1288941] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hypertension is a major health problem worldwide. Individuals with hypertension are at an increased risk for stroke, heart disease, and kidney failure. Although the etiology of essential hypertension has a genetic component, lifestyle factors such as diet play an important role. Insulin resistance is a common feature of hypertension in both humans and animal models affecting glucose and lipid metabolism producing excess aldehydes including methylglyoxal. These aldehydes react with proteins to form conjugates called advanced glycation end products (AGEs). This alters protein structure and function and can affect vascular and immune cells leading to their activation and secretion of inflammatory cytokines. AGEs also act via receptors for advanced glycation end products on these cells altering the function of antioxidant and metabolic enzymes, and ion channels. This results in an increase in cytosolic free calcium, decrease in nitric oxide, endothelial dysfunction, oxidative stress, peripheral vascular resistance, and infiltration of vascular and kidney tissue with inflammatory cells leading to hypertension. Supplementation with dietary antioxidants including vitamins C, E, or B(6), thiols such as cysteine and lipoic acid, have been shown to lower blood pressure and plasma inflammatory cytokines in animal models and humans with essential hypertension. A well-balanced diet rich in antioxidants that includes vegetables, fruits, low fat dairy products, low salt, and includes whole grains, poultry, fish and nuts, lowers blood pressure and vascular inflammation. These antioxidants may achieve their antihypertensive and anti-inflammatory/immunomodulatory effects by reducing AGEs and improving insulin resistance and associated alterations. Dietary supplementation with antioxidants may be a beneficial, inexpensive, front-line alterative treatment modality for hypertension.
Collapse
Affiliation(s)
- Sudesh Vasdev
- Discipline of Medicine, Health Sciences Centre, Memorial University, St. John's, Newfoundland, Canada
| | | | | |
Collapse
|
116
|
Takada M, Sumi M, Maeda A, Watanabe F, Kamiya T, Ishii T, Nakano M, Akagawa M. Pyrroloquinoline quinone, a novel protein tyrosine phosphatase 1B inhibitor, activates insulin signaling in C2C12 myotubes and improves impaired glucose tolerance in diabetic KK-Ay mice. Biochem Biophys Res Commun 2012; 428:315-20. [DOI: 10.1016/j.bbrc.2012.10.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 10/12/2012] [Indexed: 01/22/2023]
|
117
|
Boudreau HE, Casterline BW, Rada B, Korzeniowska A, Leto TL. Nox4 involvement in TGF-beta and SMAD3-driven induction of the epithelial-to-mesenchymal transition and migration of breast epithelial cells. Free Radic Biol Med 2012; 53:1489-99. [PMID: 22728268 PMCID: PMC3448829 DOI: 10.1016/j.freeradbiomed.2012.06.016] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 12/11/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) is the development of increased cell plasticity that occurs normally during wound healing and embryonic development and can be coopted for cancer invasion and metastasis. TGF-beta induces EMT but the mechanism is unclear. Our studies suggest that Nox4, a member of the NADPH oxidase (Nox) family, is a source of reactive oxygen species (ROS) affecting cell migration and fibronectin expression, an EMT marker, in normal and metastatic breast epithelial cells. We found that TGF-beta induces Nox4 expression (mRNA and protein) and ROS generation in normal (MCF10A) and metastatic (MDA-MB-231) human breast epithelial cells. Conversely, cells expressing a dominant-negative form of Nox4 or Nox4-targeted shRNA showed significantly lower ROS production on TGF-beta treatment. Expression of a constitutively active TGF-beta receptor type I significantly increased Nox4 promoter activity, mRNA and protein expression, and ROS generation. Nox4 transcriptional regulation by TGF-beta was SMAD3 dependent based on the effect of constitutively active SMAD3 increasing Nox4 promoter activity, whereas dominant-negative SMAD3 or SIS3, a SMAD3-specific inhibitor, had the opposite effect. Furthermore, Nox4 knockdown, dominant-negative Nox4 or SMAD3, or SIS3 blunted TGF-beta induced wound healing and cell migration, whereas cell proliferation was not affected. Our experiments further indicate that Nox4 plays a role in TGF-beta regulation of fibronectin mRNA expression, based on the effects of dominant-negative Nox4 in reducing fibronectin mRNA in TGF-beta-treated MDA-MB-231and MCF10A cells. Collectively, these data indicate that Nox4 contributes to NADPH oxidase-dependent ROS production that may be critical for the progression of the EMT in breast epithelial cells, and thereby has therapeutic implications.
Collapse
Affiliation(s)
- Howard E. Boudreau
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Benjamin W. Casterline
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Balazs Rada
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Agnieszka Korzeniowska
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Thomas L. Leto
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
118
|
Kimura K, Takada M, Ishii T, Tsuji-Naito K, Akagawa M. Pyrroloquinoline quinone stimulates epithelial cell proliferation by activating epidermal growth factor receptor through redox cycling. Free Radic Biol Med 2012; 53:1239-51. [PMID: 22824864 DOI: 10.1016/j.freeradbiomed.2012.07.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/02/2012] [Accepted: 07/16/2012] [Indexed: 01/08/2023]
Abstract
Pyrroloquinoline quinone (PQQ), a redox cofactor for bacterial dehydrogenases, has been implicated to be an important nutrient in mammals functioning as a potent growth factor. However, the underlying molecular mechanisms have not been elucidated. The present study revealed that PQQ induces the activation (tyrosine autophosphorylation) of epidermal growth factor receptor (EGFR) and its downstream signaling in a ligand-independent manner, leading to increased cellular proliferation in an epithelial cell line A431. PQQ inhibited protein tyrosine phosphatase 1B (PTP1B), which negatively regulates the EGFR signaling by tyrosine dephosphorylation, to oxidatively modify the catalytic cysteine through its redox cycling activity to generate H(2)O(2). PQQ-inducible intracellular ROS production and EGFR activation were significantly suppressed by the pre-treatment with antioxidants. The intracellular redox state regulates the EGFR signaling through the redox-sensitive catalytic cysteine of PTP1B and modulates cell proliferation. Our data suggest that PQQ may stimulate epithelial cell proliferation by activating EGFR by oxidation and subsequent inactivation of PTP1B via its redox cycling. Our results provide novel insight into the mechanisms by which PQQ may function as a growth factor to contribute to mammalian growth.
Collapse
Affiliation(s)
- Kazuki Kimura
- Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| | | | | | | | | |
Collapse
|
119
|
Abstract
NADPH oxidases of the NADPH oxidase (NOX) family are dedicated reactive oxygen species-generating enzymes that broadly and specifically regulate redox-sensitive signalling pathways that are involved in cancer development and progression. They act at specific cellular membranes and microdomains through the activation of oncogenes and the inactivation of tumour suppressor proteins. In this Review, we discuss primary targets and redox-linked signalling systems that are influenced by NOX-derived ROS, and the biological role of NOX oxidases in the aetiology of cancer.
Collapse
Affiliation(s)
- Karen Block
- South Texas Veterans Health Care System, Audie L. Murphy Memorial Hospital Division, Department of Medicine, San Antonio, Texas 78229-73900, USA.
| | | |
Collapse
|
120
|
Abstract
Hypertension is a leading cause of morbidity and mortality worldwide. Individuals with hypertension are at increased risk of stroke, heart disease and kidney failure. Although the etiology of essential hypertension has a genetic component, lifestyle factors such as diet play an important role. Reducing dietary salt is effective in lowering blood pressure in salt-sensitive individuals. Insulin resistance and altered glucose metabolism are common features of hypertension in humans and animal models, with or without salt sensitivity. Altered glucose metabolism leads to increased formation of advanced glycation end products. Insulin resistance is also linked to oxidative stress, and alterations in the nitric oxide pathway and renin angiotensin system. A diet rich in protein containing the semiessential amino acid, arginine, and arginine treatment, lowers blood pressure in humans and in animal models. This may be due to the ability of arginine to improve insulin resistance, decrease advanced glycation end products formation, increase nitric oxide, and decrease levels of angiotensin II and oxidative stress, with improved endothelial cell function and decreased peripheral vascular resistance. The Dietary Approaches to Stop Hypertension (DASH) study demonstrated that the DASH diet, rich in vegetables, fruits and low-fat dairy products; low in fat; and including whole grains, poultry, fish and nuts, lowered blood pressures even more than a typical North American diet with similar reduced sodium content. The DASH diet is rich in protein; the blood pressure-lowering effect of the DASH diet may be due to its higher arginine-containing protein, higher antioxidants and low salt content.
Collapse
Affiliation(s)
- Sudesh Vasdev
- Discipline of Medicine, Faculty of Medicine, Health Sciences Centre, Memorial University, St John's, Newfoundland
| | | |
Collapse
|
121
|
Abstract
Hypertension is a leading cause of morbidity and mortality worldwide. Individuals with hypertension are at an increased risk for stroke, heart disease and kidney failure. Essential hypertension results from a combination of genetic and lifestyle factors. One such lifestyle factor is diet, and its role in the control of blood pressure has come under much scrutiny. Just as increased salt and sugar are known to elevate blood pressure, other dietary factors may have antihypertensive effects. Studies including the Optimal Macronutrient Intake to Prevent Heart Disease (OmniHeart) study, Multiple Risk Factor Intervention Trial (MRFIT), International Study of Salt and Blood Pressure (INTERSALT) and Dietary Approaches to Stop Hypertension (DASH) study have demonstrated an inverse relationship between dietary protein and blood pressure. One component of dietary protein that may partially account for its antihypertensive effect is the nonessential amino acid cysteine. Studies in hypertensive humans and animal models of hypertension have shown that N-acetylcysteine, a stable cysteine analogue, lowers blood pressure, which substantiates this idea. Cysteine may exert its antihypertensive effects directly or through its storage form, glutathione, by decreasing oxidative stress, improving insulin resistance and glucose metabolism, lowering advanced glycation end products, and modulating levels of nitric oxide and other vasoactive molecules. Therefore, adopting a balanced diet containing cysteine-rich proteins may be a beneficial lifestyle choice for individuals with hypertension. An example of such a diet is the DASH diet, which is low in salt and saturated fat; includes whole grains, poultry, fish and nuts; and is rich in vegetables, fruits and low-fat dairy products.
Collapse
Affiliation(s)
- Sudesh Vasdev
- Discipline of Medicine, Faculty of Medicine, Health Sciences Centre, Memorial University, St John's, Newfoundland
| | | | | |
Collapse
|
122
|
Novo E, Parola M. The role of redox mechanisms in hepatic chronic wound healing and fibrogenesis. FIBROGENESIS & TISSUE REPAIR 2012; 5:S4. [PMID: 23259696 PMCID: PMC3368756 DOI: 10.1186/1755-1536-5-s1-s4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Under physiological conditions, intracellular and tissue levels of reactive oxygen species (ROS) are carefully controlled and employed as fine modulators of signal transduction, gene expression and cell functional responses (redox signaling). A significant derangement in redox homeostasis, resulting in sustained levels of oxidative stress and related mediators, plays a role in the pathogenesis of human diseases characterized by chronic inflammation, chronic activation of wound healing and tissue fibrogenesis, including chronic liver diseases. In this chapter major concepts and mechanisms in redox signaling will be briefly recalled to introduce a number of selected examples of redox-related mechanisms that can actively contribute to critical events in the natural history of a chronic liver diseases, including induction of cell death, perpetuation of chronic inflammatory responses and fibrogenesis. A major focus will be on redox-dependent mechanisms involved in the modulation of phenotypic responses of activated, myofibroblast-like, hepatic stellate cells (HSC/MFs), still considered as the most relevant pro-fibrogenic cells operating in chronic liver diseases.
Collapse
Affiliation(s)
- Erica Novo
- Department of Experimental Medicine and Oncology, University of Torino, Corso Raffaello 30, 10125, Torino, Italy ; Interuniversity Centre for Liver Pathophysiology, University of Torino, Corso Raffaello 30, 10125, Torino, Italy
| | - Maurizio Parola
- Department of Experimental Medicine and Oncology, University of Torino, Corso Raffaello 30, 10125, Torino, Italy ; Interuniversity Centre for Liver Pathophysiology, University of Torino, Corso Raffaello 30, 10125, Torino, Italy
| |
Collapse
|
123
|
Schmukler E, Shai B, Ehrlich M, Pinkas-Kramarski R. Neuregulin promotes incomplete autophagy of prostate cancer cells that is independent of mTOR pathway inhibition. PLoS One 2012; 7:e36828. [PMID: 22606295 PMCID: PMC3351469 DOI: 10.1371/journal.pone.0036828] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/06/2012] [Indexed: 11/19/2022] Open
Abstract
Background Growth factors activating the ErbB receptors have been described in prostate tumors. The androgen dependent prostate cancer cell line, LNCaP, expresses the ErbB-1, ErbB-2 and ErbB-3 receptor tyrosine kinases. Previously, it was demonstrated that NRG activates ErbB-2/ErbB-3 heterodimers to induce LNCaP cell death, whereas, EGF activates ErbB-1/ErbB-1 or ErbB-1/ErbB-2 dimers to induce cell growth and survival. It was also demonstrated that PI3K inhibitors repressed this cell death suggesting that in androgen deprived LNCaP cells, NRG activates a PI3K-dependent pathway associated with cell death. Methodology/Principal Findings In the present study we demonstrate that NRG induces autophagy in LNCaP cells, using LC3 as a marker. However, the autophagy induced by NRG may be incomplete since p62 levels elevate. We also demonstrated that NRG- induced autophagy is independent of mammalian target of rapamycin (mTOR) inhibition since NRG induces Akt and S6K activation. Interestingly, inhibition of reactive oxygen species (ROS) by N-acetylcysteine (NAC), inhibited NRG-induced autophagy and cell death. Our study also identified JNK and Beclin 1 as important components in NRG-induced autophagy and cell death. NRG induced elevation in JNK phosphorylation that was inhibited by NAC. Moreover, inhibitor of JNK inhibited NRG-induced autophagy and cell death. Also, in cells overexpressing Bcl-2 or cells expressing sh-RNA against Beclin 1, the effects of NRG, namely induction of autophagy and cell death, were inhibited. Conclusions/Significance Thus, in LNCaP cells, NRG-induces incomplete autophagy and cell death that depend on ROS levels. These effects of NRG are mediated by signaling pathway that activates JNK and Beclin 1, but is independent of mTOR inhibition.
Collapse
Affiliation(s)
- Eran Schmukler
- Department of Neurobiology, Tel-Aviv University, Ramat-Aviv, Israel
| | - Ben Shai
- Department of Cell Research and Immunology, Tel-Aviv University, Ramat-Aviv, Israel
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, Tel-Aviv University, Ramat-Aviv, Israel
| | | |
Collapse
|
124
|
Targeting microglia-mediated neurotoxicity: the potential of NOX2 inhibitors. Cell Mol Life Sci 2012; 69:2409-27. [PMID: 22581365 DOI: 10.1007/s00018-012-1015-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 12/24/2022]
Abstract
Microglia are key sentinels of central nervous system health, and their dysfunction has been widely implicated in the progressive nature of neurodegenerative diseases. While microglia can produce a host of factors that are toxic to neighboring neurons, NOX2 has been implicated as a common and essential mechanism of microglia-mediated neurotoxicity. Accumulating evidence indicates that activation of the NOX2 enzyme complex in microglia is neurotoxic, both through the production of extracellular reactive oxygen species that damage neighboring neurons as well as the initiation of redox signaling in microglia that amplifies the pro-inflammatory response. More specifically, evidence supports that NOX2 redox signaling enhances microglial sensitivity to pro-inflammatory stimuli, and amplifies the production of neurotoxic cytokines, to promote chronic and neurotoxic microglial activation. Here, we describe the evidence denoting the role of NOX2 in microglia-mediated neurotoxicity with an emphasis on Alzheimer's and Parkinson's disease, describe available inhibitors that have been tested, and detail evidence of the neuroprotective and therapeutic potential of targeting this enzyme complex to regulate microglia.
Collapse
|
125
|
Protoporphyrin IX-dependent photodynamic production of endogenous ROS stimulates cell proliferation. Eur J Cell Biol 2012; 91:216-23. [DOI: 10.1016/j.ejcb.2011.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/10/2011] [Accepted: 12/04/2011] [Indexed: 01/02/2023] Open
|
126
|
Frankart A, Coquette A, Schroeder KR, Poumay Y. Studies of cell signaling in a reconstructed human epidermis exposed to sensitizers: IL-8 synthesis and release depend on EGFR activation. Arch Dermatol Res 2012; 304:289-303. [DOI: 10.1007/s00403-012-1209-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 01/03/2012] [Accepted: 01/09/2012] [Indexed: 12/13/2022]
|
127
|
Redox Regulation of Nonmuscle Myosin Heavy Chain during Integrin Engagement. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2012:754964. [PMID: 22220276 PMCID: PMC3246775 DOI: 10.1155/2012/754964] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/20/2011] [Indexed: 01/14/2023]
Abstract
On the basis of our findings reporting that cell adhesion induces the generation of reactive oxygen species (ROS) after integrin engagement, we were interested in identifying redox-regulated proteins during this process. Mass spectrometry analysis led us to identify nonmuscle myosin heavy chain (nmMHC) as a target of ROS. Our results show that, while nmMHC is reduced in detached/rounded cells, it turns towards an oxidized state in adherent/spread cells due to the integrin-engaged ROS machinery. The functional role of nmMHC redox regulation is suggested by the redox sensitivity of its association with actin, suggesting a role of nmMHC oxidation in cytoskeleton movement. Analysis of muscle MHC (mMHC) redox state during muscle differentiation, a process linked to a great and stable decrease of ROS content, shows that the protein does not undergo a redox control. Hence, we propose that the redox regulation of MHC in nonprofessional muscle cells is mandatory for actin binding during dynamic cytoskeleton rearrangement, but it is dispensable for static and highly organized cytoskeletal contractile architecture in differentiating myotubes.
Collapse
|
128
|
Tsou PS, Talia NN, Pinney AJ, Kendzicky A, Piera-Velazquez S, Jimenez SA, Seibold JR, Phillips K, Koch AE. Effect of oxidative stress on protein tyrosine phosphatase 1B in scleroderma dermal fibroblasts. ACTA ACUST UNITED AC 2011; 64:1978-89. [PMID: 22161819 DOI: 10.1002/art.34336] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Platelet-derived growth factor (PDGF) and its receptor, PDGFR, promote fibrosis in systemic sclerosis (SSc; scleroderma) dermal fibroblasts, and such cells in scleroderma skin lesions produce excessive reactive oxygen species (ROS). PDGFR is phosphorylated upon PDGF stimulation, and is dephosphorylated by protein tyrosine phosphatases (PTPs), including PTP1B. This study was undertaken to determine whether the thiol-sensitive PTP1B is affected by ROS in SSc dermal fibroblasts, thereby enhancing the phosphorylation of PDGFR and synthesis of type I collagen. This study also sought to investigate the effect of a thiol antioxidant, N-acetylcysteine (NAC), in SSc. METHODS Fibroblasts were isolated from the skin of patients with diffuse SSc and normal healthy donors for cell culture experiments and immunofluorescence analyses. A phosphate release assay was used to determine the activity of PTP1B. RESULTS Levels of ROS and type I collagen were significantly higher and amounts of free thiol were significantly lower in SSc fibroblasts compared to normal fibroblasts. After stimulation with PDGF, not only were PDGFR and ERK-1/2 phosphorylated to a greater extent, but also the ability to produce PTP1B was hampered in SSc fibroblasts. The activity of PTP1B was significantly inactivated in SSc fibroblasts as a result of cysteine oxidation by the raised levels of ROS, which was confirmed by the oxidation of multiple PTPs, including PTP1B, in SSc fibroblasts. Decreased expression of PTP1B in normal fibroblasts led to increased expression of type I collagen. Treatment of the cells with NAC restored the activity of PTP1B, improved the profile of PDGFR phosphorylation, decreased the numbers of tyrosine-phosphorylated proteins and levels of type I collagen, and scavenged ROS in SSc fibroblasts. CONCLUSION This study describes a new mechanism by which ROS may promote a profibrotic phenotype in SSc fibroblasts through the oxidative inactivation of PTP1B, leading to pronounced activation of PDGFR. The study also presents a novel molecular mechanism by which NAC may act on ROS and PTP1B to provide therapeutic benefit in SSc.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Maccari R, Ottanà R. Low molecular weight phosphotyrosine protein phosphatases as emerging targets for the design of novel therapeutic agents. J Med Chem 2011; 55:2-22. [PMID: 21988196 DOI: 10.1021/jm200607g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rosanna Maccari
- Dipartimento Farmaco-Chimico, Faculty of Pharmacy, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy.
| | | |
Collapse
|
130
|
Kuban-Jankowska A, Knap N, Gorska M, Popowska U, Wozniak M. Protein tyrosine phosphatase CD45 as a molecular biosensor of hydrogen peroxide generation in cell culture media. Biochem Biophys Res Commun 2011; 415:270-3. [PMID: 22037457 DOI: 10.1016/j.bbrc.2011.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 10/07/2011] [Indexed: 01/03/2023]
Abstract
We have designed a useful method of assessing reactive oxygen species generation in biological fluids. The novel assay utilizes tyrosine phosphatase CD45 as a biosensor of oxidative stress. Applying this new method, we examined oxygen species generation in the following cell culture media: RPMI 1640, DMEM, DMEM enriched with pyruvate and MEM. We discovered that the media (especially RPMI 1640) significantly reduced the activity of protein tyrosine phosphatase. The media-caused inactivation of CD45 was reversible after treatment with dithiothreitol being a powerful reducing agent. Interestingly, the media supplemented with catalase did not exhibit any inhibitory effect on CD45 activity which suggests a hydrogen peroxide-mediated mechanism of the enzyme inactivation. In addition to that, we assessed the impact of oxidative stress level on the activity of CD45 as measured in Jurkat cells cultured in RPMI 1640 either exposed or not exposed to the light of laminar flow cabinet fluorescent lamp. We found that Jurkat cells that were exposed to light displayed ca. 20% lower activity of CD45 than the cells protected against the light. The obtained results indicate that production of hydrogen peroxide in the medium leading to inhibition of CD45 was light-dependent, and that careful protection of cell culture media from the light may help to prevent the artifact in cell studies. Hydrogen peroxide, responsible for CD45 inactivation, can be generated in cell culture media after exposition to light due to photoreactive amino acids present in the media.
Collapse
|
131
|
Harmata KL, Blackstone NW. Reactive oxygen species and the regulation of hyperproliferation in a colonial hydroid. Physiol Biochem Zool 2011; 84:481-93. [PMID: 21897085 DOI: 10.1086/661952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Colonies of Podocoryna carnea circulate gastrovascular fluid among polyps via tubelike stolons. At polyp-stolon junctions, mitochondrion-rich cells in part regulate this gastrovascular flow. During competition, colonies hyperproliferate nematocytes and stolons; nematocysts are discharged until one colony is killed. Hyperproliferation then ceases, and normal growth resumes. Here, competing colonies were treated with azide, which inhibits respiration and upregulates reactive oxygen species (ROS). After the cessation of competition, azide-treated colonies continued to hyperproliferate. In azide-treated competing colonies, however, mitochondrion-rich cells were found to produce similar amounts of ROS as those in untreated competing colonies. Subsequent experiments showed that both azide treatment and competition diminished the lumen widths at polyp-stolon junctions, where mitochondrion-rich cells are found. In competing colonies, these diminished widths may also diminish the metabolic demand on these cells, causing mitochondria to enter the resting state and emit more ROS. Indeed, results with two fluorescent probes show that mitochondrion-rich cells in competing colonies produce more ROS than those in noncompeting colonies. In sum, these results suggest that competition perturbs the usual activity of mitochondrion-rich cells, altering their redox state and increasing ROS formation. Via uncharacterized pathways, these ROS may contribute to hyperproliferation.
Collapse
Affiliation(s)
- Katherine L Harmata
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois 60115, USA
| | | |
Collapse
|
132
|
Flinder LI, Timofeeva OA, Rosseland CM, Wierød L, Huitfeldt HS, Skarpen E. EGF-induced ERK-activation downstream of FAK requires rac1-NADPH oxidase. J Cell Physiol 2011; 226:2267-78. [PMID: 21660950 DOI: 10.1002/jcp.22563] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reactive oxygen species (ROS) function as signaling molecules mainly by reversible oxidation of redox-sensitive target proteins. ROS can be produced in response to integrin ligation and growth factor stimulation through Rac1 and its effector protein NADPH oxidase. One of the central roles of Rac1-NADPH oxidase is actin cytoskeletal rearrangement, which is essential for cell spreading and migration. Another important regulator of cell spread is focal adhesion kinase (FAK), a coordinator of integrin and growth factor signaling. Here, we propose a novel role for NADPH oxidase as a modulator of the FAK autophosphorylation site. We found that Rac1-NADPH oxidase enhanced the phosphorylation of FAK at Y397. This site regulates FAK's ability to act as a scaffold for EGF-mediated signaling, including activation of ERK. Accordingly, we found that EGF-induced activation of FAK at Y925, the following activation of ERK, and phosphorylation of FAK at the ERK-regulated S910-site depended upon NADPH oxidase. Furthermore, the inhibition of NADPH oxidase caused excessive focal adhesions, which is in accordance with ERK and FAK being modulators of focal adhesion dissociation. Our data suggest that Rac1 through NADPH oxidase is part of the signaling pathway constituted by FAK, Rac1, and ERK that regulates focal adhesion disassembly during cell spreading.
Collapse
Affiliation(s)
- Liv Ingrid Flinder
- Laboratory for Toxicopathology, Institute of Pathology, Rikshospitalet University Hospital, University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
133
|
Abstract
Adipokines (adipose tissue cytokines) are polypeptide factors secreted by adipose tissue in a highly regulated manner. The 'classical' adipokines (leptin, adiponectin, and resistin) are expressed only by adipocytes, but other adipokines have been shown to be released by resident and infiltrating macrophages, as well as by components of the vascular stroma. Indeed, adipose tissue inflammation is known to be associated with a modification in the pattern of adipokine secretion. Several studies indicate that adipokines can interfere with hepatic injury associated with fatty infiltration, differentially modulating steatosis, inflammation, and fibrosis. Moreover, plasma levels of adipokines have been investigated in patients with nonalcoholic fatty liver disease in order to establish correlations with the underlying state of insulin resistance and with the type and severity of hepatic damage. In this Forum article, we provide a review of recent data that suggest a significant role for oxidative stress, reactive oxygen species, and redox signaling in mediating actions of adipokines that are relevant in the pathogenesis of nonalcoholic fatty liver disease, including hepatic insulin resistance, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Maurizio Parola
- Dipartimento di Medicina e Oncologia Sperimentale and Centro Interuniversitario di Fisiopatologia Epatica Università degli Studi di Torino, Turin, Italy
| | | |
Collapse
|
134
|
Nakashima I, Kawamoto Y, Takeda K, Kato M. Control of genetically prescribed protein tyrosine kinase activities by environment-linked redox reactions. Enzyme Res 2011; 2011:896567. [PMID: 21755044 PMCID: PMC3132499 DOI: 10.4061/2011/896567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/18/2011] [Accepted: 04/28/2011] [Indexed: 11/21/2022] Open
Abstract
Recent observations on environment-linked control of genetically prescribed signaling systems for either cell activation or cell death have been reviewed with a focus on the regulation of activities of protein tyrosine kinases (PTKs). The environment-linked redox reactions seem to primarily affect cell surface receptors and cell membrane lipid rafts, and they induce generation of reactive oxygen species (ROS) in cells. ROS thus generated might upregulate the catalytic activities of PTKs through inactivating protein tyrosine phosphatases that dephosphorylate and inactivate autophosphorylated PTKs. Recent evidence has, however, demonstrated that ROS could also directly oxidize SH groups of genetically conserved specific cysteines on PTKs, sometimes producing disulfide-bonded dimers of PTK proteins, either for upregulation or downregulation of their catalytic activities. The basic role of the redox reaction/covalent bond-mediated modification of protein tertiary structure-linked noncovalent bond-oriented signaling systems in living organisms is discussed.
Collapse
Affiliation(s)
- Izumi Nakashima
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi 487-8501, Japan
| | | | | | | |
Collapse
|
135
|
Tanner JJ, Parsons ZD, Cummings AH, Zhou H, Gates KS. Redox regulation of protein tyrosine phosphatases: structural and chemical aspects. Antioxid Redox Signal 2011; 15:77-97. [PMID: 20919935 DOI: 10.1089/ars.2010.3611] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein tyrosine phosphatases (PTPs) are important targets of the H(2)O(2) that is produced during mammalian signal transduction. H(2)O(2)-mediated inactivation of PTPs also may be important in various pathophysiological conditions involving oxidative stress. Here we review the chemical and structural biology of redox-regulated PTPs. Reactions of H(2)O(2) with PTPs convert the catalytic cysteine thiol to a sulfenic acid. In PTPs, the initially generated sulfenic acid residues have the potential to undergo secondary reactions with a neighboring amide nitrogen or cysteine thiol residue to yield a sulfenyl amide or disulfide, respectively. The chemical mechanisms by which formation of sulfenyl amide and disulfide linkages can protect the catalytic cysteine residue against irreversible overoxidation to sulfinic and sulfonic oxidation states are described. Due to the propensity for back-door and distal cysteine residues to engage with the active-site cysteine after oxidative inactivation, differences in the structures of the oxidatively inactivated PTPs may stem, to a large degree, from differences in the number and location of cysteine residues surrounding the active site of the enzymes. PTPs with key cysteine residues in structurally similar locations may be expected to share similar mechanisms of oxidative inactivation.
Collapse
Affiliation(s)
- John J Tanner
- Department of Chemistry, University of Missouri, Columbia, 65211, USA.
| | | | | | | | | |
Collapse
|
136
|
Sima YH, Yao JM, Hou YS, Wang L, Zhao LC. Variations of hydrogen peroxide and catalase expression in Bombyx eggs during diapause initiation and termination. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2011; 77:72-80. [PMID: 21433065 DOI: 10.1002/arch.20422] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 02/18/2011] [Indexed: 05/15/2023]
Abstract
For diapause eggs of the silkworm, Bombyx mori, diapause initiation is prevented with hydrochloric acid (HCl) at around 20 h post-oviposition while diapause status is terminated with chilling around 5°C. To investigate whether hydrogen peroxide (H(2)O(2)) and catalase expression are involved in diapause initiation and termination, the concentration of H(2)O(2), relatively higher levels of catalase mRNA and activity of catalase were compared between (1) 20-h-old diapause eggs and the HCl-treated diapause eggs, and (2) 10-day-old diapause eggs and the 5°C-chilled diapause eggs. Compared to diapause eggs, the HCl-treated eggs had significantly higher H(2)O(2) concentrations (up from approximately 1-3 µmol/g fresh mass to 5-8 µmol/g fresh mass), higher relative level of catalase mRNA (up from 0 to 35.2%) and higher catalase activity (up from 2.51 units/mg protein to 4.97 units/mg protein) at 96 h post-treatment. On the other hand, the 5°C chilling resulted in significant increases of H(2)O(2) concentration (up from 0.79 µmol/g fresh mass to 5.57 µmol/g fresh mass), relative level of catalase mRNA (up from 0 to 71.4%) and catalase activity (up from 0.88 units/mg protein to 3.42 units/mg protein) within 120 days. The results obtained in this work suggest that variations of H(2)O(2) and catalase expression in Bombyx eggs are involved in diapause initiation and termination.
Collapse
Affiliation(s)
- Yang-Hu Sima
- Department of Life Science, Soochow University, Suzhou, PR China
| | | | | | | | | |
Collapse
|
137
|
Abstract
Controlled protein degradation is an important cellular reaction for the fast and efficient adaptation of bacteria to ever-changing environmental conditions. In the low-GC, Gram-positive model organism Bacillus subtilis, the AAA+ protein ClpC requires specific adaptor proteins not only for substrate recognition but also for chaperone activity. The McsB adaptor is activated particularly during heat stress, allowing the controlled degradation of the CtsR repressor by the ClpCP protease. Here we report how the McsB adaptor becomes activated by autophosphorylation on specific arginine residues during heat stress. In nonstressed cells McsB activity is inhibited by ClpC as well as YwlE.
Collapse
|
138
|
Rieger S, Sagasti A. Hydrogen peroxide promotes injury-induced peripheral sensory axon regeneration in the zebrafish skin. PLoS Biol 2011; 9:e1000621. [PMID: 21629674 PMCID: PMC3101194 DOI: 10.1371/journal.pbio.1000621] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 04/14/2011] [Indexed: 02/01/2023] Open
Abstract
Production of H2O2 by injured zebrafish skin cells promotes the regeneration of nearby somatosensory axon terminals, thus coordinating wound healing of the skin with sensory reinnervation. Functional recovery from cutaneous injury requires not only the healing and regeneration of skin cells but also reinnervation of the skin by somatosensory peripheral axon endings. To investigate how sensory axon regeneration and wound healing are coordinated, we amputated the caudal fins of zebrafish larvae and imaged somatosensory axon behavior. Fin amputation strongly promoted the regeneration of nearby sensory axons, an effect that could be mimicked by ablating a few keratinocytes anywhere in the body. Since injury produces the reactive oxygen species hydrogen peroxide (H2O2) near wounds, we tested whether H2O2 influences cutaneous axon regeneration. Exposure of zebrafish larvae to sublethal levels of exogenous H2O2 promoted growth of severed axons in the absence of keratinocyte injury, and inhibiting H2O2 production blocked the axon growth-promoting effects of fin amputation and keratinocyte ablation. Thus, H2O2 signaling helps coordinate wound healing with peripheral sensory axon reinnervation of the skin. Touch-sensing neurons project axonal processes that branch extensively within the outer layers of skin to detect touch stimuli. Recovering from skin injuries thus requires not only repair of damaged skin tissue but also regeneration of the sensory axons innervating it. To study whether skin wound healing is coordinated with sensory innervation, we compared the regeneration of severed sensory axons innervating larval zebrafish tail fins with and without concomitant injury to surrounding skin cells. Severed axons regenerated more robustly when nearby skin cells were also damaged, suggesting that wounded skin releases a short-range factor that promotes axon growth. The reactive oxygen species hydrogen peroxide (H2O2) is known to be produced by injured cells, making it a candidate for mediating this signal. We found that adding exogenous H2O2 improved the regeneration of severed axons. Conversely, blocking H2O2 production prevented the axon growth-promoting effect of skin injury. Thus, H2O2 promotes axon growth after skin damage, helping to ensure that healing skin is properly innervated.
Collapse
Affiliation(s)
- Sandra Rieger
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (AS); (SR)
| | - Alvaro Sagasti
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (AS); (SR)
| |
Collapse
|
139
|
Abstract
Hypertension is associated with vascular changes characterised by remodelling, endothelial dysfunction and hyperreactivity. Cellular processes underlying these perturbations include altered vascular smooth muscle cell growth and apoptosis, fibrosis, hypercontractility and calcification. Inflammation, associated with macrophage infiltration and increased expression of redox-sensitive pro-inflammatory genes, also contributes to vascular remodelling. Many of these features occur with ageing, and the vascular phenotype in hypertension is considered a phenomenon of ‘premature vascular ageing’. Among the many factors involved in the hypertensive vascular phenotype, angiotensin II (Ang II) is especially important. Ang II, previously thought to be the sole effector of the renin–angiotensin system (RAS), is converted to smaller peptides [Ang III, Ang IV, Ang-(1-7)] that are biologically active in the vascular system. Another new component of the RAS is the (pro)renin receptor, which signals through Ang-II-independent mechanisms and might influence vascular function. Ang II mediates effects through complex signalling pathways on binding to its G-protein-coupled receptors (GPCRs) AT1R and AT2R. These receptors are regulated by the GPCR-interacting proteins ATRAP, ARAP1 and ATIP. AT1R activation induces effects through the phospholipase C pathway, mitogen-activated protein kinases, tyrosine kinases/phosphatases, RhoA/Rhokinase and NAD(P)H-oxidase-derived reactive oxygen species. Here we focus on recent developments and new research trends related to Ang II and the RAS and involvement in the hypertensive vascular phenotype.
Collapse
|
140
|
Pan Q, Qiu WY, Huo YN, Yao YF, Lou MF. Low levels of hydrogen peroxide stimulate corneal epithelial cell adhesion, migration, and wound healing. Invest Ophthalmol Vis Sci 2011; 52:1723-34. [PMID: 21087961 DOI: 10.1167/iovs.10-5866] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Intracellular reactive oxygen species have been reported to associate with growth factor and integrin signalings in promoting cell adhesion in many cell types. This study is to explore if exogenous H(2)O(2) at low levels can be beneficial to cell adhesion, migration, and wound healing. METHODS Primary rabbit corneal epithelial cells treated with 0-70 μM H(2)O(2) were tested for viability by MTT assay, adhesion by centrifugation assay, focal contacts of vinculin and F-actin by immunofluorescence, activated Src(pY416), EGF receptor (pY845), vinculin(pY1065), FAK(pY397), and FAK(pY576) by immunoblotting. Cell migration was examined with 0-50 μM H(2)O(2) using the scratch wound technique. Corneal wound healing of ex vivo pig model and in vivo mouse model was examined using H(2)O(2) with and without antioxidant N-acetylcysteine (NAC). RESULTS Compared with the untreated control, H(2)O(2) at 10-50 μM stimulated cell viability and facilitated adhesion and migration with clear induction of vinculin-rich focal adhesions and F-actin-containing stress fibers by increasing activated Src, FAK(pY576), and vinculin(pY1065). H(2)O(2) also increased phosphorylation of EGFR(Y845) parallel to that of activated Src, but both were eliminated by NAC and PP1 (Src inhibitor). Finally, H(2)O(2) induced faster wound healing in cornea both in vitro and in vivo, but the healing was diminished by NAC. CONCLUSIONS These findings suggest that H(2)O(2) at low levels promotes cell adhesion, migration, and wound healing in cornea cells or tissue, and the interaction of H(2)O(2) with Src plays a major role.
Collapse
Affiliation(s)
- Qing Pan
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | | | | | | | | |
Collapse
|
141
|
Lewinska A, Macierzynska E, Grzelak A, Bartosz G. A genetic analysis of nitric oxide-mediated signaling during chronological aging in the yeast. Biogerontology 2011; 12:309-20. [PMID: 21424154 PMCID: PMC3139093 DOI: 10.1007/s10522-011-9329-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/04/2011] [Indexed: 11/21/2022]
Abstract
In mammals, NO•, a signaling molecule is implicated in the regulation of vasodilation, neurotransmission and immune response. It is believed that NO• is a signaling molecule also in unicellular organism like yeast and may be involved in the regulation of apoptosis and sporulation. It has been reported that NO• is produced during chronological aging (CA) leading to an increase of the superoxide level, which in turn mediates apoptosis. Since this conclusion was based on indirect measurements of NO• by the Griess reaction, the role of NO• signaling during CA in the yeast remains uncertain. We investigated this issue more precisely using different genetic and biochemical methodologies. We used cells lacking the factors influencing nitrosative stress response like flavohemoglobin metabolizing NO•, S-nitrosoglutathione reductase metabolizing S-nitrosoglutathione and the transcription factor Fzf1p mediating NO• response. We measured the standard parameters describing CA and found an elevation in the superoxide level, percentage of death cells, the level of TUNEL positive cells and a decrease in proliferating potential. These observations showed no significant differences between wild type cells and the disruptants except for a small elevation of the superoxide level in the Δsfa1 mutant. The intracellular NO• level and flavohemoglobin expression decreased rather than increased during CA. Products of general nitrogen metabolism and protein tyrosine nitration were slightly decreased during CA, the magnitude of changes showing no differences between the wild type and the mutant yeast. Altogether, our data indicate that apoptosis during yeast CA is mediated by superoxide signaling rather than NO• signaling.
Collapse
Affiliation(s)
- Anna Lewinska
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| | | | | | | |
Collapse
|
142
|
Handayaningsih AE, Iguchi G, Fukuoka H, Nishizawa H, Takahashi M, Yamamoto M, Herningtyas EH, Okimura Y, Kaji H, Chihara K, Seino S, Takahashi Y. Reactive oxygen species play an essential role in IGF-I signaling and IGF-I-induced myocyte hypertrophy in C2C12 myocytes. Endocrinology 2011; 152:912-21. [PMID: 21239445 DOI: 10.1210/en.2010-0981] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IGF-I induces skeletal muscle hypertrophy by stimulating protein synthesis and suppressing the protein degradation pathway; the downstream signaling pathways Akt-mammalian target of rapamycin (mTOR)-p70-kDA-S6-kinase (p70S6K), and Forkhead box O1 (FoxO1) play essential roles in this regulation. Reactive oxygen species (ROS) modulate the signaling of various growth factors via redox regulation. However, the role of ROS in IGF-I signaling is not fully understood. In this study, we investigated whether ROS regulate the signaling and biological action of IGF-I in C2C12 myocytes. We found that IGF-I induces ROS in C2C12 myocytes. While treatment with H(2)O(2) significantly enhanced IGF-I-induced phosphorylation of the IGF-I receptor (IGF-IR), IGF-IR phosphorylation was markedly attenuated when cells were treated with antioxidants. The downstream signaling pathway, Akt-mTOR-p70S6K was subsequently down-regulated. Furthermore, the phosphorylation of FoxO1 by IGF-I decreased concomitantly with the restoration of the expression of its target genes, Atrogin-1 and muscle RING finger 1, which are related to muscle atrophy. Nox4 knockdown, which is reportedly to produce ROS in insulin signaling, attenuated IGF-I-induced IGF-IR phosphorylation, indicating that Nox4 is involved in the regulation of IGF-I signaling. Importantly, antioxidant treatments inhibited IGF-I-induced myocyte hypertrophy, demonstrating that ROS are necessary for IGF-I-induced myocyte hypertrophy in vitro. These results indicate that ROS play an essential role in the signaling and biological action of IGF-I in C2C12 myocytes.
Collapse
Affiliation(s)
- Anastasia-Evi Handayaningsih
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Huang M, Whang P, Chodaparambil JV, Pollyea DA, Kusler B, Xu L, Felsher DW, Mitchell BS. Reactive oxygen species regulate nucleostemin oligomerization and protein degradation. J Biol Chem 2011; 286:11035-46. [PMID: 21242306 DOI: 10.1074/jbc.m110.208470] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nucleostemin (NS) is a nucleolar-nucleoplasmic shuttle protein that regulates cell proliferation, binds p53 and Mdm2, and is highly expressed in tumor cells. We have identified NS as a target of oxidative regulation in transformed hematopoietic cells. NS oligomerization occurs in HL-60 leukemic cells and Raji B lymphoblasts that express high levels of c-Myc and have high intrinsic levels of reactive oxygen species (ROS); reducing agents dissociate NS into monomers and dimers. Exposure of U2OS osteosarcoma cells with low levels of intrinsic ROS to hydrogen peroxide (H(2)O(2)) induces thiol-reversible disulfide bond-mediated oligomerization of NS. Increased exposure to H(2)O(2) impairs NS degradation, immobilizes the protein within the nucleolus, and results in detergent-insoluble NS. The regulation of NS by ROS was validated in a murine lymphoma tumor model in which c-Myc is overexpressed and in CD34+ cells from patients with chronic myelogenous leukemia in blast crisis. In both instances, increased ROS levels were associated with markedly increased expression of NS protein and thiol-reversible oligomerization. Site-directed mutagenesis of critical cysteine-containing regions of nucleostemin altered both its intracellular localization and its stability. MG132, a potent proteasome inhibitor and activator of ROS, markedly decreased degradation and increased nucleolar retention of NS mutants, whereas N-acetyl-L-cysteine largely prevented the effects of MG132. These results indicate that NS is a highly redox-sensitive protein. Increased intracellular ROS levels, such as those that result from oncogenic transformation in hematopoietic malignancies, regulate the ability of NS to oligomerize, prevent its degradation, and may alter its ability to regulate cell proliferation.
Collapse
Affiliation(s)
- Min Huang
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Cecchettini A, Rocchiccioli S, Boccardi C, Citti L. Vascular smooth-muscle-cell activation: proteomics point of view. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 288:43-99. [PMID: 21482410 DOI: 10.1016/b978-0-12-386041-5.00002-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vascular smooth-muscle cells (VSMCs) are the main component of the artery medial layer. Thanks to their great plasticity, when stimulated by external inputs, VSMCs react by changing morphology and functions and activating new signaling pathways while switching others off. In this way, they are able to increase the cell proliferation, migration, and synthetic capacity significantly in response to vascular injury assuming a more dedifferentiated state. In different states of differentiation, VSMCs are characterized by various repertories of activated pathways and differentially expressed proteins. In this context, great interest is addressed to proteomics technology, in particular to differential proteomics. In recent years, many authors have investigated proteomics in order to identify the molecular factors putatively involved in VSMC phenotypic modulation, focusing on metabolic networks linking the differentially expressed proteins. Some of the identified proteins may be markers of pathology and become useful tools of diagnosis. These proteins could also represent appropriately validated targets and be useful either for prevention, if related to early events of atherosclerosis, or for treatment, if specific of the acute, mid, and late phases of the pathology. RNA-dependent gene silencing, obtained against the putative targets with high selective and specific molecular tools, might be able to reverse a pathological drift and be suitable candidates for innovative therapeutic approaches.
Collapse
|
145
|
Deorukhkar A, Krishnan S. Targeting inflammatory pathways for tumor radiosensitization. Biochem Pharmacol 2010; 80:1904-14. [PMID: 20599771 PMCID: PMC3090731 DOI: 10.1016/j.bcp.2010.06.039] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/19/2010] [Accepted: 06/22/2010] [Indexed: 12/16/2022]
Abstract
Although radiation therapy (RT) is an integral component of treatment of patients with many types of cancer, inherent and/or acquired resistance to the cytotoxic effects of RT is increasingly recognized as a significant impediment to effective cancer treatment. Inherent resistance is mediated by constitutively activated oncogenic, proliferative and anti-apoptotic proteins/pathways whereas acquired resistance refers to transient induction of proteins/pathways following radiation exposure. To realize the full potential of RT, it is essential to understand the signaling pathways that mediate inducible radiation resistance, a poorly characterized phenomenon, and identify druggable targets for radiosensitization. Ionizing radiation induces a multilayered signaling response in mammalian cells by activating many pro-survival pathways that converge to transiently activate a few important transcription factors (TFs), including nuclear factor kappa B (NF-κB) and signal transducers and activators of transcription (STATs), the central mediators of inflammatory and carcinogenic signaling. Together, these TFs activate a wide spectrum of pro-survival genes regulating inflammation, anti-apoptosis, invasion and angiogenesis pathways, which confer tumor cell radioresistance. Equally, radiation-induced activation of pro-inflammatory cytokine network (including interleukin (IL)-1β, IL-6 and tumor necrosis factor-α) has been shown to mediate symptom burden (pain, fatigue, local inflammation) in cancer patients. Thus, targeting radiation-induced inflammatory pathways may exert a dual effect of accentuating the tumor radioresponse and reducing normal tissue side-effects, thereby increasing the therapeutic window of cancer treatment. We review recent data demonstrating the pivotal role played by inflammatory pathways in cancer progression and modulation of radiation response.
Collapse
Affiliation(s)
- Amit Deorukhkar
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Sunil Krishnan
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
146
|
Leonarduzzi G, Sottero B, Poli G. Targeting tissue oxidative damage by means of cell signaling modulators: The antioxidant concept revisited. Pharmacol Ther 2010; 128:336-74. [DOI: 10.1016/j.pharmthera.2010.08.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 08/02/2010] [Indexed: 12/25/2022]
|
147
|
Yang J, Wu LJ, Tashino SI, Onodera S, Ikejima T. Protein tyrosine kinase pathway-derived ROS/NO productions contribute to G2/M cell cycle arrest in evodiamine-treated human cervix carcinoma HeLa cells. Free Radic Res 2010; 44:792-802. [PMID: 20446899 DOI: 10.3109/10715762.2010.481302] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A previous study indicated that reactive oxygen species (ROS) and nitric oxide (NO) played pivotal roles in mediating cytotoxicity of evodiamine in human cervix carcinoma HeLa cells. This study suggested that G2/M cell cycle arrest was triggered by ROS/NO productions with regulations of p53, p21, cell division cycle 25C (Cdc25C), Cdc2 and cyclin B1, which were able to be prevented by protein tyrosine kinase (PTK) activity inhibitor genistein or JNK inhibitor SP600125. The decreased JNK phosphorylation by addition of Ras or Raf inhibitor, as well as the increased cell viability by addition of insulin-like growth factor-1 receptor (IGF-1R), Ras, Raf or c-Jun N-terminal kinase (JNK) inhibitor, further demonstrated that the Ras-Raf-JNK pathway was responsible for this PTK-mediated signalling. These observations provide a distinct look at PTK pathway for its suppressive effect on G2/M transition by inductions of ROS/NO generations.
Collapse
Affiliation(s)
- Jia Yang
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, P R China
| | | | | | | | | |
Collapse
|
148
|
Sun X, Wu S, Xing D. The reactive oxygen species-Src-Stat3 pathway provokes negative feedback inhibition of apoptosis induced by high-fluence low-power laser irradiation. FEBS J 2010; 277:4789-802. [PMID: 20977672 DOI: 10.1111/j.1742-4658.2010.07884.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-fluence low-power laser irradiation (HF-LPLI) can induce apoptosis by triggering mitochondrial oxidative stress. Signal transducer and activator of transcription 3 (Stat3) is an important transcription factor in the modulation of cell proliferation and apoptosis. Here, using real-time single-cell analysis and western blotting analysis, we investigated the changes in activities of Stat3 in COS-7 cells upon HF-LPLI (633 nm, 80 and 120 J·cm(-2)) and the underlying mechanisms involved. We found that Stat3 was significantly activated by HF-LPLI in a time-dependent and dose-dependent manner. Stat3 activation attenuated HF-LPLI-induced apoptosis, as shown by the fact that both dominant negative Stat3 (Y705F) and Stat3 small interfering RNA expression enhanced cellular apoptosis induced by HF-LPLI. Moreover, we also found that Src kinase was the major positive regulator of Stat3 activation induced by HF-LPLI. Reactive oxygen species (ROS) generation was essential for Stat3 and Src activation upon HF-LPLI, because scavenging of ROS by vitamin C or N-acetylcysteine totally abrogated the activation of Stat3 and Src. Taken together, these findings show that the ROS-Src-Stat3 pathway mediates a negative feedback inhibition of apoptosis induced by HF-LPLI in COS-7 cells. Our research will provide new insights into the mechanism of apoptosis caused by HF-LPLI, and also extend the functional study of Stat3.
Collapse
Affiliation(s)
- Xuegang Sun
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | | | | |
Collapse
|
149
|
Abstract
According to a "canonical" view, reactive oxygen species (ROS) positively contribute, in different ways, to carcinogenesis and to malignant progression of tumor cells: they drive genomic damage and genetic instability, transduce, as signaling intermediates, mitogenic and survival inputs by growth factor receptors and adhesion molecules, promote cell motility and shape the tumor microenvironment by inducing inflammation/repair and angiogenesis. Chemopreventive and tumor-inhibitory effects of endogenous, diet-derived or supplemented antioxidants largely support this notion. However, emerging lines of evidence indicates that tumor cells also need to defend themselves from oxidative damage in order to survive and successfully spread at distance. This "heresy" has recently received important impulse from studies on the role of antioxidant capacity in cancer stem cells self-renewal and resistance to therapy; additionally, the transforming activity of some oncogenes has been unexpectedly linked to their capacity to maintain elevated intracellular levels of reduced glutathione (GSH), the principal redox buffer. These studies underline the importance of cellular antioxidant capacity in metastasis, as the result of a complex cell program involving enhanced motility and a profound change in energy metabolism. The glycolytic switch (Warburg effect) observed in malignant tissues is triggered by mitochondrial oxidative damage and/or activation of redox-sensitive transcription factors, and results in an increase of cell resistance to oxidants. On the other hand, cytoskeleton rearrangement underlying cell motile and tumor-aggressive behavior use ROS as intermediates and are therefore facilitated by oxidative stress. Along this line of speculation, we suggest that metastasis represents an integrated strategy for cancer cells to avoid oxidative damage and escape excess ROS in the primary tumor site, explaning why redox signaling pathways are often up-regulated in malignancy and metastasis.
Collapse
Affiliation(s)
- Giovambattista Pani
- Institute of General Pathology, Catholic University Medical School, Rome, Italy.
| | | | | |
Collapse
|
150
|
Cannito S, Novo E, di Bonzo LV, Busletta C, Colombatto S, Parola M. Epithelial-mesenchymal transition: from molecular mechanisms, redox regulation to implications in human health and disease. Antioxid Redox Signal 2010; 12:1383-430. [PMID: 19903090 DOI: 10.1089/ars.2009.2737] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is a fundamental process, paradigmatic of the concept of cell plasticity, that leads epithelial cells to lose their polarization and specialized junctional structures, to undergo cytoskeleton reorganization, and to acquire morphological and functional features of mesenchymal-like cells. Although EMT has been originally described in embryonic development, where cell migration and tissue remodeling have a primary role in regulating morphogenesis in multicellular organisms, recent literature has provided evidence suggesting that the EMT process is a more general biological process that is also involved in several pathophysiological conditions, including cancer progression and organ fibrosis. This review offers first a comprehensive introduction to describe major relevant features of EMT, followed by sections dedicated on those signaling mechanisms that are known to regulate or affect the process, including the recently proposed role for oxidative stress and reactive oxygen species (ROS). Current literature data involving EMT in both physiological conditions (i.e., embryogenesis) and major human diseases are then critically analyzed, with a special final focus on the emerging role of hypoxia as a relevant independent condition able to trigger EMT.
Collapse
Affiliation(s)
- Stefania Cannito
- Department of Experimental Medicine and Oncology and Interuniversity Center for Hepatic Pathophysiology, University of Turin, Turin, Italy
| | | | | | | | | | | |
Collapse
|