101
|
Erin N, Tanrıöver G, Curry A, Akman M, Duymuş Ö, Gorczynski R. CD200fc enhances anti-tumoral immune response and inhibits visceral metastasis of breast carcinoma. Oncotarget 2018; 9:19147-19158. [PMID: 29721190 PMCID: PMC5922384 DOI: 10.18632/oncotarget.24931] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/28/2018] [Indexed: 01/11/2023] Open
Abstract
CD200 is a widely expressed cell surface glycoprotein that inhibits excessive inflammation in autoimmunity, transplantation, and viral infections. We previously observed that visceral metastasis of highly aggressive and inflammatory 4THM breast carcinoma cells was markedly decreased in CD200 transgenic mice. The goal of this study was to determine whether exogenous exposure to CD200fc mimics the effects of endogenously over expressed CD200. Female BALB/c mice were injected with CD200fc two times a week for five times. Injection was started two days after orthotopic injection of 4THM cells. Tumor infiltrating Gr1+Cd11b+ cells were decreased while CD8+ cells were increased in CD200fc-treated animals. CD200fc injection significantly decreased lung and liver metastasis and the growth of primary tumors. CD200fc injection enhanced the tumor-induced IFN-g response while suppressing the IL-10 response. We observed excessive basal IL-6 secretion in MLC which was significantly decreased in CD200fc treated mice 12 days after injection of 4TM cells. These results are in accord with previous data from CD200 transgenic mice, and demonstrate for the first time that CD200 analogues might have therapeutic potential in the treatment of aggressive breast carcinoma which induces excessive systemic inflammation.
Collapse
Affiliation(s)
- Nuray Erin
- Department of Medical Pharmacology, Akdeniz University, School of Medicine, Antalya, Turkey
| | - Gamze Tanrıöver
- Histology and Embryology, Akdeniz University, School of Medicine, Antalya, Turkey
| | - Anna Curry
- University Health Network, Toronto General Hospital, Toronto, Canada
| | - Muhlis Akman
- Department of Medical Pharmacology, Akdeniz University, School of Medicine, Antalya, Turkey
| | - Özlem Duymuş
- Department of Medical Pharmacology, Akdeniz University, School of Medicine, Antalya, Turkey
| | - Reg Gorczynski
- University Health Network, Toronto General Hospital, Toronto, Canada
| |
Collapse
|
102
|
Frank MG, Fonken LK, Annis JL, Watkins LR, Maier SF. Stress disinhibits microglia via down-regulation of CD200R: A mechanism of neuroinflammatory priming. Brain Behav Immun 2018; 69:62-73. [PMID: 29104062 PMCID: PMC5857401 DOI: 10.1016/j.bbi.2017.11.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/20/2017] [Accepted: 11/01/2017] [Indexed: 12/22/2022] Open
Abstract
Exposure to stressors primes the neuroinflammatory and microglial proinflammatory response to subsequent immune challenges, suggesting that stress might attenuate immunoregulatory mechanisms in the CNS microenvironment. CD200:CD200R is a key immunoregulatory signaling dyad that constrains microglial activation, and disruption of CD200:CD200R signaling primes microglia to subsequent immune challenges. Therefore, the present study examined the mediating role of CD200:CD200R signaling in stress-induced microglial priming. Here, we found that exposure to an acute stressor reduced CD200R expression across sub-regions of the hippocampus, amygdala as well as in isolated hippocampal microglia. A transcriptional suppressor of CD200R, CAAT/Enhancer Binding Proteinβ, was induced by stress and inversely associated with CD200R expression. To examine whether disrupted CD200:CD200R signaling plays a mediating role in stress-induced microglial priming, a soluble fragment of CD200 (mCD200Fc) was administered intra-cisterna magna prior to stressor exposure and stress-induced microglia priming assessed ex vivo 24 h later. Treatment with mCD200Fc blocked the stress-induced priming of the microglial pro-inflammatory response. Further, treatment with mCD200R1Fc recapitulated the effects of stress on microglial priming. We previously found that stress increases the alarmin high mobility group box-1 (HMGB1) in hippocampus, and that HMGB1 mediates stress-induced priming of microglia. Thus, we examined whether stress-induced increases in hippocampal HMGB1 are a consequence of disrupted CD200:CD200R signaling. Indeed, treatment with mCD200Fc prior to stress exposure blocked the stress-induced increase in hippocampal HMGB1. The present study suggests that stress exposure disrupts immunoregulatory mechanisms in the brain, which typically constrain the immune response of CNS innate immune cells. This attenuation of immunoregulatory mechanisms may thus permit a primed activation state of microglia to manifest.
Collapse
Affiliation(s)
- Matthew G. Frank
- Corresponding Author: Department of Psychology and Neuroscience, Center for Neuroscience, Campus Box 345, University of Colorado Boulder, Boulder, CO, 80309-0345, USA, Tel: +1-303-919-8116, Fax: +1-303-492-2967,
| | | | | | | | | |
Collapse
|
103
|
Sonar SA, Lal G. Blood-brain barrier and its function during inflammation and autoimmunity. J Leukoc Biol 2018; 103:839-853. [PMID: 29431873 DOI: 10.1002/jlb.1ru1117-428r] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/16/2022] Open
Abstract
The blood-brain barrier (BBB) is an important physiologic barrier that separates CNS from soluble inflammatory mediators and effector immune cells from peripheral circulation. The optimum function of the BBB is necessary for the homeostasis, maintenance, and proper neuronal function. The clinical and experimental findings have shown that BBB dysfunction is an early hallmark of various neurologic disorders ranging from inflammatory autoimmune, neurodegenerative, and traumatic diseases to neuroinvasive infections. Significant progress has been made in the understanding of the regulation of BBB function under homeostatic and neuroinflammatory conditions. Several neurologic disease-modifying drugs have shown to improve the BBB function. However, they have a broad-acting immunomodulatory function and can increase the risk of life-threatening infections. The recent development of in vitro multicomponent 3-dimensional BBB models coupled with fluidics chamber as well as a cell-type specific reporter and knockout mice gave a new boost to our understanding of the dynamics of the BBB. In the review, we discuss the current understanding of BBB composition and recent findings that illustrate the critical regulatory elements of the BBB function under physiologic and inflammatory conditions, and also suggested the strategies to control BBB structure and function.
Collapse
|
104
|
Receptors That Inhibit Macrophage Activation: Mechanisms and Signals of Regulation and Tolerance. J Immunol Res 2018; 2018:8695157. [PMID: 29607331 PMCID: PMC5828319 DOI: 10.1155/2018/8695157] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/07/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022] Open
Abstract
A variety of receptors perform the function of attenuating or inhibiting activation of cells in which they are expressed. Examples of these kinds of receptors include TIM-3 and PD-1, among others that have been widely studied in cells of lymphoid origin and, though to a lesser degree, in other cell lines. Today, several studies describe the function of these molecules as part of the diverse mechanisms of immune tolerance that exist in the immune system. This review analyzes the function of some of these proteins in monocytes and macrophages and as well as their participation as inhibitory molecules or elements of immunological tolerance that also act in innate defense mechanisms. We chose the receptors TIM-3, PD-1, CD32b, and CD200R because these molecules have distinct functional characteristics that provide examples of the different regulating mechanisms in monocytes and macrophages.
Collapse
|
105
|
Kuwabara J, Umakoshi A, Abe N, Sumida Y, Ohsumi S, Usa E, Taguchi K, Choudhury ME, Yano H, Matsumoto S, Kunieda T, Takahashi H, Yorozuya T, Watanabe Y, Tanaka J. Truncated CD200 stimulates tumor immunity leading to fewer lung metastases in a novel Wistar rat metastasis model. Biochem Biophys Res Commun 2018; 496:542-548. [DOI: 10.1016/j.bbrc.2018.01.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/04/2018] [Accepted: 01/10/2018] [Indexed: 11/16/2022]
|
106
|
Hobo W, Hutten TJA, Schaap NPM, Dolstra H. Immune checkpoint molecules in acute myeloid leukaemia: managing the double-edged sword. Br J Haematol 2018; 181:38-53. [PMID: 29318591 DOI: 10.1111/bjh.15078] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
New immunotherapeutic interventions have revolutionized cancer treatment. The immune responsiveness of acute myeloid leukaemia (AML) was first demonstrated by allogeneic stem cell transplantation. In addition, milder immunotherapeutic approaches are exploited. However, the long-term efficacy of these therapies is hampered by various immune resistance and editing mechanisms. In this regard, co-inhibitory signalling pathways have been shown to play a crucial role. Via up-regulation of inhibitory checkpoints, tumour-reactive T cell and Natural Killer cell responses can be strongly impeded. Accordingly, the introduction of checkpoint inhibitors targeting CTLA-4 (CTLA4) and PD-1 (PDCD1, CD279)/PD-L1 (CD274, PDCD1LG1) accomplished a breakthrough in cancer treatment, with impressive clinical responses. Numerous new co-inhibitory players and novel combination therapies are currently investigated for their potential to boost anti-tumour immunity and improve survival of cancer patients. Although the challenge here remains to avoid severe systemic toxicity. This review addresses the involvement of co-inhibitory signalling in AML immune evasion and discusses the opportunities for checkpoint blockers in AML treatment.
Collapse
Affiliation(s)
- Willemijn Hobo
- Department of Laboratory Medicine - Laboratory of Haematology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Tim J A Hutten
- Department of Laboratory Medicine - Laboratory of Haematology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Nicolaas P M Schaap
- Department of Haematology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Harry Dolstra
- Department of Laboratory Medicine - Laboratory of Haematology, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
107
|
Tian L, Hui CW, Bisht K, Tan Y, Sharma K, Chen S, Zhang X, Tremblay ME. Microglia under psychosocial stressors along the aging trajectory: Consequences on neuronal circuits, behavior, and brain diseases. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:27-39. [PMID: 28095309 DOI: 10.1016/j.pnpbp.2017.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/30/2016] [Accepted: 01/13/2017] [Indexed: 12/18/2022]
Abstract
Mounting evidence indicates the importance of microglia for proper brain development and function, as well as in complex stress-related neuropsychiatric disorders and cognitive decline along the aging trajectory. Considering that microglia are resident immune cells of the brain, a homeostatic maintenance of their effector functions that impact neuronal circuitry, such as phagocytosis and secretion of inflammatory factors, is critical to prevent the onset and progression of these pathological conditions. However, the molecular mechanisms by which microglial functions can be properly regulated under healthy and pathological conditions are still largely unknown. We aim to summarize recent progress regarding the effects of psychosocial stress and oxidative stress on microglial phenotypes, leading to neuroinflammation and impaired microglia-synapse interactions, notably through our own studies of inbred mouse strains, and most importantly, to discuss about promising therapeutic strategies that take advantage of microglial functions to tackle such brain disorders in the context of adult psychosocial stress or aging-induced oxidative stress.
Collapse
Affiliation(s)
- Li Tian
- Neuroscience Center, University of Helsinki, Viikinkaari 4, Helsinki FIN-00014, Finland; Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University, Beijing, China.
| | - Chin Wai Hui
- Axe Neurosciences, Centre de recherche du CHU de Québec, Québec, Canada
| | - Kanchan Bisht
- Axe Neurosciences, Centre de recherche du CHU de Québec, Québec, Canada
| | - Yunlong Tan
- Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University, Beijing, China
| | - Kaushik Sharma
- Axe Neurosciences, Centre de recherche du CHU de Québec, Québec, Canada
| | - Song Chen
- Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University, Beijing, China; Beijing Key Laboratory of Mental Disorders and Center of Schizophrenia, Beijing Institute for Brain Disorders, Beijing Anding Hospital, Capital Medical University, China
| | - Xiangyang Zhang
- Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University, Beijing, China; Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec, Québec, Canada.
| |
Collapse
|
108
|
Farré D, Martínez-Vicente P, Engel P, Angulo A. Immunoglobulin superfamily members encoded by viruses and their multiple roles in immune evasion. Eur J Immunol 2017; 47:780-796. [PMID: 28383780 DOI: 10.1002/eji.201746984] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/11/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022]
Abstract
Pathogens have developed a plethora of strategies to undermine host immune defenses in order to guarantee their survival. For large DNA viruses, these immune evasion mechanisms frequently rely on the expression of genes acquired from host genomes. Horizontally transferred genes include members of the immunoglobulin superfamily, whose products constitute the most diverse group of proteins of vertebrate genomes. Their promiscuous immunoglobulin domains, which comprise the building blocks of these molecules, are involved in a large variety of functions mediated by ligand-binding interactions. The flexible structural nature of the immunoglobulin domains makes them appealing targets for viral capture due to their capacity to generate high functional diversity. Here, we present an up-to-date review of immunoglobulin superfamily gene homologs encoded by herpesviruses, poxviruses, and adenoviruses, that include CD200, CD47, Fc receptors, interleukin-1 receptor 2, interleukin-18 binding protein, CD80, carcinoembryonic antigen-related cell adhesion molecules, and signaling lymphocyte activation molecules. We discuss their distinct structural attributes, binding properties, and functions, shaped by evolutionary pressures to disarm specific immune pathways. We include several novel genes identified from extensive genome database surveys. An understanding of the properties and modes of action of these viral proteins may guide the development of novel immune-modulatory therapeutic tools.
Collapse
Affiliation(s)
- Domènec Farré
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Pablo Martínez-Vicente
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Pablo Engel
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
109
|
Abstract
There is an increasing recognition that inflammation plays a critical role in neurodegenerative diseases of the CNS, including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and the prototypic neuroinflammatory disease multiple sclerosis (MS). Differential immune responses involving the adaptive versus the innate immune system are observed at various stages of neurodegenerative diseases, and may not only drive disease processes but could serve as therapeutic targets. Ongoing investigations into the specific inflammatory mechanisms that play roles in disease causation and progression have revealed lessons about inflammation-driven neurodegeneration that can be applied to other neurodegenerative diseases. An increasing number of immunotherapeutic strategies that have been successful in MS are now being applied to other neurodegenerative diseases. Some approaches suppress CNS immune mechanisms, while others harness the immune system to clear deleterious products and cells. This Review focuses on the mechanisms by which inflammation, mediated either by the peripheral immune response or by endogenous CNS immune mechanisms, can affect CNS neurodegeneration.
Collapse
|
110
|
Kern K, Pierre S, Schreiber Y, Angioni C, Thomas D, Ferreirós N, Geisslinger G, Scholich K. CD200 selectively upregulates prostaglandin E 2 and D 2 synthesis in LPS-treated bone marrow-derived macrophages. Prostaglandins Other Lipid Mediat 2017; 133:53-59. [PMID: 28583890 DOI: 10.1016/j.prostaglandins.2017.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/05/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
The CD200/CD200R signalling pathway downregulates the synthesis of proinflammatory mediators and induces the synthesis of antiinflammatory mediators in macrophages and microglia. However, very little is known about the effect of this immunosuppressive pathway on the synthesis of lipid mediators. Therefore, we determined the synthesis of 35 lipids spanning 5 different lipid families in bone marrow-derived macrophages, which were treated with interleukin (IL) 4, IL10, lipopolysaccharide (LPS), or interferon γ (IFNγ) in absence and presence of CD200. Out of these conditions the only significant effect of CD200 was an increased synthesis of prostaglandin (PG) E2 and D2 in the presence of LPS. Accordingly, mRNA levels of cyclooxygenase-2, microsomal PGE2 synthase-1 and hematopoietic PGD synthase were upregulated by CD200 in presence of LPS. During Complete Freund's Adjuvant (CFA-) induced inflammation mPGES-1 was expressed in monocyte-derived macrophages and its expression was stronger in CD200R-positive than in CD200R-negative macrophages.
Collapse
Affiliation(s)
- Katharina Kern
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Germany
| | - Sandra Pierre
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Germany
| | - Yannick Schreiber
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Germany
| | - Carlo Angioni
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Germany
| | - Nerea Ferreirós
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Germany.
| |
Collapse
|
111
|
Valente T, Serratosa J, Perpiñá U, Saura J, Solà C. Alterations in CD200-CD200R1 System during EAE Already Manifest at Presymptomatic Stages. Front Cell Neurosci 2017; 11:129. [PMID: 28522962 PMCID: PMC5415594 DOI: 10.3389/fncel.2017.00129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/18/2017] [Indexed: 11/13/2022] Open
Abstract
In the brain of patients with multiple sclerosis, activated microglia/macrophages appear in active lesions and in normal appearing white matter. However, whether they play a beneficial or a detrimental role in the development of the pathology remains a controversial issue. The production of pro-inflammatory molecules by chronically activated microglial cells is suggested to contribute to the progression of neurodegenerative processes in neurological disease. In the healthy brain, neurons control glial activation through several inhibitory mechanisms, such as the CD200-CD200R1 interaction. Therefore, we studied whether alterations in the CD200-CD200R1 system might underlie the neuroinflammation in an experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. We determined the time course of CD200 and CD200R1 expression in the brain and spinal cord of an EAE mouse model from presymptomatic to late symptomatic stages. We also assessed the correlation with associated glial activation, inflammatory response and EAE severity. Alterations in CD200 and CD200R1 expression were mainly observed in spinal cord regions in the EAE model, mostly a decrease in CD200 and an increase in CD200R1 expression. A decrease in the expression of the mRNA encoding a full CD200 protein was detected before the onset of clinical signs, and remained thereafter. A decrease in CD200 protein expression was observed from the onset of clinical signs. By contrast, CD200R1 expression increased at EAE onset, when a glial reaction associated with the production of pro- and anti-inflammatory markers occurred, and continued to be elevated during the pathology. Moreover, the magnitude of the alterations correlated with severity of the EAE mainly in spinal cord. These results suggest that neuronal-microglial communication through CD200-CD200R1 interaction is compromised in EAE. The early decreases in CD200 expression in EAE suggest that this downregulation might also occur in the initial phases of multiple sclerosis, and that this early neuronal dysfunction might facilitate the development of neuroinflammation. The increased CD200R1 expression in the EAE model highlights the potential use of targeted agonist molecules as therapeutic tools to control neuroinflammation. In summary, the CD200-CD200R1 system is a potential therapeutic target in multiple sclerosis, and CD200R1 agonists are molecules that may be worth developing in this context.
Collapse
Affiliation(s)
- Tony Valente
- Department of Cerebral Ischemia and Neurodegeneration, Institut D'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut D'Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS)Barcelona, Spain
| | - Joan Serratosa
- Department of Cerebral Ischemia and Neurodegeneration, Institut D'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut D'Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS)Barcelona, Spain
| | - Unai Perpiñá
- Department of Cerebral Ischemia and Neurodegeneration, Institut D'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut D'Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS)Barcelona, Spain
| | - Josep Saura
- Biochemistry and Molecular Biology Unit, School of Medicine, Institut D'Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS), University of BarcelonaBarcelona, Spain
| | - Carme Solà
- Department of Cerebral Ischemia and Neurodegeneration, Institut D'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut D'Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS)Barcelona, Spain
| |
Collapse
|
112
|
Kobayashi K, Yano H, Umakoshi A, Matsumoto S, Mise A, Funahashi Y, Ueno Y, Kamei Y, Takada Y, Kumon Y, Ohnishi T, Tanaka J. A Truncated form of CD200 (CD200S) Expressed on Glioma Cells Prolonged Survival in a Rat Glioma Model by Induction of a Dendritic Cell-Like Phenotype in Tumor-Associated Macrophages. Neoplasia 2017; 18:229-41. [PMID: 27108386 PMCID: PMC4840271 DOI: 10.1016/j.neo.2016.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 12/03/2022] Open
Abstract
CD200 induces immunosuppression in myeloid cells expressing its receptor CD200R, which may have consequences for tumor immunity. We found that human carcinoma tissues express not only full-length CD200 (CD200L) but also its truncated form, CD200S. Although CD200S is reported to antagonize the immunosuppressive actions of CD200L, the role of CD200S in tumor immunity has never been investigated. We established rat C6 glioma cell lines that expressed either CD200L or CD200S; the original C6 cell line did not express CD200 molecules. The cell lines showed no significant differences in growth. Upon transplantation into the neonatal Wistar rat forebrain parenchyma, rats transplanted with C6-CD200S cells survived for a significantly longer period than those transplanted with the original C6 and C6-CD200L cells. The C6-CD200S tumors were smaller than the C6-CD200L or C6-original tumors, and many apoptotic cells were found in the tumor cell aggregates. Tumor-associated macrophages (TAMs) in C6-CD200S tumors displayed dendritic cell (DC)-like morphology with multiple processes and CD86 expression. Furthermore, CD3+, CD4+ or CD8+ cells were more frequently found in C6-CD200S tumors, and the expression of DC markers, granzyme, and perforin was increased in C6-CD200S tumors. Isolated TAMs from original C6 tumors were co-cultured with C6-CD200S cells and showed increased expression of DC markers. These results suggest that CD200S activates TAMs to become DC-like antigen presenting cells, leading to the activation of CD8+ cytotoxic T lymphocytes, which induce apoptotic elimination of tumor cells. The findings on CD200S action may provide a novel therapeutic modality for the treatment of carcinomas.
Collapse
Affiliation(s)
- Kana Kobayashi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan; Department of Hepato-biliary pancreatic surgery and breast surgery, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Akihiro Umakoshi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Shirabe Matsumoto
- Department of Regeneration of Community Medicine, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Ayano Mise
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Yu Funahashi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Yoshitomo Ueno
- Department of Hepato-biliary pancreatic surgery and breast surgery, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Yoshiaki Kamei
- Department of Hepato-biliary pancreatic surgery and breast surgery, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Yasutsugu Takada
- Department of Hepato-biliary pancreatic surgery and breast surgery, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Yoshiaki Kumon
- Department of Regeneration of Community Medicine, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Takanori Ohnishi
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan.
| |
Collapse
|
113
|
Tätting L, Sandberg O, Bernhardsson M, Ernerudh J, Aspenberg P. Isolated metaphyseal injury influences unrelated bones. Acta Orthop 2017; 88:223-230. [PMID: 28128005 PMCID: PMC5385120 DOI: 10.1080/17453674.2016.1274587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/04/2016] [Indexed: 02/08/2023] Open
Abstract
Background and purpose - Fracture healing involves different inflammatory cells, some of which are not part of the traditional bone field, such as B-cells and cytotoxic T-cells. We wanted to characterize bone healing by flow cytometry using 15 different inflammatory cell markers in a mouse model of metaphyseal injury, and incidentally discovered a previously unknown general skeletal reaction to trauma. Material and methods - A bent needle was inserted and twisted to traumatize the cancellous bone in the proximal tibia of C57/Bl6 female mice. This is known to induce vivid bone formation locally in the marrow compartment. Cells were harvested from the injured region, the uninjured contralateral tibia, and the humerus. The compositions of the immune cell populations were compared to those in untraumatized control animals. Results - Tibial metaphyseal injury led to substantial changes in the cell populations over time. Unexpectedly, similar changes were also seen in the contralateral tibia and in the humerus, despite the lack of local trauma. Most leukocyte subsets were affected by this generalized reaction. Interpretation - A relatively small degree of injury to the proximal tibia led to systemic changes in the immune cell populations in the marrow of unrelated bones, and probably in the entire skeleton. The few changes that were specific for the injury site appeared to relate to modulatory functions.
Collapse
Affiliation(s)
- Love Tätting
- Department of Clinical and Experimental Medicine, Orthopaedics
| | - Olof Sandberg
- Department of Clinical and Experimental Medicine, Orthopaedics
| | | | - Jan Ernerudh
- Department of Clinical and Experimental Medicine and Department of Clinical Immunology and Transfusion Medicine, Linköping University, Sweden
| | - Per Aspenberg
- Department of Clinical and Experimental Medicine, Orthopaedics
| |
Collapse
|
114
|
Amouzegar A, Mittal SK, Sahu A, Sahu SK, Chauhan SK. Mesenchymal Stem Cells Modulate Differentiation of Myeloid Progenitor Cells During Inflammation. Stem Cells 2017; 35:1532-1541. [PMID: 28295880 DOI: 10.1002/stem.2611] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/14/2017] [Accepted: 02/26/2017] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) possess distinct immunomodulatory properties and have tremendous potential for use in therapeutic applications in various inflammatory diseases. MSCs have been shown to regulate pathogenic functions of mature myeloid inflammatory cells, such as macrophages and neutrophils. Intriguingly, the capacity of MSCs to modulate differentiation of myeloid progenitors (MPs) to mature inflammatory cells remains unknown to date. Here, we report the novel finding that MSCs inhibit the expression of differentiation markers on MPs under inflammatory conditions. We demonstrate that the inhibitory effect of MSCs is dependent on direct cell-cell contact and that this intercellular contact is mediated through interaction of CD200 expressed by MSCs and CD200R1 expressed by MPs. Furthermore, using an injury model of sterile inflammation, we show that MSCs promote MP frequencies and suppress infiltration of inflammatory cells in the inflamed tissue. We also find that downregulation of CD200 in MSCs correlates with abrogation of their immunoregulatory function. Collectively, our study provides unequivocal evidence that MSCs inhibit differentiation of MPs in the inflammatory environment via CD200-CD200R1 interaction. Stem Cells 2017;35:1532-1541.
Collapse
Affiliation(s)
- Afsaneh Amouzegar
- Massachusetts Eye and Ear, Schepens Eye Research Institute, Boston, Massachusetts, 02114, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Sharad K Mittal
- Massachusetts Eye and Ear, Schepens Eye Research Institute, Boston, Massachusetts, 02114, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Anuradha Sahu
- Massachusetts Eye and Ear, Schepens Eye Research Institute, Boston, Massachusetts, 02114, USA
| | - Srikant K Sahu
- Massachusetts Eye and Ear, Schepens Eye Research Institute, Boston, Massachusetts, 02114, USA.,L. V. Prasad Eye Institute, Bhubaneswar, Odisha, 751024, India
| | - Sunil K Chauhan
- Massachusetts Eye and Ear, Schepens Eye Research Institute, Boston, Massachusetts, 02114, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, 02114, USA
| |
Collapse
|
115
|
Over-expression of CD200 predicts poor prognosis in MDS. Leuk Res 2017; 56:1-6. [PMID: 28152413 DOI: 10.1016/j.leukres.2017.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/08/2017] [Accepted: 01/13/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND We studied the expression of CD200 in a series of 101 patients with diagnosis of myelodysplastic syndrome (MDS), to evaluate its impact on outcome and its possible association with other known prognostic factors. MATERIAL/METHODS The CD200 was detected by flow cytometry, and the chromosome karyotypes were determined by G banding respectively. The Mann-Whitney U test was used to analyze the association among CD200 expression and clinical features. In addition, the overall survival and AML transformation of the MDS patients according to the expression level of CD200 was also explored. RESULTS Overall, the flow cytometric analyses confirmed that expression of CD200 was high in this patient cohort compared to normal BM (p<0.01). The levels of CD200 in RCUD (20.3%±4.3%), RCMD (25.0%±4.5%), RAEB-1 (39.2%±4.9%), and RAEB-2 (43.2%±5.8%) groups were obviously higher than that of RARS group (6.8%±1.7%, P<0.05). Significant differences of CD200 expression were observed in the 4 groups of MDS according to IPSS risk(P<0.01). After 45-month follow-up, Kaplan-Meier analysis of patients with MDS in our study indicated that patients with high expression level of CD200 had a shorter overall survival and a high Leukemic transformation than those with low expression (p<0.01). CONCLUSIONS In conclusion, our findings provide firstly the evidence that CD200 is up-regulated and emerging as both a prognostic factor and a potential target of novel therapeutic approaches for MDS.
Collapse
|
116
|
Sakthivel P, Breithaupt A, Gereke M, Copland DA, Schulz C, Gruber AD, Dick AD, Schreiber J, Bruder D. Soluble CD200 Correlates With Interleukin-6 Levels in Sera of COPD Patients: Potential Implication of the CD200/CD200R Axis in the Disease Course. Lung 2016; 195:59-68. [PMID: 27864635 DOI: 10.1007/s00408-016-9962-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 11/09/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND COPD represents a multifactorial lung disorder with high morbidity and mortality. Despite intensive research concerning the underlying disease mechanisms, the involvement of the CD200/CD200R axis in supporting or preventing the onset of COPD has not yet been addressed. Since the CD200/CD200R axis is crucially implicated in the maintenance of pulmonary immune homeostasis, we hypothesized that it might be involved in controlling the onset of COPD. METHODS To address this, we analyzed the serum samples from COPD patients and normal controls for soluble (s) CD200 and correlated the data to COPD-relevant clinical parameters. In addition, basic studies were conducted in CD200-deficient and wild-type mice in which COPD-like inflammation was induced with elastase/LPS followed by lung and serum component analysis. RESULTS We observed a positive correlation between serum sCD200 and IL-6 levels as well as a trend toward a negative correlation of sCD200 with vitamin D3 in COPD patients. Further investigations in mice revealed that despite elevated serum concentration of MMP-9 in CD200KO mice, the early onset of COPD-like lung inflammation was similar in CD200-deficient and wild-type animals in terms of immune cell infiltration, emphysematous changes, and mucus overproduction. CONCLUSIONS While our murine studies suggest that the co-inhibitory molecule CD200 does not appear to play a prominent role in the early onset of COPD-like features, correlation of sCD200 serum levels with COPD-related parameters in humans with established disease revealed that the CD200/CD200R axis may be mechanistically linked to the disease course in COPD patients.
Collapse
MESH Headings
- Aged
- Animals
- Antigens, CD/blood
- Antigens, CD/genetics
- Antigens, Surface/metabolism
- Case-Control Studies
- Cholecalciferol/blood
- Disease Models, Animal
- Female
- Humans
- Interleukin-6/blood
- Lipopolysaccharides
- Lymphocytes/pathology
- Macrophages, Alveolar/pathology
- Male
- Matrix Metalloproteinase 9/blood
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Neutrophils/pathology
- Orexin Receptors
- Pancreatic Elastase
- Pulmonary Disease, Chronic Obstructive/blood
- Pulmonary Disease, Chronic Obstructive/chemically induced
- Pulmonary Disease, Chronic Obstructive/pathology
- Receptors, Cell Surface/metabolism
Collapse
Affiliation(s)
- Priya Sakthivel
- Immune Regulation Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | - Angele Breithaupt
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Marcus Gereke
- Immune Regulation Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - David A Copland
- School of Clinical Sciences, University of Bristol, Bristol, BS8 1TD, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 2PD, UK
| | - Christian Schulz
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University Magdeburg, University Hospital, Magdeburg, Germany
| | - Achim D Gruber
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Andrew D Dick
- School of Clinical Sciences, University of Bristol, Bristol, BS8 1TD, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 2PD, UK
| | - Jens Schreiber
- Department of Pulmonology, Otto-von-Guericke-University Magdeburg, University Hospital, Magdeburg, Germany
| | - Dunja Bruder
- Immune Regulation Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
117
|
Novel CD200 homologues iSEC1 and iSEC2 are gastrointestinal secretory cell-specific ligands of inhibitory receptor CD200R. Sci Rep 2016; 6:36457. [PMID: 27819346 PMCID: PMC5098219 DOI: 10.1038/srep36457] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/17/2016] [Indexed: 01/01/2023] Open
Abstract
CD200R is an inhibitory receptor expressed on myeloid cells and some lymphoid cells, and plays important roles in negatively regulating immune responses. CD200 is the only known ligand of CD200R and broadly distributed in a variety of cell types. Here we identified novel CD200 homologues, designated iSEC1 and iSEC2, that are expressed exclusively by secretory cell lineages in the gastrointestinal epithelium while authentic CD200 is expressed by none of epithelial cells including secretory cells. Both iSEC1 and iSEC2 could bind to CD200R but not other members of the CD200R family. Notably, CD200R expression was confined to intraepithelial lymphocytes (IELs) among cells in the gastrointestinal epithelium. Binding of iSEC1 to CD200R on IELs resulted in the suppression of cytokine production and cytolytic activity by activated IELs. Thus, iSEC1 is a previously unappreciated CD200R ligand with restricted expression in gastrointestinal secretory cells and may negatively regulate mucosal immune responses.
Collapse
|
118
|
Dick AD. Doyne lecture 2016: intraocular health and the many faces of inflammation. Eye (Lond) 2016; 31:87-96. [PMID: 27636226 DOI: 10.1038/eye.2016.177] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 07/04/2016] [Indexed: 12/14/2022] Open
Abstract
Dogma for reasons of immune privilege including sequestration (sic) of ocular antigen, lack of lymphatic and immune competent cells in the vital tissues of the eye has long evaporated. Maintaining tissue and cellular health to preserve vision requires active immune responses to prevent damage and respond to danger. A priori the eye must contain immune competent cells, undergo immune surveillance to ensure homoeostasis as well as an ability to promote inflammation. By interrogating immune responses in non-infectious uveitis and compare with age-related macular degeneration (AMD), new concepts of intraocular immune health emerge. The role of macrophage polarisation in the two disorders is a tractable start. TNF-alpha regulation of macrophage responses in uveitis has a pivotal role, supported via experimental evidence and validated by recent trial data. Contrast this with the slow, insidious degeneration in atrophic AMD or in neovasular AMD, with the compelling genetic association with innate immunity and complement, highlights an ability to attenuate pathogenic immune responses and despite known inflammasome activation. Yolk sac-derived microglia maintains tissue immune health. The result of immune cell activation is environmentally dependent, for example, on retinal cell bioenergetics status, autophagy and oxidative stress, and alterations that skew interaction between macrophages and retinal pigment epithelium (RPE). For example, dead RPE eliciting macrophage VEGF secretion but exogenous IL-4 liberates an anti-angiogenic macrophage sFLT-1 response. Impaired autophagy or oxidative stress drives inflammasome activation, increases cytotoxicity, and accentuation of neovascular responses, yet exogenous inflammasome-derived cytokines, such as IL-18 and IL-33, attenuate responses.
Collapse
Affiliation(s)
- A D Dick
- UCL Institute of Ophthalmology, London, UK.,Academic unit of Ophthalmology, School of Clinical Sciences, University of Bristol, Bristol, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
119
|
Wang CY, Hsieh YT, Fang KM, Yang CS, Tzeng SF. Reduction of CD200 expression in glioma cells enhances microglia activation and tumor growth. J Neurosci Res 2016; 94:1460-1471. [PMID: 27629530 DOI: 10.1002/jnr.23922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 01/01/2023]
Abstract
CD200, a type I transmembrane glycoprotein, can interact with its receptor CD200R, which plays an inhibitory role in the activation of microglia-the resident macrophages of the central nervous system. In this study, the rat C6 glioma cell line (C6-1) that was previously characterized with high in vivo tumorigenicity was found to generate CD200 mRNA abundantly. However, CD200 expression was barely detected in another C6 glioma cell clone (C6-2) that was previously found to display low tumorigenic behavior. The results from CD200 immunohistochemistry on human glioma tissue array also showed that tumor cells in Grade I-II astrocytoma expressed a lower level of CD200 immunoreactivity than those detected in Grade III-IV glioblastoma multiforme. C6-1 transfectants with stable downregulation of CD200 gene expression using lentivirus knockdown approach were generated (C6-KD). Microglia and iNOS+ cells were increased when microglia were co-cultured with C6-KD cells. The colony formation of C6-KD was also augmented when those cells were co-cultured with microglia. Yet, increased colony formation of C6-KD transfectants in the co-culture with microglia was effectively suppressed by interleukin (IL)-4 and IL-10. The in vivo results indicated that the tumor formation of C6-1 cells in rat brain was promoted after CD200 gene knockdown. Moreover, CD11b+ activated microglia and iNOS+ microglia were highly accumulated in the tumor site formed by C6-KD. In conclusion, our findings demonstrate that the downregulation of CD200 expression in CD200-rich glioma cells could foster the formation of an activated microglia-associated tumor microenvironment, leading to glioma progression. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chih-Yen Wang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Yun-Ti Hsieh
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Min Fang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Shi Yang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
120
|
Impact of CD200-Fc on dendritic cells in lupus-prone NZB/WF1 mice. Sci Rep 2016; 6:31874. [PMID: 27545083 PMCID: PMC4992952 DOI: 10.1038/srep31874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/28/2016] [Indexed: 11/09/2022] Open
Abstract
Abnormal expression of CD200/CD200R1 may contribute to the immunologic abnormalities in patients with systemic lupus erythematosus (SLE). This study aimed to assess the function of CD200/CD200R1and impact of CD200-Fc on dendritic cells in lupus-prone NZB/WF1 mice. Female NZB/WF1 mice were treated with CD200-Fc or control for 4 weeks. Plasma samples were collected to measure autoantibody levels. The expression levels of CD200/CD200R1 in peripheral blood mononuclear cells (PBMCs) and splenocytes were examined. The percentage of CD200/CD200R1-positive cells in splenocytes from NZB/WF1 mice was lower than that of C57BL/6 mice (p < 0.05). The plasma level of anti-dsDNA was significantly higher in NZB/WF1 mice than C57BL/6 mice (p < 0.001). However, the anti-dsDNA levels decreased (p = 0.047) after CD200-Fc treatment. Finally, CD200-Fc reduced the levels of IL-6 (p = 0.017) and IL-10 (p = 0.03) in the dendritic cell culture supernatant. This study suggests that the immunosuppressive CD200/CD200R1 signaling pathway might be involved in the immunopathology of NZB/WF1 mice; the present results merit further exploration of agents that can modulate the CD200/CD200FR1 pathway as a therapy for human lupus.
Collapse
|
121
|
Immune checkpoints and rheumatic diseases: what can cancer immunotherapy teach us? Nat Rev Rheumatol 2016; 12:593-604. [DOI: 10.1038/nrrheum.2016.131] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
122
|
Gannavaram S, Bhattacharya P, Ismail N, Kaul A, Singh R, Nakhasi HL. Modulation of Innate Immune Mechanisms to Enhance Leishmania Vaccine-Induced Immunity: Role of Coinhibitory Molecules. Front Immunol 2016; 7:187. [PMID: 27242794 PMCID: PMC4865500 DOI: 10.3389/fimmu.2016.00187] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/02/2016] [Indexed: 12/14/2022] Open
Abstract
No licensed human vaccines are currently available against any parasitic disease including leishmaniasis. Several antileishmanial vaccine formulations have been tested in various animal models, including genetically modified live-attenuated parasite vaccines. Experimental infection studies have shown that Leishmania parasites utilize a broad range of strategies to undermine effector properties of host phagocytic cells, i.e., dendritic cells (DCs) and macrophages (MΦ). Furthermore, Leishmania parasites have evolved strategies to actively inhibit TH1 polarizing functions of DCs and to condition the infected MΦ toward anti-inflammatory/alternative/M2 phenotype. The altered phenotype of phagocytic cells is characterized by decreased production of antimicrobial reactive oxygen, nitrogen molecules, and pro-inflammatory cytokines, such as IFN-γ, IL-12, and TNF-α. These early events limit the activation of TH1-effector cells and set the stage for pathogenesis. Furthermore, this early control of innate immunity by the virulent parasites results in substantial alteration in the adaptive immunity characterized by reduced proliferation of CD4+ and CD8+ T cells and TH2-biased immunity that results in production of anti-inflammatory cytokines, such as TGF-β, and IL-10. More recent studies have also documented the induction of coinhibitory ligands, such as CTLA-4, PD-L1, CD200, and Tim-3, that induce exhaustion and/or non-proliferation in antigen-experienced T cells. Most of these studies focus on viral infections in chronic phase, thus limiting the direct application of these results to parasitic infections and much less to parasitic vaccines. However, these studies suggest that vaccine-induced protective immunity can be modulated using strategies that enhance the costimulation that might reduce the threshold necessary for T cell activation and conversely by strategies that reduce or block inhibitory molecules, such as PD-L1 and CD200. In this review, we will focus on the polarization of antigen-presenting cells and subsequent role of costimulatory and coinhibitory molecules in mediating vaccine-induced immunity using live-attenuated Leishmania parasites as specific examples.
Collapse
Affiliation(s)
- Sreenivas Gannavaram
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Food and Drug Administration , Silver Spring, MD , USA
| | - Parna Bhattacharya
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Food and Drug Administration , Silver Spring, MD , USA
| | - Nevien Ismail
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Food and Drug Administration , Silver Spring, MD , USA
| | - Amit Kaul
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Food and Drug Administration , Silver Spring, MD , USA
| | - Rakesh Singh
- Department of Biochemistry, Banaras Hindu University , Varanasi , India
| | - Hira L Nakhasi
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Food and Drug Administration , Silver Spring, MD , USA
| |
Collapse
|
123
|
Sun FJ, Zhang CQ, Chen X, Wei YJ, Li S, Liu SY, Zang ZL, He JJ, Guo W, Yang H. Downregulation of CD47 and CD200 in patients with focal cortical dysplasia type IIb and tuberous sclerosis complex. J Neuroinflammation 2016; 13:85. [PMID: 27095555 PMCID: PMC4837553 DOI: 10.1186/s12974-016-0546-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/11/2016] [Indexed: 12/20/2022] Open
Abstract
Background Focal cortical dysplasia type IIb (FCD IIb) and tuberous sclerosis complex (TSC) are well-recognized causes of chronic intractable epilepsy in children. Accumulating evidence suggests that activation of the microglia/macrophage and concomitant inflammatory response in FCD IIb and TSC may contribute to the initiation and recurrence of seizures. The membrane glycoproteins CD47 and CD200, which are highly expressed in neurons and other cells, mediate inhibitory signals through their receptors, signal regulatory protein α (SIRP-α) and CD200R, respectively, in microglia/macrophages. We investigate the levels and expression pattern of CD47/SIRP-α and CD200/CD200R in surgically resected brain tissues from patients with FCD IIb and TSC, and the potential effect of soluble human CD47 Fc and CD200 Fc on the inhibition of several proinflammatory cytokines associated with FCD IIb and TSC in living epileptogenic brain slices in vitro. The level of interleukin-4 (IL-4), a modulator of CD200, was also investigated. Methods Twelve FCD IIb (range 1.8–9.5 years), 13 TSC (range 1.5–10 years) patients, and 6 control cases (range 1.5–11 years) were enrolled. The levels of CD47/SIRP-α and CD200/CD200R were assessed by quantitative real-time polymerase chain reaction and western blot. The expression pattern of CD47/SIRP-α and CD200/CD200R was investigated by immunohistochemical analysis, and the cytokine concentrations were measured by enzyme-linked immune-sorbent assays. Results Both the messenger RNA and protein levels of CD47, SIRP-α, and CD200, as well as the mRNA level of IL-4, were downregulated in epileptogenic lesions of FCD IIb and TSC compared with the control specimens, whereas CD200R levels were not significantly changed. CD47, SIRP-α, and CD200 were decreasingly expressed in dysmorphic neuron, balloon cells, and giant cells. CD47 Fc and CD200 Fc could inhibit IL-6 release but did not suppress IL-1β or IL-17 production. Conclusions Our results suggest that microglial activation may be partially caused by CD47/SIRP-α- and CD200/CD200R-mediated reductions in the immune inhibitory pathways within FCD IIb and TSC cortical lesions where chronic neuroinflammation has been established. Upregulation or activation of CD47/SIRP-α and CD200/CD200R may have therapeutic potential for controlling neuroinflammation in human FCD IIb and TSC. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0546-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fei-Ji Sun
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 2-V Xinqiao Street, Chongqing, 400037, China
| | - Chun-Qing Zhang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 2-V Xinqiao Street, Chongqing, 400037, China
| | - Xin Chen
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 2-V Xinqiao Street, Chongqing, 400037, China
| | - Yu-Jia Wei
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 2-V Xinqiao Street, Chongqing, 400037, China
| | - Song Li
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 2-V Xinqiao Street, Chongqing, 400037, China
| | - Shi-Yong Liu
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 2-V Xinqiao Street, Chongqing, 400037, China
| | - Zhen-le Zang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 2-V Xinqiao Street, Chongqing, 400037, China
| | - Jiao-Jiang He
- Department of Neurosurgery, Lanzhou General Hospital of Chinese People's Liberation Army, Lanzhou, China
| | - Wei Guo
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xian, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 2-V Xinqiao Street, Chongqing, 400037, China.
| |
Collapse
|
124
|
Papazian D, Hansen S, Würtzen PA. Airway responses towards allergens - from the airway epithelium to T cells. Clin Exp Allergy 2016; 45:1268-87. [PMID: 25394747 DOI: 10.1111/cea.12451] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The prevalence of allergic diseases such as allergic rhinitis is increasing, affecting up to 30% of the human population worldwide. Allergic sensitization arises from complex interactions between environmental exposures and genetic susceptibility, resulting in inflammatory T helper 2 (Th2) cell-derived immune responses towards environmental allergens. Emerging evidence now suggests that an epithelial dysfunction, coupled with inherent properties of environmental allergens, can be responsible for the inflammatory responses towards allergens. Several epithelial-derived cytokines, such as thymic stromal lymphopoietin (TSLP), IL-25 and IL-33, influence tissue-resident dendritic cells (DCs) as well as Th2 effector cells. Exposure to environmental allergens does not elicit Th2 inflammatory responses or any clinical symptoms in nonatopic individuals, and recent findings suggest that a nondamaged, healthy epithelium lowers the DCs' ability to induce inflammatory T-cell responses towards allergens. The purpose of this review was to summarize the current knowledge on which signals from the airway epithelium, from first contact with inhaled allergens all the way to the ensuing Th2-cell responses, influence the pathology of allergic diseases.
Collapse
Affiliation(s)
- D Papazian
- Department of Cancer & Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,ALK, Hørsholm, Denmark
| | - S Hansen
- Department of Cancer & Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
125
|
Li L, Tian Y, Shi C, Zhang H, Zhou Z. Over-Expression of CD200 Predicts Poor Prognosis in Cutaneous Squamous Cell Carcinoma. Med Sci Monit 2016; 22:1079-84. [PMID: 27035797 PMCID: PMC4822938 DOI: 10.12659/msm.895245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND CD200 is reported to be involved in tumor progression and can serve as a prognostic marker in several cancers. The purpose of this study was to evaluate the prognostic significance of CD200 in cutaneous squamous cell carcinoma (CSCC). MATERIAL/METHODS The relative mRNA and protein expression of CD200 in the tumor tissues and corresponding normal tissues of 102 CSCC patients were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis, respectively. The chi-square test was used to analyze the association between CD200 expression and clinical features of CSCC patients. In addition, the overall survival of the patients according to the expression level of CD200 was estimated by Kaplan-Meier analysis and the prognostic significance of the gene was analyzed by Cox regression analysis. RESULTS Increased expression of CD200 was detected in the tumor tissues compared with the corresponding normal tissues both at mRNA and protein level. And CD200 expression level was associated with tumor differentiation grade (P=0.041) and clinical stage (P=0.004). Patients with high expression level of CD200 had a shorter overall survival than those with low expression (31.3 months vs. 41.9 months) and there was a significant difference between them (log-rank test, P<0.001). Cox regression analysis indicated that CD200 could be an independent marker for the prognosis of CSCC. CONCLUSIONS CD200 is up-regulated and may be a novel biomarker for the prognosis in CSCC, and it may be a potential therapeutic target for CSCC.
Collapse
Affiliation(s)
- Li Li
- Department of Burn and Plastic Surgery, General Hospital of Beijing Military Region, Beijing, China (mainland)
| | - YanLi Tian
- Department of Dermatology, General Hospital of Beijing Military Region, Beijing, China (mainland)
| | - ChengFang Shi
- Department of Dermatology, General Hospital of Beijing Military Region, Beijing, China (mainland)
| | - Hua Zhang
- Department of Burn and Plastic Surgery, General Hospital of Beijing Military Region, Beijing, China (mainland)
| | - Zhi Zhou
- Department of Burn and Plastic Surgery, General Hospital of Beijing Military Region, Beijing, China (mainland)
| |
Collapse
|
126
|
Kaplan BLF, Li J, LaPres JJ, Pruett SB, Karmaus PWF. Contributions of nonhematopoietic cells and mediators to immune responses: implications for immunotoxicology. Toxicol Sci 2016; 145:214-32. [PMID: 26008184 DOI: 10.1093/toxsci/kfv060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immunotoxicology assessments have historically focused on the effects that xenobiotics exhibit directly on immune cells. These studies are invaluable as they identify immune cell targets and help characterize mechanisms and/or adverse outcome pathways of xenobiotics within the immune system. However, leukocytes can receive environmental cues by cell-cell contact or via released mediators from cells of organs outside of the immune system. These organs include, but are not limited to, the mucosal areas such as the lung and the gut, the liver, and the central nervous system. Homeostatic perturbation in these organs induced directly by toxicants can initiate and alter the outcome of local and systemic immunity. This review will highlight some of the identified nonimmune influences on immune homeostasis and provide summaries of how immunotoxic mechanisms of selected xenobiotics involve nonimmune cells or mediators. Thus, this review will identify data gaps and provide possible alternative mechanisms by which xenobiotics alter immune function that could be considered during immunotoxicology safety assessment.
Collapse
Affiliation(s)
- Barbara L F Kaplan
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Jinze Li
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - John J LaPres
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Stephen B Pruett
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Peer W F Karmaus
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
127
|
Rabbit CD200R binds host CD200 but not CD200-like proteins from poxviruses. Virology 2015; 488:1-8. [PMID: 26590792 PMCID: PMC4750549 DOI: 10.1016/j.virol.2015.10.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/13/2015] [Accepted: 10/27/2015] [Indexed: 12/12/2022]
Abstract
CD200 is a widely distributed membrane protein that gives inhibitory signals through its receptor (CD200R) on myeloid cells. CD200 has been acquired by herpesviruses where it has been shown to interact with host CD200R and downmodulate the immune system. It has been hypothesized that poxviruses have acquired CD200; but the potential orthologues show less similarity to their hosts. Myxoma virus M141 protein is a potential CD200 orthologue with a potent immune modulatory function in rabbits. Here, we characterized the rabbit CD200, CD200R and tested the CD200-like sequences for binding CD200R. No binding could be detected using soluble recombinant proteins, full length protein expressed on cells or myxoma virus infected cells. Finally, using knockdown models, we showed that the inhibitory effect of M141 on RAW 264.7 cells upon myxoma virus infection is not due to CD200R. We conclude that the rabbit poxvirus CD200-like proteins cause immunomodulation without utilizing CD200R. The coding sequences of rabbit CD200 and rabbit CD200R have been identified. Rabbit CD200-CD200R binding resembles CD200-CD200R interactions in other species. Poxvirus CD200-like molecules (M141, SFV 141) do not interact with rabbit CD200R. M141 can downregulate immune response without utilizing host CD200R.
Collapse
|
128
|
Kwong LS, Akkaya M, Barclay AN, Hatherley D. Herpesvirus orthologues of CD200 bind host CD200R but not related activating receptors. J Gen Virol 2015; 97:179-184. [PMID: 26538068 DOI: 10.1099/jgv.0.000335] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Several herpesviruses have acquired the gene for the CD200 membrane protein from their hosts and can downregulate myeloid activity through interaction of this viral CD200 orthologue with the host receptor for CD200, namely CD200R, which can give inhibitory signals. This receptor is a 'paired receptor', meaning proteins related to the inhibitory CD200R are present but differ in that they can give activating signals and also give a negligible interaction with CD200. We showed that the viral orthologues e127 from rat cytomegalovirus and K14 from human herpesvirus 8 do not bind the activating CD200R-like proteins from their respective species, although they do bind the inhibitory receptors. It is thought that the activating receptors have evolved in response to pathogens targeting the inhibitory receptor. In this case, the CD200 orthologue is not trapped by the activating receptor but has maintained the specificity of the host from which it was acquired, suggesting that the activating members of the CD200R family have evolved to protect against a different pathogen.
Collapse
Affiliation(s)
- Lai Shan Kwong
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Munir Akkaya
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - A Neil Barclay
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Deborah Hatherley
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
129
|
Śledzińska A, Menger L, Bergerhoff K, Peggs KS, Quezada SA. Negative immune checkpoints on T lymphocytes and their relevance to cancer immunotherapy. Mol Oncol 2015; 9:1936-65. [PMID: 26578451 DOI: 10.1016/j.molonc.2015.10.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 02/07/2023] Open
Abstract
The term 'inhibitory checkpoint' refers to the broad spectrum of co-receptors expressed by T cells that negatively regulate T cell activation thus playing a crucial role in maintaining peripheral self-tolerance. Co-inhibitory receptor ligands are highly expressed by a variety of malignancies allowing evasion of anti-tumour immunity. Recent studies demonstrate that manipulation of these co-inhibitory pathways can remove the immunological brakes that impede endogenous immune responses against tumours. Antibodies that block the interactions between co-inhibitory receptors and their ligands have delivered very promising clinical responses, as has been shown by recent successful trials targeting the CTLA-4 and PD-1 pathways. In this review, we discuss the mechanisms of action and expression pattern of co-inhibitory receptors on different T cells subsets, emphasising differences between CD4(+) and CD8(+) T cells. We also summarise recent clinical findings utilising immune checkpoint blockade.
Collapse
Affiliation(s)
- Anna Śledzińska
- Cancer Immunology Unit, UCL Cancer Institute, UCL, London, UK
| | - Laurie Menger
- Cancer Immunology Unit, UCL Cancer Institute, UCL, London, UK
| | | | - Karl S Peggs
- Cancer Immunology Unit, UCL Cancer Institute, UCL, London, UK.
| | | |
Collapse
|
130
|
Holmannová D, Koláčková M, Kondělková K, Kuneš P, Krejsek J, Andrýs C. CD200/CD200R Paired Potent Inhibitory Molecules Regulating Immune and Inflammatory Responses; part I: CD200/CD200R Structure, Activation, and Function. ACTA MEDICA (HRADEC KRÁLOVÉ) 2015; 55:12-7. [DOI: 10.14712/18059694.2015.68] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
CD200/CD200R are highly conserved type I paired membrane glycoproteins that belong to the Ig superfamily containing a two immunoglobulin‑like domain (V, C). CD200 is broadly distributed in a variety of cell types, whereas CD200R is primarily expressed in myeloid and lymphoid cells. They fulfill multiple functions in regulating inflammation. The interaction between CD200/CD200R results in activation of the intracellular inhibitory pathway with RasGAP recruitment and thus contributes to effector cell inhibition. It was confirmed that the CD200R activation stimulates the differentiation of T cells to the Treg subset, upregulates indoleamine 2,3‑dioxygenase activity, modulates cytokine environment from a Th1 to a Th2 pattern, and facilitates an antiinflammatory IL‑10 and TGF‑β synthesis. CD200/CD200R are required for maintaining self‑tolerance. Many studies have demonstrated the importance of CD200 in controlling autoimmunity, inflammation, the development and spread of cancer, hypersensitivity, and spontaneous fetal loss.
Collapse
|
131
|
Wang Q, Liu Y, Zhou J. Neuroinflammation in Parkinson's disease and its potential as therapeutic target. Transl Neurodegener 2015; 4:19. [PMID: 26464797 PMCID: PMC4603346 DOI: 10.1186/s40035-015-0042-0] [Citation(s) in RCA: 614] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/01/2015] [Indexed: 01/19/2023] Open
Abstract
Parkinson’s disease (PD), the second most common age-associated neurodegenerative disorder, is characterized by the loss of dopaminergic (DA) neurons and the presence of α-synuclein-containing aggregates in the substantia nigra pars compacta (SNpc). Chronic neuroinflammation is one of the hallmarks of PD pathophysiology. Post-mortem analyses of human PD patients and experimental animal studies indicate that activation of glial cells and increases in pro-inflammatory factor levels are common features of the PD brain. Chronic release of pro-inflammatory cytokines by activated astrocytes and microglia leads to the exacerbation of DA neuron degeneration in the SNpc. Besides, peripheral immune system is also implicated in the pathogenesis of PD. Infiltration and accumulation of immune cells from the periphery are detected in and around the affected brain regions of PD patients. Moreover, inflammatory processes have been suggested as promising interventional targets for PD and even other neurodegenerative diseases. A better understanding of the role of inflammation in PD will provide new insights into the pathological processes and help to establish effective therapeutic strategies. In this review, we will summarize recent progresses in the neuroimmune aspects of PD and highlight the potential therapeutic interventions targeting neuroinflammation.
Collapse
Affiliation(s)
- Qinqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Yingjun Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Jiawei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| |
Collapse
|
132
|
Kim YK, Chen EY, Liu WF. Biomolecular strategies to modulate the macrophage response to implanted materials. J Mater Chem B 2015; 4:1600-1609. [PMID: 32263014 DOI: 10.1039/c5tb01605c] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The material-induced foreign body response is a major challenge for implanted medical devices. This review highlights recent developments in biomimetic approaches to create biomaterials that mitigate the host response to biomaterials. Specifically, we will describe strategies in which biomaterials are decorated with endogenously expressed biomolecules that naturally modulate the function of immune cells. These include molecules that directly bind to and interact with immune cells, as well as molecules that control complement activation or thrombosis and indirectly modulate immune cell function. We provide perspective on how these approaches may impact the design of materials for medical devices and tissue engineering.
Collapse
Affiliation(s)
- Yoon Kyung Kim
- Department of Biomedical Engineering, University of California Irvine, 2412 Engineering Hall, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
133
|
Hernangómez M, Carrillo-Salinas FJ, Mecha M, Correa F, Mestre L, Loría F, Feliú A, Docagne F, Guaza C. Brain innate immunity in the regulation of neuroinflammation: therapeutic strategies by modulating CD200-CD200R interaction involve the cannabinoid system. Curr Pharm Des 2015; 20:4707-22. [PMID: 24588829 PMCID: PMC4157566 DOI: 10.2174/1381612820666140130202911] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/29/2014] [Indexed: 11/24/2022]
Abstract
The central nervous system (CNS) innate immune response includes an arsenal of molecules and receptors expressed by professional phagocytes, glial cells and neurons that is involved in host defence and clearance of toxic and dangerous cell debris. However, any uncontrolled innate immune responses within the CNS are widely recognized as playing a major role in the development of autoimmune disorders and neurodegeneration, with multiple sclerosis (MS) Alzheimer's disease (AD) being primary examples. Hence, it is important to identify the key regulatory mechanisms involved in the control of CNS innate immunity and which could be harnessed to explore novel therapeutic avenues. Neuroimmune regulatory proteins (NIReg) such as CD95L, CD200, CD47, sialic acid, complement regulatory proteins (CD55, CD46, fH, C3a), HMGB1, may control the adverse immune responses in health and diseases. In the absence of these regulators, when neurons die by apoptosis, become infected or damaged, microglia and infiltrating immune cells are free to cause injury as well as an adverse inflammatory response in acute and chronic settings. We will herein provide new emphasis on the role of the pair CD200-CD200R in MS and its experimental models: experimental autoimmune encephalomyelitis (EAE) and Theiler’s virus induced demyelinating disease (TMEV-IDD). The interest of the cannabinoid system as inhibitor of inflammation prompt us to introduce our findings about the role of endocannabinoids (eCBs) in promoting CD200-CD200 receptor (CD200R) interaction and the benefits caused in TMEV-IDD. Finally, we also review the current data on CD200-CD200R interaction in AD, as well as, in the aging brain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Carmen Guaza
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, CSIC, 28002 Madrid, Spain.
| |
Collapse
|
134
|
CD200+ and CD200- macrophages accumulated in ischemic lesions of rat brain: the two populations cannot be classified as either M1 or M2 macrophages. J Neuroimmunol 2015; 282:7-20. [PMID: 25903723 DOI: 10.1016/j.jneuroim.2015.03.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 11/21/2022]
Abstract
Two types of macrophages in lesion core of rat stroke model were identified according to NG2 chondroitin sulfate proteoglycan (NG2) and CD200 expression. NG2(+) macrophages were CD200(-), and vice versa. NG2(-) macrophages expressed two splice variants of CD200 that are CD200L and CD200S. CD200(+) macrophages expressed CD8, CD68, CD163, CCL2, inducible nitric oxide synthase, interleukin-1β, Toll-like receptor 4 and transforming growth factor β, whilst NG2(+) cells expressed a costimulatory factor CD86. Both cell types expressed insulin-like growth factor 1 and CD200R. These results demonstrate that the two macrophage types cannot be classified as either M1 or M2.
Collapse
|
135
|
|
136
|
CD200 receptor restriction of myeloid cell responses antagonizes antiviral immunity and facilitates cytomegalovirus persistence within mucosal tissue. PLoS Pathog 2015; 11:e1004641. [PMID: 25654642 PMCID: PMC4412112 DOI: 10.1371/journal.ppat.1004641] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 12/22/2014] [Indexed: 12/18/2022] Open
Abstract
CD200 receptor (CD200R) negatively regulates peripheral and mucosal innate immune responses. Viruses, including herpesviruses, have acquired functional CD200 orthologs, implying that viral exploitation of this pathway is evolutionary advantageous. However, the role that CD200R signaling plays during herpesvirus infection in vivo requires clarification. Utilizing the murine cytomegalovirus (MCMV) model, we demonstrate that CD200R facilitates virus persistence within mucosal tissue. Specifically, MCMV infection of CD200R-deficient mice (CD200R(-/-)) elicited heightened mucosal virus-specific CD4 T cell responses that restricted virus persistence in the salivary glands. CD200R did not directly inhibit lymphocyte effector function. Instead, CD200R(-/-) mice exhibited enhanced APC accumulation that in the mucosa was a consequence of elevated cellular proliferation. Although MCMV does not encode an obvious CD200 homolog, productive replication in macrophages induced expression of cellular CD200. CD200 from hematopoietic and non-hematopoietic cells contributed independently to suppression of antiviral control in vivo. These results highlight the CD200-CD200R pathway as an important regulator of antiviral immunity during cytomegalovirus infection that is exploited by MCMV to establish chronicity within mucosal tissue.
Collapse
|
137
|
Structural properties of a viral orthologue of cellular CD200 protein: KSHV vOX2. Virology 2015; 474:94-104. [DOI: 10.1016/j.virol.2014.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/29/2014] [Accepted: 10/22/2014] [Indexed: 12/29/2022]
|
138
|
Immunomodulator CD200 Promotes Neurotrophic Activity by Interacting with and Activating the Fibroblast Growth Factor Receptor. Mol Neurobiol 2014; 53:584-594. [DOI: 10.1007/s12035-014-9037-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 11/30/2014] [Indexed: 11/26/2022]
|
139
|
Karlstetter M, Scholz R, Rutar M, Wong WT, Provis JM, Langmann T. Retinal microglia: just bystander or target for therapy? Prog Retin Eye Res 2014; 45:30-57. [PMID: 25476242 DOI: 10.1016/j.preteyeres.2014.11.004] [Citation(s) in RCA: 409] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
Abstract
Resident microglial cells can be regarded as the immunological watchdogs of the brain and the retina. They are active sensors of their neuronal microenvironment and rapidly respond to various insults with a morphological and functional transformation into reactive phagocytes. There is strong evidence from animal models and in situ analyses of human tissue that microglial reactivity is a common hallmark of various retinal degenerative and inflammatory diseases. These include rare hereditary retinopathies such as retinitis pigmentosa and X-linked juvenile retinoschisis but also comprise more common multifactorial retinal diseases such as age-related macular degeneration, diabetic retinopathy, glaucoma, and uveitis as well as neurological disorders with ocular manifestation. In this review, we describe how microglial function is kept in balance under normal conditions by cross-talk with other retinal cells and summarize how microglia respond to different forms of retinal injury. In addition, we present the concept that microglia play a key role in local regulation of complement in the retina and specify aspects of microglial aging relevant for chronic inflammatory processes in the retina. We conclude that this resident immune cell of the retina cannot be simply regarded as bystander of disease but may instead be a potential therapeutic target to be modulated in the treatment of degenerative and inflammatory diseases of the retina.
Collapse
Affiliation(s)
- Marcus Karlstetter
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Rebecca Scholz
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Matt Rutar
- The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
| | - Wai T Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jan M Provis
- The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany.
| |
Collapse
|
140
|
Guha SK, Tillu R, Sood A, Patgaonkar M, Nanavaty IN, Sengupta A, Sharma S, Vaidya VA, Pathak S. Single episode of mild murine malaria induces neuroinflammation, alters microglial profile, impairs adult neurogenesis, and causes deficits in social and anxiety-like behavior. Brain Behav Immun 2014; 42:123-37. [PMID: 24953429 DOI: 10.1016/j.bbi.2014.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 06/09/2014] [Accepted: 06/13/2014] [Indexed: 12/26/2022] Open
Abstract
Cerebral malaria is associated with cerebrovascular damage and neurological sequelae. However, the neurological consequences of uncomplicated malaria, the most prevalent form of the disease, remain uninvestigated. Here, using a mild malaria model, we show that a single Plasmodium chabaudi adami infection in adult mice induces neuroinflammation, neurogenic, and behavioral changes in the absence of a blood-brain barrier breach. Using cytokine arrays we show that the infection induces differential serum and brain cytokine profiles, both at peak parasitemia and 15days post-parasite clearance. At the peak of infection, along with the serum, the brain also exhibited a definitive pro-inflammatory cytokine profile, and gene expression analysis revealed that pro-inflammatory cytokines were also produced locally in the hippocampus, an adult neurogenic niche. Hippocampal microglia numbers were enhanced, and we noted a shift to an activated profile at this time point, accompanied by a striking redistribution of the microglia to the subgranular zone adjacent to hippocampal neuronal progenitors. In the hippocampus, a distinct decline in progenitor turnover and survival was observed at peak parasitemia, accompanied by a shift from neuronal to glial fate specification. Studies in transgenic Nestin-GFP reporter mice demonstrated a decline in the Nestin-GFP(+)/GFAP(+) quiescent neural stem cell pool at peak parasitemia. Although these cellular changes reverted to normal 15days post-parasite clearance, specific brain cytokines continued to exhibit dysregulation. Behavioral analysis revealed selective deficits in social and anxiety-like behaviors, with no change observed in locomotor, cognitive, and depression-like behaviors, with a return to baseline at recovery. Collectively, these findings indicate that even a single episode of mild malaria results in alterations of the brain cytokine profile, causes specific behavioral dysfunction, is accompanied by hippocampal microglial activation and redistribution, and a definitive, but transient, suppression of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Suman K Guha
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Rucha Tillu
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ankit Sood
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Mandar Patgaonkar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ishira N Nanavaty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Arjun Sengupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| | - Sulabha Pathak
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
141
|
Fernandes A, Miller-Fleming L, Pais TF. Microglia and inflammation: conspiracy, controversy or control? Cell Mol Life Sci 2014; 71:3969-85. [PMID: 25008043 PMCID: PMC11113719 DOI: 10.1007/s00018-014-1670-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 12/28/2022]
Abstract
Microglial cells contribute to normal function of the central nervous system (CNS). Besides playing a role in the innate immunity, they are also involved in neuronal plasticity and homeostasis of the CNS. While microglial cells get activated and undergo phenotypic changes in different disease contexts, they are far from being the "villains" in the CNS. Mounting evidence indicates that microglial dysfunction can exacerbate the pathogenesis of several diseases in the CNS. Several molecular mechanisms tightly regulate the production of inflammatory and toxic factors released by microglia. These mechanisms involve the interaction with other glial cells and neurons and the fine regulation of signaling and transcription activation pathways. The purpose of this review is to discuss microglia activation and to highlight the molecular pathways that can counteract the detrimental role of microglia in several neurologic diseases. Recent work presented in this review support that the understanding of microglial responses can pave the way to design new therapies for inflammatory diseases of the CNS.
Collapse
Affiliation(s)
- Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Leonor Miller-Fleming
- Instituto de Medicina Molecular, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
- Present Address: Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, CB21GA Cambridge, UK
| | - Teresa F. Pais
- Instituto de Medicina Molecular, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|
142
|
Addressing the Inflammatory Response to Clinically Relevant Polymers by Manipulating the Host Response Using ITIM Domain-Containing Receptors. Polymers (Basel) 2014; 6:2526-2551. [PMID: 25705515 PMCID: PMC4333742 DOI: 10.3390/polym6102526] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tissue contacting surfaces of medical devices initiate a host inflammatory response, characterized by adsorption of blood proteins and inflammatory cells triggering the release of cytokines, reactive oxygen species (ROS) and reactive nitrogen species (RNS), in an attempt to clear or isolate the foreign object from the body. This normal host response contributes to device-associated pathophysiology and addressing device biocompatibility remains an unmet need. Although widespread attempts have been made to render the device surfaces unreactive, the establishment of a completely bioinert coating has been untenable and demonstrates the need to develop strategies based upon the molecular mechanisms that define the interaction between host cells and synthetic surfaces. In this review, we discuss a family of transmembrane receptors, known as immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing receptors, which show promise as potential targets to address aberrant biocompatibility. These receptors repress the immune response and ensure that the intensity of an immune response is appropriate for the stimuli. Particular emphasis will be placed on the known ITIM-containing receptor, Signal Regulatory Protein Alpha (SIRPhα), and its cognate ligand CD47. In addition, this review will discuss the potential of other ITIM-containing proteins as targets for addressing the aberrant biocompatibility of polymeric biomaterials.
Collapse
|
143
|
Erin N, Podnos A, Tanriover G, Duymuş Ö, Cote E, Khatri I, Gorczynski RM. Bidirectional effect of CD200 on breast cancer development and metastasis, with ultimate outcome determined by tumor aggressiveness and a cancer-induced inflammatory response. Oncogene 2014; 34:3860-70. [PMID: 25263452 DOI: 10.1038/onc.2014.317] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 08/02/2014] [Accepted: 08/09/2014] [Indexed: 12/27/2022]
Abstract
CD200 acts through its receptor (CD200R) to inhibit excessive inflammation. The role of CD200-CD200R1 interaction in tumor immunity is poorly understood. In this study, we examined the role of CD200-CD200R1 interaction in the progression and metastasis of highly aggressive 4THM murine-breast carcinoma using CD200 transgenic (CD200(tg)) and CD200R1 knock-out (CD200R1(-)(/-)) BALB/c mice. 4THM cells induce extensive visceral metastasis and neutrophil infiltration in affected tissues. CD200 overexpression in the host was associated with decreased primary tumor growth and metastasis, whereas lack of CD200R1 expression by host cells was associated with enhanced visceral metastasis. Absence of CD200R1 expression led to decreased tumor-infiltrating-cytotoxic T cells and increased the release of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin (IL)-6. In contrast, CD200 overexpression led to increased tumor-induced interferon-γ and IL-10 response and decreased TNF-α and IL-6 release. Neutrophil infiltration of tissues was markedly decreased in CD200(tg) animals and increased in CD200R1(-/-) mice. These findings are contradictory to what has been reported in the EMT6 mouse breast-cancer model. Other distinguishing features of tumor elicited by EMT6 and 4THM cell injections were also examined. Visceral tissues from mice bearing EMT6 tumors showed a lack of neutrophil infiltration and decreased IL-6 release in CD200R1(-/-) mice. EMT6 and 4THM cells also differed in vimentin expression and in vitro migration rate, which was markedly lower in EMT6 tumors. These results support the hypothesis that CD200 expression can alter immune responses, and can inhibit metastatic growth of tumor cells that induce systemic and local inflammatory response. Increasing CD200 activity/signaling might be an important therapeutic strategy for treatment of aggressive breast carcinomas.
Collapse
Affiliation(s)
- N Erin
- Department of Medical Pharmacology, School of Medicine, Akdeniz University, Antalya City, Antalya, Turkey
| | - A Podnos
- University Health Network, Toronto General Hospital, Toronto, ON, Canada
| | - G Tanriover
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Ö Duymuş
- Department of Medical Pharmacology, School of Medicine, Akdeniz University, Antalya City, Antalya, Turkey
| | - E Cote
- University Health Network, Toronto General Hospital, Toronto, ON, Canada
| | - I Khatri
- University Health Network, Toronto General Hospital, Toronto, ON, Canada
| | - R M Gorczynski
- University Health Network, Toronto General Hospital, Toronto, ON, Canada
| |
Collapse
|
144
|
Agonistic CD200R1 DNA Aptamers Are Potent Immunosuppressants That Prolong Allogeneic Skin Graft Survival. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e190. [PMID: 25158092 PMCID: PMC4221601 DOI: 10.1038/mtna.2014.41] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/16/2014] [Indexed: 12/22/2022]
Abstract
CD200R1 expressed on the surface of myeloid and lymphoid cells delivers immune inhibitory signals to modulate inflammation when engaged with its ligand CD200. Signalling through CD200/CD200R1 has been implicated in a number of immune-related diseases including allergy, infection, cancer and transplantation, as well as several autoimmune disorders including arthritis, systemic lupus erythematosus, and multiple sclerosis. We report the development and characterization of DNA aptamers, which bind to murine CD200R1 and act as potent signalling molecules in the absence of exogenous CD200. These agonistic aptamers suppress cytotoxic T-lymphocyte induction in 5-day allogeneic mixed leukocyte culture and induce rapid phosphorylation of the CD200R1 cytoplasmic tail thereby initiating immune inhibitory signalling. PEGylated conjugates of these aptamers show significant in vivo immunosuppression and enhance survival of allogeneic skin grafts as effectively as soluble CD200Fc. As DNA aptamers exhibit inherent advantages over conventional protein-based therapeutics including low immunogenicity, ease of synthesis, low cost, and long shelf life, such CD200R1 agonistic aptamers may emerge as useful and safe nonsteroidal anti-inflammatory therapeutic agents.
Collapse
|
145
|
Hu X, Liou AKF, Leak RK, Xu M, An C, Suenaga J, Shi Y, Gao Y, Zheng P, Chen J. Neurobiology of microglial action in CNS injuries: receptor-mediated signaling mechanisms and functional roles. Prog Neurobiol 2014; 119-120:60-84. [PMID: 24923657 PMCID: PMC4121732 DOI: 10.1016/j.pneurobio.2014.06.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/31/2014] [Accepted: 06/03/2014] [Indexed: 12/28/2022]
Abstract
Microglia are the first line of immune defense against central nervous system (CNS) injuries and disorders. These highly plastic cells play dualistic roles in neuronal injury and recovery and are known for their ability to assume diverse phenotypes. A broad range of surface receptors are expressed on microglia and mediate microglial 'On' or 'Off' responses to signals from other host cells as well as invading microorganisms. The integrated actions of these receptors result in tightly regulated biological functions, including cell mobility, phagocytosis, the induction of acquired immunity, and trophic factor/inflammatory mediator release. Over the last few years, significant advances have been made toward deciphering the signaling mechanisms related to these receptors and their specific cellular functions. In this review, we describe the current state of knowledge of the surface receptors involved in microglial activation, with an emphasis on their engagement of distinct functional programs and their roles in CNS injuries. It will become evident from this review that microglial homeostasis is carefully maintained by multiple counterbalanced strategies, including, but not limited to, 'On' and 'Off' receptor signaling. Specific regulation of theses microglial receptors may be a promising therapeutic strategy against CNS injuries.
Collapse
Affiliation(s)
- Xiaoming Hu
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA.
| | - Anthony K F Liou
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Mingyue Xu
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Chengrui An
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Jun Suenaga
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yejie Shi
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Ping Zheng
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Jun Chen
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
146
|
The rhesus rhadinovirus CD200 homologue affects immune responses and viral loads during in vivo infection. J Virol 2014; 88:10635-54. [PMID: 24991004 DOI: 10.1128/jvi.01276-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Rhesus macaque rhadinovirus (RRV) is a gammaherpesvirus of rhesus macaque (RM) monkeys that is closely related to human herpesvirus 8 (HHV-8)/Kaposi's Sarcoma-associated herpesvirus (KSHV), and it is capable of inducing diseases in simian immunodeficiency virus (SIV)-infected RM that are similar to those seen in humans coinfected with HIV and HHV-8. Both HHV-8 and RRV encode viral CD200 (vCD200) molecules that are homologues of cellular CD200, a membrane glycoprotein that regulates immune responses and helps maintain immune homeostasis via interactions with the CD200 receptor (CD200R). Though the functions of RRV and HHV-8 vCD200 molecules have been examined in vitro, the precise roles that these viral proteins play during in vivo infection remain unknown. Thus, to address the contributions of RRV vCD200 to immune regulation and disease in vivo, we generated a form of RRV that lacked expression of vCD200 for use in infection studies in RM. Our data indicated that RRV vCD200 expression limits immune responses against RRV at early times postinfection and also impacts viral loads, but it does not appear to have significant effects on disease development. Further, examination of the distribution pattern of CD200R in RM indicated that this receptor is expressed on a majority of cells in peripheral blood mononuclear cells, including B and T cells, suggesting potentially wider regulatory capabilities for both vCD200 and CD200 that are not strictly limited to myeloid lineage cells. In addition, we also demonstrate that RRV infection affects CD200R expression levels in vivo, although vCD200 expression does not play a role in this phenomenon. IMPORTANCE Cellular CD200 and its receptor, CD200R, compose a pathway that is important in regulating immune responses and is known to play a role in a variety of human diseases. A number of pathogens have been found to modulate the CD200-CD200R pathway during infection, including human herpesvirus 8 (HHV-8), the causative agent of Kaposi's sarcoma and B cell neoplasms in AIDS patients, and a closely related primate virus, rhesus macaque rhadinovirus (RRV), which infects and induces disease in rhesus macaque monkeys. HHV-8 and RRV encode homologues of CD200, termed vCD200, which are thought to play a role in preventing immune responses against these viruses. However, neither molecule has been studied in an in vivo model of infection to address their actual contributions to immunoregulation and disease. Here we report findings from our studies in which we analyzed the properties of a mutant form of RRV that lacks vCD200 expression in infected rhesus macaques.
Collapse
|
147
|
Kim YK, Que R, Wang SW, Liu WF. Modification of biomaterials with a self-protein inhibits the macrophage response. Adv Healthc Mater 2014; 3:989-94. [PMID: 24573988 PMCID: PMC4272238 DOI: 10.1002/adhm.201300532] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Indexed: 12/27/2022]
Abstract
A biomaterial inhibits the host immune response by displaying an endo-genously expressed immunomodulatory molecule, CD200. Immobilization of CD200 onto biomaterial surfaces effectively suppresses macrophage activation and reduces inflammatory response to subcutaneously implanted materials.
Collapse
Affiliation(s)
- Yoon Kyung Kim
- Department of Biomedical Engineering, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine
| | - Richard Que
- Department of Biomedical Engineering, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, USA
| | - Szu-Wen Wang
- Department of Biomedical Engineering, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, USA
- Department of Chemical Engineering & Materials Science, University of California, Irvine
| | - Wendy F. Liu
- Department of Biomedical Engineering, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine
- Department of Chemical Engineering & Materials Science, University of California, Irvine
| |
Collapse
|
148
|
Lee RW, Nicholson LB, Sen HN, Chan CC, Wei L, Nussenblatt RB, Dick AD. Autoimmune and autoinflammatory mechanisms in uveitis. Semin Immunopathol 2014; 36:581-94. [PMID: 24858699 PMCID: PMC4186974 DOI: 10.1007/s00281-014-0433-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/13/2014] [Indexed: 12/12/2022]
Abstract
The eye, as currently viewed, is neither immunologically ignorant nor sequestered from the systemic environment. The eye utilises distinct immunoregulatory mechanisms to preserve tissue and cellular function in the face of immune-mediated insult; clinically, inflammation following such an insult is termed uveitis. The intra-ocular inflammation in uveitis may be clinically obvious as a result of infection (e.g. toxoplasma, herpes), but in the main infection, if any, remains covert. We now recognise that healthy tissues including the retina have regulatory mechanisms imparted by control of myeloid cells through receptors (e.g. CD200R) and soluble inhibitory factors (e.g. alpha-MSH), regulation of the blood retinal barrier, and active immune surveillance. Once homoeostasis has been disrupted and inflammation ensues, the mechanisms to regulate inflammation, including T cell apoptosis, generation of Treg cells, and myeloid cell suppression in situ, are less successful. Why inflammation becomes persistent remains unknown, but extrapolating from animal models, possibilities include differential trafficking of T cells from the retina, residency of CD8+ T cells, and alterations of myeloid cell phenotype and function. Translating lessons learned from animal models to humans has been helped by system biology approaches and informatics, which suggest that diseased animals and people share similar changes in T cell phenotypes and monocyte function to date. Together the data infer a possible cryptic infectious drive in uveitis that unlocks and drives persistent autoimmune responses, or promotes further innate immune responses. Thus there may be many mechanisms in common with those observed in autoinflammatory disorders.
Collapse
Affiliation(s)
- Richard W Lee
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, University Hospitals Bristol NHS, Foundation Trust, and University of Bristol, Bristol, UK
| | | | | | | | | | | | | |
Collapse
|
149
|
Lynch MA. The impact of neuroimmune changes on development of amyloid pathology; relevance to Alzheimer's disease. Immunology 2014; 141:292-301. [PMID: 23876085 DOI: 10.1111/imm.12156] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammatory changes are a characteristic of several, if not all, neurodegenerative diseases including Alzheimer's disease and are typified by increased microglial activation. Microglia express several receptors making them highly reactive and plastic cells, and, at least in vitro, they adopt different phenotypes in a manner analogous to their peripheral counterparts, macrophages. Microglia also express numerous cell surface proteins enabling them to interact with cells and the evidence indicates that maintenance of microglia in a quiescent state relies, at least to some extent, on an interaction with neurons by means of specific ligand-receptor pairs, for example CD200-CD200R. It is clear that microglia also interact with T cells and recent evidence indicates that co-incubation of microglia with T helper type 1 cells markedly increases their activation. Under normal conditions, small numbers of activated T cells gain entry to the brain and are involved in immune surveillance but infiltration of significant numbers of T cells occurs in disease and following injury. The consequences of T cell infiltration appear to depend on the conditions, with descriptions of both neurodestructive and neuroprotective effects in animal models of different diseases. This review will discuss the modulatory effect of T cells on microglia and the impact of infiltration of T cells into the brain with a focus on Alzheimer's disease, and will propose that infiltration of interferon-γ-producing cells may be an important factor in triggering inflammation that is pathogenic and destructive.
Collapse
Affiliation(s)
- Marina A Lynch
- Trinity College Institute for Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
150
|
Dentesano G, Serratosa J, Tusell JM, Ramón P, Valente T, Saura J, Solà C. CD200R1 and CD200 expression are regulated by PPAR-γ in activated glial cells. Glia 2014; 62:982-98. [PMID: 24639050 DOI: 10.1002/glia.22656] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 12/18/2022]
Abstract
The mechanisms that control microglial activation are of interest, since neuroinflammation, which involves reactive microglia, may be an additional target in the search for therapeutic strategies to treat neurodegenerative diseases. Neuron-microglia interaction through contact-dependent or independent mechanisms is involved in the regulation of the microglial phenotype in both physiological and pathological conditions. The interaction between CD200, which is mainly present in neurons but also in astrocytes, and CD200R1, which is mainly present in microglia, is one of the mechanisms involved in keeping the microglial proinflammatory phenotype under control in physiological conditions. Alterations in the expression of CD200 and CD200R1 have been described in neurodegenerative diseases, but little is known about the mechanism of regulation of these proteins under physiological or pathological conditions. The aim of this work was to study the modulation of CD200 and CD200R1 expression by peroxisome proliferator-activated receptor gamma (PPAR-γ), a transcription factor involved in the control of the inflammatory response. Mouse primary neuronal and glial cultures and neuron-microglia cocultures were treated with the PPAR-γ endogenous ligand 15-deoxy-Δ(12, 14) -prostaglandin J2 (15d-PGJ2 ) in the presence and absence of lipopolysaccharide plus interferon-γ (LPS/IFN-γ)-induced glial activation. We show that 15d-PGJ2 inhibits the pro-inflammatory response and prevents both CD200R1 downregulation and CD200 upregulation in reactive glial cells. In addition, 15d-PGJ2 abrogates reactive-microglia induced neurotoxicity in neuron-microglia cultures through a CD200-CD200R1 dependent mechanism. These results suggest that PPAR-γ modulates CD200 and CD200R1 gene expression and that CD200-CD200R1 interaction is involved in the anti-inflammatory and neuroprotective action of PPAR-γ agonists.
Collapse
Affiliation(s)
- Guido Dentesano
- Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|