101
|
Gasparini G, Pellegatta M, Crippa S, Lena MS, Belfiori G, Doglioni C, Taveggia C, Falconi M. Nerves and Pancreatic Cancer: New Insights into a Dangerous Relationship. Cancers (Basel) 2019; 11:E893. [PMID: 31248001 PMCID: PMC6678884 DOI: 10.3390/cancers11070893] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/24/2022] Open
Abstract
Perineural invasion (PNI) is defined as the presence of neoplastic cells along nerves and/or within the different layers of nervous fibers: epineural, perineural and endoneural spaces. In pancreatic cancer-particularly in pancreatic ductal adenocarcinoma (PDAC)-PNI has a prevalence between 70 and 100%, surpassing any other solid tumor. PNI has been detected in the early stages of pancreatic cancer and has been associated with pain, increased tumor recurrence and diminished overall survival. Such an early, invasive and recurrent phenomenon is probably crucial for tumor growth and metastasis. PNI is a still not a uniformly characterized event; usually it is described only dichotomously ("present" or "absent"). Recently, a more detailed scoring system for PNI has been proposed, though not specific for pancreatic cancer. Previous studies have implicated several molecules and pathways in PNI, among which are secreted neurotrophins, chemokines and inflammatory cells. However, the mechanisms underlying PNI are poorly understood and several aspects are actively being investigated. In this review, we will discuss the main molecules and signaling pathways implicated in PNI and their roles in the PDAC.
Collapse
Affiliation(s)
- Giulia Gasparini
- Pancreas Translational & Clinical Research Center, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
- Axo-Glial Interaction Unit, INSPE, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Marta Pellegatta
- Axo-Glial Interaction Unit, INSPE, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Stefano Crippa
- Pancreas Translational & Clinical Research Center, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
- Vita Salute San Raffaele University, 20132 Milan, Italy.
| | - Marco Schiavo Lena
- Pathology Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Giulio Belfiori
- Pancreas Translational & Clinical Research Center, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Claudio Doglioni
- Vita Salute San Raffaele University, 20132 Milan, Italy.
- Pathology Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Carla Taveggia
- Axo-Glial Interaction Unit, INSPE, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Massimo Falconi
- Pancreas Translational & Clinical Research Center, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
- Vita Salute San Raffaele University, 20132 Milan, Italy.
| |
Collapse
|
102
|
Cao H, Feng Y, Chen L, Yu C. Lobaplatin Inhibits Prostate Cancer Proliferation and Migration Through Regulation of BCL2 and BAX. Dose Response 2019; 17:1559325819850981. [PMID: 31217754 PMCID: PMC6557032 DOI: 10.1177/1559325819850981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/10/2019] [Accepted: 04/23/2019] [Indexed: 11/17/2022] Open
Abstract
Lobaplatin is a diastereometric mixture of platinum (II) complexes, which contain a 1,2-bis (aminomethyl) cyclobutane stable ligand and lactic acid. Previous studies have showed that lobaplatin plays inhibiting roles in various types of tumors. However, the role of lobaplatin in prostate cancer remains unknown. Cell viability was detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Cell proliferation was detected by cell colony formation assay. Cell migration and invasion were determined by transwell migration and invasion assay. Cell apoptosis was detected by flow cytometry. The messenger RNA and protein expression levels were detected by quantitative real-time polymerase chain reaction and Western blot. Lobaplatin treatment inhibits cell viability, cell proliferation, cell migration, and invasion, while promotes cell apoptosis of prostate cancer cell lines DU145 and PC3. Meanwhile, lobaplatin treatment regulates apoptosis by downregulation of BCL2 expression and upregulation of BAX expression levels. Our study suggests lobaplatin inhibits prostate cancer proliferation and migration through regulation of BCL2 and BAX expression.
Collapse
Affiliation(s)
- Hongwen Cao
- Surgical Department I (Urology Department), LONGHUA Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yigeng Feng
- Surgical Department I (Urology Department), LONGHUA Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Chen
- Surgical Department I (Urology Department), LONGHUA Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Yu
- Surgical Department I (Urology Department), LONGHUA Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
103
|
Kim MS, Han KD, Kwon SY. Pre-diagnostic beta-blocker use and head- and neck cancer risk: A nationwide population-based case-control study. Medicine (Baltimore) 2019; 98:e16047. [PMID: 31192963 PMCID: PMC6587613 DOI: 10.1097/md.0000000000016047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
β-blockers have been reported to exhibit potential anticancer effects in various cancer studies. However, few clinical studies concerning head and neck cancer have been conducted. We hypothesized that β-blockers could decrease the incidence of head and neck cancer. Therefore, we investigated the association between β-blocker treatment and head and neck cancer incidence.Between January 2006 and December 2015, we selected 12,127 patients with head and neck cancer for this nationwide study using data from the Korean Health Insurance Review and Assessment Service. The patients were matched 1:5 with 60,635 control participants according to age, sex, and, region. Logistic regression analysis was used to estimate the odds ratios (ORs) and 95% confidence intervals (CIs) of cancer associated with β-blocker treatment. In the analysis, a crude (simple), adjusted model (adjusted model for age, sex, income, region of residence, hypertension, diabetes, and hyperlipidemia) was used.The OR for head and neck cancer incidence was not lower in the β-blocker cohort (OR: 1.18; 95% CI: 1.105-1.26), especially for the oral cavity (OR: 1.165; 95% CI: 1.013-1.340), hypopharynx (OR: 1.555; 95% CI: 1.232-1.963), nasopharynx (OR: 1.251; 95% CI: 1-1.564), and paranasal sinus (OR: 1.378; 95% CI: 1.027-1.849). The duration of β-blocker use was not related to head and neck cancer incidence.This study did not provide evidence that β-blockers can decrease the risk of head and neck cancer.
Collapse
Affiliation(s)
- Min-Su Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam
| | - Kyung Do Han
- Department of Biostatistics, College of Medicine, The Catholic University of Korea
| | - Soon Young Kwon
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
104
|
Calvani M, Bruno G, Dal Monte M, Nassini R, Fontani F, Casini A, Cavallini L, Becatti M, Bianchini F, De Logu F, Forni G, la Marca G, Calorini L, Bagnoli P, Chiarugi P, Pupi A, Azzari C, Geppetti P, Favre C, Filippi L. β 3 -Adrenoceptor as a potential immuno-suppressor agent in melanoma. Br J Pharmacol 2019; 176:2509-2524. [PMID: 30874296 DOI: 10.1111/bph.14660] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/02/2019] [Accepted: 02/22/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Stress-related catecholamines have a role in cancer and β-adrenoceptors; specifically, β2 -adrenoceptors have been identified as new targets in treating melanoma. Recently, β3 -adrenoceptors have shown a pleiotropic effect on melanoma micro-environment leading to cancer progression. However, the mechanisms by which β3 -adrenoceptors promote this progression remain poorly understood. Catecholamines affect the immune system by modulating several factors that can alter immune cell sub-population homeostasis. Understanding the mechanisms of cancer immune-tolerance is one of the most intriguing challenges in modern research. This study investigates the potential role of β3 -adrenoceptors in immune-tolerance regulation. EXPERIMENTAL APPROACH A mouse model of melanoma in which syngeneic B16-F10 cells were injected in C57BL-6 mice was used to evaluate the effect of β-adrenoceptor blockade on the number and activity of immune cell sub-populations (Treg, NK, CD8, MDSC, macrophages, and neutrophils). Pharmacological and molecular approaches with β-blockers (propranolol and SR59230A) and specific β-adrenoceptor siRNAs targeting β2 - or β3 -adrenoceptors were used. KEY RESULTS Only β3 -, but not β2 -adrenoceptors, were up-regulated under hypoxia in peripheral blood mononuclear cells and selectively expressed in immune cell sub-populations including Treg, MDSC, and NK. SR59230A and β3 -adrenoceptor siRNAs increased NK and CD8 number and cytotoxicity, while they attenuated Treg and MDSC sub-populations in the tumour mass, blood, and spleen. SR59230A and β3 -adrenoceptor siRNAs increased the ratio of M1/M2 macrophages and N1 granulocytes. CONCLUSIONS AND IMPLICATIONS Our data suggest that β3 -adrenoceptors are involved in immune-tolerance, which opens the way for new strategic therapies to overcome melanoma growth. LINKED ARTICLES This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Maura Calvani
- Oncohematology Unit, Department of Pediatric Oncology, Meyer University Children's University Hospital, Florence, Italy
| | - Gennaro Bruno
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Massimo Dal Monte
- Department of Biology, Unit of General Physiology, University of Pisa, Pisa, Italy
| | - Romina Nassini
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Filippo Fontani
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Arianna Casini
- Division of Immunology, Section of Pediatrics, Meyer University Children's Hospital, Florence, Italy
| | - Lorenzo Cavallini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Giulia Forni
- Metabolic and Newborn Screening Clinical Unit, Department of Neurosciences, Meyer University Children's University Hospital, Florence, Italy
| | - Giancarlo la Marca
- Metabolic and Newborn Screening Clinical Unit, Department of Neurosciences, Meyer University Children's University Hospital, Florence, Italy
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paola Bagnoli
- Department of Biology, Unit of General Physiology, University of Pisa, Pisa, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Alberto Pupi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Chiara Azzari
- Department of Health Sciences, University of Florence, Florence, Italy
| | | | - Claudio Favre
- Oncohematology Unit, Department of Pediatric Oncology, Meyer University Children's University Hospital, Florence, Italy
| | - Luca Filippi
- Neonatal Intensive Care Unit, Medical Surgical Fetal-Neonatal Department, Meyer University Children's Hospital, Florence, Italy
| |
Collapse
|
105
|
Rosemary (Rosmarinus officinalis) extract causes ROS-induced necrotic cell death and inhibits tumor growth in vivo. Sci Rep 2019; 9:808. [PMID: 30692565 PMCID: PMC6349921 DOI: 10.1038/s41598-018-37173-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 11/29/2018] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer is the third most common diagnosed cancer globally. Although substantial advances have been obtained both in treatment and survival rates, there is still a need for new therapeutical approaches. Natural compounds are a realistic source of new bioactive compounds with anticancer activity. Among them, rosemary polyphenols have shown a vast antiproliferative capacity against colon cancer cells in vitro and in animal models. We have investigated the antitumor activity of a rosemary extract (RE) obtained by using supercritical fluid extraction through its capacity to inhibit various signatures of cancer progression and metastasis such as proliferation, migration, invasion and clonogenic survival. RE strongly inhibited proliferation, migration and colony formation of colon cancer cells regardless their phenotype. Treatment with RE led to a sharp increase of intracellular ROS that resulted in necrosis cell death. Nrf2 gene silencing increased RE cytotoxic effects, thus suggesting that this pathway was involved in cell survival. These in vitro results were in line with a reduction of tumor growth by oral administration of RE in a xenograft model of colon cancer cells using athymic nude mice. These findings indicate that targeting colon cancer cells by increasing intracellular ROS and decreasing cell survival mechanisms may suppose a therapeutic option in colon cancer through the combination of rosemary compounds and chemotherapeutic drugs.
Collapse
|
106
|
Palma S, Keilani M, Hasenoehrl T, Crevenna R. Impact of supportive therapy modalities on heart rate variability in cancer patients - a systematic review. Disabil Rehabil 2018; 42:36-43. [PMID: 30512975 DOI: 10.1080/09638288.2018.1514664] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Purpose: To systematically review literature for interventional studies and their impact on autonomic dysfunction assessed by heart rate variability in cancer patients.Methods: Research was conducted using the databases Medline/Pubmed, Scopus, and Web of science from their inception to October 2017. Original articles with an interventional design that reported changes in at least one heart rate variability parameter as outcome parameter were included and described.Results: Ten studies were identified as eligible for subsequent analysis. The main application field in oncological therapy setting was music therapy intervention, Traditional Chinese Medicine related treatments, exercise interventions, relaxation, and myofascial release techniques. Breast cancer was the most frequently described single cancer entity. Heart rate variability recording was performed with standard electrocardiography devices or wearable heart rate monitors, within a time range between 5 and 20 min and a sampling rate varying from 200 to 1000 Hz. No adverse events were reported in all studies.Conclusions: Supportive therapy modalities may have the potential to enhance vegetative functioning. In this context, heart rate variability analysis appears to be an easily applicable and safe method to evaluate cancer related autonomic dysfunction. More large prospective multicentre randomised controlled trials are needed.Implication for rehabilitationMost cancer patients face autonomic dysfunction due to the disease itself the applied treatments or combination of both.HRV measurement is an easy and safe method to asses autonomic dysfunction.Supportive treatments targeting on an elevation of the vagal tone and autonomic balance in general might have beneficial effects for cancer patients.
Collapse
Affiliation(s)
- Stefano Palma
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Vienna, Austria
| | - Mohammad Keilani
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Vienna, Austria
| | - Timothy Hasenoehrl
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Vienna, Austria
| | - Richard Crevenna
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
107
|
Shukla RS, Aggarwal Y. NONLINEAR HEART RATE VARIABILITY-BASED ANALYSIS AND PREDICTION OF PERFORMANCE STATUS IN PULMONARY METASTASES PATIENTS. BIOMEDICAL ENGINEERING: APPLICATIONS, BASIS AND COMMUNICATIONS 2018. [DOI: 10.4015/s1016237218500436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer causes chronic stress and is associated with impaired autonomic nervous system (ANS). Heart rate variability (HRV) has been suggested to be an important tool in the identification and prediction of performance status (PS) in cancer. Lead II surface electrocardiogram (ECG) was recorded from 24 pulmonary metastases (PM) subjects and 30 healthy controls for nonlinear HRV analysis. Artificial neural network (ANN) and support vector machine (SVM) were applied for the prediction analysis. Analysis of variance (ANOVA) along with post-hoc Tukey’s HSD test was conducted using statistical R, 64-bit, v.3.3.2, at [Formula: see text]. The obtained results suggested lower HRV that increases with cancer severity from the Eastern Cooperative Oncology Group (ECOG)1 PS to ECOG4 PS. ANOVA results stated that approximate entropy (ApEn) ([Formula: see text]-[Formula: see text], [Formula: see text]), detrended fluctuation analysis (DFA) [Formula: see text] ([Formula: see text]-[Formula: see text], [Formula: see text]) and correlation dimension (CD) ([Formula: see text]-[Formula: see text], [Formula: see text]) were significant. The 13 nonlinear features were fed to ANN and SVM to obtain 82.25% and 100% accuracies, respectively. Nonlinear HRV analysis has given promising results in the prediction of diagnosis of PS in PM patients. These inputs would be very useful for clinicians to diagnose PS in their cancer patients and improve their quality of living.
Collapse
Affiliation(s)
- Reema Shyamsunder Shukla
- Department of BioEngineering, Birla Institute of Technology Mesra, Ranchi 835215 Jharkhand, India
| | - Yogender Aggarwal
- Department of BioEngineering, Birla Institute of Technology Mesra, Ranchi 835215 Jharkhand, India
| |
Collapse
|
108
|
Sarfraz I, Rasul A, Hussain G, Hussain SM, Ahmad M, Nageen B, Jabeen F, Selamoglu Z, Ali M. Malic enzyme 2 as a potential therapeutic drug target for cancer. IUBMB Life 2018; 70:1076-1083. [PMID: 30160039 DOI: 10.1002/iub.1930] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/03/2018] [Accepted: 07/13/2018] [Indexed: 12/15/2022]
Abstract
Reprogrammed metabolic profile is a biochemical fingerprint of cancerous cells, which represents one of the "hallmarks of cancer." The aberrant expression pattern of enzymatic machineries orchestrates metabolic activities into a platform that ultimately promotes cellular growth, survival, and proliferation. The NADP(+)-dependent mitochondrial malic enzyme 2 (ME2) has been widely appreciated due to its function as a provider of pyruvate and reducing power to the cell for biosynthesis of fatty acids and nucleotides along with maintenance of redox balance. Multiple lines of evidences have indicated that ME2 is a bonafide therapeutic target and novel biomarker which plays critical role during tumorigenesis. The objective of this review is to provide an update on the cancer-specific role of ME2 in order to explore its potential for therapeutic opportunities. Furthermore, we have discussed the potential of genetic and pharmacological inhibitors of ME2 in the light of previous research work for therapeutic advancements in cancer treatment. It is contemplated that additional investigations should focus on the use of ME2 inhibitors in combinational therapies as rational combinations of metabolic inhibitors and chemotherapy may have the ability to cure cancer. © 2018 IUBMB Life, 70(11):1076-1083, 2018.
Collapse
Affiliation(s)
- Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Syed Makhdoom Hussain
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Faculty of Physical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Bushra Nageen
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zeliha Selamoglu
- Nigde Omer Halisdemir University, Faculty of Medicine, Department of Medical Biology, Nigde, Turkey
| | - Muhammad Ali
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
109
|
The Vagus Nerve Can Predict and Possibly Modulate Non-Communicable Chronic Diseases: Introducing a Neuroimmunological Paradigm to Public Health. J Clin Med 2018; 7:jcm7100371. [PMID: 30347734 PMCID: PMC6210465 DOI: 10.3390/jcm7100371] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022] Open
Abstract
Global burden of diseases (GBD) includes non-communicable conditions such as cardiovascular diseases, cancer and chronic obstructive pulmonary disease. These share important behavioral risk factors (e.g., smoking, diet) and pathophysiological contributing factors (oxidative stress, inflammation and excessive sympathetic activity). This article wishes to introduce to medicine and public health a new paradigm to predict, understand, prevent and possibly treat such diseases based on the science of neuro-immunology and specifically by focusing on vagal neuro-modulation. Vagal nerve activity is related to frontal brain activity which regulates unhealthy lifestyle behaviors. Epidemiologically, high vagal activity, indexed by greater heart rate variability (HRV), independently predicts reduced risk of GBD and better prognosis in GBD. Biologically, the vagus nerve inhibits oxidative stress, inflammation and sympathetic activity (and associated hypoxia). Finally, current non-invasive methods exist to activate this nerve for neuro-modulation, and have promising clinical effects. Indeed, preliminary evidence exists for the beneficial effects of vagal nerve activation in diabetes, stroke, myocardial infarction and possibly cancer. Thus, we propose to routinely implement measurement of HRV to predict such GBD in populations, and to test in randomized controlled trials effects of non-invasive vagal nerve activation on prevention and treatment of GBD, reflecting possible neuro-modulation of health.
Collapse
|
110
|
Zingue S, Michel T, Cisilotto J, Tueche AB, Ndinteh DT, Mello LJ, Njamen D, Creczynski-Pasa TB. The hydro-ethanolic extract of Acacia seyal (Mimosaceae) stem barks induced death in an ER-negative breast cancer cell line by the intrinsic pathway of apoptosis and inhibited cell migration. JOURNAL OF ETHNOPHARMACOLOGY 2018; 223:41-50. [PMID: 29783017 DOI: 10.1016/j.jep.2018.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/11/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Despite the significant developments occurring in the treatment of cancer, it still remains the second deadly disease, responsible for 8.2 million deaths every year. Various natural substances have been studied for active molecules of tumor suppression in the past and the tropical flora, by its diversity, continues to provide new antitumor drugs. Acacia seyal is a plant used in Cameroonian traditional system to treat cancer. It exhibited cytotoxic effects towards human breast adenocarcinoma cells. The present work was therefore designed to elucidate the underlying mechanisms by which A. seyal extract induced its cytotoxic effect. METHODS The cell death mechanism (apoptosis or necrosis) and cell cycle analyses were assessed using flow cytometry. The levels of reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨm), caspases activities as well as Bcl-2 and Bcl-xL protein contents were assessed in MDA-MB-231 cells. Afterwards, cell migration/invasion was also assessed. RESULTS The A. seyal extract induced apoptosis in MDA-MB-231 cells, while it failed to do so in MCF-7 cells. It induced cell cycle arrest in G2/M phase. Further it induced a decrease in ΔΨm, an increase in ROS levels and caspases activities as well as a down regulation in Bcl-2 and Bcl-xL protein contents in MDA-MB-231 cells. Moreover, A. seyal extract exhibited anti-migration, anti-invasion activities in MDA-MB-231 cells. CONCLUSION These results demonstrate that A. seyal extract induced its antitumor effects mainly by interference in metastasis related events, by triggering apoptosis through a ROS-mediated mitochondrial pathway.
Collapse
Affiliation(s)
- Stephane Zingue
- Department of Life and Earth Sciences, Higher Teachers' Training College, University of Maroua, P.O. Box 55, Maroua, Cameroon; Department of Applied Chemistry, Faculty of Science, University of Johannesburg, Doornfontein 2028, South Africa; Department of Pharmaceutical Sciences, Health Sciences Centre, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - Thomas Michel
- Institute of Chemistry of Nice, Faculty of Science, University Côte d'Azur, UMR CNRS 7272, Valrose Park, Nice Cedex 2, France
| | - Julia Cisilotto
- Department of Pharmaceutical Sciences, Health Sciences Centre, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Alain Brice Tueche
- Department of Life and Earth Sciences, Higher Teachers' Training College, University of Maroua, P.O. Box 55, Maroua, Cameroon
| | - Derek Tantoh Ndinteh
- Department of Applied Chemistry, Faculty of Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Leônidas João Mello
- Department of Pharmaceutical Sciences, Health Sciences Centre, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Dieudonné Njamen
- Department of Applied Chemistry, Faculty of Science, University of Johannesburg, Doornfontein 2028, South Africa; Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaounde, Cameroon
| | - Tânia Beatriz Creczynski-Pasa
- Department of Pharmaceutical Sciences, Health Sciences Centre, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
111
|
Abstract
Bones provide both skeletal scaffolding and space for hematopoiesis in its marrow. Previous work has shown that these functions were tightly regulated by the nervous system. The central and peripheral nervous systems tightly regulate compact bone remodeling, its metabolism, and hematopoietic homeostasis in the bone marrow (BM). Accumulating evidence indicates that the nervous system, which fine-tunes inflammatory responses and alterations in neural functions, may regulate autoimmune diseases. Neural signals also influence the progression of hematological malignancies such as acute and chronic myeloid leukemias. Here, we review the interplay of the nervous system with bone, BM, and immunity, and discuss future challenges to target hematological diseases through modulation of activity of the nervous system.
Collapse
Affiliation(s)
- Maria Maryanovich
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York 10461
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Shoichiro Takeishi
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York 10461
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York 10461
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
112
|
The Role of the Vagus Nerve in Cancer Prognosis: A Systematic and a Comprehensive Review. JOURNAL OF ONCOLOGY 2018; 2018:1236787. [PMID: 30057605 PMCID: PMC6051067 DOI: 10.1155/2018/1236787] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/10/2018] [Indexed: 12/11/2022]
Abstract
This article reviews the role of the vagus nerve in tumor modulation and cancer prognosis. We present a systematic review of 12 epidemiological studies examining the relationship between heart rate variability, the main vagus nerve index, and prognosis in cancer patients (survival and tumor markers). These studies show that initially high vagal nerve activity predicts better cancer prognosis, and, in some studies, independent of confounders such as cancer stage and treatments. Since the design of the epidemiological studies is correlational, any causal relationship between heart rate variability and cancer prognosis cannot be inferred. However, various semi-experimental cohort studies in humans and experimental studies in animals have examined this causal relationship. The second part of this paper presents a comprehensive review including human and animal cohort and experimental studies showing that vagotomy accelerates tumor growth, while vagal nerve activation improves cancer prognosis. Based on all reviewed studies, it is concluded that the evidence supports a protective role of the vagus nerve in cancer and specifically in the metastatic stage.
Collapse
|
113
|
Zygulska AL, Furgala A, Krzemieniecki K, Wlodarczyk B, Thor P. Autonomic dysregulation in colon cancer patients. Cancer Invest 2018; 36:255-263. [DOI: 10.1080/07357907.2018.1474893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Agata Furgala
- Department of Pathophysiology, Medical College, Jagiellonian University, Cracow, Poland
| | - Krzysztof Krzemieniecki
- Department of Oncology, the University Hospital, Cracow, Poland
- Department of Oncology, Jagiellonian University, Cracow, Poland
| | - Beata Wlodarczyk
- Department of Pathophysiology, Medical College, Jagiellonian University, Cracow, Poland
| | - Piotr Thor
- Department of Pathophysiology, Medical College, Jagiellonian University, Cracow, Poland
| |
Collapse
|
114
|
Solomon I, Voiculescu VM, Caruntu C, Lupu M, Popa A, Ilie MA, Albulescu R, Caruntu A, Tanase C, Constantin C, Neagu M, Boda D. Neuroendocrine Factors and Head and Neck Squamous Cell Carcinoma: An Affair to Remember. DISEASE MARKERS 2018; 2018:9787831. [PMID: 29854027 PMCID: PMC5966665 DOI: 10.1155/2018/9787831] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/21/2018] [Accepted: 04/15/2018] [Indexed: 02/07/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive malignancies. Therefore, the major goal of cancer treatment is inhibition of tumor cell growth and of metastasis development. In order to choose the best management option for HNSCC patients, we need to identify reliable prognostic factors and to develop new molecular techniques in order to obtain a better understanding of therapy resistance. By acting as neurohormones, neurotransmitters, or neuromodulators, the neuroendocrine factors are able to signal the maintenance of physiological homeostasis or progression to malignant disease. Certain neuropeptides possess strong antitumor properties acting as tumor suppressors and immunomodulators, providing additional benefits for future potential therapeutic strategies. In light of the current understanding, cancer starts as a localized disease that can be effectively treated if discovered on proper time. Unfortunately, more than often cancer cells migrate to the surrounding tissues generating distant metastases, thus making the prognosis and survival in this stage much worse. As cellular migration is mandatory for tumor invasion and metastasis development, searching for alternate controllers of these processes, such as the neuroendocrine factors, it is an active tremendous task.
Collapse
Affiliation(s)
- Iulia Solomon
- Department of Dermatology and Allergology, Elias Emergency University Hospital, Bucharest, Romania
| | - Vlad Mihai Voiculescu
- Department of Dermatology and Allergology, Elias Emergency University Hospital, Bucharest, Romania
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Dermatology, “Prof. N. C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest, Romania
| | - Mihai Lupu
- Department of Dermatology, MEDAS Titan Medical Center, Bucharest, Romania
| | - Alexandra Popa
- Department of Dermatology and Allergology, Elias Emergency University Hospital, Bucharest, Romania
| | - Mihaela Adriana Ilie
- Dermatology Research Laboratory, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Radu Albulescu
- Chemical and Pharmaceutical National Institute, Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, Carol Davila Central Military Emergency Hospital, Bucharest, Romania
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Cristiana Tanase
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Carolina Constantin
- Victor Babes National Institute of Pathology, Bucharest, Romania
- Colentina Clinical Hospital, Bucharest, Romania
| | - Monica Neagu
- Victor Babes National Institute of Pathology, Bucharest, Romania
- Colentina Clinical Hospital, Bucharest, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Daniel Boda
- Dermatology Research Laboratory, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
115
|
Gidron Y, De Couck M, Schallier D, De Greve J, Van Laethem JL, Maréchal R. The Relationship between a New Biomarker of Vagal Neuroimmunomodulation and Survival in Two Fatal Cancers. J Immunol Res 2018; 2018:4874193. [PMID: 29854838 PMCID: PMC5964597 DOI: 10.1155/2018/4874193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/15/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The vagus nerve may slow tumor progression because it inhibits inflammation. This study examined the relationship between a new vagal neuroimmunomodulation (NIM) index and survival in fatal cancers. METHOD We retroactively derived markers of vagal nerve activity indexed by heart rate variability (HRV), specifically the root mean square of successive differences (RMSSD), from patients' electrocardiograms near diagnosis. The NIM index was the ratio of RMSSD to C-reactive protein levels (RMSSD/CRP). Sample 1 included 202 Belgian patients with advanced pancreatic cancer (PC), while sample 2 included 71 Belgian patients with non-small cell lung cancer (NSCLC). In both samples, we examined the overall survival, while in sample 2, we additionally examined the survival time in deceased patients. RESULTS In PC patients, in a multivariate Cox regression controlling for confounders, the NIM index had a protective relative risk (RR) of 0.68 and 95% confidence interval (95% CI) of 0.51-0.92. In NSCLC patients, the NIM index also had a protective RR of 0.53 and 95% CI of 0.32-0.88. Finally, in NSCLC, patients with a higher NIM index survived more days (475.2) than those with lower NIM (285.1) (p < 0.05). CONCLUSIONS The NIM index, reflecting vagal modulation of inflammation, may be a new independent prognostic biomarker in fatal cancers.
Collapse
Affiliation(s)
- Y. Gidron
- Vrije Universiteit Brussel, Center for Neuroscience, Brussels, Belgium
- Scalab, Université Lille 3, Lille, France
| | - M. De Couck
- Faculty of Health Care, University College Odisee, Aalst, Belgium
- Mental Health and Wellbeing Research Group, Vrije Universiteit Brussel, Ixelles, Belgium
| | | | - J. De Greve
- Mental Health and Wellbeing Research Group, Vrije Universiteit Brussel, Ixelles, Belgium
| | - J. L. Van Laethem
- Department of Gastroenterology, Erasme University Hospital, Brussels, Belgium
| | - R. Maréchal
- Department of Gastroenterology, Erasme University Hospital, Brussels, Belgium
| |
Collapse
|
116
|
Cardiac autonomic modulation impairments in advanced breast cancer patients. Clin Res Cardiol 2018; 107:924-936. [PMID: 29721647 DOI: 10.1007/s00392-018-1264-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/25/2018] [Indexed: 02/07/2023]
Abstract
AIM To compare cardiac autonomic modulation in early- versus advanced-stage breast cancer patients before any type of cancer treatment and investigate associated factors. METHODS AND RESULTS This cross-sectional study included women (30-69 years old) with primary diagnosis of breast cancer and women with benign breast tumors. We evaluated cardiac modulation by heart rate variability and assessed factors of anxiety, depression, physical activity, and other relevant medical variables. Patients were divided into three groups based on TNM staging of cancer severity: early-stage cancer (n = 42), advanced-stage cancer (n = 37), or benign breast tumors to serve as a control (n = 37). We analyzed heart rate variability in time and frequency domains. The advanced-stage cancer group had lower vagal modulation than early-stage and benign groups; also, the advance-stage group had lower overall heart rate variability when compared to benign conditions. Heart rate variability was influenced by age, menopausal status, and BMI. CONCLUSIONS Heart rate variability seems to be a promising, non-invasive tool for early diagnosis of autonomic dysfunction in breast cancer and detection of cardiovascular impairments at cancer diagnosis. Cardiac autonomic modulation is inversely associated with breast cancer staging.
Collapse
|
117
|
Huang C, Li Y, Guo Y, Zhang Z, Lian G, Chen Y, Li J, Su Y, Li J, Yang K, Chen S, Su H, Huang K, Zeng L. MMP1/PAR1/SP/NK1R paracrine loop modulates early perineural invasion of pancreatic cancer cells. Theranostics 2018; 8:3074-3086. [PMID: 29896303 PMCID: PMC5996366 DOI: 10.7150/thno.24281] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/27/2018] [Indexed: 01/09/2023] Open
Abstract
The molecular mechanism of perineural invasion (PNI) is unclear, and insufficient detection during early-stage PNI in vivo hampers its investigation. We aimed to identify a cytokine paracrine loop between pancreatic ductal adenocarcinoma (PDAC) cells and nerves and established a noninvasive method to monitor PNI in vivo. Methods: A Matrigel/ dorsal root ganglia (DRG) system was used to observe PNI in vitro, and a murine sciatic nerve invasion model was established to examine PNI in vivo. PNI was assessed by MRI with iron oxide nanoparticle labeling. We searched publicly available datasets as well as obtained PDAC tissues from 30 patients to examine MMP1 expression in human tumor and non-tumor tissues. Results: Our results showed that matrix metalloproteinase-1 (MMP1) activated AKT and induced protease-activated receptor-1 (PAR1)-expressing DRG to release substance P (SP), which, in turn, activated neurokinin 1 receptor (NK1R)-expressing PDAC cells and enhanced cellular migration, invasion, and PNI via SP/NK1R/ERK. In animals, hind limb paralysis and a decreased hind paw width were observed approximately 20 days after inoculation of cancer cells in the perineurium. MMP1 silencing with shRNA or treatment with either a PAR1 or an NK1R antagonist inhibited PNI. MRI detected PNI as early as 10 days after implantation of PDAC cells. PNI also induced PDAC liver metastasis. Bioinformatic analyses and pathological studies on patient tissues corroborated the clinical relevance of these findings. Conclusion: In this study, we provided evidence that the MMP1/PAR1/SP/NK1R paracrine loop contributes to PNI during the early stage of primary tumor formation. Furthermore, we established a sensitive and non-invasive method to detect nerve invasion using iron oxide nanoparticles and MRI.
Collapse
|
118
|
Salehi B, Zucca P, Sharifi-Rad M, Pezzani R, Rajabi S, Setzer WN, Varoni EM, Iriti M, Kobarfard F, Sharifi-Rad J. Phytotherapeutics in cancer invasion and metastasis. Phytother Res 2018; 32:1425-1449. [DOI: 10.1002/ptr.6087] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Paolo Zucca
- Department of Biomedical Sciences; University of Cagliari; Cagliari Italy
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology; Zabol University of Medical Sciences; Zabol 61663-335 Iran
| | - Raffaele Pezzani
- OU Endocrinology, Dept. Medicine (DIMED); University of Padova; via Ospedale 105 Padova 35128 Italy
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base; Padova Italy
| | - Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - William N. Setzer
- Department of Chemistry; University of Alabama in Huntsville; Huntsville AL 35899 USA
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences; Milan State University; Milan Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences; Milan State University; Milan Italy
| | - Farzad Kobarfard
- Phytochemistry Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Department of Medicinal Chemistry, School of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Department of Chemistry, Richardson College for the Environmental Science Complex; The University of Winnipeg; Winnipeg MB Canada
| |
Collapse
|
119
|
Zhuo B, Li Y, Gu F, Li Z, Sun Q, Shi Y, Shen Y, Zhang F, Wang R, Wang X. Overexpression of CD155 relates to metastasis and invasion in osteosarcoma. Oncol Lett 2018; 15:7312-7318. [PMID: 29725446 DOI: 10.3892/ol.2018.8228] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/20/2017] [Indexed: 11/06/2022] Open
Abstract
The rapid development of metastatic lesions remains the leading cause of mortality for patients with osteosarcoma. CD155 serves a key role in cancer cell migration, invasion and metastasis. However, the function and mechanism of CD155 has not been explored in osteosarcoma metastasis. In the present study, we found that CD155 was significantly upregulated in lung metastatic tissue and the highly metastatic cell line K7M2-WT (K7M2) of osteosarcoma. Overexpression of CD155 in K7M2 cells enhanced lung metastasis, while inhibition of CD155 by an anti-CD155 monoclonal antibody reduced metastasis. Blocking of CD155 also decreased migration and invasion of K7M2 cells in vitro. A western blot analysis revealed that blocking of CD155 inhibits metastasis by downregulating focal adhesion kinase (FAK) and phosphorylated FAK (pFAK) in osteosarcoma. The results revealed that CD155 serves a crucial role in the metastasis of osteosarcoma by regulating FAK and may provide a novel molecular target for therapeutic intervention in metastatic osteosarcoma.
Collapse
Affiliation(s)
- Baobiao Zhuo
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China.,Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Yuan Li
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Feng Gu
- Department of Laboratory Medicine, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Zhengwei Li
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Qingzeng Sun
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Yingchun Shi
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Yang Shen
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Fengfei Zhang
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Rong Wang
- Department of Ultrasound, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiaodong Wang
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| |
Collapse
|
120
|
RAC1 GTP-ase signals Wnt-beta-catenin pathway mediated integrin-directed metastasis-associated tumor cell phenotypes in triple negative breast cancers. Oncotarget 2018; 8:3072-3103. [PMID: 27902969 PMCID: PMC5356866 DOI: 10.18632/oncotarget.13618] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
The acquisition of integrin-directed metastasis-associated (ID-MA) phenotypes by Triple-Negative Breast Cancer (TNBC) cells is caused by an upregulation of the Wnt-beta-catenin pathway (WP). We reported that WP is one of the salient genetic features of TNBC. RAC-GTPases, small G-proteins which transduce signals from cell surface proteins including integrins, have been implicated in tumorigenesis and metastasis by their role in essential cellular functions like motility. The collective percentage of alteration(s) in RAC1 in ER+ve BC was lower as compared to ER-ve BC (35% vs 57%) (brca/tcga/pub2015). High expression of RAC1 was associated with poor outcome for RFS with HR=1.48 [CI: 1.15-1.9] p=0.0019 in the Hungarian ER-veBC cohort. Here we examined how WP signals are transduced via RAC1 in the context of ID-MA phenotypes in TNBC. Using pharmacological agents (sulindac sulfide), genetic tools (beta-catenin siRNA), WP modulators (Wnt-C59, XAV939), RAC1 inhibitors (NSC23766, W56) and WP stimulations (LWnt3ACM, Wnt3A recombinant) in a panel of 6-7 TNBC cell lines, we studied fibronectin-directed (1) migration, (2) matrigel invasion, (3) RAC1 and Cdc42 activation, (4) actin dynamics (confocal microscopy) and (5) podia-parameters. An attenuation of WP, which (a) decreased cellular levels of beta-catenin, as well as its nuclear active-form, (b) decreased fibronectin-induced migration, (c) decreased invasion, (d) altered actin dynamics and (e) decreased podia-parameters was successful in blocking fibronectin-mediated RAC1/Cdc42 activity. Both Wnt-antagonists and RAC1 inhibitors blocked fibronectin-induced RAC1 activation and inhibited the fibronectin-induced ID-MA phenotypes following specific WP stimulation by LWnt3ACM as well as Wnt3A recombinant protein. To test a direct involvement of RAC1-activation in WP-mediated ID-MA phenotypes, we stimulated brain-metastasis specific MDA-MB231BR cells with LWnt3ACM. LWnt3ACM-stimulated fibronectin-directed migration was blocked by RAC1 inhibition in MDA-MB231BR cells. In the light of our previous report that WP upregulation causes ID-MA phenotypes in TNBC tumor cells, here we provide the first mechanism based evidence to demonstrate that WP upregulation signals ID-MA tumor cell phenotypes in a RAC1-GTPase dependent manner involving exchange-factors like TIAM1 and VAV2. Our study demonstrates for the first time that beta-catenin-RAC1 cascade signals integrin-directed metastasis-associated tumor cell phenotypes in TNBC.
Collapse
|
121
|
Arese M, Bussolino F, Pergolizzi M, Bizzozero L, Pascal D. Tumor progression: the neuronal input. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:89. [PMID: 29666812 DOI: 10.21037/atm.2018.01.01] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
One of the challenges of cancer is its heterogeneity and rapid capacity to adapt. Notwithstanding significant progress in the last decades in genomics and precision medicine, new molecular targets and therapies appear highly necessary. One way to approach this complex problem is to consider cancer in the context of its cellular and molecular microenvironment, which includes nerves. The peripheral nerves, the topic of this review, modulate the biological behavior of the cancer cells and influence tumor progression, including the events related to the metastatic spread of the disease. This mechanism involves the release of neurotransmitters directly into the microenvironment and the activation of the corresponding membrane receptors. While this fact appears to complicate further the molecular landscape of cancer, the neurotransmitters are highly investigated molecules, and often are already targeted by well-developed drugs, a fact that can help finding new therapies at a fraction of the cost and time needed for new medicines (through the so-called drug repurposing). Moreover, the modulation of tumor progression by neurotransmitters can probably explain the long-recognized effects of psychological factors on the burden of cancer. We begin with an introduction on the tumor-nervous-connections and a description of the perineural invasion and neoneurogenesis, the two most important interaction patterns of cancer and nerves. Next, we discuss the most recent data that unequivocally demonstrate the necessity of the nervous system for tumor onset and growth. We introduce the molecular players of the tumor-nervous-connections by citing the role of three main families: neurotropic factors, axon guidance molecules, and neurotransmitters. Finally, we review the role the most important neurotransmitters in tumor biology and we conclude by analyzing the significance of the presented data for cancer therapy, with all the potential advantages and caveats.
Collapse
Affiliation(s)
- Marco Arese
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Vascular Oncology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Margherita Pergolizzi
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Laura Bizzozero
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Davide Pascal
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| |
Collapse
|
122
|
Kuol N, Stojanovska L, Apostolopoulos V, Nurgali K. Crosstalk between cancer and the neuro-immune system. J Neuroimmunol 2018; 315:15-23. [DOI: 10.1016/j.jneuroim.2017.12.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 02/07/2023]
|
123
|
Sanaei M, Kavoosi F, Salehi H. Genistein and Trichostatin A Induction of Estrogen Receptor Alpha Gene Expression, Apoptosis and Cell Growth Inhibition in Hepatocellular Carcinoma HepG 2 Cells. Asian Pac J Cancer Prev 2017; 18:3445-3450. [PMID: 29286617 PMCID: PMC5980908 DOI: 10.22034/apjcp.2017.18.12.3445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epigenetic changes such as DNA methylation and histone acetylation play important roles in determining gene expression. Hypermethylation of CpG islands of the promoter region of tumor suppressor genes can greatly influence carcinogenesis through transcriptional silencing. Acetylation of lysine in histone tails causes relaxation of chromatin, which facilitates gene transcription, while deacetylation is associated with condensed chromatin resulting in gene silencing. DNA demethylating agents such as genistein (GE) and histone deacetylase inhibitors (HDACIs) such as trichostatin A (TSA) may strongly reactivate silenced genes and exposure to these two agents in combination is reported to enhance estrogen receptor alpha (ERα) reactivation and induction of apoptosis. The present study was designed to evaluate the effect of these compounds on ERα gene expression, cell viability and apoptosis in hepatocellular carcinoma (HCC) Hep G2 cells. GE exerted biphasic effects; it stimulated cell growth at a low concentration (1 μM) but inhibitory influence was noted with high concentrations (10, 20 and 40 μM). In contrast, TSA demonstrated inhibitory effects on growth at all of concentrations tested. Furthermore, GE and GE/TSA significantly induced apoptosis at all concentrations, but TSA only after 72 h. GE induced ERα re-expression and this was maximal in combined treatment groups treated with GE/TSA for 72 h.
Collapse
Affiliation(s)
- Masumeh Sanaei
- Research Center for Non-communicable Diseases, Jahrom University of Medical sciences, Jahrom, Iran.
| | | | | |
Collapse
|
124
|
Tuglu MM, Bostanabad SY, Ozyon G, Dalkiliç B, Gurdal H. The role of dual‑specificity phosphatase 1 and protein phosphatase 1 in β2‑adrenergic receptor‑mediated inhibition of extracellular signal regulated kinase 1/2 in triple negative breast cancer cell lines. Mol Med Rep 2017; 17:2033-2043. [PMID: 29257221 DOI: 10.3892/mmr.2017.8092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/24/2017] [Indexed: 11/06/2022] Open
Abstract
Triple negative breast cancer cell lines express high levels of β2-adrenergic receptor, which have a significant influence on the activity of extracellular signal‑regulated kinase (ERK)1/2. Therefore, it is important to understand the link between β2‑adrenergic receptor signaling and ERK1/2 activity in terms of cancer cell regulation and cancer progression. Although the molecular mechanisms are not completely clarified, β2‑adrenergic receptor stimulation appears to reduce the basal levels of phosphorylated (p)ERK1/2 in MDA‑MB‑231 breast cancer cells. The aim of the current study was to determine the mechanism of β2‑adrenergic receptor‑mediated ERK1/2 dephosphorylation by investigating the role of dual‑specificity phosphatase (DUSP)1/6 and protein phosphatase (PP)1/2, which are established regulators of ERK1/2 phosphorylation, in MDA‑MB‑231 and MDA‑MB‑468 breast cancer cell lines. (E)‑2‑benzylidene‑3‑(cyclohexylamino)‑2,3‑ dihydro‑1H‑inden‑1‑one (BCI) and calyculin A were employed as DUSP1/6 and PP1/PP2 inhibitors, respectively. Subsequently, the protein levels of DUSP1, PP1, pPP1, ERK1/2 and pERK1/2 were measured by western blot analysis. Cells were transfected with DUSP1 small interfering (si)RNA or PP1 siRNA to inhibit their expression. The results demonstrated that β2‑adrenergic receptor agonists led to the dephosphorylation of basal pERK1/2 in MDA‑MB‑231 and MDA‑MB‑468 cells. The DUSP1/6 inhibitor, BCI, and the PP1/PP2 inhibitor, calyculin A, antagonized the β2‑adrenergic receptor‑mediated dephosphorylation of ERK1/2. Furthermore, β2‑adrenergic receptor stimulation increased the protein expression level of DUSP1, with no effects on DUSP6, PP1 and PP2 expression, and enhanced the expression of the active form of PP1. Downregulation of the expression of DUSP1 or PP1 led to a decline in the β2‑adrenergic receptor‑mediated dephosphorylation of ERK1/2. The results of the present study indicate that β2‑adrenergic receptor‑mediated dephosphorylation of ERK1/2 may be associated with the activity of DUSP1 and PP1 in MDA‑MB‑231 and MDA‑MB‑468 triple negative breast cancer cell lines. The clinical importance of β2‑adrenergic receptor‑mediated inactivation of ERK1/2 as well as the activation of DUSP1 and PP1 should be carefully evaluated in future studies, particularly when β2‑adrenergic blockers are used in patients with triple negative breast cancer.
Collapse
Affiliation(s)
- Matilda Merve Tuglu
- Department of Medical Pharmacology, Faculty of Medicine, University of Ankara, 06100 Ankara, Turkey
| | | | - Gozde Ozyon
- Biotechnology Institute of Ankara University, 06110 Ankara, Turkey
| | - Başak Dalkiliç
- Department of Medical Pharmacology, Faculty of Medicine, University of Ankara, 06100 Ankara, Turkey
| | - Hakan Gurdal
- Department of Medical Pharmacology, Faculty of Medicine, University of Ankara, 06100 Ankara, Turkey
| |
Collapse
|
125
|
Mib1 contributes to persistent directional cell migration by regulating the Ctnnd1-Rac1 pathway. Proc Natl Acad Sci U S A 2017; 114:E9280-E9289. [PMID: 29078376 DOI: 10.1073/pnas.1712560114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Persistent directional cell migration is involved in animal development and diseases. The small GTPase Rac1 is involved in F-actin and focal adhesion dynamics. Local Rac1 activity is required for persistent directional migration, whereas global, hyperactivated Rac1 enhances random cell migration. Therefore, precise control of Rac1 activity is important for proper directional cell migration. However, the molecular mechanism underlying the regulation of Rac1 activity in persistent directional cell migration is not fully understood. Here, we show that the ubiquitin ligase mind bomb 1 (Mib1) is involved in persistent directional cell migration. We found that knockdown of MIB1 led to an increase in random cell migration in HeLa cells in a wound-closure assay. Furthermore, we explored novel Mib1 substrates for cell migration and found that Mib1 ubiquitinates Ctnnd1. Mib1-mediated ubiquitination of Ctnnd1 K547 attenuated Rac1 activation in cultured cells. In addition, we found that posterior lateral line primordium cells in the zebrafish mib1ta52b mutant showed increased random migration and loss of directional F-actin-based protrusion formation. Knockdown of Ctnnd1 partially rescued posterior lateral line primordium cell migration defects in the mib1ta52b mutant. Taken together, our data suggest that Mib1 plays an important role in cell migration and that persistent directional cell migration is regulated, at least in part, by the Mib1-Ctnnd1-Rac1 pathway.
Collapse
|
126
|
Li P, Liu W, Xu Q, Wang C. Clinical significance and biological role of Wnt10a in ovarian cancer. Oncol Lett 2017; 14:6611-6617. [PMID: 29163692 PMCID: PMC5686444 DOI: 10.3892/ol.2017.7062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/25/2017] [Indexed: 12/02/2022] Open
Abstract
Ovarian cancer is one of the five most malignant types of cancer in females, and the only currently effective therapy is surgical resection combined with chemotherapy. Wnt family member 10A (Wnt10a) has previously been identified to serve an oncogenic function in several tumor types, and was revealed to have clinical significance in renal cell carcinoma; however, there is still only limited information regarding the function of Wnt10a in the carcinogenesis of ovarian cancer. The present study identified increased expression levels of Wnt10a in two cell lines, SKOV3 and A2780, using reverse transcription-polymerase chain reaction. Functional analysis indicated that the viability rate and migratory ability of SKOV3 cells was significantly inhibited following Wnt10a knockdown using short interfering RNA (siRNA) technology. The viability rate of SKOV3 cells decreased by ~60% compared with the control and the migratory ability was only ~30% of that in the control. Furthermore, the expression levels of β-catenin, transcription factor 4, lymphoid enhancer binding factor 1 and cyclin D1 were significantly downregulated in SKOV3 cells treated with Wnt10a-siRNA3 or LGK-974, a specific inhibitor of the canonical Wnt signaling pathway. However, there were no synergistic effects observed between Wnt10a siRNA3 and LGK-974, which indicated that Wnt10a activated the Wnt/β-catenin signaling pathway in SKOV3 cells. In addition, using quantitative PCR, Wnt10a was overexpressed in the tumor tissue samples obtained from 86 patients with ovarian cancer when compared with matching paratumoral tissues. Clinicopathological association analysis revealed that Wnt10a was significantly associated with high-grade (grade III, P=0.031) and late-stage (T4, P=0.008) ovarian cancer. Furthermore, the estimated 5-year survival rate was 18.4% for patients with low Wnt10a expression levels (n=38), whereas for patients with high Wnt10a expression (n=48) the rate was 6.3%. The results of the present study suggested that Wnt10a serves an oncogenic role during the carcinogenesis and progression of ovarian cancer via the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ping Li
- Department of Obstetrics and Gynecology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Wenlian Liu
- Department of Obstetrics and Gynecology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Qian Xu
- Department of Obstetrics and Gynecology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Changxiu Wang
- Department of Obstetrics and Gynecology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
127
|
Wang M, Wang J, Li B, Meng L, Tian Z. Recent advances in mechanism-based chemotherapy drug-siRNA pairs in co-delivery systems for cancer: A review. Colloids Surf B Biointerfaces 2017; 157:297-308. [DOI: 10.1016/j.colsurfb.2017.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/18/2022]
|
128
|
Pecceu E, Stebbing B, Martinez Pereira Y, Handel I, Culshaw G, Hodgkiss-Geere H, Lawrence J. Vasovagal tonus index (VVTI) as an indirect assessment of remission status in canine multicentric lymphoma undergoing multi-drug chemotherapy. Vet Res Commun 2017; 41:249-256. [PMID: 28791606 PMCID: PMC5694533 DOI: 10.1007/s11259-017-9695-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/21/2017] [Indexed: 12/19/2022]
Abstract
Vasovagal tonus index (VVTI) is an indirect measure of heart rate variability and may serve as a marker of disease severity. Higher heart rate variability has predicted lower tumour burden and improved survival in humans with various tumour types. The purpose of this pilot study was to evaluate VVTI as a biomarker of remission status in canine lymphoma. The primary hypothesis was that VVTI would be increased in dogs in remission compared to dogs out of remission. Twenty-seven dogs were prospectively enrolled if they had a diagnosis of intermediate to high-grade lymphoma and underwent multidrug chemotherapy. Serial electrocardiogram data were collected under standard conditions and relationships between VVTI, remission status and other clinical variables were evaluated. VVTI from dogs in remission (partial or complete) did not differ from dogs with fulminant lymphoma (naive or at time of relapse). Dogs in partial remission had higher VVTI than dogs in complete remission (p = 0.021). Higher baseline VVTI was associated with higher subsequent scores (p < 0.001). VVTI also correlated with anxiety level (p = 0.03). Based on this pilot study, VVTI did not hold any obvious promise as a useful clinical biomarker of remission status. Further investigation may better elucidate the clinical and prognostic utility of VVTI in dogs with lymphoma.
Collapse
Affiliation(s)
- Evi Pecceu
- Royal (Dick) School of Veterinary Studies & Roslin Institute, University of Edinburgh, Roslin, EH25 9RG, UK.
| | - Brittainy Stebbing
- Royal (Dick) School of Veterinary Studies & Roslin Institute, University of Edinburgh, Roslin, EH25 9RG, UK
| | - Yolanda Martinez Pereira
- Royal (Dick) School of Veterinary Studies & Roslin Institute, University of Edinburgh, Roslin, EH25 9RG, UK
| | - Ian Handel
- Royal (Dick) School of Veterinary Studies & Roslin Institute, University of Edinburgh, Roslin, EH25 9RG, UK
| | - Geoff Culshaw
- Royal (Dick) School of Veterinary Studies & Roslin Institute, University of Edinburgh, Roslin, EH25 9RG, UK
| | - Hannah Hodgkiss-Geere
- Royal (Dick) School of Veterinary Studies & Roslin Institute, University of Edinburgh, Roslin, EH25 9RG, UK.,Small Animal Teaching Hospital, University of Liverpool, Liverpool, CH64 7TE, UK
| | - Jessica Lawrence
- Royal (Dick) School of Veterinary Studies & Roslin Institute, University of Edinburgh, Roslin, EH25 9RG, UK.,College of Veterinary Medicine, University of Minnesota, St Paul, MN, 55108, USA
| |
Collapse
|
129
|
Meißner T, Mark A, Williams C, Berdel WE, Wiebe S, Kerkhoff A, Wardelmann E, Gaiser T, Müller-Tidow C, Rosenstiel P, Arnold N, Leyland-Jones B, Franke A, Stanulla M, Forster M. Metastatic triple-negative breast cancer patient with TP53 tumor mutation experienced 11 months progression-free survival on bortezomib monotherapy without adverse events after ending standard treatments with grade 3 adverse events. Cold Spring Harb Mol Case Stud 2017; 3:mcs.a001677. [PMID: 28679691 PMCID: PMC5495034 DOI: 10.1101/mcs.a001677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 04/24/2017] [Indexed: 01/02/2023] Open
Abstract
A triple-negative breast cancer patient had no hereditary BRCA1, BRCA2, or TP53 risk variants. After exhaustion of standard treatments, she underwent experimental treatments and whole-exome sequencing of tumor, blood, and a metastasis. Well-tolerated experimental bortezomib monotherapy was administered for a progression-free period of 11 mo. After progression, treatments were changed and the exome data were evaluated, expanded with RNA and exome sequencing of a late-stage metastasis. In the final stage, eribulin alone and in combination with anthracyclines were administered. While suffering from grade 3 adverse events, skin metastases progressed. She lived 51 mo after initial diagnosis.Toxicity from anthracyclines and cisplatin may have been due to associated germline variants CBR3 C4Y and V224M and GSTP1 I105V, respectively. Somatic mutations predicted or reported as pathogenic were detected in 38 genes in tumor tissues. All tumor samples harbored the heterozygous TP53 Y220C variant, known to destabilize p53 and down-regulate p53-mediated apoptosis. The success of bortezomib may be explained by the previously reported up-regulation of caspase-mediated apoptosis, which is p53-independent. Phylogenetic analysis of blood, primary tumor, and two metastases inferred an ancestral tumor cell with 12 expressed tumor mutations from which all three tumors may have evolved.Although our first urgent analysis could only include 40 genes, postmortem analysis uncovered the aggressiveness and suggested experimental therapies including 16 actionable targets, partly validated by immunohistochemistry. Exome and transcriptome analyses yielded comprehensive therapy-relevant information and should be considered for patients at first diagnosis.
Collapse
Affiliation(s)
- Tobias Meißner
- Department of Molecular and Experimental Medicine, Avera Cancer Institute, La Jolla, California 92037, USA
| | - Adam Mark
- Department of Molecular and Experimental Medicine, Avera Cancer Institute, La Jolla, California 92037, USA
| | - Casey Williams
- Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Wolfgang E Berdel
- Department of Medicine A, Hematology and Oncology, University Hospital Muenster, D-48149 Muenster, Germany
| | - Stephanie Wiebe
- Department of Medicine A, Hematology and Oncology, University Hospital Muenster, D-48149 Muenster, Germany
| | - Andrea Kerkhoff
- Department of Medicine A, Hematology and Oncology, University Hospital Muenster, D-48149 Muenster, Germany
| | - Eva Wardelmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Muenster, D-48149 Muenster, Germany
| | - Timo Gaiser
- Institute of Pathology Mannheim, University Hospital Mannheim, D-68167 Mannheim, Germany
| | - Carsten Müller-Tidow
- Department of Medicine IV, Hematology and Oncology, University Hospital of Halle (Saale), D-06120 Halle, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Schleswig-Holstein, D-24105 Kiel, Germany
| | - Norbert Arnold
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Schleswig-Holstein, D-24105 Kiel, Germany.,Department of Gynaecology and Obstetrics, University Hospital of Schleswig-Holstein, Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany
| | - Brian Leyland-Jones
- Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Schleswig-Holstein, D-24105 Kiel, Germany
| | - Martin Stanulla
- Department of Pediatric Haematology and Oncology, Hannover Medical School, D-30625 Hannover, Germany
| | - Michael Forster
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Schleswig-Holstein, D-24105 Kiel, Germany
| |
Collapse
|
130
|
Abstract
The morbidity of thyroid cancer is increasing gradually year by year, showing an increasing tendency in nationality, sex, age, tumor size, and tumor staging. The changes of thyroid cell genes, signaling pathways, and related molecular dysfunction promote the occurrence, development, invasion, and metastasis of thyroid cancer. Surgical operation, radioiodine, and endocrinotherapy models can achieve a better prognosis for most patients with thyroid cancer. Although targeted therapeutic drugs bring possible therapeutic opportunities for refractory thyroid cancer, there is a great gap between their predictive value and their actual efficacy. Currently, there is still no completely effective drug for the treatment. Based on the signaling pathways, the "reclaim therapy" for residual tumor and systemic intervention aims to increase anticancer ability and to encourage new directions and thoughts in the treatment of refractory thyroid cancer.
Collapse
Affiliation(s)
- Shan Jin
- Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
| | - Yun-Tian Yang
- Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wuyuntu Bao
- Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
131
|
Pre- and post-diagnostic β-blocker use and lung cancer survival: A population-based cohort study. Sci Rep 2017; 7:2911. [PMID: 28588274 PMCID: PMC5460218 DOI: 10.1038/s41598-017-02913-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/20/2017] [Indexed: 11/08/2022] Open
Abstract
Beta-blockers have been associated with decreased cancer mortality. However, evidence for lung cancer is sparse and reported beneficial effects might be based on biased analyses. In this so far largest study we investigated the association between β-blocker use and lung cancer survival. Therefore, patients with a lung cancer diagnosis between April 1998 and December 2011 were selected from a database linkage of the Netherlands Cancer Registry and the PHARMO Database Network. After matching eligible patients on the propensity score, adjusted hazard ratios (HRs) and corresponding 95% confidence intervals (CI) were calculated using Cox proportional hazards regression to investigate the association between pre-diagnostic and time-dependent β-blocker use and overall survival. Duration and dose-response analyses and stratified analyses by β-blocker type, histological subgroups and stage were conducted. Of 3,340 eligible lung cancer patients, 1437 (43%) took β-blockers four months prior to diagnosis. Pre-diagnostic β-blocker use was not associated with overall survival (HR 1.00 (0.92–1.08)) in the adjusted model. Time-dependent post-diagnostic analysis showed similar results with a HR of 1.03 (0.94–1.11). Trend analyses showed no association for cumulative dose (HR 0.99 (0.97–1.02)) and cumulative duration (HR 1.00 (0.96–1.05)). In conclusion, β-blocker use is not associated with reduced mortality among lung cancer patients.
Collapse
|
132
|
Dittmann J, Ziegfeld A, Jansen L, Gajda M, Kloten V, Dahl E, Runnebaum IB, Dürst M, Backsch C. Gene expression analysis combined with functional genomics approach identifies ITIH5 as tumor suppressor gene in cervical carcinogenesis. Mol Carcinog 2017; 56:1578-1589. [PMID: 28059468 DOI: 10.1002/mc.22613] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/17/2016] [Accepted: 01/03/2017] [Indexed: 12/15/2022]
Abstract
Progression from human papillomavirus-induced premalignant cervical intraepithelial neoplasia (CIN) to cervical cancer (CC) is driven by genetic and epigenetic events. Our microarray-based expression study has previously shown that inter-α-trypsin-inhibitor heavy chain 5 (ITIH5) mRNA levels in CCs were significantly lower than in high-grade precursor lesions (CIN3s). Therefore, we aimed to analyze in depth ITIH5 expression during cervical carcinogenesis in biopsy material and cell culture. Moreover, functional analyses were performed by ectopic expression of ITIH5 in different cell lines. We were able to confirm the validity of our microarray differential expression data by qPCR, demonstrating a clear ITIH5 downregulation in CC as compared with CIN2/3 or normal cervix. ITIH5 protein loss, evaluated by immunohistochemistry, was evident in 81% of CCs, whereas ITIH5 showed weak to moderate cytoplasmic staining in 91% of CIN2/3 cases. In addition, ITIH5 was strongly reduced or absent in seven CC cell lines and in three immortalized keratinocyte cell lines. Moreover, ITIH5 mRNA loss was associated with ITIH5 promoter methylation. ITIH5 expression could be restored in CC cell lines by pharmacological induction of DNA demethylation and histone acetylation. Functionally, ITIH5 overexpression significantly suppressed proliferation of SW756 cells and further resulted in a significant reduction of colony formation and cell migration in both CaSki and SW756 tumor models, but had no effect on invasion. Remarkably, ITIH5 overexpression did not influence the phenotype of HeLa cells. Taken together, ITIH5 gene silencing is a frequent event during disease progression, thereby providing evidence for a tumor suppressive role in cervical carcinogenesis.
Collapse
Affiliation(s)
- Jessica Dittmann
- Department of Gynecology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Angelique Ziegfeld
- Department of Gynecology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Lars Jansen
- Department of Gynecology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Mieczyslaw Gajda
- Institute of Pathology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Vera Kloten
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Edgar Dahl
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Ingo B Runnebaum
- Department of Gynecology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Matthias Dürst
- Department of Gynecology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Claudia Backsch
- Department of Gynecology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
133
|
Effects of short and prolonged transcutaneous vagus nerve stimulation on heart rate variability in healthy subjects. Auton Neurosci 2017; 203:88-96. [DOI: 10.1016/j.autneu.2016.11.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/19/2016] [Accepted: 11/25/2016] [Indexed: 01/14/2023]
|
134
|
Zhou S, Zhang S, Shen H, Chen W, Xu H, Chen X, Sun D, Zhong S, Zhao J, Tang J. Curcumin inhibits cancer progression through regulating expression of microRNAs. Tumour Biol 2017; 39:1010428317691680. [PMID: 28222667 DOI: 10.1177/1010428317691680] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Curcumin, a major yellow pigment and spice in turmeric and curry, is a powerful anti-cancer agent. The anti-tumor activities of curcumin include inhibition of tumor proliferation, angiogenesis, invasion and metastasis, induction of tumor apoptosis, increase of chemotherapy sensitivity, and regulation of cell cycle and cancer stem cell, indicating that curcumin maybe a strong therapeutic potential through modulating various cancer progression. It has been reported that microRNAs as small noncoding RNA molecules are related to cancer progression, which can be regulated by curcumin. Dysregulated microRNAs play vital roles in tumor biology via regulating expressions of target genes and then influencing multiple cancer-related signaling pathways. In this review, we focused on the inhibition effect of curcumin on various cancer progression by regulating expression of multiple microRNAs. Curcumin-induced dysregulation of microRNAs may activate or inactivate a set of signaling pathways, such as Akt, Bcl-2, PTEN, p53, Notch, and Erbb signaling pathways. A better understanding of the relation between curcumin and microRNAs may provide a potential therapeutic target for various cancers.
Collapse
Affiliation(s)
- Siying Zhou
- The First Clinical Medical College, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Sijie Zhang
- Department of Breath Internal Medicine, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Hongyu Shen
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
| | - Wei Chen
- Graduate School, Xuzhou Medical College, Xuzhou, China
| | - Hanzi Xu
- The First Clinical Medical College, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- Department of Radiotherapy, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Xiu Chen
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
| | - Dawei Sun
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Jianhua Zhao
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Jinhai Tang
- The First Clinical Medical College, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
- Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
135
|
Wang T, Li Y, Lu HL, Meng QW, Cai L, Chen XS. β-Adrenergic Receptors : New Target in Breast Cancer. Asian Pac J Cancer Prev 2016; 16:8031-9. [PMID: 26745035 DOI: 10.7314/apjcp.2015.16.18.8031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Preclinical studies have demonstrated that β-adrenergic receptor antagonists could improve the prognosis of breast cancer. However, the conclusions of clinical and pharmacoepidemiological studies have been inconsistent. This review was conducted to re-assess the relationship between beta-adrenoceptor blockers and breast cancer prognosis. MATERIALS AND METHODS The literature was searched from PubMed, EMBASE and Web of Nature (Thompson Reuters) databases through using key terms, such as breast cancer and beta- adrenoceptor blockers. RESULTS Ten publications met the inclusion criteria. Six suggested that receiving beta- adrenoceptor blockers reduced the risk of breast cancer-specific mortality, and three of them had statistical significance (hazard ratio (HR)=0.42; 95% CI=0.18-0.97; p=0.042). Two studies reported that risk of recurrence and distant metastasis (DM) were both significantly reduced. One study demonstrated that the risk of relapse- free survival (RFS) was raised significantly with beta-blockers (BBS) (HR= 0.30; 95% CI=0.10-0.87; p=0.027). One reported longer disease-free interval (Log Rank (LR)=6.658; p=0.011) in BBS users, but there was no significant association between overall survival (OS) and BBS (HR= 0.35; 95% CI=0.12-1.0; p=0.05) in five studies. CONCLUSIONS Through careful consideration, it is suggested that beta-adrenoceptor blockers use may be associated with improved prognosis in breast cancer patients. Nevertheless, larger size studies are needed to further explore the relationship between beta-blocker drug use and breast cancer prognosis.
Collapse
Affiliation(s)
- Ting Wang
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang Province, China E-mail : ;
| | | | | | | | | | | |
Collapse
|
136
|
Kavoosi F, Dastjerdi MN, Valiani A, Esfandiari E, Sanaei M, Hakemi MG. Genistein potentiates the effect of 17-beta estradiol on human hepatocellular carcinoma cell line. Adv Biomed Res 2016; 5:133. [PMID: 27656602 PMCID: PMC5025906 DOI: 10.4103/2277-9175.187395] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/11/2015] [Indexed: 11/16/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. This cancer may be due to a multistep process with an accumulation of epigenetic alterations in tumor suppressor genes (TSGs), leading to hypermethylation of the genes. Hypermethylation of TSGs is associated with silencing and inactivation of them. It is well-known that DNA hypomethylation is the initial epigenetic abnormality recognized in human tumors. Estrogen receptor alpha (ERα) is one of the TSGs which modulates gene transcription and its hypermethylation is because of overactivity of DNA methyltransferases. Fortunately, epigenetic changes especially hypermethylation can be reversed by pharmacological compounds such as genistein (GE) and 17-beta estradiol (E2) which involve in preventing the development of certain cancers by maintaining a protective DNA methylation. The aim of the present study was to analyze the effects of GE on ERα and DNMT1 genes expression and also apoptotic and antiproliferative effects of GE and E2 on HCC. Materials and Methods: Cells were treated with various concentrations of GE and E2 and the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay was used. Furthermore, cells were treated with single dose of GE and E2 (25 μM) and flow cytometry assay was performed. The expression level of the genes was determined by quantitative real-time reverse transcription polymerase chain reaction. Results: GE increased ERα and decreased DNMT1 genes expression, GE and E2 inhibited cell viability and induced apoptosis significantly. Conclusion: GE can epigenetically increase ERα expression by inhibition of DNMT1 expression which in turn increases apoptotic effect of E2. Furthermore, a combination of GE and E2 can induce apoptosis more significantly.
Collapse
Affiliation(s)
- Fraidoon Kavoosi
- Department of Anatomical Sciences, Medical School, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mehdi Nikbakht Dastjerdi
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Valiani
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Esfandiari
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masumeh Sanaei
- Department of Anatomical Sciences, Medical School, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mazdak Ganjalikhani Hakemi
- Cellular and Molecular Immunology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
137
|
Takahashi K, Kaira K, Shimizu A, Sato T, Takahashi N, Ogawa H, Yoshinari D, Yokobori T, Asao T, Takeyoshi I, Oyama T. Clinical significance of β2-adrenergic receptor expression in patients with surgically resected gastric adenocarcinoma. Tumour Biol 2016; 37:13885-13892. [PMID: 27485115 DOI: 10.1007/s13277-016-5139-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 07/11/2016] [Indexed: 01/11/2023] Open
Abstract
The β2-adrenergic receptor (β2-AR) is highly expressed in various human neoplasms and has been considered a novel therapeutic target of cancer treatment. However, the clinicopathological significance of β2-AR expression in patients with gastric cancer (GC) remains unclear. The aim of this study was to explore β2-AR expression and its prognostic significance. A total of 331 patients with surgically resected GC were evaluated. Tumor sections were stained immunohistochemically for β2-AR. And, we confirmed β2-AR expression in the GC cell lines by Western blot. β2-AR was highly expressed in 30.5 % of GC patients. Expression was significantly associated with age, T factor, tumor differentiation, histology of non-signet cells, lymphatic permeation, and vascular invasion. And, all the GC cell lines expressed β2-AR. On univariate analysis, age, disease stage, T factor, N factor, lymphatic permeation, vascular invasion, and β2-AR expression were significantly associated with overall survival. Although the multivariate analysis did not indicate that β2-AR expression was independently prognostic of survival, high-level β2-AR expression was associated with significantly poorer survival of GC patients with well or moderately differentiated tumors. β2-AR expression was a significant predictor of tumor aggressiveness in, and poorer survival of, patients with GC.
Collapse
Affiliation(s)
- Kengo Takahashi
- Department of Thoracic and Visceral Organ Surgery, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kyoichi Kaira
- Department of Oncology Clinical Development, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - Akira Shimizu
- Department of Dermatology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Taisuke Sato
- Department of Thoracic and Visceral Organ Surgery, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Norifumi Takahashi
- Department of Thoracic and Visceral Organ Surgery, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hiroomi Ogawa
- Department of Thoracic and Visceral Organ Surgery, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Daisuke Yoshinari
- Department of Thoracic and Visceral Organ Surgery, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takehiko Yokobori
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takayuki Asao
- Department of Oncology Clinical Development, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Izumi Takeyoshi
- Department of Thoracic and Visceral Organ Surgery, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
138
|
Vilalta M, Rafat M, Graves EE. Effects of radiation on metastasis and tumor cell migration. Cell Mol Life Sci 2016; 73:2999-3007. [PMID: 27022944 PMCID: PMC4956569 DOI: 10.1007/s00018-016-2210-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/25/2016] [Accepted: 03/22/2016] [Indexed: 12/25/2022]
Abstract
It is well known that tumor cells migrate from the primary lesion to distant sites to form metastases and that these lesions limit patient outcome in a majority of cases. However, the extent to which radiation influences this process and to which migration in turn alters radiation response remains controversial. There are preclinical and clinical reports showing that focal radiotherapy can both increase the development of distant metastasis, as well as that it can induce the regression of established metastases through the abscopal effect. More recently, preclinical studies have suggested that radiation can attract migrating tumor cells and may, thereby, facilitate tumor recurrence. In this review, we summarize these phenomena and their potential mechanisms of action, and evaluate their significance for modern radiation therapy strategies.
Collapse
Affiliation(s)
- Marta Vilalta
- Department of Radiation Oncology, Stanford University, 269 Campus Dr., CCSR South Rm. 1255A, Stanford, CA, 94305-5152, USA
| | - Marjan Rafat
- Department of Radiation Oncology, Stanford University, 269 Campus Dr., CCSR South Rm. 1255A, Stanford, CA, 94305-5152, USA
| | - Edward E Graves
- Department of Radiation Oncology, Stanford University, 269 Campus Dr., CCSR South Rm. 1255A, Stanford, CA, 94305-5152, USA.
| |
Collapse
|
139
|
Hu P, He J, Liu S, Wang M, Pan B, Zhang W. β2-adrenergic receptor activation promotes the proliferation of A549 lung cancer cells via the ERK1/2/CREB pathway. Oncol Rep 2016; 36:1757-63. [PMID: 27460700 DOI: 10.3892/or.2016.4966] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/07/2016] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is one of the most common cancers worldwide and accounts for 28% of all cancer-related deaths. The expression of the β2‑adrenergic receptor (β2‑AR), one of the stress‑inducible receptors, has been reported to be closely correlated with malignant tumors. However, the role of β2‑AR activation in human lung epithelial‑derived cancer A549 cells and the underlying mechanisms are not fully understood. In the present study, we found that activation of β2‑AR but not β1‑AR promoted the proliferation of A549 cells. Isoproterenol (ISO) stimulation of β2‑AR induced extracellular signal‑regulated kinase 1/2 (ERK1/2) and cyclic adenosine monophosphate response element‑binding protein (CREB) phosphorylation. Blocking the ERK1/2 pathway by U0126 inhibited CREB phosphorylation and also suppressed A549 cell proliferation. Moreover, ISO treatment enhanced the expression of matrix metalloproteinase (MMP) family proteins such as MMP‑2, MMP‑9, and also vascular endothelial growth factor (VEGF), which were able to be blocked by knockdown of CREB. In conclusion, our data revealed that β2‑AR induced ERK1/2 phosphorylation which in turn activated CREB to promote A549 cell proliferation. These findings elucidate potential therapeutic targets for lung cancer treatment.
Collapse
Affiliation(s)
- Ping Hu
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Jingjing He
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Shiling Liu
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Meng Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Bingxing Pan
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Wenhua Zhang
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| |
Collapse
|
140
|
Yan D, Liu X, Guo SW. Nerve fibers and endometriotic lesions: partners in crime in inflicting pains in women with endometriosis. Eur J Obstet Gynecol Reprod Biol 2016; 209:14-24. [PMID: 27418559 DOI: 10.1016/j.ejogrb.2016.06.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022]
Abstract
One of major objectives in treating endometriosis is to alleviate pain since dysmenorrhea and other types of pain top the list of complaints from women with endometriosis who seek medical attention. Indeed, endometriosis-associated pain (EAP) is the most debilitating of the disease that negatively impacts on the quality of life in affected women, contributing significantly to the burden of disease and adding to the substantial personal and societal costs. Unfortunately, the mechanisms underlying the EAP are still poorly understood. In the last two decades, one active research field in endometriosis is the investigation on the distribution and genesis of nerve fibers in eutopic and ectopic endometrium, and the attempt to use endometrial nerve fiber density for diagnostic purpose. Since EAP presumably starts with the terminal sensory nerves, in or around endometriotic lesions, that transduce noxious mediators to the central nervous system (CNS) which ultimately perceives pain, this field of research holds the promise to elucidate the molecular mechanisms underlying the EAP, thus opening new avenues for novel diagnostics and therapeutics. In this review, we shall first briefly provide some basic facts on nerve fibers, and then provide an overview of some major findings in this filed while also note some conflicting results and expose areas in need of further research. We point out that since recently accumulated evidence suggests that endometriotic lesions are wounds undergoing repeated tissue injury and repair, the relationship between endometriotic lesions and nerve fibers is not simply unidirectional, i.e. lesions promote hyperinnervations. Rather, it is bidirectional, i.e. endometriotic lesions and nerve fibers engage active cross-talks, resulting in the development of endometriosis and pain. That is, nerve fibers and endometriotic lesions are actually partners in crime in inflicting pains in women with endometriosis, aided and abetted possibly by other culprits, some yet to be identified. We provide a list of possible perpetrators likely to be involved in this crime. Finally, we discuss possible implications when viewing the relationship from this vista.
Collapse
Affiliation(s)
- Dingmin Yan
- Shanghai OB/GYN Hospital, Fudan University, Shanghai 200011, China
| | - Xishi Liu
- Shanghai OB/GYN Hospital, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| | - Sun-Wei Guo
- Shanghai OB/GYN Hospital, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
141
|
Abstract
The local extension of cancer cells along nerves is a frequent clinical finding for various tumours. Traditionally, nerve invasion was assumed to occur via the path of least resistance; however, recent animal models and human studies have revealed that cancer cells have an innate ability to actively migrate along axons in a mechanism called neural tracking. The tendency of cancer cells to track along nerves is supported by various cell types in the perineural niche that secrete multiple growth factors and chemokines. We propose that the perineural niche should be considered part of the tumour microenvironment, describe the molecular cues that facilitate neural tracking and suggest methods for its inhibition.
Collapse
Affiliation(s)
- Moran Amit
- Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Head and Neck Center, Rambam Healthcare Campus, Clinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, The Technion-Israel Institute of Technology, Haalia Street No. 8, Haifa, Israel
| | - Shorook Na'ara
- Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Head and Neck Center, Rambam Healthcare Campus, Clinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, The Technion-Israel Institute of Technology, Haalia Street No. 8, Haifa, Israel
| | - Ziv Gil
- Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Head and Neck Center, Rambam Healthcare Campus, Clinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, The Technion-Israel Institute of Technology, Haalia Street No. 8, Haifa, Israel
| |
Collapse
|
142
|
Weberpals J, Jansen L, Carr PR, Hoffmeister M, Brenner H. Beta blockers and cancer prognosis - The role of immortal time bias: A systematic review and meta-analysis. Cancer Treat Rev 2016; 47:1-11. [PMID: 27179912 DOI: 10.1016/j.ctrv.2016.04.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Findings from experimental and observational studies have suggested beneficial effects of beta blocker (BB) use on cancer survival. Nevertheless, results have been inconclusive and there have been concerns that the observed associations might have resulted from immortal time bias (ITB). We conducted a systematic review and meta-analysis to summarize existing evidence, paying particular attention to this potential source of bias. METHODS A systematic literature search was performed in PubMed and Web of Science. Studies investigating the association between BB use and overall or cancer-specific survival were included. Summary estimates were derived from meta-analyses using random effects models. The potential influence of ITB was investigated. RESULTS We identified 30 eligible studies including 88,026 cancer patients in total. We deemed 11 studies to be at high or unclear risk of ITB. Including all studies in the meta-analysis, BB users had a significantly better overall (hazard ratio (HR) 0.88, 95% CI 0.79-0.97) and cancer-specific (HR 0.75, 95% CI 0.64-0.88) survival. Excluding the studies deemed to be prone to ITB resulted in HRs (95% CIs) of 1.00 (0.93-1.07) and 0.90 (0.83-0.98), respectively. Analyses on cancer site and BB type did not show beneficial associations besides overall survival among melanoma patients. However, melanoma-specific survival was not improved. CONCLUSION We found no clinically meaningful evidence for an association between BB use and survival after excluding studies with a possible ITB. Our results support suggestions that the proposed beneficial effect of BBs on cancer survival might be based on ITB.
Collapse
Affiliation(s)
- Janick Weberpals
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lina Jansen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Prudence R Carr
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
143
|
Pristimerin inhibits proliferation, migration and invasion, and induces apoptosis in HCT-116 colorectal cancer cells. Biomed Pharmacother 2016; 79:112-9. [DOI: 10.1016/j.biopha.2016.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/04/2016] [Accepted: 02/06/2016] [Indexed: 11/20/2022] Open
|
144
|
Choy C, Raytis JL, Smith DD, Duenas M, Neman J, Jandial R, Lew MW. Inhibition of β2-adrenergic receptor reduces triple-negative breast cancer brain metastases: The potential benefit of perioperative β-blockade. Oncol Rep 2016; 35:3135-42. [PMID: 27035124 PMCID: PMC4869944 DOI: 10.3892/or.2016.4710] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/05/2015] [Indexed: 01/02/2023] Open
Abstract
In response to recent studies, we investigated an association between perioperative β-blockade and breast cancer metastases. First, a retrospective study examining perioperative β-blocker use and cancer recurrence and metastases was conducted on 1,029 patients who underwent breast cancer surgery at the City of Hope Cancer Center between 2000 and 2010. We followed the clinical study and examined proliferation, migration, and invasion in vitro of primary and brain-metastatic breast cancer cells in response to β2-activation and inhibition. We also investigated in vivo the metastatic potential of propranolol-treated metastatic cells. For stage II breast cancer patients, perioperative β-blockade was associated with decreased cancer recurrence using Cox regression analysis (hazard's ratio =0.51; 95% CI: 0.23-0.97; p=0.041). Triple-negative (TN) brain-metastatic cells were found to have increased β2-adrenergic receptor mRNA and protein expression relative to TN primary cells. In response to β2-adrenergic receptor activation, TN brain-metastatic cells also exhibited increased cell proliferation and migration relative to the control. These effects were abrogated by propranolol. Propranolol decreased β2-adrenergic receptor-activated invasion. In vivo, propranolol treatment of TN brain-metastatic cells decreased establishment of brain metastases. Our results suggest that stress and corresponding β2-activation may promote the establishment of brain metastases of TN breast cancer cells. In addition, our data suggest a benefit to perioperative β-blockade during surgery-induced stress with respect to breast cancer recurrence and metastases.
Collapse
Affiliation(s)
- Cecilia Choy
- Division of Neurosurgery, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - John L Raytis
- Department of Anesthesiology, City of Hope, Duarte, CA 91010, USA
| | - David D Smith
- Department of Biostatistics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Matthew Duenas
- Division of Neurosurgery, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Josh Neman
- Department of Neurosurgery, Keck School of Medicine at the University of Southern California, Los Angeles, CA 90089, USA
| | - Rahul Jandial
- Division of Neurosurgery, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Michael W Lew
- Department of Anesthesiology, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
145
|
Tumour-induced neoneurogenesis and perineural tumour growth: a mathematical approach. Sci Rep 2016; 6:20684. [PMID: 26861829 PMCID: PMC4748234 DOI: 10.1038/srep20684] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/31/2015] [Indexed: 12/21/2022] Open
Abstract
It is well-known that tumours induce the formation of a lymphatic and a blood vasculature around themselves. A similar but far less studied process occurs in relation to the nervous system and is referred to as neoneurogenesis. The relationship between tumour progression and the nervous system is still poorly understood and is likely to involve a multitude of factors. It is therefore relevant to study tumour-nerve interactions through mathematical modelling: this may reveal the most significant factors of the plethora of interacting elements regulating neoneurogenesis. The present work is a first attempt to model the neurobiological aspect of cancer development through a system of differential equations. The model confirms the experimental observations that a tumour is able to promote nerve formation/elongation around itself, and that high levels of nerve growth factor and axon guidance molecules are recorded in the presence of a tumour. Our results also reflect the observation that high stress levels (represented by higher norepinephrine release by sympathetic nerves) contribute to tumour development and spread, indicating a mutually beneficial relationship between tumour cells and neurons. The model predictions suggest novel therapeutic strategies, aimed at blocking the stress effects on tumour growth and dissemination.
Collapse
|
146
|
Zhang J, Deng YT, Liu J, Wang YQ, Yi TW, Huang BY, He SS, Zheng B, Jiang Y. Norepinephrine induced epithelial-mesenchymal transition in HT-29 and A549 cells in vitro. J Cancer Res Clin Oncol 2016; 142:423-35. [PMID: 26358081 DOI: 10.1007/s00432-015-2044-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/03/2015] [Indexed: 02/05/2023]
Abstract
PURPOSE Norepinephrine (NE) has been implicated in epithelial-mesenchymal transition (EMT) of cancer cells. However, the underlying mechanism is poorly understood. The goal of this study was to explore the effect of NE on cancer cell EMT and to investigate the potential mechanism. METHODS HT-29 and A549 cells were treated with NE, β-adrenergic receptor (β-AR) antagonist (propranolol) or inhibitor of transforming growth factor-β (TGF-β) receptor type I kinase (Ly2157299). Morphology of cells was observed with optical and electron microscope and immunofluorescence staining. Cellular migration and invasion were tested with transwell migration assay and Matrigel invasion assay, respectively. TGF-β1 and cyclic adenosine monophosphate (cAMP) were quantified. EMT markers and signaling pathway were measured by RT-PCR and western blot. RESULTS NE stimulated TGF-β1 secretion and intracellular cAMP synthesis, induced morphological alterations in HT-29 and A549 cells, and enhanced their ability of migration and invasion. EMT markers induction was observed in NE-treated cancer cells. The effect of NE could be inhibited by propranolol or Ly2157299. β-AR/TGF-β1 signaling/p-Smad3/Snail and β-AR/TGF-β1 signaling/HIF-1α/Snail were two signaling pathways. CONCLUSION These findings demonstrated that TGF-β1 signaling pathway was a significant factor of NE-induced cancer cells EMT. The data also suggested that psychological stress might be a risk factor which enhances the ability of migration or invasion of cancer cells.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo-Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yao-tiao Deng
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo-Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jie Liu
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo-Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yu-qing Wang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo-Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ting-wu Yi
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo-Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Bo-yan Huang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo-Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Sha-sha He
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo-Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Bo Zheng
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo-Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yu Jiang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo-Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
147
|
Li W, Yu KN, Bao L, Shen J, Cheng C, Han W. Non-thermal plasma inhibits human cervical cancer HeLa cells invasiveness by suppressing the MAPK pathway and decreasing matrix metalloproteinase-9 expression. Sci Rep 2016; 6:19720. [PMID: 26818472 PMCID: PMC4730202 DOI: 10.1038/srep19720] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/27/2015] [Indexed: 12/19/2022] Open
Abstract
Non-thermal plasma (NTP) has been proposed as a novel therapeutic method for anticancer treatment. However, the mechanism underlying its biological effects remains unclear. In this study, we investigated the inhibitory effect of NTP on the invasion of HeLa cells, and explored the possible mechanism. Our results showed that NTP exposure for 20 or 40 s significantly suppressed the migration and invasion of HeLa cells on the basis of matrigel invasion assay and wound healing assay, respectively. Moreover, NTP reduced the activity and protein expression of the matrix metalloproteinase (MMP)-9 enzyme. Western blot analysis indicated that NTP exposure effectively decreased phosphorylation level of both ERK1/2 and JNK, but not p38 MAPK. Furthermore, treatment with MAPK signal pathway inhibitors or NTP all exhibited significant depression of HeLa cells migration and MMP-9 expression. The result showed that NTP synergistically suppressed migration and MMP-9 expression in the presence of ERK1/2 inhibitor and JNK inhibitor, but not p38 MAPK inhibitor. Taken together, these findings suggested that NTP exposure inhibited the migration and invasion of HeLa cells via down-regulating MMP-9 expression in ERK1/2 and JNK signaling pathways dependent manner. These findings provide hints to the potential clinical research and therapy of NTP on cervical cancer metastasis.
Collapse
Affiliation(s)
- Wei Li
- Center of Medical Physics and Technology, Hefei Institutes of Physical
Sciences, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei,
230031, Anhui Province, P.R. China
| | - K. N. Yu
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Lingzhi Bao
- Center of Medical Physics and Technology, Hefei Institutes of Physical
Sciences, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei,
230031, Anhui Province, P.R. China
| | - Jie Shen
- Institute of Plasma Physics, Hefei Institutes of Physical Sciences,
Chinese Academy of Sciences, 350 Shushanhu Road, Hefei,
230031, Anhui Province, P.R. China
| | - Cheng Cheng
- Institute of Plasma Physics, Hefei Institutes of Physical Sciences,
Chinese Academy of Sciences, 350 Shushanhu Road, Hefei,
230031, Anhui Province, P.R. China
| | - Wei Han
- Center of Medical Physics and Technology, Hefei Institutes of Physical
Sciences, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei,
230031, Anhui Province, P.R. China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
148
|
De Couck M, Maréchal R, Moorthamers S, Van Laethem JL, Gidron Y. Vagal nerve activity predicts overall survival in metastatic pancreatic cancer, mediated by inflammation. Cancer Epidemiol 2015; 40:47-51. [PMID: 26618335 DOI: 10.1016/j.canep.2015.11.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/10/2015] [Accepted: 11/13/2015] [Indexed: 12/29/2022]
Abstract
Recent research findings suggest neuro-modulation of tumors. Finding new modifiable prognostic factors paves the way for additional treatments, which is crucial in advanced cancer, particularly pancreatic cancer. This study examined the relationship between vagal nerve activity, indexed by heart rate variability (HRV), and overall survival (OS) in patients (N=272) with advanced pancreatic cancer. A "historical prospective" design was employed, where vagal activity and other confounders were retroactively obtained from medical charts at diagnosis, and subsequent OS was examined. HRV was obtained from 10 sec ECGs near diagnosis. Levels of C-reactive protein (CRP) were measured as an inflammatory marker. OS and survival date were obtained from medical charts and the Belgian national registry. Patients with high HRV (>20 msec) survived on average more than double the days (133.5) than those with low HRV (64.0). In a multivariate cox regression, higher initial HRV was significantly correlated with lower risk of death, independent of confounders including age and cancer treatments. This relationship was statistically mediated (accounted for) by CRP levels. Importantly, in patients who lived up to one month from diagnosis only, HRV was unrelated to CRP, while in patients surviving longer, HRV was significantly inversely related to CRP (r=-0.20, p<0.05). These results are in line with possible vagal nerve protection in a fatal cancer, and propose that the mechanism may involve neuroimmuno-modulation. Future studies must test whether vagal nerve activation may help patients with advanced cancers.
Collapse
Affiliation(s)
- Marijke De Couck
- Mental Health and Wellbeing Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 103 Laarbeeklaan, 1090 Brussels, Belgium.
| | - Raphaël Maréchal
- Department of Gastroenterology, GI Cancer Unit Erasme Universitary Hospital Université Libre de Bruxelles, 808, route de Lennik, 1070 Brussels, Belgium
| | - Sofie Moorthamers
- Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 103 Laarbeeklaan, 1090 Brussels, Belgium
| | - Jean-Luc Van Laethem
- Department of Gastroenterology, GI Cancer Unit Erasme Universitary Hospital Université Libre de Bruxelles, 808, route de Lennik, 1070 Brussels, Belgium
| | - Yori Gidron
- Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 103 Laarbeeklaan, 1090 Brussels, Belgium
| |
Collapse
|
149
|
Sonoda K. Molecular biology of gynecological cancer. Oncol Lett 2015; 11:16-22. [PMID: 26834851 DOI: 10.3892/ol.2015.3862] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 09/24/2015] [Indexed: 12/20/2022] Open
Abstract
Cancer is a pathological condition in which the balance between cell growth and death is disordered. Various molecules have been reported to be involved in the oncogenic process of invasion, metastasis and resistance to treatment. An exponential growth in the collection of genomic and proteomic data in the past 20 years has provided major advances in understanding the molecular mechanisms of human cancer, which has been applied to diagnostic and treatment strategies. Targeted therapies have been developed and adopted, particularly for advanced, refractory or recurrent cancers, depending on individual molecular profiles. The aim of the present review is to provide a report of the current literature regarding the molecular biology of gynecological cancers.
Collapse
Affiliation(s)
- Kenzo Sonoda
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
150
|
Liang WZ, Liu PF, Fu E, Chung HS, Jan CR, Wu CH, Shu CW, Hsieh YD. Selective cytotoxic effects of low-power laser irradiation on human oral cancer cells. Lasers Surg Med 2015; 47:756-64. [PMID: 26395333 DOI: 10.1002/lsm.22419] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Low-power laser irradiation (LPLI) is known to regulate cell proliferation and migration in clinical use. Recent studies have shown that LPLI induces cell death in some certain types of cancer cell lines. However, the cytotoxic selectivity of LPLI for cancer cells is not fully understood. The aim of this study was to compare the cytotoxic effects of LPLI in both human oral cancer OC2 cells and normal human gingival fibroblast (HGF) cells. MATERIALS AND METHODS LPLI at 810 nm with an energy density from 10 to 60 J/cm(2) was used to irradiate human oral cancer OC2 cells and normal HGF cells. RESULTS We found that LPLI significantly diminished cell viability of human oral cancer OC2 cells due to cell cycle arrest at the G1 phase and the induction of cell death but that it had no or little effects on cell cycle progression and death in normal HGF cells. Moreover, the production of reactive oxygen species (ROS) and the loss of mitochondrial membrane potential (MMP) were elevated in human oral cancer OC2 cells compared with the un-irradiated cells. In contrast, these effects remained unchanged in normal HGF cells after exposure to LPLI. LPLI also induced apoptosis in caspase-3 dependent manner in human oral cancer OC2 cells, a mode of action that could be mediated by ROS and mitochondrial damage. CONCLUSION Our findings imply LPLI might be a potential therapy for oral cancers.
Collapse
Affiliation(s)
- Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
| | - Pei-Feng Liu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan.,Department of Biotechnology, Fooyin University, Kaohsiung, 831, Taiwan
| | - Earl Fu
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, 114, Taiwan
| | - Hao-Sheng Chung
- Department of Stomatology, Kaohsiung Veteran General Hospital, Kaohsiung, 813, Taiwan
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
| | - Chih-Hsuan Wu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
| | - Chih-Wen Shu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
| | - Yao-Dung Hsieh
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, 114, Taiwan.,Department of Stomatology, Kaohsiung Veteran General Hospital, Kaohsiung, 813, Taiwan.,Department of Dentistry, Kaohsiung Veterans General Hospital, Pingtung, 912, Taiwan
| |
Collapse
|