101
|
Klusek J, Porter A, Abbeduto L, Adayev T, Tassone F, Mailick MR, Glicksman A, Tonnsen BL, Roberts JE. Curvilinear Association Between Language Disfluency and FMR1 CGG Repeat Size Across the Normal, Intermediate, and Premutation Range. Front Genet 2018; 9:344. [PMID: 30197656 PMCID: PMC6118037 DOI: 10.3389/fgene.2018.00344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 08/09/2018] [Indexed: 12/18/2022] Open
Abstract
Historically, investigations of FMR1 have focused almost exclusively on the clinical effects of CGG expansion within the categories of the premutation (55-200 CGG repeats) and fragile X syndrome (>200 CGG repeats). However, emerging evidence suggests that CGG-dependent phenotypes may occur across allele sizes traditionally considered within the "normal" range. This study adopted an individual-differences approach to determine the association between language production ability and CGG repeat length across the full range of normal, intermediate, and premutation alleles. Participants included 61 adult women with CGG repeats within the premutation (n = 37), intermediate (i.e., 41-54 repeats; n = 2), or normal (i.e., 6-40 repeats; n = 22) ranges. All participants were the biological mothers of a child with a developmental disorder, to control for the potential effects of parenting stress. Language samples were collected and the frequency of language disfluencies (i.e., interruptions in the flow of speech) served as an index of language production skills. Verbal inhibition skills, measured with the Hayling Sentence Completion Test, were also measured and examined as a correlate of language disfluency, consistent with theoretical work linking language disfluency with inhibitory deficits (i.e., the Inhibition Deficit Hypothesis). Blood samples were collected to determine FMR1 CGG repeat size. A general linear model tested CGG repeat size of the larger allele (allele-2) as the primary predictor of language disfluency, covarying for education level, IQ, age, and CGG repeats on the other allele. A robust curvilinear association between CGG length and language disfluency was detected, where low-normal (∼ <25 repeats) and mid-premutation alleles (∼90-110 repeats) were linked with higher rates of disfluency. Disfluency was not associated with inhibition deficits, which challenges prior theoretical work and suggests that a primary language deficit could account for elevated language disfluency in FMR1-associated conditions. Findings suggest CGG-dependent variation in language production ability, which was evident across individuals with and without CGG expansions on FMR1.
Collapse
Affiliation(s)
- Jessica Klusek
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, United States
| | - Anna Porter
- Department of Psychology, University of South Carolina, Columbia, SC, United States
| | - Leonard Abbeduto
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, United States
- MIND Institute, University of California, Davis, Sacramento, CA, United States
| | - Tatyana Adayev
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Flora Tassone
- MIND Institute, University of California, Davis, Sacramento, CA, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, United States
| | - Marsha R. Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Anne Glicksman
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Bridgette L. Tonnsen
- Department of Psychological Sciences, Purdue University, Lafayette, IN, United States
| | - Jane E. Roberts
- Department of Psychology, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
102
|
Famula JL, McKenzie F, McLennan YA, Grigsby J, Tassone F, Hessl D, Rivera SM, Martinez-Cerdeno V, Hagerman RJ. Presence of Middle Cerebellar Peduncle Sign in FMR1 Premutation Carriers Without Tremor and Ataxia. Front Neurol 2018; 9:695. [PMID: 30186228 PMCID: PMC6113389 DOI: 10.3389/fneur.2018.00695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/31/2018] [Indexed: 11/23/2022] Open
Abstract
Here we report five cases of male FMR1 premutation carriers who present without clinical symptoms of the fragile X-associated tremor/ataxia syndrome (FXTAS), but who on MRI demonstrate white matter hyperintensities in the middle cerebellar peduncles (MCP sign) and other brain regions, a rare finding. MCP sign is the major radiological feature of FXTAS; it is therefore remarkable to identify five cases in which this MRI finding is present in the absence of tremor and ataxia, the major clinical features of FXTAS. Subjects underwent a detailed neurological evaluation, neuropsychological testing, molecular testing, and MRI evaluation utilizing T2 imaging described here. Additional white matter disease was present in the corpus callosum in four of the five cases. However, all cases were asymptomatic for motor signs of FXTAS.
Collapse
Affiliation(s)
- Jessica L Famula
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Forrest McKenzie
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Yingratana A McLennan
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, United States
| | - James Grigsby
- School of Medicine, University of Colorado, Denver, CO, United States
| | - Flora Tassone
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA, United States
| | - David Hessl
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Susan M Rivera
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Psychology, University of California Davis, Davis, CA, United States
| | - Veronica Martinez-Cerdeno
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Pathology and Laboratory Medicine, Sacramento, CA, United States.,Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, United States
| | - Randi J Hagerman
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
103
|
Paucar M, Nennesmo I, Svenningsson P. Pathological Study of a FMR1 Premutation Carrier With Progressive Supranuclear Palsy. Front Genet 2018; 9:317. [PMID: 30158953 PMCID: PMC6103471 DOI: 10.3389/fgene.2018.00317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/25/2018] [Indexed: 11/29/2022] Open
Abstract
Dual pathology in fragile X mental retardation 1 (FMR1) premutation carriers and fragile X–associated tremor/ataxia syndrome (FXTAS) patients is an emerging phenomenon. Although it includes atypical parkinsonism, neuropathological confirmation is very scarce. Here, we describe neuropathological findings for a female who suffered a severe parkinsonian syndrome with apraxia and supranuclear palsy. She died at the age of 50, six years after the initial diagnosis. Prominent neuronal loss was found in the pallidum, subthalamic nucleus, and tectum, but the loss of Purkinje cells was rather mild. Intranuclear inclusions containing ubiquitin and FMRpolyglycine, a pathological hallmark of FXTAS, were detected in neurons and astrocytes. However, this inclusion pathology was overshadowed by a very prominent four repeat tau accumulation in tufted astrocytes, oligodendroglial coiled bodies, thread structures, and neurons. This is, to best of our knowledge, the first report describing a pathologically confirmed progressive supranuclear palsy – corticobasal syndrome (PSP-CBS) variant case in a FMR1 premutation carrier.
Collapse
Affiliation(s)
- Martin Paucar
- Department of Neurology and Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Inger Nennesmo
- Department of Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per Svenningsson
- Department of Neurology and Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
104
|
Les mouvements anormaux : mise au point. Rev Med Interne 2018; 39:641-649. [DOI: 10.1016/j.revmed.2017.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/25/2017] [Accepted: 09/18/2017] [Indexed: 11/18/2022]
|
105
|
Miao Z, Liu X, Li W, He Q, Liu X. Assessment of efficacy of prenatal genetic diagnosis for fragile X syndrome using nested PCR. Exp Ther Med 2018; 15:5107-5112. [PMID: 29844802 DOI: 10.3892/etm.2018.6060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/01/2017] [Indexed: 11/06/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and the leading monogenic cause of autism spectrum disorder. It has previously been demonstrated that prenatal genetic diagnosis is efficient for the diagnosis of FXS. The present study investigated the diagnostic effects of nested polymerase chain reaction (PCR) for fragile X mental retardation 1 (FMR1) and expanded CGG repeats. It was demonstrated that the nested PCR assay rapidly measured the multi-copies of the FMR1 gene in individual samples. The nested PCR assay detected normal CGG repeat lengths and expanded CGG repeat lengths with a low occurrence of false positives. In addition, the nested PCR assay resulted in increased sensitivity and specificity for patients with FXS. Furthermore, the nested PCR assay identified the mutation and generated conclusive cases for FXS, indicating that this assay is beneficial for the diagnosis of FXS patients. In conclusion, these outcomes indicate that nested PCR assay is a reliable and easier method for diagnosis of FXS, which may be used for the diagnosis of FXS patients.
Collapse
Affiliation(s)
- Zhengyou Miao
- Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang 314000, P.R. China.,Hangzhou Bio-San Biochemical Technologies Co. Ltd., Hangzhou, Zhejiang 310007, P.R. China
| | - Xiaodan Liu
- Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang 314000, P.R. China.,Hangzhou Bio-San Biochemical Technologies Co. Ltd., Hangzhou, Zhejiang 310007, P.R. China
| | - Weiwei Li
- Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang 314000, P.R. China.,Hangzhou Bio-San Biochemical Technologies Co. Ltd., Hangzhou, Zhejiang 310007, P.R. China
| | - Qunyan He
- Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang 314000, P.R. China.,Hangzhou Bio-San Biochemical Technologies Co. Ltd., Hangzhou, Zhejiang 310007, P.R. China
| | - Xia Liu
- Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang 314000, P.R. China.,Hangzhou Bio-San Biochemical Technologies Co. Ltd., Hangzhou, Zhejiang 310007, P.R. China
| |
Collapse
|
106
|
Mailick MR, Movaghar A, Hong J, Greenberg JS, DaWalt LS, Zhou L, Jackson J, Rathouz PJ, Baker MW, Brilliant M, Page D, Berry-Kravis E. Health Profiles of Mosaic Versus Non-mosaic FMR1 Premutation Carrier Mothers of Children With Fragile X Syndrome. Front Genet 2018; 9:173. [PMID: 29868121 PMCID: PMC5964198 DOI: 10.3389/fgene.2018.00173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/27/2018] [Indexed: 11/19/2022] Open
Abstract
The FMR1 premutation is of increasing interest to the FXS community, as questions about a primary premutation phenotype warrant research attention. 100 FMR1 premutation carrier mothers (mean age = 58; 67–138 CGG repeats) of adults with fragile X syndrome were studied with respect to their physical and mental health, motor, and neurocognitive characteristics. We explored the correlates of CGG repeat mosaicism in women with expanded alleles. Mothers provided buccal swabs from which DNA was extracted and the FMR1 CGG genotyping was performed (Amplidex Kit, Asuragen). Mothers were categorized into three groups: Group 1: premutation non-mosaic (n = 45); Group 2: premutation mosaic (n = 41), and Group 3: premutation/full mutation mosaic (n = 14). Group 2 mothers had at least two populations of cells with different allele sizes in the premutation range besides their major expanded allele. Group 3 mothers had a very small population of cells in the full mutation range (>200 CGGs) in addition to one or multiple populations of cells with different allele sizes in the premutation range. Machine learning (random forest) was used to identify symptoms and conditions that correctly classified mothers with respect to mosaicism; follow-up comparisons were made to characterize the three groups. In categorizing mosaicism, the random forest yielded significantly better classification than random classification, with overall area under the receiver operating characteristic curve (AUROC) of 0.737. Among the most important symptoms and conditions that contributed to the classification were anxiety, menopause symptoms, executive functioning limitations, and difficulty walking several blocks, with the women who had full mutation mosaicism (Group 3) unexpectedly having better health. Although only 14 premutation carrier mothers in the present sample also had a small population of full mutation cells, their profile of comparatively better health, mental health, and executive functioning was unexpected. This preliminary finding should prompt additional research on larger numbers of participants with more extensive phenotyping to confirm the clinical correlates of low-level full mutation mosaicism in premutation carriers and to probe possible mechanisms.
Collapse
Affiliation(s)
- Marsha R Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Arezoo Movaghar
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Jinkuk Hong
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Jan S Greenberg
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Leann S DaWalt
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Lili Zhou
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, United States.,Department of Pathology, Rush University Medical Center, Chicago, IL, United States
| | - Jonathan Jackson
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, United States
| | - Paul J Rathouz
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Mei W Baker
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States.,Wisconsin State Laboratory of Hygiene, Madison, WI, United States
| | - Murray Brilliant
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States.,Marshfield Clinic Research Institute, Marshfield, WI, United States
| | - David Page
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, United States.,Department of Neurological Sciences and Biochemistry, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
107
|
Guler GD, Rosenwaks Z, Gerhardt J. Human DNA Helicase B as a Candidate for Unwinding Secondary CGG Repeat Structures at the Fragile X Mental Retardation Gene. Front Mol Neurosci 2018; 11:138. [PMID: 29760651 PMCID: PMC5936766 DOI: 10.3389/fnmol.2018.00138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
The fragile X syndrome (FXS) is caused by a CGG repeat expansion at the fragile X mental retardation (FMR1) gene. FMR1 alleles with more than 200 CGG repeats bear chromosomal fragility when cells experience folate deficiency. CGG repeats were reported to be able to form secondary structures, such as hairpins, in vitro. When such secondary structures are formed, repeats can lead to replication fork stalling even in the absence of any additional perturbation. Indeed, it was recently shown that the replication forks stall at the endogenous FMR1 locus in unaffected and FXS cells, suggesting the formation of secondary repeat structures at the FMR1 gene in vivo. If not dealt with properly replication fork stalling can lead to polymerase slippage and repeat expansion as well as fragile site expression. Despite the presence of repeat structures at the FMR1 locus, chromosomal fragility is only expressed under replicative stress suggesting the existence of potential molecular mechanisms that help the replication fork progress through these repeat regions. DNA helicases are known to aid replication forks progress through repetitive DNA sequences. Yet, the identity of the DNA helicase(s) responsible for unwinding the CGG repeats at FMR1 locus is not known. We found that the human DNA helicase B (HDHB) may provide an answer for this question. We used chromatin-immunoprecipitation assay to study the FMR1 region and common fragile sites (CFS), and asked whether HDHB localizes at replication forks stalled at repetitive regions even in unperturbed cells. HDHB was strongly enriched in S-phase at the repetitive DNA at CFS and FMR1 gene but not in the flanking regions. Taken together, these results suggest that HDHB functions in preventing or repairing stalled replication forks that arise in repeat-rich regions even in unperturbed cells. Furthermore, we discuss the importance and potential role of HDHB and other helicases in the resolution of secondary CGG repeat structures.
Collapse
Affiliation(s)
- Gulfem D Guler
- Celgene Quanticel Research, San Francisco, CA, United States
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Jeannine Gerhardt
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States.,Department of Obstetrics and Gynecology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
108
|
Lubala TK, Lumaka A, Kanteng G, Mutesa L, Mukuku O, Wembonyama S, Hagerman R, Luboya ON, Lukusa Tshilobo P. Fragile X checklists: A meta-analysis and development of a simplified universal clinical checklist. Mol Genet Genomic Med 2018; 6:526-532. [PMID: 29624914 PMCID: PMC6081230 DOI: 10.1002/mgg3.398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Clinical checklists available have been developed to assess the risk of a positive Fragile X syndrome but they include relatively small sample sizes. Therefore, we carried out a meta-analysis that included statistical pooling of study results to obtain accurate figures on the prevalence of clinical predictors of Fragile X syndrome among patients with intellectual disability, thereby helping health professionals to improve their referrals for Fragile X testing. METHODS All published studies consisting of cytogenetic and/or molecular screening for fragile X syndrome among patients with intellectual disability, were eligible for the meta-analysis. All patients enrolled in clinical checklists trials of Fragile X syndrome were eligible for this review, with no exclusion based on ethnicity or age. Odds ratio values, with 95% confidence intervals as well as Cronbach coefficient alpha, was reported to assess the frequency of clinical characteristics in subjects with intellectual disability with and without the fragile X mutation to determine the most discriminating. RESULTS The following features were strongly associated with Fragile X syndrome: skin soft and velvety on the palms with redundancy of skin on the dorsum of hand [OR: 16.85 (95% CI 10.4-27.3; α:0.97)], large testes [OR: 7.14 (95% CI 5.53-9.22; α: 0.80)], large and prominent ears [OR: 18.62 (95% CI 14.38-24.1; α: 0.98)], pale blue eyes [OR: 8.97 (95% CI 4.75-16.97; α: 0.83)], family history of intellectual disability [OR: 3.43 (95% CI 2.76-4.27; α: 0.81)] as well as autistic-like behavior [OR: 3.08 (95% CI 2.48-3.83; α: 0.77)], Flat feet [OR: 11.53 (95% CI 6.79-19.56; α:0.91)], plantar crease [OR: 3.74 (95% CI 2.67-5.24; α: 0.70)]. We noted a weaker positive association between transverse palmar crease [OR: 2.68 (95% CI 1.70-4.18; α: 0.51)], elongated face [OR: 3.69 (95% CI 2.84-4.81; α: 0.63)]; hyperextensible metacarpo-phalangeal joints [OR: 2.68 (95% CI 2.15-3.34; α: 0.57)] and the Fragile X syndrome. CONCLUSION This study has identified the highest risk features for patients with Fragile X syndrome that have been used to design a universal clinical checklist.
Collapse
Affiliation(s)
- Toni Kasole Lubala
- Division of Dysmorphology & Birth DefectsDepartment of PediatricsUniversity of LubumbashiLubumbashiCongo
| | - Aimé Lumaka
- Faculté de MédecineDépartement de PédiatrieUniversité de KinshasaKinshasaCongo
- Centre de Génétique HumaineInstitut National de Recherche BiomédicaleKinshasaCongo
| | - Gray Kanteng
- Division of Dysmorphology & Birth DefectsDepartment of PediatricsUniversity of LubumbashiLubumbashiCongo
| | - Léon Mutesa
- Center for Human GeneticsSchool of Medicine and PharmacyCollege of Medicine and Health SciencesUniversity of RwandaKigaliRwanda
| | - Olivier Mukuku
- Département de PédiatrieInstitut Supérieur des Techniques MédicalesLubumbashiCongo
| | - Stanislas Wembonyama
- Division of Dysmorphology & Birth DefectsDepartment of PediatricsUniversity of LubumbashiLubumbashiCongo
| | - Randi Hagerman
- MIND InstituteUniversity of California DavisSacramentoCAUSA
- Department of PediatricsUniversity of California Davis Medical CenterSacramentoCAUSA
| | - Oscar Numbi Luboya
- Division of Dysmorphology & Birth DefectsDepartment of PediatricsUniversity of LubumbashiLubumbashiCongo
| | - Prosper Lukusa Tshilobo
- Faculté de MédecineDépartement de PédiatrieUniversité de KinshasaKinshasaCongo
- Centre de Génétique HumaineInstitut National de Recherche BiomédicaleKinshasaCongo
| |
Collapse
|
109
|
El-Deeb M, Adams P, Schneider A, Salcedo-Arellano MJ, Tassone F, Hagerman R. Fentanyl overdose in a female with the FMR1 premutation and FXTAS. JOURNAL OF MOLECULAR GENETICS (ISLEWORTH, LONDON, ENGLAND) 2018; 1. [PMID: 31032490 DOI: 10.31038/jmg.1000101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) affects individuals with 55-200 CGG repeats (premutation) in the 5'-untranslated region of the fragile X mental retardation 1 (FMR1) gene. FXTAS is a progressive neurodegenerative disorder associated with an action tremor, cerebellar ataxia memory and executive function deficits, autonomic dysfunction and neuropathy. Females with the fragile X premutation are often affected by fragile X-associated primary ovarian insufficiency (FXPOI), and may have other medical conditions such as fibromyalgia, depression, anxiety, and immune-mediated disorders like hypothyroidism. Here we present a case of a 54-year-old woman with tremor, ataxia, average memory skills, and executive function deficits who meets criteria for FXTAS. She also has anxiety, Major Depressive Disorder, fibromyalgia, chronic pain and was treated chronically with opioids and she overdosed on fentanyl leading to significant CNS dysfunction.
Collapse
Affiliation(s)
- Marwa El-Deeb
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, CA, USA.,Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA
| | - Patrick Adams
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, CA, USA.,Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, CA, USA.,Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA
| | - Maria J Salcedo-Arellano
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, CA, USA
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, CA, USA.,Department of Biochemistry and Molecular Medicine, University of California Davis Medical Center, Sacramento, CA
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, CA, USA.,Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA
| |
Collapse
|
110
|
β-glucuronidase use as a single internal control gene may confound analysis in FMR1 mRNA toxicity studies. PLoS One 2018; 13:e0192151. [PMID: 29474364 PMCID: PMC5825026 DOI: 10.1371/journal.pone.0192151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/17/2018] [Indexed: 12/02/2022] Open
Abstract
Relationships between Fragile X Mental Retardation 1 (FMR1) mRNA levels in blood and intragenic FMR1 CGG triplet expansions support the pathogenic role of RNA gain of function toxicity in premutation (PM: 55–199 CGGs) related disorders. Real-time PCR (RT-PCR) studies reporting these findings normalised FMR1 mRNA level to a single internal control gene called β-glucuronidase (GUS). This study evaluated FMR1 mRNA-CGG correlations in 33 PM and 33 age- and IQ-matched control females using three normalisation strategies in peripheral blood mononuclear cells (PBMCs): (i) GUS as a single internal control; (ii) the mean of GUS, Eukaryotic Translation Initiation Factor 4A2 (EIF4A2) and succinate dehydrogenase complex flavoprotein subunit A (SDHA); and (iii) the mean of EIF4A2 and SDHA (with no contribution from GUS). GUS mRNA levels normalised to the mean of EIF4A2 and SDHA mRNA levels and EIF4A2/SDHA ratio were also evaluated. FMR1mRNA level normalised to the mean of EIF4A2 and SDHA mRNA levels, with no contribution from GUS, showed the most significant correlation with CGG size and the greatest difference between PM and control groups (p = 10−11). Only 15% of FMR1 mRNA PM results exceeded the maximum control value when normalised to GUS, compared with over 42% when normalised to the mean of EIF4A2 and SDHA mRNA levels. Neither GUS mRNA level normalised to the mean RNA levels of EIF4A2 and SDHA, nor to the EIF4A2/SDHA ratio were correlated with CGG size. However, greater variability in GUS mRNA levels were observed for both PM and control females across the full range of CGG repeat as compared to the EIF4A2/SDHA ratio. In conclusion, normalisation with multiple control genes, excluding GUS, can improve assessment of the biological significance of FMR1 mRNA-CGG size relationships.
Collapse
|
111
|
Saldarriaga W, Forero-Forero JV, González-Teshima LY, Fandiño-Losada A, Isaza C, Tovar-Cuevas JR, Silva M, Choudhary NS, Tang HT, Aguilar-Gaxiola S, Hagerman RJ, Tassone F. Genetic cluster of fragile X syndrome in a Colombian district. J Hum Genet 2018; 63:509-516. [PMID: 29379191 DOI: 10.1038/s10038-017-0407-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 12/05/2017] [Accepted: 12/15/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Fragile X syndrome (FXS) is the most common cause of inherited intellectual disabilities and autism. The reported prevalence of the full mutation (FM) gene FMR1 in the general population is 0.2-0.4 per 1000 males and 0.125-0.4 per 1000 females. Population screening for FMR1 expanded alleles has been performed in newborns and in an adult population. However, it has never been carried out in an entire town. Ricaurte is a Colombian district with 1186 habitants, with a high prevalence of FXS, which was first described by cytogenetic techniques in 1999. METHODS Using a PCR-based approach, screening for FXS was performed on blood spot samples obtained from 926 (502 males and 424 females) inhabitants from Ricaurte, accounting for 78% of total population. RESULTS A high prevalence of carriers of the expanded allele was observed in all FXS mutation categories. Using the Bayesian methods the carrier frequency of FM was 48.2 (95% Credibility Region CR: 36.3-61.5) per 1000 males and 20.5 (95% CR:13.5-28.6) per 1000 females; the frequency of premutation carrier was 14.1 (95% RC: 8.0-21.7) per 1000 males (95% RC: 8.0-21.7 per 1000 males) and 35.9 (95% RC: 26.5-46.2) per 1000 for females (95% RC: 26.5-46.2 per 1000 females), and gray zone carrier was 13.4 (95% RC: 7.4-20.7) per 1000 males (95% RC: 7.4-20.7 per 1000 males) and 42.2 (95% RC: 32.2-53.8) per 1000 for females (95% RC: 32.2-53.8 per 1000 females). Differences in carrier frequencies were observed for premutation and FM alleles between natives and non-natives. CONCLUSIONS This study shows that in Ricaurte the carrier frequencies of FMR1 expanded alleles (premutations and FMs) are higher than those reported in the literature, suggesting that Ricaurte constitutes a genetic cluster of FXS.
Collapse
Affiliation(s)
- Wilmar Saldarriaga
- School of Basics Sciences, Universidad del Valle, Cali, Colombia. .,School of Medicine, Universidad del Valle, Hospital Universitario del Valle, Cali, Colombia. .,Research Group in Congenital & Perinatal Malformations, Dysmorphology and Clinical Genetics (MACOS), Universidad del Valle, Cali, Colombia.
| | - Jose Vicente Forero-Forero
- School of Medicine, Universidad del Valle, Hospital Universitario del Valle, Cali, Colombia.,Research Group in Congenital & Perinatal Malformations, Dysmorphology and Clinical Genetics (MACOS), Universidad del Valle, Cali, Colombia
| | - Laura Yuriko González-Teshima
- School of Medicine, Universidad del Valle, Hospital Universitario del Valle, Cali, Colombia.,Research Group in Congenital & Perinatal Malformations, Dysmorphology and Clinical Genetics (MACOS), Universidad del Valle, Cali, Colombia
| | - Andrés Fandiño-Losada
- Research Group in Congenital & Perinatal Malformations, Dysmorphology and Clinical Genetics (MACOS), Universidad del Valle, Cali, Colombia.,School of Public Health, Universidad del Valle, Cali, Colombia
| | - Carolina Isaza
- School of Basics Sciences, Universidad del Valle, Cali, Colombia.,Research Group in Congenital & Perinatal Malformations, Dysmorphology and Clinical Genetics (MACOS), Universidad del Valle, Cali, Colombia
| | | | - Marisol Silva
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
| | - Nimrah S Choudhary
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
| | - Hiu-Tung Tang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
| | - Sergio Aguilar-Gaxiola
- Department of Internal Medicine, University of California, Davis Health, Sacramento, CA, USA
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis Medical Center, Sacramento, CA, USA.,Department of Pediatrics, University of California, Davis Medical Center, Sacramento, CA, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA. .,Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis Medical Center, Sacramento, CA, USA.
| |
Collapse
|
112
|
Abstract
The FMR1 premutation confers a 40–60% risk for males of developing a neurodegenerative disease called the Fragile X-associated Tremor Ataxia Syndrome (FXTAS). FXTAS is a late-onset disease that primarily involves progressive symptoms of tremor and ataxia, as well as cognitive decline that can develop into dementia in some patients. At present, it is not clear whether changes to brain function are detectable in motor regions prior to the onset of frank symptomatology. The present study therefore aimed to utilize an fMRI motor task for the first time in an asymptomatic premutation population. Premutation carriers without a diagnosis of FXTAS (n = 17) and a group of healthy male controls (n = 17), with an age range of 24–68 years old, were recruited for this cross-sectional study. This study utilized neuroimaging, molecular and clinical measurements, employing an fMRI finger-tapping task with a block design consisting of sequential finger-tapping, random finger-tapping and rest conditions. The imaging analysis contrasted the sequential and random conditions to investigate activation changes in response to a change in task demand. Additionally, measurements were obtained of participant tremor, co-ordination and balance using the CATSYS-2000 system and measures of FMR1 mRNA were quantified from peripheral blood samples using quantitative real-time PCR methodology. Premutation carriers demonstrated significantly less cerebellar activation than controls during sequential versus random finger tapping (FWEcorr < 0.001). In addition, there was a significant age by group interaction in the hippocampus, inferior parietal cortex and temporal cortex originating from a more negative relationship between brain activation and age in the carrier group compared to the controls (FWEcorr < 0.001). Here, we present for the first time functional imaging-based evidence for early movement-related neurodegeneration in Fragile X premutation carriers. These changes pre-exist the diagnosis of FXTAS and are greatest in older carriers suggesting that they may be indicative of FXTAS vulnerability. The authors present a cross-sectional fMRI study in male carriers of the FMR1 premutation Carriers show decreased BOLD activation at the cerebellum in response to change in task demand in a finger-tapping task Carriers exhibit a group x age interaction of BOLD response in the temporoparietal area These changes pre-exist the diagnosis of the Fragile X-associated Tremor/Ataxia Syndrome (FXTAS)
Collapse
|
113
|
Rajaratnam A, Shergill J, Salcedo-Arellano M, Saldarriaga W, Duan X, Hagerman R. Fragile X syndrome and fragile X-associated disorders. F1000Res 2017; 6:2112. [PMID: 29259781 PMCID: PMC5728189 DOI: 10.12688/f1000research.11885.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2017] [Indexed: 12/26/2022] Open
Abstract
Fragile X syndrome (FXS) is caused by a full mutation on the
FMR1 gene and a subsequent lack of FMRP, the protein product of
FMR1. FMRP plays a key role in regulating the translation of many proteins involved in maintaining neuronal synaptic connections; its deficiency may result in a range of intellectual disabilities, social deficits, psychiatric problems, and dysmorphic physical features. A range of clinical involvement is also associated with the
FMR1 premutation, including fragile X-associated tremor ataxia syndrome, fragile X-associated primary ovarian insufficiency, psychiatric problems, hypertension, migraines, and autoimmune problems. Over the past few years, there have been a number of advances in our knowledge of FXS and fragile X-associated disorders, and each of these advances offers significant clinical implications. Among these developments are a better understanding of the clinical impact of the phenomenon known as mosaicism, the revelation that various types of mutations can cause FXS, and improvements in treatment for FXS.
Collapse
Affiliation(s)
| | | | | | - Wilmar Saldarriaga
- MIND Institute, UC Davis Health, Sacramento, CA, USA.,Department of Morphology and Obstetrics & Gynecology, Universidad del Valle, School of Medicine, Cali, Valle del Cauca, Colombia
| | - Xianlai Duan
- MIND Institute, UC Davis Health, Sacramento, CA, USA.,Department of Neurology, The Third Hospital of Changsha, Hunan Sheng, China
| | - Randi Hagerman
- MIND Institute, UC Davis Health, Sacramento, CA, USA.,Department of Pediatrics, University of California, Davis, School of Medicine, Sacramento, CA, USA
| |
Collapse
|
114
|
Sitzmann AF, Hagelstrom RT, Tassone F, Hagerman RJ, Butler MG. Rare FMR1 gene mutations causing fragile X syndrome: A review. Am J Med Genet A 2017; 176:11-18. [PMID: 29178241 DOI: 10.1002/ajmg.a.38504] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 09/21/2017] [Accepted: 09/24/2017] [Indexed: 12/16/2022]
Abstract
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability, typically due to CGG-repeat expansions in the FMR1 gene leading to lack of expression. We identified a rare FMR1 gene mutation (c.413G>A), previously reported in a single patient and reviewed the literature for other rare FMR1 mutations. Our patient at 10 years of age presented with the classical findings of FXS including intellectual disability, autism, craniofacial findings, hyperextensibility, fleshy hands, flat feet, unsteady gait, and seizures but without the typical CGG-repeat expansion. He had more features of FXS than the previously reported patient with the same mutation. Twenty individuals reported previously with rare missense or nonsense mutations or other coding disturbances of the FMR1 gene ranged in age from infancy to 50 years; most were verbal with limited speech, had autism and hyperactivity, and all had intellectual disability. Four of the 20 individuals had a mutation within exon 15, three within exon 5, and two within exon 2. The FMR1 missense mutation (c.413G>A) is the same as in a previously reported male where it was shown that there was preservation of the post-synaptic function of the fragile X mental retardation protein (FMRP), the encoded protein of the FMR1 gene was preserved. Both patients with this missense mutation had physical, cognitive, and behavioral features similarly seen in FXS.
Collapse
Affiliation(s)
- Adam F Sitzmann
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| | - Robert T Hagelstrom
- Human Genetics Laboratory, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California-Davis Medical Center, Sacramento, California.,MIND Institute, University of California-Davis Medical Center, Sacramento, California
| | - Randi J Hagerman
- MIND Institute, University of California-Davis Medical Center, Sacramento, California.,Department of Pediatrics, University of California-Davis Medical Center, Sacramento, California
| | - Merlin G Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
115
|
Castro H, Kul E, Buijsen RAM, Severijnen LAWFM, Willemsen R, Hukema RK, Stork O, Santos M. Selective rescue of heightened anxiety but not gait ataxia in a premutation 90CGG mouse model of Fragile X-associated tremor/ataxia syndrome. Hum Mol Genet 2017; 26:2133-2145. [PMID: 28369393 DOI: 10.1093/hmg/ddx108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/08/2017] [Indexed: 02/02/2023] Open
Abstract
A CGG-repeat expansion in the premutation range in the Fragile X mental retardation 1 gene (FMR1) has been identified as the genetic cause of Fragile X-associated tremor/ataxia syndrome (FXTAS), a late-onset neurodegenerative disorder that manifests with action tremor, gait ataxia and cognitive impairments. In this study, we used a bigenic mouse model, in which expression of a 90CGG premutation tract is activated in neural cells upon doxycycline administration-P90CGG mouse model. We, here, demonstrate the behavioural manifestation of clinically relevant features of FXTAS patients and premutation carrier individuals in this inducible mouse model. P90CGG mice display heightened anxiety, deficits in motor coordination and impaired gait and represent the first FXTAS model that exhibits an ataxia phenotype as observed in patients. The behavioural phenotype is accompanied by the formation of ubiquitin/FMRpolyglycine-positive intranuclear inclusions, as another hallmark of FXTAS, in the cerebellum, hippocampus and amygdala. Strikingly, upon cessation of transgene induction the anxiety phenotype of mice recovers along with a reduction of intranuclear inclusions in dentate gyrus and amygdala. In contrast, motor function deteriorates further and no reduction in intranuclear inclusions can be observed in the cerebellum. Our data thus demonstrate that expression of a 90CGG premutation expansion outside of the FMR1 context is sufficient to evoke an FXTAS-like behavioural phenotype. Brain region-specific neuropathology and (partial) behavioural reversibility make the inducible P90CGG a valuable mouse model for testing pathogenic mechanisms and therapeutic intervention methods.
Collapse
Affiliation(s)
- Hoanna Castro
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Emre Kul
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Ronald A M Buijsen
- Department of Clinical Genetics, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | | | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University, 39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg
| | - Mónica Santos
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
116
|
Mila M, Alvarez-Mora M, Madrigal I, Rodriguez-Revenga L. Fragile X syndrome: An overview and update of the FMR1
gene. Clin Genet 2017; 93:197-205. [DOI: 10.1111/cge.13075] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 01/31/2023]
Affiliation(s)
- M. Mila
- Biochemistry and Molecular Genetics Department, Hospital Clinic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Salud Carlos III; Madrid Spain
| | - M.I. Alvarez-Mora
- Biochemistry and Molecular Genetics Department, Hospital Clinic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Salud Carlos III; Madrid Spain
| | - I. Madrigal
- Biochemistry and Molecular Genetics Department, Hospital Clinic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Salud Carlos III; Madrid Spain
| | - L. Rodriguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Salud Carlos III; Madrid Spain
| |
Collapse
|
117
|
Abstract
Fragile X syndrome (FXS) is the leading inherited form of intellectual disability and autism spectrum disorder, and patients can present with severe behavioural alterations, including hyperactivity, impulsivity and anxiety, in addition to poor language development and seizures. FXS is a trinucleotide repeat disorder, in which >200 repeats of the CGG motif in FMR1 leads to silencing of the gene and the consequent loss of its product, fragile X mental retardation 1 protein (FMRP). FMRP has a central role in gene expression and regulates the translation of potentially hundreds of mRNAs, many of which are involved in the development and maintenance of neuronal synaptic connections. Indeed, disturbances in neuroplasticity is a key finding in FXS animal models, and an imbalance in inhibitory and excitatory neuronal circuits is believed to underlie many of the clinical manifestations of this disorder. Our knowledge of the proteins that are regulated by FMRP is rapidly growing, and this has led to the identification of multiple targets for therapeutic intervention, some of which have already moved into clinical trials or clinical practice.
Collapse
|
118
|
Napoli E, Song G, Wong S, Hagerman R, Giulivi C. Altered Bioenergetics in Primary Dermal Fibroblasts from Adult Carriers of the FMR1 Premutation Before the Onset of the Neurodegenerative Disease Fragile X-Associated Tremor/Ataxia Syndrome. THE CEREBELLUM 2017; 15:552-64. [PMID: 27089882 DOI: 10.1007/s12311-016-0779-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late onset neurodegenerative disorder, characterized by tremors, ataxia, impaired coordination, and cognitive decline. While all FXTAS individuals are carriers of a 55-200 CGG expansion at the 5'-UTR of the fragile X mental retardation gene (FMR1), also known as premutation, not all carriers develop FXTAS symptoms and some display other types of psychological/emotional disorders (e.g., autism, anxiety). The goal of this study was to investigate whether the mitochondrial dysfunction previously observed in fibroblasts from older premutation individuals (>60 years) was already present in younger (17-48 years), non-FXTAS-affected carriers and to identify the type and severity of the bioenergetic deficit. Since FXTAS affects mostly males, while females account for a small part of the FXTAS-affected population displaying less severe symptoms, only fibroblasts from males were evaluated in this study. Based on polarographic and enzymatic measurements, a generalized OXPHOS deficit was noted accompanied by increases in the matrix biomarker citrate synthase, oxidative stress (as increased mtDNA copy number and deletions), and mitochondrial network disruption/disorganization. Some of the outcomes (ATP-linked oxygen uptake, coupling, citrate synthase activity, and mitochondrial network organization) strongly correlated with the extent of the CGG expansion, with more severe deficits observed in cell lines carrying higher CGG number. Furthermore, mitochondrial outcomes can identify endophenotypes among carriers and are robust predictors of the premutation diagnosis before the onset of FXTAS, with the potential to be used as markers of prognosis and/or as readouts of pharmacological interventions.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Dr., VetMed 3B, Davis, CA, 95616, USA
| | - Gyu Song
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Dr., VetMed 3B, Davis, CA, 95616, USA
| | - Sarah Wong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Dr., VetMed 3B, Davis, CA, 95616, USA
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders Institute (M. I. N. D.), University of California Davis, Sacramento, CA, 95817, USA.,Department of Pediatrics, University of California Medical Center, Sacramento, CA, 95817, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Dr., VetMed 3B, Davis, CA, 95616, USA. .,Medical Investigation of Neurodevelopmental Disorders Institute (M. I. N. D.), University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
119
|
Debrey SM, Leehey MA, Klepitskaya O, Filley CM, Shah RC, Kluger B, Berry-Kravis E, Spector E, Tassone F, Hall DA. Clinical Phenotype of Adult Fragile X Gray Zone Allele Carriers: a Case Series. THE CEREBELLUM 2017; 15:623-31. [PMID: 27372099 DOI: 10.1007/s12311-016-0809-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Considerable research has focused on patients with trinucleotide (CGG) repeat expansions in the fragile X mental retardation 1 (FMR1) gene that fall within either the full mutation (>200 repeats) or premutation range (55-200 repeats). Recent interest in individuals with gray zone expansions (41-54 CGG repeats) has grown due to reported phenotypes that are similar to those observed in premutation carriers, including neurological, molecular, and cognitive signs. The purpose of this manuscript is to describe a series of adults with FMR1 alleles in the gray zone presenting with movement disorders or memory loss. Gray zone carriers ascertained in large FMR1 screening studies were identified and their clinical phenotypes studied. Thirty-one gray zone allele carriers were included, with mean age of symptom onset of 53 years in patients with movement disorders and 57 years in those with memory loss. Four patients were chosen for illustrative case reports and had the following diagnoses: early-onset Parkinson disease (PD), atypical parkinsonism, dementia, and atypical essential tremor. Some gray zone carriers presenting with parkinsonism had typical features, including bradykinesia, rigidity, and a positive response to dopaminergic medication. These patients had a higher prevalence of peripheral neuropathy and psychiatric complaints than would be expected. The patients seen in memory clinics had standard presentations of cognitive impairment with no apparent differences. Further studies are necessary to determine the associations between FMR1 expansions in the gray zone and various phenotypes of neurological dysfunction.
Collapse
Affiliation(s)
- Sarah M Debrey
- Department of Psychiatry, Emory University, Atlanta, GA, USA
| | - Maureen A Leehey
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Olga Klepitskaya
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Christopher M Filley
- Departments of Neurology and Psychiatry, University of Colorado School of Medicine, Aurora, CO, USA
- Denver Veterans Affairs Medical Center, Denver, CO, USA
| | - Raj C Shah
- Rush Alzheimer's Disease Center, Rush University, Chicago, IL, USA
| | - Benzi Kluger
- Departments of Neurology and Psychiatry, University of Colorado School of Medicine, Aurora, CO, USA
| | - Elizabeth Berry-Kravis
- Departments of Pediatrics and Biochemistry, Rush University, Chicago, IL, USA
- Department of Neurological Sciences, Rush University, 1725 West Harrison Street, Suite 755, Chicago, IL, 60612, USA
| | - Elaine Spector
- Denver Genetics DNA Diagnostic Laboratory at Children's Hospital Colorado, Department of Pediatrics, University of Colorado-Denver, Aurora, CO, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California School of Medicine, Davis, CA, USA
- M.I.N.D. Institute, University of California-Davis Medical Center, Sacramento, CA, USA
| | - Deborah A Hall
- Department of Neurological Sciences, Rush University, 1725 West Harrison Street, Suite 755, Chicago, IL, 60612, USA.
| |
Collapse
|
120
|
Paucar M, Engvall M, Gordon L, Tham E, Synofzik M, Svenningsson P. POLG-Associated Ataxia Presenting as a Fragile X Tremor/Ataxia Phenocopy Syndrome. THE CEREBELLUM 2017; 15:632-5. [PMID: 27071669 DOI: 10.1007/s12311-016-0777-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Hyperintensities in the middle cerebellar peduncles (MCP), known as the MCP sign, and progressive late-onset ataxia constitute major characteristics of the fragile X tremor/ataxia syndrome (FXTAS). Here, we describe a 60-year-old male affected by ataxia due to biallelic mutations in the mitochondrial polymerase gamma (POLG) gene in which hyperintensities of the middle cerebellar peduncles (MCP) were found. The initial suspicion of FXTAS was however ruled out by a normal CGG expansion size in the FMR1 gene. We discuss the features of late-onset POLG-A as a phenocopy of FXTAS.
Collapse
Affiliation(s)
- Martin Paucar
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden. .,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Martin Engvall
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.,Center for Inherited Metabolic Disorders, Karolinska University Hospital, Stockholm, Sweden
| | - Lisa Gordon
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Emma Tham
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Per Svenningsson
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
121
|
Albizua I, Rambo-Martin BL, Allen EG, He W, Amin AS, Sherman SL. Women who carry a fragile X premutation are biologically older than noncarriers as measured by telomere length. Am J Med Genet A 2017; 173:2985-2994. [PMID: 28941155 DOI: 10.1002/ajmg.a.38476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/12/2017] [Accepted: 08/21/2017] [Indexed: 01/25/2023]
Abstract
Women who carry a fragile X premutation, defined as having 55-200 unmethylated CGG repeats in the 5' UTR of the X-linked FMR1 gene, have a 20-fold increased risk for primary ovarian insufficiency (FXPOI). We tested the hypothesis that women with a premutation + FXPOI have shorter telomeres than those without FXPOI because they are "biologically older." Using linear regression, we found that women carrying a premutation (n = 172) have shorter telomeres and hence, are "biologically older" than women carrying the normal size allele (n = 81). Strikingly, despite having shorter telomeres, age was not statistically associated with their telomere length, in contrast to non-carrier controls. Further, telomere length within premutation carriers was not associated with repeat length but was associated with a diagnosis of FXPOI, although the latter finding may depend on FXPOI age of onset.
Collapse
Affiliation(s)
- Igor Albizua
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | | | - Emily G Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Weiya He
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Ashima S Amin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
122
|
Autism spectrum disorders and disease modeling using stem cells. Cell Tissue Res 2017; 371:153-160. [PMID: 28918504 DOI: 10.1007/s00441-017-2685-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/19/2017] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorders (ASD) represent a variety of disorders characterized as complex lifelong neurodevelopment disabilities, which may affect the ability of communication and socialization, including typical comportments like repetitive and stereotyped behavior. Other comorbidities are usually present, such as echolalia, hypotonia, intellectual disability and difficulties in processing figured speech. Furthermore, some ASD individuals may present certain abilities, such as eidetic memory, outstanding musical or painting talents and special mathematical skills, among others. Considering the variability of the clinical symptoms, one autistic individual can be severely affected in communication while others can speak perfectly, sometimes having a vocabulary above average in early childhood. The same variability can be seen in other clinical symptoms, thus the "spectrum" can vary from severe to mild. Induced pluripotent stem cell technology has been used to model several neurological diseases, including syndromic and non-syndromic autism. We discuss how modeling the central nervous system cells in a dish may help to reach a better understanding of ASD pathology and variability, as well as personalize their treatment.
Collapse
|
123
|
McPartland J, Dantzker H, Portier C. Elucidating environmental dimensions of neurological disorders and disease: Understanding new tools from federal chemical testing programs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 593-594:634-640. [PMID: 28364604 DOI: 10.1016/j.scitotenv.2017.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Federal agencies are making significant investments to advance predictive approaches to evaluate chemical hazards and risks. Environmental Defense Fund (EDF) believes that engagement with the broader scientific community is critical to building and maintaining a strong biological foundation for these approaches. OBJECTIVES On June 18-19, 2015, EDF organized a meeting to 1) foster a conversation between federal scientists advancing predictive approaches and environmental health researchers investigating environmental exposures and neurological outcomes, and 2) explore opportunities and challenges for the use of federal chemical high-throughput in vitro screening (HTS) data in hypothesis-driven research toward, ultimately, improved data for public health decision-making. DISCUSSION The meeting achieved its objectives. Government scientists showcased their chemical testing programs and vision for how emerging data may be used to meet agency missions. Environmental health researchers shared their experiences using federal HTS data, offered recommendations for strengthening federal HTS platforms, and expressed great interest in continued engagement with evolving federal chemical testing initiatives. CONCLUSIONS The meeting provided an invaluable exchange between two scientific communities with a shared interest in protecting public health from harmful environmental exposures, but who have not sufficiently engaged with each other. Discussions identified opportunities and work ahead for the use of HTS data in hypothesis-driven research. Though the meeting focused on neurological outcomes, the purpose, objectives and experience of the meeting are broadly applicable. EDF strongly encourages more discourse and collaboration between federal and non-government scientists working to understand environmental influences on health outcomes.
Collapse
Affiliation(s)
- Jennifer McPartland
- Environmental Defense Fund, 1875 Connecticut Ave. NW, Ste. 600, Washington, DC 20009, USA.
| | - Heather Dantzker
- Dantzker Consulting, LLC, 2613 N. Harrison St., Arlington, VA 22207, USA.
| | - Christopher Portier
- Environmental Defense Fund, 1875 Connecticut Ave. NW, Ste. 600, Washington, DC 20009, USA.
| |
Collapse
|
124
|
Lechpammer M, Martínez Cerdeńo V, Hunsaker MR, Hah M, Gonzales H, Tisch S, Joffe R, Pamphlett R, Tassone F, Hagerman PJ, Bolitho SJ, Hagerman RJ. Concomitant occurrence of FXTAS and clinically defined sporadic inclusion body myositis: report of two cases. Croat Med J 2017; 58:310-315. [PMID: 28857524 PMCID: PMC5577649 DOI: 10.3325/cmj.2017.58.310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This report describes unique presentations of inclusion body myositis (IBM) in two unrelated patients, one male and one female, with genetically and histologically confirmed fragile X-associated tremor/ataxia syndrome (FXTAS). We summarize overlapping symptoms between two disorders, clinical course, and histopathological analyses of the two patients with FXTAS and sporadic IBM, clinically defined per diagnostic criteria of the European Neuromuscular Centre. In case 1, a post-mortem analysis of available brain and muscle tissues is also described. Histopathological features (rimmed vacuoles) consistent with clinically defined IBM were detected in both presented cases. Postmortem testing in case 1 revealed the presence of an FMR1 premutation allele of 60 CGG repeats in both brain and skeletal muscle samples. Case 2 was a premutation carrier with 71 CGG repeats who had a son with FXS. Given that FXTAS is associated with immune-mediated disorders among premutation carriers, it is likely that the pathogeneses of IBM and FXTAS are linked. This is, to our knowledge, the first report of these two conditions presenting together, which expands our understanding of clinical symptoms and unusual presentations in patients with FXTAS. Following detection of a premutation allele of the FMR1 gene, FXTAS patients with severe muscle pain should be assessed for IBM.
Collapse
Affiliation(s)
- Mirna Lechpammer
- Mirna Lechpammer, Department of Pathology and Laboratory Medicine, UC Davis Health System, 4400 V St. Sacramento, CA 95817, USA,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Robin G, López JR, Espinal GM, Hulsizer S, Hagerman PJ, Pessah IN. Calcium dysregulation and Cdk5-ATM pathway involved in a mouse model of fragile X-associated tremor/ataxia syndrome. Hum Mol Genet 2017; 26:2649-2666. [PMID: 28444183 PMCID: PMC5886271 DOI: 10.1093/hmg/ddx148] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 12/30/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurological disorder that affects premutation carriers with 55-200 CGG-expansion repeats (preCGG) in FMR1, presenting with early alterations in neuronal network formation and function that precede neurodegeneration. Whether intranuclear inclusions containing DNA damage response (DDR) proteins are causally linked to abnormal synaptic function, neuronal growth and survival are unknown. In a mouse that harbors a premutation CGG expansion (preCGG), cortical and hippocampal FMRP expression is moderately reduced from birth through adulthood, with greater FMRP reductions in the soma than in the neurite, despite several-fold elevation of Fmr1 mRNA levels. Resting cytoplasmic calcium concentration ([Ca2+]i) in cultured preCGG hippocampal neurons is chronically elevated, 3-fold compared to Wt; elevated ROS and abnormal glutamatergic responses are detected at 14 DIV. Elevated µ-calpain activity and a higher p25/p35 ratio in the cortex of preCGG young adult mice indicate abnormal Cdk5 regulation. In support, the Cdk5 substrate, ATM, is upregulated by 1.5- to 2-fold at P0 and 6 months in preCGG brain, as is p-Ser1981-ATM. Bax:Bcl-2 is 30% higher in preCGG brain, indicating a greater vulnerability to apoptotic activation. Elevated [Ca2+]i, ROS, and DDR signals are normalized with dantrolene. Chronic [Ca2+]i dysregulation amplifies Cdk5-ATM signaling, possibly linking impaired glutamatergic signaling and DDR to neurodegeneration in preCGG brain.
Collapse
Affiliation(s)
- Gaëlle Robin
- Department Molecular Biosciences, School of Veterinary Medicine, Davis, CA, USA
| | - José R. López
- Department Molecular Biosciences, School of Veterinary Medicine, Davis, CA, USA
| | - Glenda M. Espinal
- Department of Biochemistry and Molecular Medicine, UC Davis, Davis, CA 95616, USA
| | - Susan Hulsizer
- Department Molecular Biosciences, School of Veterinary Medicine, Davis, CA, USA
| | - Paul J. Hagerman
- Department of Biochemistry and Molecular Medicine, UC Davis, Davis, CA 95616, USA
- Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA 95817, USA
| | - Isaac N. Pessah
- Department Molecular Biosciences, School of Veterinary Medicine, Davis, CA, USA
- Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA 95817, USA
| |
Collapse
|
126
|
Niu M, Han Y, Dy ABC, Du J, Jin H, Qin J, Zhang J, Li Q, Hagerman RJ. Fragile X Syndrome: Prevalence, Treatment, and Prevention in China. Front Neurol 2017. [PMID: 28634468 PMCID: PMC5459883 DOI: 10.3389/fneur.2017.00254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and the leading monogenic cause of autism spectrum disorder. Although FXS has been studied for several decades, there is relatively little basic science or clinical research being performed on FXS in China. Indeed, there is a large gap between China and Western countries in the FXS field. China has a potentially large number of FXS patients. However, many of them are underdiagnosed or even misdiagnosed, and treatments are not always administered in the Chinese population. This review discusses the prevalence, treatment, and prevention of FXS in China to facilitate an understanding of this disease in the Chinese population.
Collapse
Affiliation(s)
- Manman Niu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ying Han
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,MIND Institute, University of California-Davis Medical Center, Sacramento, CA, United States
| | - Angel Belle C Dy
- MIND Institute, University of California-Davis Medical Center, Sacramento, CA, United States.,Ateneo de Manila University - School of Medicine and Public Health, Quezon, Philippines
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | - Jing Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Qinrui Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Randi J Hagerman
- MIND Institute, University of California-Davis Medical Center, Sacramento, CA, United States.,Department of Pediatrics, University of California-Davis Medical Center, Sacramento, CA, United States
| |
Collapse
|
127
|
Wheeler A, Raspa M, Hagerman R, Mailick M, Riley C. Implications of the FMR1 Premutation for Children, Adolescents, Adults, and Their Families. Pediatrics 2017; 139:S172-S182. [PMID: 28814538 PMCID: PMC5621635 DOI: 10.1542/peds.2016-1159d] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/24/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Given the nature of FMR1 gene expansions, most biological mothers, and often multiple other family members of children with fragile X syndrome (FXS), will have a premutation, which may increase individual and family vulnerabilities. This article summarizes important gaps in knowledge and notes potential implications for pediatric providers with regard to developmental and medical risks for children and adolescents with an FMR1 premutation, including possible implications into adulthood. METHODS A structured electronic literature search was conducted on FMR1 pre- and full mutations, yielding a total of 306 articles examined. Of these, 116 focused primarily on the premutation and are included in this review. RESULTS Based on the literature review, 5 topic areas are discussed: genetics and epidemiology; phenotypic characteristics of individuals with the premutation; implications for carrier parents of children with FXS; implications for the extended family; and implications for pediatricians. CONCLUSIONS Although the premutation phenotype is typically less severe in clinical presentation than in FXS, premutation carriers are much more common and are therefore more likely to be seen in a typical pediatric practice. In addition, there is a wide range of medical, cognitive/developmental, and psychiatric associated features that individuals with a premutation are at increased risk for having, which underscores the importance of awareness on the part of pediatricians in identifying and monitoring premutation carriers and recognizing the impact this identification may have on family members.
Collapse
Affiliation(s)
- Anne Wheeler
- RTI International, Research Triangle Park, North Carolina;
| | - Melissa Raspa
- RTI International, Research Triangle Park, North Carolina
| | - Randi Hagerman
- MIND Institute, University of California at Davis, Sacramento, California
| | - Marsha Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Catharine Riley
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
128
|
Mailick M, Hong J, Greenberg J, Dawalt LS, Baker MW, Rathouz PJ. FMR1 genotype interacts with parenting stress to shape health and functional abilities in older age. Am J Med Genet B Neuropsychiatr Genet 2017; 174:399-412. [PMID: 28407408 PMCID: PMC5435525 DOI: 10.1002/ajmg.b.32529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/17/2017] [Indexed: 11/09/2022]
Abstract
This study investigated the association of genotype (CGG repeats in FMR1) and the health and well-being of 5,628 aging adults (mean age = 71) in a population-based study. Two groups were contrasted: aging parents who had adult children with developmental or mental health disabilities (n = 785; the high-stress parenting group) and aging parents of healthy children who did not have disabilities (n = 4843; the low-stress parenting group). There were significant curvilinear interaction effects between parenting stress group and CGG repeats for body mass index and indicators of health and functional limitations, and the results were suggestive of interactions for limitations in cognitive functioning. Parents who had adult children with disabilities and whose genotype was two standard deviations above or below the mean numbers of CGGs had poorer health and functional outcomes at age 71 than parents with average numbers of CGGs. In contrast, parents who had healthy adult children and who had similarly high or low numbers of CGG repeats had better health and functional outcomes than parents with average numbers of CGGs. This pattern of gene by environment interactions was consistent with differential susceptibility or the flip-flop phenomenon. This study illustrates how research that begins with a rare genetic condition (such as fragile X syndrome) can lead to insights about the general population and contributes to understanding of how genetic differences shape the way people respond to environments. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Jinkuk Hong
- Waisman Center, University of Wisconsin-Madison
| | | | | | | | - Paul J. Rathouz
- Waisman Center, University of Wisconsin-Madison
,Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison
| |
Collapse
|
129
|
Bailey DB, Berry-Kravis E, Gane LW, Guarda S, Hagerman R, Powell CM, Tassone F, Wheeler A. Fragile X Newborn Screening: Lessons Learned From a Multisite Screening Study. Pediatrics 2017; 139:S216-S225. [PMID: 28814542 DOI: 10.1542/peds.2016-1159h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/24/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Delays in the diagnosis of children with fragile X syndrome (FXS) suggest the possibility of newborn screening as a way to identify children earlier. However, FXS does not have a proven treatment that must be provided early, and ethical concerns have been raised about the detection of infants who are carriers. This article summarizes major findings from a multisite, prospective, longitudinal pilot screening study. METHODS Investigators in North Carolina, California, and Illinois collaborated on a study in which voluntary screening for FXS was offered to parents in 3 birthing hospitals. FXS newborn screening was offered to >28 000 families to assess public acceptance and determine whether identification of babies resulted in any measurable harms or adverse events. Secondary goals were to determine the prevalence of FMR1 carrier gene expansions, study the consent process, and describe early development and behavior of identified children. RESULTS A number of publications have resulted from the project. This article summarizes 10 "lessons learned" about the consent process, reasons for accepting and declining screening, development and evaluation of a decision aid, prevalence of carriers, father participation in consent, family follow-up, and maternal reactions to screening. CONCLUSIONS The project documented public acceptance of screening as well as the challenges inherent in obtaining consent in the hospital shortly after birth. Collectively, the study provides answers to a number of questions that now set the stage for a next generation of research to determine the benefits of earlier identification for children and families.
Collapse
Affiliation(s)
- Donald B Bailey
- Center for Newborn Screening, Ethics, and Disability Studies, RTI International, Research Triangle Park, North Carolina;
| | | | - Louise W Gane
- MIND Institute, University of California at Davis, Sacramento, California; and
| | - Sonia Guarda
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Randi Hagerman
- MIND Institute, University of California at Davis, Sacramento, California; and
| | - Cynthia M Powell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Flora Tassone
- MIND Institute, University of California at Davis, Sacramento, California; and
| | - Anne Wheeler
- Center for Newborn Screening, Ethics, and Disability Studies, RTI International, Research Triangle Park, North Carolina
| |
Collapse
|
130
|
Jiraanont P, Sweha SR, AlOlaby RR, Silva M, Tang HT, Durbin-Johnson B, Schneider A, Espinal GM, Hagerman PJ, Rivera SM, Hessl D, Hagerman RJ, Chutabhakdikul N, Tassone F. Clinical and molecular correlates in fragile X premutation females. eNeurologicalSci 2017; 7:49-56. [PMID: 28971146 PMCID: PMC5621595 DOI: 10.1016/j.ensci.2017.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/10/2017] [Indexed: 12/21/2022] Open
Abstract
The prevalence of the fragile X premutation (55-200 CGG repeats) among the general population is relatively high, but there remains a lack of clear understanding of the links between molecular biomarkers and clinical outcomes. In this study we investigated the correlations between molecular measures (CGG repeat size, FMR1 mRNA, FMRP expression levels, and methylation status at the promoter region and in FREE2 site) and clinical phenotypes (anxiety, obsessive compulsive symptoms, depression and executive function deficits) in 36 adult premutation female carriers and compared to 24 normal control subjects. Premutation carriers reported higher levels of obsessive compulsive symptoms, depression, and anxiety, but demonstrated no significant deficits in global cognitive functions or executive function compared to the control group. Increased age in carriers was significantly associated with increased anxiety levels. As expected, FMR1 mRNA expression was significantly correlated with CGG repeat number. However, no significant correlations were observed between molecular (including epigenetic) measures and clinical phenotypes in this sample. Our study, albeit limited by the sample size, establishes the complexity of the mechanisms that link the FMR1 locus to the clinical phenotypes commonly observed in female carriers suggesting that other factors, including environment or additional genetic changes, may have an impact on the clinical phenotypes. However, it continues to emphasize the need for assessment and treatment of psychiatric problems in female premutation carriers.
Collapse
Affiliation(s)
- Poonnada Jiraanont
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, Thailand
| | - Stefan R. Sweha
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Reem R. AlOlaby
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Marisol Silva
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Hiu-Tung Tang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Blythe Durbin-Johnson
- Department of Public Health Sciences, School of Medicine, University of California at Davis, Davis, CA, USA
| | - Andrea Schneider
- Department of Pediatrics, School of Medicine, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, USA
| | - Glenda M. Espinal
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Paul J. Hagerman
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, USA
| | - Susan M. Rivera
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, USA
- Neurocognitive Development Lab, Center for Mind and Brain UC Davis, Professor, Department of Psychology, University of California Davis Medical Center, Sacramento, CA, USA
| | - David Hessl
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, CA, USA
| | - Randi J. Hagerman
- Department of Pediatrics, School of Medicine, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, USA
| | - Nuanchan Chutabhakdikul
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, Thailand
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
131
|
Klusek J, LaFauci G, Adayev T, Brown WT, Tassone F, Roberts JE. Reduced vagal tone in women with the FMR1 premutation is associated with FMR1 mRNA but not depression or anxiety. J Neurodev Disord 2017; 9:16. [PMID: 28469730 PMCID: PMC5414146 DOI: 10.1186/s11689-017-9197-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 04/21/2017] [Indexed: 12/12/2022] Open
Abstract
Background Autonomic dysfunction is implicated in a range of psychological conditions, including depression and anxiety. The fragile X mental retardation-1 (FMR1) premutation is a common genetic mutation that affects ~1:150 women and is associated with psychological vulnerability. This study examined cardiac indicators of autonomic function among women with the FMR1 premutation and control women as potential biomarkers for psychological risk that may be linked to FMR1. Methods Baseline inter-beat interval and respiratory sinus arrhythmia (a measure of parasympathetic vagal tone) were measured in 35 women with the FMR1 premutation and 28 controls. The women completed anxiety and depression questionnaires. FMR1 genetic indices (i.e., CGG repeat, quantitative FMRP, FMR1 mRNA, activation ratio) were obtained for the premutation group. Results Respiratory sinus arrhythmia was reduced in the FMR1 premutation group relative to controls. While depression symptoms were associated with reduced respiratory sinus arrhythmia among control women, these variables were unrelated in the FMR1 premutation. Elevated FMR1 mRNA was associated with higher respiratory sinus arrhythmia. Conclusions Women with the FMR1 premutation demonstrated autonomic dysregulation characterized by reduced vagal tone. Unlike patterns observed in the general population and in study controls, vagal activity and depression symptoms were decoupled in women with the FMR1 premutation, suggesting independence between autonomic regulation and psychopathological symptoms that is atypical and potentially specific to the FMR1 premutation. The association between vagal tone and mRNA suggests that molecular variation associated with FMR1 plays a role in autonomic regulation.
Collapse
Affiliation(s)
- Jessica Klusek
- Department of Communication Sciences and Disorders, University of South Carolina, Keenan Building, Suite 300, Columbia, SC 29208 USA
| | - Giuseppe LaFauci
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Tatyana Adayev
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - W Ted Brown
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Flora Tassone
- UC Davis MIND Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817 USA
| | - Jane E Roberts
- Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC 29208 USA
| |
Collapse
|
132
|
Pugin A, Faundes V, Santa María L, Curotto B, Aliaga S, Salas I, Soto P, Bravo P, Peña M, Alliende M. Clinical, molecular, and pharmacological aspects of FMR1 -related disorders. NEUROLOGÍA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.nrleng.2014.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
133
|
Yang W, Fan C, Chen L, Cui Z, Bai Y, Lan F. Pathological Effects of the FMR1 CGG-Repeat Polymorphism (5-55 Repeat Numbers): Systematic Review and Meta-Analysis. TOHOKU J EXP MED 2017; 239:57-66. [PMID: 27193037 DOI: 10.1620/tjem.239.57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The fragile X mental retardation 1 (FMR1) gene contains a highly polymorphic trinucleotide (CGG) repeat and consists of various allelic forms. Traditionally, 55-200 repeats and over 200 CGG repeats have been highlighted to be associated with ovarian dysfunction and neuro-psychiatric risks. However, previous studies had paid little attention to the allelic forms of 5-55 CGG repeats. Herein, we sought to evaluate the pathological features of FMR1 allelic category with a range of 5-55 CGG repeats. We further classified the spectrum of CGG sizes (5-55 repeats) into three sub-groups as low numbers of CGG repeat (< 26 repeats), normal CGG count (26-34 repeats), and small CGG expansion (35-54 repeats). Our systematic review documented that low numbers of CGG repeat (< 26 repeats) revealed a close relationship with premature ovarian failure. Correspondingly, the meta-analysis showed that small CGG expansion, involving allelic sizes with 35-54 (n = 8, OR = 1.22, 95% CI: 0.75-2.00, P > 0.05) and 41-54 (n = 7, OR = 1.62, 95% CI: 1.14-2.30, P < 0.05), was both linked to the risk of ovarian dysfunction. Additionally, small CGG expansion exerts significant influence on male Parkinsonism cohorts (OR = 2.17, 95% CI: 1.50-3.14, P < 0.05), mental retardation, and repeat instability. Our data provide evidence that the CGG-repeat numbers below 26 or above 34 of FMR1 gene are also associated with disease risks and thus should be regarded as pathological genotypes for a routine test.
Collapse
Affiliation(s)
- Wenjing Yang
- Department of Clinical Genetics and Experimental Medicine, Affiliated Dongfang Hospital of Xiamen University
| | | | | | | | | | | |
Collapse
|
134
|
Ciesiolka A, Jazurek M, Drazkowska K, Krzyzosiak WJ. Structural Characteristics of Simple RNA Repeats Associated with Disease and their Deleterious Protein Interactions. Front Cell Neurosci 2017; 11:97. [PMID: 28442996 PMCID: PMC5387085 DOI: 10.3389/fncel.2017.00097] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/21/2017] [Indexed: 12/14/2022] Open
Abstract
Short Tandem Repeats (STRs) are frequent entities in many transcripts, however, in some cases, pathological events occur when a critical repeat length is reached. This phenomenon is observed in various neurological disorders, such as myotonic dystrophy type 1 (DM1), fragile X-associated tremor/ataxia syndrome, C9orf72-related amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), and polyglutamine diseases, such as Huntington's disease (HD) and spinocerebellar ataxias (SCA). The pathological effects of these repeats are triggered by mutant RNA transcripts and/or encoded mutant proteins, which depend on the localization of the expanded repeats in non-coding or coding regions. A growing body of recent evidence revealed that the RNA structures formed by these mutant RNA repeat tracts exhibit toxic effects on cells. Therefore, in this review article, we present existing knowledge on the structural aspects of different RNA repeat tracts as revealed mainly using well-established biochemical and biophysical methods. Furthermore, in several cases, it was shown that these expanded RNA structures are potent traps for a variety of RNA-binding proteins and that the sequestration of these proteins from their normal intracellular environment causes alternative splicing aberration, inhibition of nuclear transport and export, or alteration of a microRNA biogenesis pathway. Therefore, in this review article, we also present the most studied examples of abnormal interactions that occur between mutant RNAs and their associated proteins.
Collapse
Affiliation(s)
- Adam Ciesiolka
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
| | - Magdalena Jazurek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
| | - Karolina Drazkowska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
| |
Collapse
|
135
|
Connon P, Larner AJ. Fragile X-associated tremor/ataxia syndrome: cognitive presentations. Br J Hosp Med (Lond) 2017; 78:230-231. [PMID: 28398884 DOI: 10.12968/hmed.2017.78.4.230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- P Connon
- Core Medical Trainee year 2 (CMT2), Cognitive Function Clinic, Walton Centre for Neurology and Neurosurgery, Liverpool
| | - A J Larner
- Consultant Neurologist, Cognitive Function Clinic, Walton Centre for Neurology and Neurosurgery, Liverpool L9 7LJ
| |
Collapse
|
136
|
Martínez-Cerdeño V, Lechpammer M, Noctor S, Ariza J, Hagerman P, Hagerman R. FMR1 premutation with Prader-Willi phenotype and fragile X-associated tremor/ataxia syndrome. Clin Case Rep 2017; 5:625-629. [PMID: 28469864 PMCID: PMC5412812 DOI: 10.1002/ccr3.834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 11/07/2016] [Accepted: 01/04/2017] [Indexed: 11/12/2022] Open
Abstract
This is a report of FMR1 premutation with Prader-Willi phenotype (PWP) and FXTAS. Although the PWP is common in fragile X syndrome (FXS), it has never been described in someone with the premutation. The patient presented intranuclear inclusions, severe obesity, hyperphagia, and ADHD symptoms, typical of the PWP in FXS. In addition, the autopsy revealed multiple architectural cortical abnormalities.
Collapse
Affiliation(s)
- Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine UC Davis Medical Center Sacramento CA USA.,Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California Sacramento CA USA.,MIND Institute UC Davis Medical Center Sacramento CA USA
| | - Mirna Lechpammer
- Department of Pathology and Laboratory Medicine UC Davis Medical Center Sacramento CA USA
| | - Stephen Noctor
- MIND Institute UC Davis Medical Center Sacramento CA USA.,Department of Psychiatry and Behavioral Sciences UC Davis Medical Center Sacramento CA USA
| | - Jeanelle Ariza
- Department of Pathology and Laboratory Medicine UC Davis Medical Center Sacramento CA USA.,Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California Sacramento CA USA
| | - Paul Hagerman
- Department of Biochemistry and Molecular Medicine UC Davis Medical Center Sacramento CA USA
| | - Randi Hagerman
- MIND Institute UC Davis Medical Center Sacramento CA USA.,Department of Pediatrics UC Davis Medical Center Sacramento CA USA
| |
Collapse
|
137
|
Wang JY, Hessl D, Hagerman RJ, Simon TJ, Tassone F, Ferrer E, Rivera SM. Abnormal trajectories in cerebellum and brainstem volumes in carriers of the fragile X premutation. Neurobiol Aging 2017; 55:11-19. [PMID: 28391068 DOI: 10.1016/j.neurobiolaging.2017.03.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/27/2017] [Accepted: 03/10/2017] [Indexed: 10/19/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder typically affecting male premutation carriers with 55-200 CGG trinucleotide repeat expansions in the FMR1 gene after age 50. The aim of this study was to examine whether cerebellar and brainstem changes emerge during development or aging in late life. We retrospectively analyzed magnetic resonance imaging scans from 322 males (age 8-81 years). Volume changes in the cerebellum and brainstem were contrasted with those in the ventricles and whole brain. Compared to the controls, premutation carriers without FXTAS showed significantly accelerated volume decrease in the cerebellum and whole brain, flatter inverted U-shaped trajectory of the brainstem, and larger ventricles. Compared to both older controls and premutation carriers without FXTAS, carriers with FXTAS exhibited significant volume decrease in the cerebellum and whole brain and accelerated volume decrease in the brainstem. We therefore conclude that cerebellar and brainstem volumes were likely affected during both development and progression of neurodegeneration in premutation carriers, suggesting that interventions may need to start early in adulthood to be most effective.
Collapse
Affiliation(s)
- Jun Yi Wang
- Center for Mind and Brain, University of California-Davis, Davis, CA, USA.
| | - David Hessl
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California-Davis Medical Center, Sacramento, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California-Davis, School of Medicine, Sacramento, CA, USA
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California-Davis Medical Center, Sacramento, CA, USA; Department of Pediatrics, University of California-Davis, School of Medicine, Sacramento, CA, USA
| | - Tony J Simon
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California-Davis Medical Center, Sacramento, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California-Davis, School of Medicine, Sacramento, CA, USA
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California-Davis Medical Center, Sacramento, CA, USA; Department of Biochemistry and Molecular Medicine, University of California-Davis, School of Medicine, Sacramento, CA, USA
| | - Emilio Ferrer
- Department of Psychology, University of California-Davis, Davis, CA, USA
| | - Susan M Rivera
- Center for Mind and Brain, University of California-Davis, Davis, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California-Davis Medical Center, Sacramento, CA, USA; Department of Psychology, University of California-Davis, Davis, CA, USA
| |
Collapse
|
138
|
Ariza J, Rogers H, Hartvigsen A, Snell M, Dill M, Judd D, Hagerman P, Martínez-Cerdeño V. Iron accumulation and dysregulation in the putamen in fragile X-associated tremor/ataxia syndrome. Mov Disord 2017; 32:585-591. [PMID: 28233916 DOI: 10.1002/mds.26902] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/07/2016] [Accepted: 12/07/2016] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Fragile X-associated tremor/ataxia syndrome is an adult-onset disorder associated with premutation alleles of the FMR1 gene. This disorder is characterized by progressive action tremor, gait ataxia, and cognitive decline. Fragile X-associated tremor/ataxia syndrome pathology includes dystrophic white matter and intranuclear inclusions in neurons and astrocytes. We previously demonstrated that the transport of iron into the brain is altered in fragile X-associated tremor/ataxia syndrome; therefore, we also expect an alteration of iron metabolism in brain areas related to motor control. Iron is essential for cell metabolism, but uncomplexed iron leads to oxidative stress and contributes to the development of neurodegenerative diseases. We investigated a potential iron modification in the putamen - a structure that participates in motor learning and performance - in fragile X-associated tremor/ataxia syndrome. METHODS We used samples of putamen obtained from 9 fragile X-associated tremor/ataxia syndrome and 9 control cases to study iron localization using Perl's method, and iron-binding proteins using immunostaining. RESULTS We found increased iron deposition in neuronal and glial cells in the putamen in fragile X-associated tremor/ataxia syndrome. We also found a generalized decrease in the amount of the iron-binding proteins transferrin and ceruloplasmin, and decreased number of neurons and glial cells that contained ceruloplasmin. However, we found increased levels of iron, transferrin, and ceruloplasmin in microglial cells, indicating an attempt by the immune system to remove the excess iron. CONCLUSIONS Overall, found a deficit in proteins that eliminate extra iron from the cells with a concomitant increase in the deposit of cellular iron in the putamen in Fragile X-associated tremor/ataxia syndrome. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jeanelle Ariza
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Hailee Rogers
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Anna Hartvigsen
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Melissa Snell
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Michael Dill
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Derek Judd
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California
| | - Paul Hagerman
- MIND Institute, UC Davis Medical Center, Sacramento, California.,Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, California
| | - Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, and the Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, Sacramento, California.,MIND Institute, UC Davis Medical Center, Sacramento, California
| |
Collapse
|
139
|
Beltrão-Braga PCB, Muotri AR. Modeling autism spectrum disorders with human neurons. Brain Res 2017; 1656:49-54. [PMID: 26854137 PMCID: PMC4975680 DOI: 10.1016/j.brainres.2016.01.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by impaired social communication and interactions and by restricted and repetitive behaviors. Although ASD is suspected to have a heritable or sporadic genetic basis, its underlying etiology and pathogenesis are not well understood. Therefore, viable human neurons and glial cells produced using induced pluripotent stem cells (iPSC) to reprogram cells from individuals affected with ASD provide an unprecedented opportunity to elucidate the pathophysiology of these disorders, providing novel insights regarding ASD and a potential platform to develop and test therapeutic compounds. Herein, we discuss the state of art with regards to ASD modeling, including limitations of this technology, as well as potential future directions. This article is part of a Special Issue entitled SI: Exploiting human neurons.
Collapse
Affiliation(s)
- Patricia C B Beltrão-Braga
- Center for Cellular and Molecular Therapy (NETCEM), School of Medicine, University of São Paulo, São Paulo, Brazil; Department of Pediatrics/Rady Children׳s Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, School of Medicine, University of California San Diego, La Jolla, CA, USA; Stem Cell Laboratory, Department of Surgery, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil; Department of Obstetrics School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil.
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children׳s Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
140
|
Leitlinien zur molekulargenetischen Diagnostik: Fragiles-X Syndrom und andere FMR1-assoziierte Syndrome. MED GENET-BERLIN 2017. [DOI: 10.1007/s11825-016-0113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
141
|
Ardui S, Race V, Zablotskaya A, Hestand MS, Van Esch H, Devriendt K, Matthijs G, Vermeesch JR. Detecting AGG Interruptions in Male and Female FMR1 Premutation Carriers by Single-Molecule Sequencing. Hum Mutat 2017; 38:324-331. [DOI: 10.1002/humu.23150] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/02/2016] [Accepted: 11/17/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Simon Ardui
- Department of Human Genetics; KU Leuven; Leuven Belgium
| | - Valerie Race
- Department of Human Genetics; KU Leuven; Leuven Belgium
| | | | | | | | | | - Gert Matthijs
- Department of Human Genetics; KU Leuven; Leuven Belgium
| | | |
Collapse
|
142
|
Vershkov D, Benvenisty N. Human pluripotent stem cells in modeling human disorders: the case of fragile X syndrome. Regen Med 2017; 12:53-68. [DOI: 10.2217/rme-2016-0100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Human pluripotent stem cells (PSCs) generated from affected blastocysts or from patient-derived somatic cells are an emerging platform for disease modeling and drug discovery. Fragile X syndrome (FXS), the leading cause of inherited intellectual disability, was one of the first disorders modeled in both embryonic stem cells and induced PCSs and can serve as an exemplary case for the utilization of human PSCs in the study of human diseases. Over the past decade, FXS-PSCs have been used to address the fundamental questions regarding the pathophysiology of FXS. In this review we summarize the methodologies for generation of FXS-PSCs, discuss their advantages and disadvantages compared with existing modeling systems and describe their utilization in the study of FXS pathogenesis and in the development of targeted treatment.
Collapse
Affiliation(s)
- Dan Vershkov
- The Azrieli Center for Stem Cells & Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells & Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
143
|
Gossett A, Sansone S, Schneider A, Johnston C, Hagerman R, Tassone F, Rivera SM, Seritan AL, Hessl D. Psychiatric disorders among women with the fragile X premutation without children affected by fragile X syndrome. Am J Med Genet B Neuropsychiatr Genet 2016; 171:1139-1147. [PMID: 27615674 PMCID: PMC6907071 DOI: 10.1002/ajmg.b.32496] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/19/2016] [Indexed: 11/07/2022]
Abstract
Several studies have demonstrated increased rates of anxiety and depressive disorders among female carriers of the fragile X premutation. However, the majority of these studies focused on mothers of children with fragile X syndrome, who experience higher rates of parenting stress that may contribute to the emergence of these disorders. The present study compared psychiatric symptom presentation (utilizing measures of current symptoms and lifetime DSM-IV Axis I disorders) in 24 female carriers without affected children (mean age = 32.1 years) to 26 non-carrier women from the community (mean age = 30.5 years). We also examined the association between CGG repeat size (adjusted for X activation ratio) and mRNA, with severity of psychiatric symptoms. Women with the premutation reported significantly elevated symptoms of anxiety, depression, interpersonal sensitivity, obsessive-compulsiveness, and somatization relative to controls during the past week. Carriers had significantly higher rates of lifetime social phobia (42.3%) compared to controls (12.5%); however, this comparison did not remain significant after multiple comparison adjustment. Rates of other psychiatric disorders were not significantly elevated relative to controls, though it should be noted that lifetime rates among controls were much higher than previously published population estimates. Although the sample is relatively small, the study of this unique cohort suggests the premutation confers risk for mood and anxiety disorders independent of the stress of parenting children with FXS. Screening for psychiatric disorders in women with the premutation, even before they become parents, is important and highly encouraged. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amy Gossett
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, California
- Department of Psychology, California School of Professional Psychology, Alliant International University, Sacramento, California
| | - Stephanie Sansone
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, California
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, California
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California
| | - Cindy Johnston
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, California
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, California
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, California
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, California
| | - Susan M. Rivera
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, California
- Department of Psychology, University of California Davis, Davis, California
- Center for Mind and Brain, University of California Davis, Davis, California
| | - Andreea L. Seritan
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, California
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California
| | - David Hessl
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, California
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California
- Correspondence to: David Hessl, Ph.D., Department of Psychiatry and Behavioral Sciences, MIND Institute, UC Davis, 2825 50th St., Sacramento, CA 95817.
| |
Collapse
|
144
|
Wheeler AC, Sideris J, Hagerman R, Berry-Kravis E, Tassone F, Bailey DB. Developmental profiles of infants with an FMR1 premutation. J Neurodev Disord 2016; 8:40. [PMID: 27822316 PMCID: PMC5095966 DOI: 10.1186/s11689-016-9171-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Emerging evidence suggests that a subset of FMR1 premutation carriers is at an increased risk for cognitive, emotional, and medical conditions. However, because the premutation is rarely diagnosed at birth, the early developmental trajectories of children with a premutation are not known. METHODS This exploratory study examined the cognitive, communication, and social-behavioral profiles of 26 infants with a premutation who were identified through participation in a newborn screening for fragile X syndrome pilot study. In this study, families whose newborn screened positive for an FMR1 premutation were invited to participate in a longitudinal study of early development. Twenty-six infants with the premutation and 21 matched, screen-negative comparison babies were assessed using validated standardized measures at 6-month intervals starting as young as 3 months of age. The babies were assessed up to seven times over a 4-year period. RESULTS The premutation group was not statistically different from the comparison group on measures of cognitive development, adaptive behavior, temperament, or overall communication. However, the babies with the premutation had a significantly different developmental trajectory on measures of nonverbal communication and hyperresponsivity to sensory experiences. They also were significantly more hyporesponsive at all ages than the comparison group. Cytosine-guanine-guanine repeat length was linearly associated with overall cognitive development. CONCLUSIONS These results suggest that infants with a premutation may present with subtle developmental differences as young as 12 months of age that may be early markers of later anxiety, social deficits, or other challenges thought to be experienced by a subset of carriers.
Collapse
Affiliation(s)
- Anne C Wheeler
- RTI International, 3040 E. Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC 27709 USA
| | - John Sideris
- University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Randi Hagerman
- Davis MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California at Davis, Davis, CA USA ; Department of Pediatrics, University of California at Davis, Davis, CA USA
| | | | - Flora Tassone
- Davis MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California at Davis, Davis, CA USA
| | - Donald B Bailey
- RTI International, 3040 E. Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC 27709 USA
| |
Collapse
|
145
|
Merino S, Ibarluzea N, Maortua H, Prieto B, Rouco I, López-Aríztegui MA, Tejada MI. Associated Clinical Disorders Diagnosed by Medical Specialists in 188 FMR1 Premutation Carriers Found in the Last 25 Years in the Spanish Basque Country: A Retrospective Study. Genes (Basel) 2016; 7:genes7100090. [PMID: 27775646 PMCID: PMC5083929 DOI: 10.3390/genes7100090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 12/30/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI) are definitely related to the fragile X mental retardation 1 (FMR1) premutation (PM). Additional medical problems have also been associated with the PM, such as fibromyalgia, endocrine, and psychiatric disorders. To improve our understanding in the field, we reviewed all PM carriers and their reasons for any medical referrals from 104 fragile X families molecularly diagnosed in our laboratory and living in the Spanish Basque Country. After signing the written informed consent, we studied their electronic medical records in order to identify the disorders associated with the PM and their frequencies. We obtained clinical data in 188 PM carriers (147 women and 41 men). In women, the frequency of FXPOI (22.61%) was similar to that previously reported in PM carriers. In men, the frequency of definite FXTAS (28.57%) was lower than reported elsewhere. Furthermore, thyroid pathology was associated with the PM, the frequency of hypothyroidism being much higher in the studied region than in the general population (8.84% vs. 0.93%). Finally, we found no association with fibromyalgia or psychiatric problems. These findings represent another population contribution in this field and may be useful for the clinical management of PM carriers.
Collapse
Affiliation(s)
- Sonia Merino
- Molecular Genetics Laboratory, Genetics Service, BioCruces Health Research Institute, Cruces University Hospital, 48903-Barakaldo-Bizkaia, Spain.
| | - Nekane Ibarluzea
- Molecular Genetics Laboratory, Genetics Service, BioCruces Health Research Institute, Cruces University Hospital, 48903-Barakaldo-Bizkaia, Spain.
| | - Hiart Maortua
- Molecular Genetics Laboratory, Genetics Service, BioCruces Health Research Institute, Cruces University Hospital, 48903-Barakaldo-Bizkaia, Spain.
- Clinical Group Affiliated with the Centre for Biomedical Research on Rare Diseases (CIBERER), 46010-Valencia, Spain.
| | - Begoña Prieto
- Human Reproduction Unit, Obstetrics and Gynecology Department, BioCruces Health Research Institute, Cruces University Hospital, 48903-Barakaldo-Bizkaia, Spain.
| | - Idoia Rouco
- Ataxias and Spastic Paraplegias Unit, Neurology Department, BioCruces Health Research Institute, Cruces University Hospital, 48903-Barakaldo-Bizkaia, Spain.
| | - Maria-Asunción López-Aríztegui
- Clinical Group Affiliated with the Centre for Biomedical Research on Rare Diseases (CIBERER), 46010-Valencia, Spain.
- Genetics Counseling, Genetics Service, BioCruces Health Research Institute, Cruces University Hospital, 48903-Barakaldo-Bizkaia, Spain.
| | - Maria-Isabel Tejada
- Molecular Genetics Laboratory, Genetics Service, BioCruces Health Research Institute, Cruces University Hospital, 48903-Barakaldo-Bizkaia, Spain.
- Clinical Group Affiliated with the Centre for Biomedical Research on Rare Diseases (CIBERER), 46010-Valencia, Spain.
| |
Collapse
|
146
|
Lozano R, Saito N, Reed D, Eldeeb M, Schneider A, Hessl D, Tassone F, Beckett L, Hagerman R. Aging in Fragile X Premutation Carriers. CEREBELLUM (LONDON, ENGLAND) 2016; 15:587-94. [PMID: 27334385 PMCID: PMC8020959 DOI: 10.1007/s12311-016-0805-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
It is now recognized that FMR1 premutation carriers (PC) are at risk to develop a range of neurological, psychiatric, and immune-mediated disorders during adulthood. There are conflicting findings regarding the incidence of hypertension, hypothyroidism, diabetes, and cancer in these patients that warrant further study. A retrospective controlled study was performed in a convenience sample of 248 controls (130 men, 118 women) and 397 FMR1 PC with and without fragile X-associated tremor ataxia syndrome (FXTAS) (176 men, 221 women); all participants were at least 45 years old (men: mean 62.4, SD 9.5; women: mean 62.8, SD 9.9; p = 0.63). Memory and cognitive assessments (Wechsler Adult Intelligence Scale (WAIS-III), Wechsler Memory Scale (WMS-III)) and molecular testing (CGG repeats and FMR1-mRNA levels) were performed. Additional data included body mass index (BMI), cholesterol levels, blood pressure, hemoglobin A1c (HbA1c) levels, and medical history. A higher percentage of PC subjects self-reported having a diagnosis of hypertension (50.0 vs. 35.0 %, p = 0.006) and thyroid problems (20.4 vs. 10.0 %, p = 0.012) than control subjects. When comparing controls versus PC with FXTAS, the association was higher for diabetes (p = 0.043); however, the effect was not significant after adjusting for demographic predictors. Blood pressure, blood glucose levels, HbA1c, and BMI values were not significantly different between the two groups. The PC with FXTAS group performed consistently lower in neuropsychological testing compared with the PC without FXTAS group, but the differences were very small for all but the WAIS full-scale IQ. Based on these findings, it appears that the risk for hypertension, thyroid problems, and diabetes may be more frequent in PC with FXTAS, which will require verification in future studies.
Collapse
Affiliation(s)
- Reymundo Lozano
- Seaver Autism Center for Research and Treatment, Departments of Genetics and Genomic Sciences, Psychiatry, and Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY, USA.
| | - Naomi Saito
- Department of Public Health Sciences, UC Davis School of Medicine, Sacramento, CA, USA
| | - Dallas Reed
- Departments of Genetics and Genomic Sciences and Obstetrics, Gynecology, and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marwa Eldeeb
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA
| | - David Hessl
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry, UC Davis School of Medicine, Sacramento, CA, USA
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry, UC Davis School of Medicine, Sacramento, CA, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Biochemistry, UC Davis School of Medicine, Sacramento, CA, USA
| | - Laurel Beckett
- Department of Public Health Sciences, UC Davis School of Medicine, Sacramento, CA, USA
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
147
|
FMRP regulates an ethanol-dependent shift in GABA BR function and expression with rapid antidepressant properties. Nat Commun 2016; 7:12867. [PMID: 27666021 PMCID: PMC5052688 DOI: 10.1038/ncomms12867] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/08/2016] [Indexed: 12/17/2022] Open
Abstract
Alcohol promotes lasting neuroadaptive changes that may provide relief from depressive symptoms, often referred to as the self-medication hypothesis. However, the molecular/synaptic pathways that are shared by alcohol and antidepressants are unknown. In the current study, acute exposure to ethanol produced lasting antidepressant and anxiolytic behaviours. To understand the functional basis of these behaviours, we examined a molecular pathway that is activated by rapid antidepressants. Ethanol, like rapid antidepressants, alters γ-aminobutyric acid type B receptor (GABABR) expression and signalling, to increase dendritic calcium. Furthermore, new GABABRs are synthesized in response to ethanol treatment, requiring fragile-X mental retardation protein (FMRP). Ethanol-dependent changes in GABABR expression, dendritic signalling, and antidepressant efficacy are absent in Fmr1-knockout (KO) mice. These findings indicate that FMRP is an important regulator of protein synthesis following alcohol exposure, providing a molecular basis for the antidepressant efficacy of acute ethanol exposure. Alcohol is thought to lead to neuroadaptive changes, although the underlying molecular mechanisms are unclear. Here, the authors find ethanol treatment alters GABAB-receptor expression via fragile-X mental retardation protein in mice, leading to antidepressant-like behaviours.
Collapse
|
148
|
Jazurek M, Ciesiolka A, Starega-Roslan J, Bilinska K, Krzyzosiak WJ. Identifying proteins that bind to specific RNAs - focus on simple repeat expansion diseases. Nucleic Acids Res 2016; 44:9050-9070. [PMID: 27625393 PMCID: PMC5100574 DOI: 10.1093/nar/gkw803] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022] Open
Abstract
RNA–protein complexes play a central role in the regulation of fundamental cellular processes, such as mRNA splicing, localization, translation and degradation. The misregulation of these interactions can cause a variety of human diseases, including cancer and neurodegenerative disorders. Recently, many strategies have been developed to comprehensively analyze these complex and highly dynamic RNA–protein networks. Extensive efforts have been made to purify in vivo-assembled RNA–protein complexes. In this review, we focused on commonly used RNA-centric approaches that involve mass spectrometry, which are powerful tools for identifying proteins bound to a given RNA. We present various RNA capture strategies that primarily depend on whether the RNA of interest is modified. Moreover, we briefly discuss the advantages and limitations of in vitro and in vivo approaches. Furthermore, we describe recent advances in quantitative proteomics as well as the methods that are most commonly used to validate robust mass spectrometry data. Finally, we present approaches that have successfully identified expanded repeat-binding proteins, which present abnormal RNA–protein interactions that result in the development of many neurological diseases.
Collapse
Affiliation(s)
- Magdalena Jazurek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Adam Ciesiolka
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Julia Starega-Roslan
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Katarzyna Bilinska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
149
|
Liu JA, Hagerman RJ, Miller RM, Craft LT, Finucane B, Tartaglia N, Berry-Kravis EM, Sherman SL, Kidd SA, Cohen J. Clinicians' experiences with the fragile X clinical and research consortium. Am J Med Genet A 2016; 170:3138-3143. [PMID: 27604509 DOI: 10.1002/ajmg.a.37948] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 08/14/2016] [Indexed: 01/22/2023]
Abstract
The objectives of the study were to assess the attitudes and experiences of clinicians involved in a consortium of clinics serving people with fragile X-associated disorders to gauge satisfaction with the consortium and its efforts to improve quality of life for patients and the community. An internet survey was sent to 26 fragile X (FX) clinic directors participating in the Fragile X Clinical and Research Consortium (FXCRC). Respondents were asked to complete 19 questions on consortium performance and outcomes relevant for their own clinic. The response rate was 84% (22/26), with two surveys providing incomplete data. Assistance with clinic establishment, opportunities for research collaborations, and access to colleagues and information were highly valued. Approximately 76% of clinicians reported improvements in patient care and 60% reported an increase in patient services. There was a 57% increase in participation in a FX-related clinical trial among clinics since joining the FXCRC (24% vs. 81%). Overall, respondents reported primarily positive experiences from participation in the FXCRC. Common suggestions for improvement included additional financial support and increased utilization of collected patient data for research purposes. Additionally, a Clinic Services Checklist was administered annually to examine changes in services offered over time. There were several important changes regarding the provision of services by clinics, often with multiple clinics changing with respect to a service. In conclusion, the FXCRC has led to the establishment and sustainment of fragile X clinics in the U.S., fostered cooperation among fragile X clinicians, and provided clinics with a platform to share recommendations and best practices to maximize quality of life for their patients and the overall fragile X community. The results from the survey and checklist also provide suggestions to strengthen the FXCRC and enhance future collaborations among FXCRC members. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jessica A Liu
- National Fragile X Foundation, Washington, District of Columbia
| | - Randi J Hagerman
- University of California Davis MIND Institute and Department of Pediatrics, University of California Davis Health System, Sacramento, California
| | - Robert M Miller
- Rob Miller Human Service Consulting, Pleasant Hill, California
| | - Lisa T Craft
- Department of Pediatrics, Weisskopf Child Evaluation Center, University of Louisville, Louisville, Kentucky
| | - Brenda Finucane
- Autism and Developmental Medicine Institute, Geisinger Health System, Lewisburg, Pennsylvania
| | - Nicole Tartaglia
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Elizabeth M Berry-Kravis
- Department of Pediatrics, Neurological Sciences, Biochemistry, Rush University Medical Center, Chicago, Illinois
| | | | - Sharon A Kidd
- National Fragile X Foundation, Washington, District of Columbia
| | - Jeffrey Cohen
- National Fragile X Foundation, Washington, District of Columbia
| |
Collapse
|
150
|
Loesch DZ, Annesley SJ, Trost N, Bui MQ, Lay ST, Storey E, De Piazza SW, Sanislav O, Francione LM, Hammersley EM, Tassone F, Francis D, Fisher PR. Novel Blood Biomarkers Are Associated with White Matter Lesions in Fragile X- Associated Tremor/Ataxia Syndrome. NEURODEGENER DIS 2016; 17:22-30. [PMID: 27602566 PMCID: PMC10964908 DOI: 10.1159/000446803] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/13/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The need for accessible cellular biomarkers of neurodegeneration in carriers of the fragile X mental retardation 1 (FMR1) premutation (PM) alleles. OBJECTIVE To assess the mitochondrial status and respiration in blood lymphoblasts from PM carriers manifesting the fragile X-associated tremor/ataxia syndrome (FXTAS) and non-FXTAS carriers, and their relationship with the brain white matter lesions. METHODS Oxygen consumption rates (OCR) and ATP synthesis using a Seahorse XFe24 Extracellular Flux Analyser, and steady-state parameters of mitochondrial function were assessed in cultured lymphoblasts from 16 PM males (including 11 FXTAS patients) and 9 matched controls. The regional white matter hyperintensity (WMH) scores were obtained from MRI. RESULTS Mitochondrial respiratory activity was significantly elevated in lymphoblasts from PM carriers compared with controls, with a 2- to 3-fold increase in basal and maximum OCR attributable to complex I activity, and ATP synthesis, accompanied by unaltered mitochondrial mass and membrane potential. The changes, which were more advanced in FXTAS patients, were significantly associated with the WMH scores in the supratentorial regions. CONCLUSION The dramatic increase in mitochondrial activity in lymphoblasts from PM carriers may represent either the early stages of disease (specific alterations in short-lived blood cells) or an activation of the lymphocytes under pathological situations. These changes may provide early, convenient blood biomarkers of clinical involvements.
Collapse
Affiliation(s)
- Danuta Z. Loesch
- Department of Psychology and Counselling, School of Psychology and Public Health, Melbourne, Vic., Australia
| | - Sarah J. Annesley
- Discipline of Microbiology, Department of Physiology Anatomy and Microbiology, School of Life Sciences, College of Science Health and Engineering, La Trobe University, Melbourne, Vic., Australia
| | - Nicholas Trost
- Medical Imaging Department, St Vincent's Hospital, Melbourne, Vic., Australia
| | - Minh Q. Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Vic., Australia
| | - Sui T. Lay
- Discipline of Microbiology, Department of Physiology Anatomy and Microbiology, School of Life Sciences, College of Science Health and Engineering, La Trobe University, Melbourne, Vic., Australia
| | - Elsdon Storey
- Department of Medicine (Neuroscience), Monash University (Alfred Hospital Campus), Melbourne, Vic., Australia
| | - Shawn W. De Piazza
- Discipline of Microbiology, Department of Physiology Anatomy and Microbiology, School of Life Sciences, College of Science Health and Engineering, La Trobe University, Melbourne, Vic., Australia
| | - Oana Sanislav
- Discipline of Microbiology, Department of Physiology Anatomy and Microbiology, School of Life Sciences, College of Science Health and Engineering, La Trobe University, Melbourne, Vic., Australia
| | - Lisa M. Francione
- Discipline of Microbiology, Department of Physiology Anatomy and Microbiology, School of Life Sciences, College of Science Health and Engineering, La Trobe University, Melbourne, Vic., Australia
| | - Eleanor M. Hammersley
- Department of Psychology and Counselling, School of Psychology and Public Health, Melbourne, Vic., Australia
| | | | - David Francis
- Cytomolecular Diagnostic Research, Victorian Clinical Genetic Services, Murdoch Institute, Royal Children's Hospital, Melbourne, Vic., Australia
| | - Paul R. Fisher
- Discipline of Microbiology, Department of Physiology Anatomy and Microbiology, School of Life Sciences, College of Science Health and Engineering, La Trobe University, Melbourne, Vic., Australia
| |
Collapse
|